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Abstract

Alzheimer’s disease (AD), the most prevalent degenerative brain disease associated with

dementia, requires early diagnosis to alleviate worsening of symptoms through appropriate

management and treatment. Recent studies on AD stage classification are increasingly

using multimodal data. However, few studies have applied graph neural networks to multi-

modal data comprising F-18 florbetaben (FBB) amyloid brain positron emission tomography

(PET) images and clinical indicators. The objective of this study was to demonstrate the

effectiveness of graph convolutional network (GCN) for AD stage classification using multi-

modal data, specifically FBB PET images and clinical indicators, collected from Dong-A Uni-

versity Hospital (DAUH) and Alzheimer’s Disease Neuroimaging Initiative (ADNI). The

effectiveness of GCN was demonstrated through comparisons with the support vector

machine, random forest, and multilayer perceptron across four classification tasks (normal

control (NC) vs. AD, NC vs. mild cognitive impairment (MCI), MCI vs. AD, and NC vs. MCI

vs. AD). As input, all models received the same combined feature vectors, created by

concatenating the PET imaging feature vectors extracted by the 3D dense convolutional

network and non-imaging feature vectors consisting of clinical indicators using multimodal

feature fusion method. An adjacency matrix for the population graph was constructed using

cosine similarity or the Euclidean distance between subjects’ PET imaging feature vectors

and/or non-imaging feature vectors. The usage ratio of these different modal data and edge

assignment threshold were tuned by setting them as hyperparameters. In this study, GCN-

CS-com and GCN-ED-com were the GCN models that received the adjacency matrix con-

structed using cosine similarity (CS) and the Euclidean distance (ED) between the subjects’

PET imaging feature vectors and non-imaging feature vectors, respectively. In modified

nested cross validation, GCN-CS-com and GCN-ED-com respectively achieved average

test accuracies of 98.40%, 94.58%, 94.01%, 82.63% and 99.68%, 93.82%, 93.88%,

90.43% for the four aforementioned classification tasks using DAUH dataset, outperforming
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the other models. Furthermore, GCN-CS-com and GCN-ED-com respectively achieved

average test accuracies of 76.16% and 90.11% for NC vs. MCI vs. AD classification using

ADNI dataset, outperforming the other models. These results demonstrate that GCN could

be an effective model for AD stage classification using multimodal data.

1 Introduction

Alzheimer’s disease (AD), the most common type of dementia, is a neurodegenerative disorder

that starts with mild memory and cognitive impairments and can progress to severe brain

damage, impairing physical abilities and daily functioning [1–5]. Since there is currently no

perfect cure for AD, early diagnosis is important for timely intervention and treatment plan-

ning, to slow progression of symptoms and enhance the quality of life [1–5]. Mild cognitive

impairment (MCI), a stage between normal control (NC) and dementia, also poses significant

risk of progression, necessitating early diagnosis [6]. A comprehensive review [6] reported that

approximately 20–40% of MCI cases progress to dementia, with an annual progression rate of

approximately 10–15%.

Multimodal data comprise comprehensive information from various sources that cannot

be obtained using a single modality [7, 8]. In prediction tasks, the objective of multimodal

models is to accurately predict unseen data by effectively integrating and learning information

across multiple modalities. In practice, doctors clinically diagnose AD stage by evaluating vari-

ous types of information from several modalities for a subject. Accordingly, AD stage classifi-

cation studies using multimodal data have been increasing recently and demonstrating high

performance [9–15]. Among these, Zhang et al. [15] proposed a multimodal graph neural net-

work (GNN) that leverages structural magnetic resonance imaging (sMRI), F-18 Fluorodeoxy-

glucose brain positron emission tomography (FDG PET) scans, and phenotypic information

for AD stage classification. Their model achieved an average accuracy of 96.68% for NC vs.

AD classification and 78.00% for the stable MCI vs. progressive MCI classification.

Research has been ongoing on the 3D convolutional neural network (CNN) for extracting

meaningful spatial features from 3D medical images [5, 16–19]. Recent reviews have also

emphasized the role of explainable artificial intelligence (XAI) models, including CNNs, in

improving transparency and trust in AD stage classification systems [20]. Since 3D medical

images consist of a large number of voxels, a 3D CNN requires more data to extract meaning-

ful features than when learning 2D image data. To address this problem, several techniques

such as data augmentation, transfer learning, and pretrained models have been proposed;

however, they are not always effective for AD stage classification [21]. To fundamentally

address this problem, an efficiently learnable CNN model is required. A dense convolutional

network (DenseNet) was designed to efficiently learn image data using a dense connectivity

pattern, which substantially reduces the number of parameters through feature reuse [22].

Wang et al. [17] proposed an ensemble based-3D DenseNet model, using T1-weighted MRI

for AD stage classification. This model achieved an accuracy of 97.19% in NC vs. MCI vs. AD

classification.

The graph neural network belongs to a category of artificial neural networks that analyze

graph-structured data consisting of nodes and edges [23–25]. A node can represent an entire

observation or one or more features of the observation. An edge signifies the particular pair-

wise relationship between nodes. GNNs capture complex patterns within a graph using mes-

sage passing and aggregation mechanisms to update node and graph embeddings, making
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them suitable for specific tasks [23–25]. Among the various GNN models, the graph convolu-

tional network (GCN) generalizes the convolution operation of a CNN, which is suited for reg-

ular Euclidean data such as 2D images, to irregular non-Euclidean data [23–26]. Thus, the

GCN can simultaneously learn both image and non-image data and their interactions if the

graph data includes both types. The GCN receives both a node feature matrix and an adjacency

matrix as input. The node feature matrix is constructed by stacking node feature vectors. The

adjacency matrix is constructed to describe the connectivity between nodes as a matrix, where

each element indicates the presence or absence of an edge and its weight, if it exists.

In AD stage classification studies, graph data are primarily constructed in two ways. For

graph-level classification in brain network graph analysis [27–29], brain regions are repre-

sented as nodes, with edges indicating the structural or functional connections that exist

between these regions. For node-level classification in population graph analysis [14, 15, 30–

32], individual subjects are represented as nodes, with edges indicating pairwise similarities

between subjects. Kazi et al. [31] employed a multimodal GCN for node-level AD stage classifi-

cation using diverse biomarkers (MR, PET imaging, cognitive tests, cerebrospinal fluid (CSF)

biomarkers, etc.) as node features and the apolipoprotein E (ApoE) genotype, FDG PET imag-

ing, age, and gender for edge assignment. In their approach, each GCN receives distinct adja-

cency matrices constructed using each of the four features and the same node feature matrix.

The final prediction is made by applying a self-attention mechanism to the logits of each GCN.

This method achieved an accuracy of approximately 76% in NC vs. MCI vs. AD classification.

Lin et al. [14] proposed a framework based on both 3D DenseNet and GCN for node-level AD

stage classification using sMRI, demographic information, and neuropsychological tests. Their

study primarily focused on the effect of edge assignment on the performance of GCN. The

node feature matrix is constructed by extracting imaging feature vectors from 3D sMRI images

using 3D DenseNet as the feature extractor. The adjacency matrix is constructed by assigning

edges based on the similarity between the subjects’ imaging feature vectors and/or non-imag-

ing features. Their multimodal GCN, based on the adjacency matrix constructed solely using

the non-imaging feature clinical dementia rating scale sum of boxes (CDR-SB), achieved an

accuracy of 89.4% in the NC vs. MCI vs. AD classification.

In this study, we noted that the best performance of the GCN [14] was observed when the

edges were assigned using only the non-imaging feature CDR-SB. Additionally, the study

excluded non-imaging features from the node feature matrix and did not conduct cross valida-

tion (CV). The incomplete use of multimodal data and the absence of CV served as the initial

motivation for our study. We expected that the best performance of multimodal GCN would

be achieved when image and non-image data were used for edge assignment. The objective of

our study was to demonstrate that the GCN could be an effective model for AD stage classifica-

tion using multimodal data.

To achieve this objective, we employed the GCN for node-level AD stage classification

using F-18 florbetaben (FBB) PET images and clinical indicators collected from Dong-A Uni-

versity Hospital (DAUH) and Alzheimer’s Disease Neuroimaging Initiative dataset (ADNI).

3D DenseNet was utilized as a feature extractor to obtain PET imaging feature vectors from

the 3D FBB PET images [14]. In the population graph, node feature vectors of each subject

were the combined feature vectors concatenating the PET imaging feature vectors and non-

imaging feature vectors consisting of clinical indicators through a multimodal feature fusion

method [7, 8]. Edges were assigned based on either cosine similarity or the Euclidean distance

between the subjects’ PET imaging feature vectors and/or non-imaging feature vectors. Addi-

tionally, by setting hyperparameters during population graph construction, the usage ratio

between PET imaging features and clinical indicators, as well as the threshold for edge assign-

ment were tuned. To achieve reliable results, GCN was compared with support vector machine
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(SVM), random forest (RF), and multilayer perceptron (MLP), using a modified nested CV

(stratified nested 5 × 4-fold CV described in Section 2.6) across four classification tasks (NC

vs. AD, NC vs. MCI, MCI vs. AD, and NC vs. MCI vs. AD), with all these models receiving the

same combined feature vectors as input.

The population graph construction method and the use of the modified nested CV are key

contributions that distinguish our study. Previous studies on AD stage classification using FBB

PET images [5, 21, 33, 34] faced challenges in classifying MCI from NC and AD, which moti-

vated us to use GCN. The modified nested CV results indicated that GCN outperforms Dense-

Net, SVM, RF, and MLP models in four AD stage classifications. To the best of our knowledge,

this is the first study to apply GCN to multimodal datasets consisting of FBB PET images and

clinical indicators.

2 Materials and methods

2.1 Data acquisition

This study used two multimodal datasets from the DAUH and ADNI. The DAUH multimodal

dataset consisted of subjects who underwent their initial FBB brain PET scans between

November 6, 2015, and March 6, 2023, and were diagnosed with NC, MCI, or AD by neurolo-

gists at DAUH. A total of 468 subjects, with clinical indicators including the mini-mental state

examination (MMSE), CDR-SB, global deterioration scale (GDS), and the short version of the

geriatric depression scale (SGDepS), were selected. The clinical characteristics of the DAUH

subjects were illustrated in Table 1. The labels of β-Amyloid(Aβ) positivity, a hallmark of AD

characterized by substantial amyloid plaque accumulation in amyloid brain PET images, were

determined by a nuclear medicine specialist at DAUH. The DAUH multimodal dataset used

for AD stage classification consisted of FBB PET images and six clinical indicators: age, years

of education, MMSE, CDR-SB, GDS, and SGDepS.

The ADNI multimodal dataset consisted of subjects who underwent their initial FBB brain

PET scans and were diagnosed with NC, MCI, or AD. A total of 88 subjects with clinical

Table 1. Clinical characteristics of the DAUH subjects.

Category Group p-value

NC MCI AD NC vs. MCI vs. AD NC vs. AD NC vs. MCI MCI vs. AD

Number 76 155 237 - - - -

Aβ positivity (N/P) 60/16 90/65 39/198 <0.001 <0.001 0.002 <0.001

Gender (Male/Female) 24/52 62/93 114/123 0.028 0.016 0.271 0.140

ApoE4 (0/1/2) 41/12/0 90/41/9 102/94/22 <0.001 <0.001 0.082 0.005

Age 69.34±7.11 68.50±8.74 69.83±9.16 0.353 0.626 0.437 0.148

Education (year) 9.12±4.23 9.8±4.13 9.99±4.36 0.305 0.124 0.253 0.657

MMSE 27.65±1.72 25.11±2.99 19.28±4.23 <0.001 <0.001 <0.001 <0.001

CDR-SB 0.83±0.63 1.49±0.70 4.72±2.65 <0.001 <0.001 <0.001 <0.001

GDS 2.03±0.47 3.01±0.27 4.20±0.67 <0.001 <0.001 <0.001 <0.001

SGDepS 5.01±4.54 4.94±3.84 6.24±4.94 0.009 0.045 0.906 0.003

CDR 0.42±0.18 0.50±0.00 0.79±0.45 <0.001 <0.001 <0.001 <0.001

Statistics for the numerical variables are reported as mean ± standard deviation (SD)

Abbreviation: Aβ: β-Amyloid; N: Negative; P: Positive; ApoE4: the number of ApoE E4 alleles; CDR: Clinical Dementia Rating scale.

For the calculation of p-values, Welch’s t-test was conducted on numerical variables following Welch’s one-way ANOVA. However, for CDR, due to the variance of the

MCI case being zero, a one-way ANOVA was performed instead. For categorical variables, p-values were calculated by conducting a chi-square test.

https://doi.org/10.1371/journal.pone.0315809.t001
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indicators, including the MMSE, CDR-SB, total score of geriatric depression scale (GDTO-

TAL), and total score of functional activities questionnaire (FAQTOTAL), were selected for

external validation through the Analysis Ready Cohort (ARC) Builder (https://ida.loni.usc.

edu/explore/jsp/search/search.jsp?project=ADNI). The clinical characteristics of the ADNI

subjects were illustrated in Table 2. Note that the methodologies described in this chapter are

primarily based on the DAUH multimodal dataset. The external validation using the ADNI

multimodal dataset is described in detail in Section 3.8.

2.2 Image acquisition and preprocessing

In this study, PET scans of DAUH multimodal dataset were acquired using a Biograph 40

mCT Flow PET/CT Scanner (Siemens Healthcare, Knoxville, TN, USA), operating at 100 kVP

and 228 mA with a rotation time of 0.5 seconds, without the use of an intravenous contrast

agent. The skulls were scanned from the apex to the base using Ultra HD-PET (True X-TOF)

for 90–110 minutes following the injection of F-18 florbetaben.

For analysis, all PET scans were converted from Digital Imaging and Communications in

Medicine (DICOM) to Neuroimaging Informatics Technology Initiative (NIFTI) format using

MRIcron. Conventional image preprocessing was performed using the PMOD software (ver-

sion 4.303, PMOD Technologies Ltd., Zurich, Switzerland) to put the PET images into a form

suitable for CNN. The image preprocessing procedure shown in Fig 1 included the following

steps.

1. Match: simultaneously loading and aligning a subject’s PET and CT images.

2. Spatial normalization: aligning the matched images with the average FBB PET template.

3. Count normalization: normalizing pixel values against the cerebellum’s average pixel value

using the Hammers maximum probability atlas [35].

4. Skull stripping: removing the skull and non-brain regions using a brain mask.

5. Cropping: removing empty space to reduce unnecessary pixels.

6. Reslicing: resizing preprocessed images of size 79 × 95 × 85 to 64 × 64 × 64 using trilinear

interpolation in Python.

Table 2. Clinical characteristics of the ADNI subjects.

Category Group p-value

NC MCI AD NC vs. MCI vs. AD NC vs. AD NC vs. MCI MCI vs. AD

Number 30 30 28 - - - -

Age 70.04±1.33 71.47±2.16 75.60±6.83 <0.001 0.010 <0.001 0.013

Gender (male / female) 11 / 19 17 / 13 19 / 9 0.053 0.195 0.034 0.543

MMSE 29.30±0.83 27.70±1.85 23.17±3.56 <0.001 <0.001 <0.001 <0.001

CDR-SB 0.01±0.09 1.71±1.54 5.73±2.39 <0.001 <0.001 <0.001 <0.001

GDTOTAL 0.56±0.97 2.33±2.07 2.92±2.38 <0.001 <0.001 <0.001 0.950

FAQTOTAL 0.06±0.25 2.03±2.53 16±6.79 <0.001 <0.001 <0.001 <0.001

Statistics for the numerical variables are reported as mean ± standard deviation (SD)

For the calculation of p-values, Welch’s t-test was conducted on numerical variables following Welch’s one-way ANOVA. For categorical variables, p-values were

calculated by conducting a chi-square test.

https://doi.org/10.1371/journal.pone.0315809.t002
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Due to the dimensional differences between the ADNI and DAUH FBB PET scans, the

ADNI FBB PET scans were resliced to match the reference dimensions (91 × 109 × 91) using

trilinear interpolation prior to spatial normalization.

2.3 3D DenseNet

DenseNet, a deep convolutional neural network architecture proposed by Huang et al. [22],

was designed to enhance the flow of information between layers. DenseNet employs a dense

connectivity pattern in which each convolutional layer within a dense block receives feature

maps from all previous layers, concatenating the feature maps and passing the result to all sub-

sequent convolutional layers.

For efficient downsampling, DenseNet incorporates transition layers between dense blocks.

These transition layers perform convolution and pooling. The DenseNet architecture has sev-

eral advantages such as alleviating the vanishing gradient problem, enhancing the efficiency of

feature propagation, encouraging feature reuse, and substantially reducing the number of

parameters.

In this study, we used the DenseNet-BC architecture which additionally incorporates bot-

tleneck layers in the dense blocks and a compression factor θ(0< θ< 1) in the transition layers

to improve computational efficiency and model compactness [22]. This model was chosen

because of its advantages, as the model outperformed the other 3D CNN models in Aβ positiv-

ity classification (detailed in S1 Table). Unless otherwise specified, each side of the input was

zero-padded by one pixel, and a stride of one was used in all 3 × 3 × 3 convolutions to maintain

a fixed feature-map size, whereas a stride of two was used for all the 2 × 2 × 2 pooling for non-

overlapping reduction of feature-map size. The overall 3D DenseNet architecture is illustrated

in Fig 2.

2.3.1 Dense block. The dense connectivity pattern in a dense block is the core of Dense-

Net and is utilized for efficient extraction of features from images. The feature-maps of the lth

convolutional layer in a dense block of 3D DenseNet-BC can be formulated as follows:

X l ¼ Hlð½X 0;X 1; . . . ;X l� 1�Þ; ð1Þ

where, ½X 0;X 1; . . . ;X l� 1� denotes the concatenation of the 3D feature-maps produced by all

Fig 1. FBB PET image preprocessing pipeline.

https://doi.org/10.1371/journal.pone.0315809.g001
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preceding convolutional layers in the dense block; [. . .] refers to the concatenation operation;

Hl(�) is a composite function comprising six consecutive operations: batch normalization

(BN), rectified linear unit (ReLU), 1 × 1 × 1 convolution (Conv), BN, ReLU, and 3 × 3 × 3

Conv. Each function Hl produces k output feature-maps, with hyperparameter k indicating the

growth rate. Each 1 × 1 × 1 bottleneck convolutional layer produces b × k feature-maps, where

b denotes a hyperparameter. Fig 2A illustrates an example of a four-layer dense block.

2.3.2 Transition layer. The transition layers in 3D DenseNet-BC play a role in reducing

the number and size of feature-maps. First, if a transition layer received m number of feature-

maps from the dense block, the 1 × 1 × 1 convolutional layer in the transition layer produces θ
×m feature-maps after BN-ReLU operations, where 0< θ< 1 refers to the compression factor.

In this study, we set θ = 0.5, which means the number of feature-maps is halved after passing

through the 1 × 1 × 1 convolutional layer because its value is empirically the best in Aβ positiv-

ity classification. Second, the size of 0.5 ×m feature-maps is reduced by 2 × 2 × 2 average pool-

ing. Fig 2B illustrates an example of a general transition layer.

2.3.3 Hpyerparameters of 3D DenseNet. The best hyperparameters of the 3D DenseNet

for MCI vs. AD classification, excluding the learning rate and dropout rate, were applied to the

remaining three classifications. The reason for this approach was the large number of hyper-

parameters in DenseNet [18, 23], and the four classification tasks were highly associated. First,

the number of convolutions in the initial convolutional layer was set to 2 × k, the number of

dense blocks to 4, and θ to 0.5 [23]. Second, after several empirical hyperparameter experi-

ments, the final search range was set as follows: the number of 3 × 3 × 3 convolutional layers in

each of the four dense blocks was either (5, 5, 5, 5) or (3, 6, 12, 8); growth rate k was (16, 24,

32); hidden units in the first and second fully connected layers were (128, 256, 512); and (64,

128), respectively. In addition, the batch size was set to 32, the learning rates to 10−3 or 10−4,

and dropout rates to 0.2 or 0.3. Third, the best hyperparameters were determined by conduct-

ing a grid search method within the modified nested CV, identifying those that showed the

best performance on the validation datasets (detailed in Section 2.6). The best hyperparameters

in the MCI vs. AD classification were identified as follows: number of 3 × 3 × 3 convolutional

Fig 2. Overall architecture of 3D DenseNet. (A) A four-layer dense block, (B) A transition layer, (C) 3D DenseNet

architecture for the multiclass classification.

https://doi.org/10.1371/journal.pone.0315809.g002
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layers in each of the four dense blocks was (3, 6, 12, 8); growth rate k was 32; the hidden units

in the first and second fully connected layers were 256 and 64, respectively; learning rate was

10−4, and dropout rate was 0.2.

Fig 2C illustrates the 3D DenseNet for multiclass classification. The trained 3D DenseNet

was employed as a feature extractor to obtain PET imaging feature vectors from 3D FBB PET

images, which were then input into the multimodal models. PET imaging feature vectors com-

prising 256 values were extracted from the first fully-connected layer [14]. To ensure consis-

tency and prevent data leakage, identical seed value was used for all data splits in the modeling

process.

2.4 Population graph construction

In this study, population graphs were constructed by representing individual subjects as

nodes, with edges connecting them based on the similarity of the imaging and/or non-imaging

features. In detail, we constructed the undirected graph GðV;EÞ consisting of a set of nodes

V ¼ fv1; v2; . . . ; vNg and a set of edges E � V � V representing the set of connections

between nodes, where N is the total number of nodes in the graph. Each node vi represents a

subject and possesses a combined feature vector xi ¼ ½x
img
i ; xnimg

i � 2 R262
, where ximg

i 2 R256
is

the PET imaging feature vector extracted through 3D DenseNet, and xnimg
i 2 R6

is the non-

imaging feature vector consisting of age, years of education, MMSE, CDR-SB, GDS, and

SGDepS.

The input to the GCN consists of the node feature matrix X and adjacency matrix A. The

node feature matrix X 2 RN�262
consists of the stacked node feature vectors x1, x2, . . ., xN. The

adjacency matrix A 2 RN�N
, which is determined by the set of edges E, represents the pairwise

connection information between the nodes. Aij, the element in row i and column j of A, indi-

cates the connection information between vi and vj. The performance of GCN is significantly

affected by the construction of the adjacency matrix [14, 15, 30, 31].

In this study, we used either cosine similarity or the Euclidean distance between the sub-

jects’ imaging feature vectors and/or non-imaging feature vectors to construct the adjacency

matrix. The reason for using these two measures was that they are intuitive, and the method

for quantifying vector similarity is simple. To ensure that each measure was not affected by the

scale of the features, the combined feature vectors were standardized using the mean and SD

of the training dataset before edge assignment.

1. Weighted adjacency matrix based on cosine similarity ACS

ACS
ij ¼

bAimg
ij þ ð1 � bÞA

nimg
ij if bAimg

ij þ ð1 � bÞA
nimg
ij � aCS

0 otherwise

8
<

:
ð2Þ

Aimg
ij ¼

zimg
i � z

img
j

k zimg
i kk z

img
j k

; Animg
ij ¼

znimg
i � znimg

j

k znimg
i kk znimg

j k
ð3Þ

where the Aimg, Animg, and ACS denote the weighted adjacency matrices based on cosine

similarity, which were constructed using standardized PET imaging feature vectors zimg
i ,

standardized non-imaging feature vectors znimg
i , and a combination of both, respectively.

The αCS and β are the hyperparameters denoting the cosine similarity threshold and the

usage ratio between Aimg and Animg in constructing ACS, respectively. Initially, the values

for αCS in the range of 0 to 1 and β from 0 to 1, were explored in intervals of 0.1.
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Subsequently, a more detailed search was conducted at 0.05 intervals around the values that

resulted in the best performance of the GCN on the validation dataset.

2. Unweighted adjacency matrix based on Euclidean distance AED

AED
ij ¼

1 if bAimg
ij þ ð1 � bÞA

nimg
ij � qED

0 otherwise

8
<

:
ð4Þ

Aimg
ij ¼

k zimg
i � zimg

j k

pimg
; Animg

ij ¼
k znimg

i � znimg
j k

pnimg
ð5Þ

where qED denotes the quantile corresponding to hyperparameter αED. This quantile is

obtained by sorting the upper triangular elements of β Aimg + (1 − β)Animg in ascending

order because the matrix is symmetric. In Eq (5), the pimg and pnimg denote the number of

PET imaging features and non-imaging features, respectively. The reason for dividing by

the number of features is that the Euclidean distance, unlike the cosine similarity, is affected

by the number of features, even after standardization. The search for β was conducted in

the same manner as for cosine similarity-based edge assignment method. The αED was ini-

tially explored from 1 to 49 in increments of 2. If GCN showed better performance when

αED increased, we explored larger values by increasing it by 2.

Unlike ACS, an unweighted adjacency matrix AED was constructed because determining the

quantile of each Euclidean distance requires excessive computational resources in assigning

edge weights. The reason for exploring β was to find an appropriate usage ratio between image

and non-image data for edge assignment. The reason for exploring the thresholds αCS and αED

was to prevent oversmoothing problem, which can occur in the presence of too many unneces-

sary edges.

In summary, a node feature matrix was constructed by employing a multimodal feature

fusion method that concatenates the PET imaging feature vectors extracted from 3D DenseNet

with non-imaging feature vectors consisting of six clinical indicators. Adjacency matrices were

constructed based on either the cosine similarity or Euclidean distance between the standard-

ized PET imaging feature vectors and/or standardized non-imaging feature vectors. Popula-

tion graph construction is illustrated in Fig 3.

For clarity, the GCN models were categorized according to the input adjacency matrices,

with all models receiving the same node feature matrix. Specifically, when β is set to 0,

GCN-CS-nimg and GCN-ED-nimg are GCN models that respectively receive adjacency matri-

ces ACS and AED; β of 0 indicates that only non-image data are used for edge assignment. Con-

versely, when β is set to 1, GCN-CS-img and GCN-ED-img are GCN models that respectively

receive ACS and AED; β of 1 indicates that only PET image data are used for edge assignment.

Fig 3. Outline of population graph construction for the multiclass classification.

https://doi.org/10.1371/journal.pone.0315809.g003
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Finally, GCN-CS-com and GCN-ED-com are GCN models that respectively receive ACS and

AED when β ranges from 0.05 to 0.95, indicating the use of both PET image and non-image

data for edge assignment.

2.5 Graph convolutional networks

The GCN, a graph neural network architecture proposed by Kipf and Welling [26], has a sim-

ple design that effectively learns node representations by aggregating information from neigh-

boring nodes in graph GðV;EÞ, consisting of nodes and edges. This learning process can be

formulated using the following layer-wise propagation rule.

Hðlþ1Þ ¼ s ~D � 1
2 ~A ~D � 1

2HðlÞWðlÞ
� �

: ð6Þ

where the ~A ¼ Aþ IN is an adjacency matrix with self-connections added to the undirected

graph; IN 2 R
N�N is an identity matrix; ~Dii ¼

P
j
~Aij is a diagonal element of degree matrix ~D,

which is a diagonal matrix used for normalization of ~A; and W(l) is the lth layer trainable

weight matrix. The σ is an activation function such as ReLU; H(l) is the matrix of activations in

the lth layer; H(0) = X. In this study, a two-layer GCN was employed for semi-supervised node

classification on the population graphs constructed in Section 2.4. The output of the two-layer

GCN can be formulated as follows:

Z ¼ f ðX;AÞ ¼ softmaxðÂReLUðÂXWð0ÞÞWð1ÞÞ: ð7Þ

where the matrix Z 2 RN�C
is the output of the two-layer GCN (C is the number of classes),

and the Â ¼ ~D � 1=2 ~A ~D � 1=2 is the normalized adjacency matrix. Fig 4 illustrates the two-layer

GCN for the multiclass classification in this study. The input population graph was con-

structed by Section 2.4.

The best hyperparameters of the GCN were determined by conducting a grid search

method within the modified nested CV, to identify those that showed the best performance on

the validation datasets (detailed in Section 2.6). After several empirical hyperparameter experi-

ments, the search range of the GCN was set as follows: the number of hidden units in the

graph convolutional layer (64, 128, 256, 512), learning rates (10−3, 10−4), dropout rates (0.2,

0.3). During GCN modeling, batch gradient descent was used to construct the population

graph using the entire dataset.

Fig 4. The two-layer GCN architecture for the multiclass classification.

https://doi.org/10.1371/journal.pone.0315809.g004
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2.6 Hyperparameter tuning and model evaluation method

To achieve reliable model evaluation and alleviate possible bias caused by random partitioning

of the dataset, a stratified nested 5-fold CV was initially considered for both hyperparameter

tuning and model evaluation (Fig 5A). However, the number of best epochs for each deep

learning model differs according to the hyperparameters and partitioned dataset. To address

this challenge and prevent overfitting, an early stopping method was employed as a regulariza-

tion method in which training is halted if the validation loss does not decrease for a specified

number of consecutive epochs.

As the early stopping method requires a validation dataset, the models trained in the inner

loops with best hyperparameters, as identified by the inner CV, were used for model evaluation

(Fig 5B) instead of training a new model using the outer training dataset with best hyperpara-

meters identified in the inner CV for model evaluation (Fig 5A). Thus, the model evaluation in

this study was conducted by averaging the test classification performances of the 20 models in

the inner loops. This method uses each of the five folds in the outer loop four times for model

evaluation. To differentiate it from the traditional stratified nested 5-fold CV, we refer to it as

‘stratified nested 5 × 4-fold CV’ (referred to as modified nested CV in previous sections) in

this study. We believe that this method offers reliable results for model evaluation and compar-

ison. In Fig 5, this method is compared with the traditional nested 5-fold CV.

In detail, all deep learning models were trained for a maximum of 500 epochs using the

Adam optimizer with a weight decay of 10−5 to prevent overfitting problem. Training was

halted when validation loss did not decrease for 20 consecutive epochs. For the loss functions,

binary cross-entropy was used for binary classification tasks and categorical cross-entropy for

a multiclass classification task. The best hyperparameters were those that showed the lowest

average validation loss across all the inner loops. Model evaluation was performed using the 20

models trained in the inner loops with the best hyperparameters.

In binary classification tasks, the model evaluation metrics included accuracy, precision,

recall (sensitivity), F1 score, and area under the receiver operating characteristic (ROC) curve

(AUC). Accuracy is the ratio of correct predictions to all predictions, precision is the ratio of

true positives to positive predictions, and recall is the ratio of true positives to actual positives.

The F1 score is the harmonic mean of precision and recall (2 × precision × recall/(precision

+ recall)). The AUC is the integral of the area under the ROC curve, with values closer to 1

indicating a robust classifier. In a multiclass classification task, the model evaluation metrics

Fig 5. Comparison of nested 5 × 4-fold CV used in this study and traditional nested 5-fold CV. (A) Flowchart of

traditional nested 5-fold CV, (B) Flowchart of nested 5 × 4-fold CV used in this study.

https://doi.org/10.1371/journal.pone.0315809.g005
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include accuracy and the confusion matrix which allows a visualization of the classifier’s pre-

dictions for each class. These metrics help comprehensively assess the performance of a

classifier.

3 Results

3.1 Experimental setting

To demonstrate the effectiveness of GCN for AD stage classification using multimodal data,

GCN was compared with SVM using the radial basis function (RBF) kernel, RF, and MLP

models across four classification tasks using the same combined features vector as those input

into the GCN. As RF and SVM do not employ a gradient descent method during learning, we

determined the best hyperparameters based on the lowest average validation loss without early

stopping in the stratified nested 5 × 4-fold CV. The hyperparameter tuning and model evalua-

tion methods for MLP were the same as those used for GCN. The hyperparameter search

ranges for each model are summarized in Table 3. For the MLP models, the number of hidden

units in the preceding hidden layer was set to be greater than or equal to the number of hidden

units in the subsequent hidden layer. For brevity, SVM using the RBF kernel is referred to as

SVM-RBF, and MLPs with one, two, or three hidden layers are referred to as MLP-1HL, MLP-

2HL, and MLP-3HL, respectively.

In all binary classification tasks, recall is considered more important than precision, because

it measures the accuracy of identifying subjects with advanced AD stage, whereas precision

measures the accuracy of the classifier’s predictions for the advanced AD stage. Therefore,

when comparing models with similar accuracies and F1 scores, recall becomes a more critical

evaluation metric than precision.

3.2 NC versus AD classification performance

In Table 4, we confirmed that the performance of 3D DenseNet, trained only on FBB PET

images, did not significantly differ from those of the multimodal models RF, SVM, MLP,

Table 3. Hyperparameter search ranges for each model.

Model Hyperparameter Search range

SVM-RBF Regularization parameter 1e-3, 1e-2, . . ., 1000

RBF kernel coefficient 1e-3, 1e-2, 1e-1, 1, 2, 3, 4

Loss function Hinge loss

RF Number of trees 100, 200, . . ., 1000

Maximum tree depth 10, 20, . . ., 50

Minimum samples required to split a node 2, 5

Minimum samples required in a leaf node 1, 2

Maximum features considered for node split sqrt, log2

Loss function Gini impurity

MLP Learning rate 1e-5, . . ., 1e-2

Dropout rate 0.1, 0.2, 0.3, 0.4, 0.5

Number of hidden layers 1, 2, 3

Number of hidden units 64, 128, 256, 512

GCN Learning rate 1e-5, . . ., 1e-2

Dropout rate 0.1, 0.2, 0.3, 0.4, 0.5

Number of hidden units 64, 128, 256, 512

https://doi.org/10.1371/journal.pone.0315809.t003
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GCN-CS-img, and GCN-ED-img. This observation suggests that these multimodal models

may not have effectively learned the multimodal data. In particular, GCN-CS-img and

GCN-ED-img, which utilized only PET imaging features for edge assignment, underper-

formed compared to 3D DenseNet. In contrast, the performances of GCN-CS-nimg,

GCN-CS-com, GCN-ED-nimg, and GCN-ED-com suggest that they effectively learned multi-

modal data. Except for the AUC of GCN-ED-com, GCN-CS-com and GCN-ED-com slightly

outperformed GCN-CS-nimg and GCN-ED-nimg, respectively. Overall, GCN-ED-com

showed the best performance in the NC vs. AD classification.

3.3 NC versus MCI classification performance

In Table 5, the average test performance of 3D DenseNet suggests the challenges in classifying

NC and MCI using only FBB PET images. The average test recall of 98.22% and precision of

Table 4. Average test performances of each model in NC vs. AD classification (mean ± SD).

Model Accuracy(%) Precision(%) Recall(%) F1 Score(%) AUC

3D DenseNet 91.61 ± 3.36 93.25 ± 3.19 95.99 ± 2.73 94.55 ± 2.14 0.9451 ± 0.041

SVM-RBF 91.85 ± 3.07 94.27 ± 2.32 95.04 ± 2.78 94.63 ± 2.05 0.9614 ± 0.029

RF 91.45 ± 2.63 93.46 ± 2.46 95.46 ± 2.84 94.41 ± 1.74 0.9667 ± 0.024

MLP-1HL 92.01 ± 2.98 94.28 ± 2.10 95.25 ± 2.90 94.74 ± 2.01 0.9546 ± 0.033

MLP-2HL 92.33 ± 2.51 94.33 ± 2.37 95.68 ± 2.14 94.97 ± 1.63 0.9585 ± 0.033

MLP-3HL 91.93 ± 3.17 94.76 ± 2.47 94.62 ± 2.94 94.66 ± 2.12 0.9603 ± 0.031

GCN-CS-img 89.93 ± 4.34 93.56 ± 5.29 94.81 ± 2.78 91.77 ± 4.56 0.9320 ± 0.030

GCN-CS-nimg 97.12 ± 1.28 99.25 ± 1.01 96.94 ± 1.02 98.08 ± 0.84 0.9945 ± 0.003

GCN-CS-com 98.40 ± 1.50 99.37 ± 1.31 98.52 ± 1.63 98.93 ± 1.00 0.9970 ± 0.003

GCN-ED-img 90.25 ± 4.11 95.23 ± 2.97 91.76 ± 4.15 93.41 ± 2.88 0.9358 ± 0.047

GCN-ED-nimg 98.24 ± 0.99 98.75 ± 1.01 98.94 ± 1.24 98.84 ± 0.65 0.9990 ± 0.001

GCN-ED-com 99.68 ± 0.63 99.79 ± 0.61 99.78 ± 0.63 99.78 ± 0.42 0.9989 ± 0.004

The best performance for each evaluation metric is highlighted in bold.

https://doi.org/10.1371/journal.pone.0315809.t004

Table 5. Average test performances of each model in NC vs. MCI classification (mean ± SD).

Model Accuracy(%) Precision(%) Recall(%) F1 Score(%) AUC

3D DenseNet 66.88 ± 1.04 67.41 ± 1.17 98.22 ± 3.45 79.90 ± 0.89 0.5233 ± 0.081

SVM-RBF 92.19 ± 3.46 92.87 ± 2.82 95.80 ± 3.83 94.26 ± 2.58 0.9440 ± 0.032

RF 80.21 ± 6.69 81.13 ± 5.20 92.41 ± 8.11 86.15 ± 4.94 0.8480 ± 0.070

MLP-1HL 90.37 ± 3.34 89.98 ± 3.71 96.61 ± 3.14 93.10 ± 2.31 0.9478 ± 0.027

MLP-2HL 90.69 ± 3.87 90.37 ± 3.87 96.61 ± 3.13 93.32 ± 2.67 0.9399 ± 0.031

MLP-3HL 90.04 ± 3.50 90.41 ± 4.95 95.80 ± 4.33 92.84 ± 2.38 0.9426 ± 0.033

GCN-CS-img 66.33 ± 2.80 67.64 ± 1.63 95.80 ± 7.07 79.15 ± 2.61 0.5592 ± 0.090

GCN-CS-nimg 94.57 ± 2.23 95.47 ± 2.65 96.61 ± 2.96 95.98 ± 1.74 0.9646 ± 0.022

GCN-CS-com 94.58 ± 1.88 94.73 ± 2.08 97.41 ± 2.81 96.01 ± 1.42 0.9674 ± 0.021

GCN-ED-img 69.81 ± 9.06 74.07 ± 6.30 85.16 ± 11.19 78.89 ± 7.16 0.7262 ± 0.116

GCN-ED-nimg 92.95 ± 2.99 93.33 ± 3.78 96.61 ± 2.15 94.88 ± 2.08 0.9490 ± 0.025

GCN-ED-com 93.82 ± 2.68 94.08 ± 3.54 97.09 ± 2.25 95.50 ± 1.87 0.9459 ± 0.029

The best performance for each evaluation metric is highlighted in bold.

https://doi.org/10.1371/journal.pone.0315809.t005
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67.41% on 3D DenseNet indicate the tendency to simply predict MCI because MCI cases were

approximately twice as numerous as NC cases in the training dataset. Among the multimodal

models, GCN-CS-img and GCN-ED-img showed poor performance, possibly because their

adjacency matrices were based on cosine similarity and the Euclidean distance between the

PET imaging feature vectors extracted by 3D DenseNet, respectively. Similar to the findings

for NC vs. AD classification, GCN-CS-com and GCN-ED-com outperformed the other multi-

modal models. Overall, the GCN-CS-com showed the best performance in NC vs. MCI

classification.

3.4 MCI versus AD classification performance

As shown in Table 6, similar to the previous two binary classification tasks, GCN-CS-com and

GCN-ED-com outperformed the other multimodal models, except for precision. Based on

these binary classification results, we expect that GCN-ED-com and GCN-CS-com will consis-

tently show the best performance in the multiclass classification task (NC vs. MCI vs. AD).

3.5 Multiclass classification performance

In Table 7, the average test accuracy of 3D DenseNet suggests the challenges in classifying NC,

MCI, and AD using only FBB PET images. All multimodal models showed better performance

than the 3D DenseNet. This result indicates that multimodal data consisting of FBB PET

images and clinical indicators can aid multiclass classification. Consistent with our expecta-

tions based on the binary classification tasks, GCN-CS-com and GCN-ED-com outperformed

the other multimodal models. The average test accuracy of GCN-ED-com was approximately

12.77% higher than that of MLP-3HL, which showed the best performance among the multi-

modal models, except for GCN. This result indicates that the GCN-ED-com effectively learns

multimodal data. GCN-ED-com significantly outperformed GCN-CS-com, unlike the binary

classification tasks with similar performances. The reasons for this are discussed in the Discus-

sion Section.

Fig 6 illustrates the confusion matrices for each model in multiclass classification. Although

GCN-CS-com predicted AD cases slightly more accurately than GCN-ED-com, the latter was

notably better at classifying NC and MCI cases. Overall, the GCN-ED-com showed the best

Table 6. Average test performances of each model in MCI vs. AD classification (mean ± SD).

Model Accuracy(%) Precision(%) Recall(%) F1 Score(%) AUC

3D DenseNet 84.30 ± 4.21 84.19 ± 6.33 92.31 ± 4.96 87.75 ± 2.71 0.9310 ± 0.038

SVM-RBF 89.42 ± 3.57 91.18 ± 3.36 91.48 ± 4.56 91.25 ± 3.01 0.9553 ± 0.020

RF 87.06 ± 2.80 88.92 ± 3.18 90.00 ± 4.62 89.34 ± 2.41 0.9447 ± 0.020

MLP-1HL 90.69 ± 2.78 92.80 ± 3.21 91.90 ± 4.05 92.26 ± 2.36 0.9637 ± 0.019

MLP-2HL 89.67 ± 3.03 91.64 ± 3.65 91.48 ± 4.65 91.44 ± 2.60 0.9620 ± 0.018

MLP-3HL 90.37 ± 2.83 92.18 ± 2.91 92.01 ± 4.01 92.02 ± 2.40 0.9624 ± 0.017

GCN-CS-img 84.19 ± 5.40 89.65 ± 4.97 83.79 ± 7.38 86.41 ± 4.88 0.9323 ± 0.038

GCN-CS-nimg 92.54 ± 3.30 96.11 ± 2.28 91.37 ± 3.89 93.65 ± 2.81 0.9647 ± 0.019

GCN-CS-com 94.01 ± 2.30 95.64 ± 1.95 94.42 ± 2.95 95.00 ± 1.94 0.9851 ± 0.010

GCN-ED-img 85.85 ± 4.39 89.70 ± 3.63 86.64 ± 5.57 88.05 ± 3.85 0.9302 ± 0.035

GCN-ED-nimg 91.97 ± 3.74 95.04 ± 2.27 91.47 ± 4.36 93.20 ± 3.19 0.9622 ± 0.022

GCN-ED-com 93.88 ± 2.88 95.25 ± 2.43 94.63 ± 3.40 94.91 ± 2.44 0.9834 ± 0.011

The best performance for each evaluation metric is highlighted in bold.

https://doi.org/10.1371/journal.pone.0315809.t006
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performance in multiclass classification. In addition, the robustness test results for the models

can be found in S2 Table, where GCN-ED-com also demonstrated the best performance.

3.6 Average test accuracy of GCN-CS according to β
As described in Section 2.4 and Eqs (2) and (3), the hyperparameter β denotes the usage ratio

between Aimg and Animg in constructing ACS. In Fig 7, the β = 0 and β = 1 correspond to

GCN-CS-nimg and GCN-CS-img, respectively. For a β between 0 and 1, the corresponding

model is GCN-CS-com. In NC vs. AD and MCI vs. AD classification, the best performance of

GCN-CS-com was observed at β = 0.2. In NC vs. MCI and multiclass classification, the best

performance of GCN-CS-com was observed at β = 0.05. While the cosine similarity thresholds

αCS were 0.25, 0.55, 0.6, and 0.05 in four AD stage classification, respectively. In all four classi-

fication tasks, after achieving the highest accuracy, the average test accuracy tends to decrease

Table 7. Average test accuracy of each model in NC vs. MCI vs. AD classification (mean ± SD).

Model Accuracy(%)

3D DenseNet 71.25 ± 3.16

SVM-RBF 74.83 ± 5.32

RF 73.01 ± 4.50

MLP-1HL 74.99 ± 4.56

MLP-2HL 76.75 ± 4.85

MLP-3HL 77.66 ± 5.16

GCN-CS-img 71.57 ± 3.47

GCN-CS-nimg 82.26 ± 3.04

GCN-CS-com 82.63 ± 4.01

GCN-ED-img 71.52 ± 2.95

GCN-ED-nimg 89.41 ± 2.25

GCN-ED-com 90.43 ± 1.78

The best performance is highlighted in bold.

https://doi.org/10.1371/journal.pone.0315809.t007

Fig 6. Confusion matrices for each model in the multiclass classification.

https://doi.org/10.1371/journal.pone.0315809.g006
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as β increases. These findings indicate that the clinical indicators are more important than the

PET imaging features in cosine similarity-based edge assignment method.

3.7 Average test accuracy of GCN-ED according to β
As described in Section 2.4 and Eqs (4) and (5), the hyperparameter β denotes the usage ratio

between Aimg and Animg in cunstructing AED. In Fig 8, in all four classification tasks, after

achieving the highest accuracy of GCN-ED, the average test accuracy tends to decrease as β
increases similar to Fig 7. While the Euclidian distance quantile thresholds αED were 31, 15, 47,

and 39 in four AD stage classification, respectively. These findings indicate that the clinical

indicators are more important than PET imaging features in the Euclidean distance-based

edge assignment method.

3.8 External validation

To further validate the effectiveness of the GCN in AD stage classification, we conducted an

external validation using the ADNI multimodal dataset for NC vs MCI vs AD classification.

Details of the ADNI dataset can be found in Table 2. The differences in the modeling approach

used for the DAUH and ADNI datasets are the size of the 3D DenseNet and the hyperpara-

meter search range for the MLP and GCN models. Specifically, considering the smaller num-

ber of ADNI subjects, the growth rate of the 3D DenseNet was reduced to 12, and a fully

connected layer with 32 hidden units was included to downsize the 3D DenseNet. The candi-

date hidden units for the MLP were set to 32, 64, 128, and 256, while the hidden units for the

GCN were set to 32, and dropout was not applied.

As shown in Table 8, the average test accuracy of the 3D DenseNet indicates the challenges

in NC vs. MCI vs. AD classification. This may be due to the limited number of subjects,

Fig 7. Comparison of average test accuracy of GCN-CS according to β in four AD stage classification tasks.

https://doi.org/10.1371/journal.pone.0315809.g007
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differences in PET manufacturers and settings, and the lower quality of some FBB PET images.

However, the lower performance of the 3D DenseNet is a separate issue, as the primary objec-

tive of this study is to demonstrate the effectiveness of the GCN in AD stage classification

using multimodal data. The average test accuracy of the GCN-ED-com outperformed the

other models, as it did with the DAUH dataset. In addition, the robustness test results for the

models can be found in S3 Table, where GCN-ED-com also demonstrated the best

Fig 8. Comparison of average test accuracy of GCN-ED according to β in four AD stage classification tasks.

https://doi.org/10.1371/journal.pone.0315809.g008

Table 8. Result of external validation using ADNI multimodal dataset in NC vs. MCI vs. AD classification

(mean ± SD).

Model Accuracy(%)

3D DenseNet 40.94 ± 9.02

RF 79.08 ± 8.04

SVM-RBF 77.43 ± 12.22

MLP-1HL 74.60 ± 9.88

MLP-2HL 75.37 ± 8.59

MLP-3HL 74.28 ± 8.92

GCN-CS-img 72.05 ± 10.34

GCN-CS-nimg 75.32 ± 5.54

GCN-CS-all 76.16 ± 6.75

GCN-ED-img 64.33 ± 14.01

GCN-ED-nimg 85.81 ± 9.92

GCN-ED-com 90.11 ± 5.28

The best performance is highlighted in bold.

https://doi.org/10.1371/journal.pone.0315809.t008
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performance. Thus, the external validation results further support the effectiveness of the GCN

in AD stage classification using multimodal data.

4 Discussion

Our objective was to demonstrate that GCN could be an effective model for AD stage classifi-

cation using multimodal data consisting of both FBB PET images and clinical indicators col-

lected from the DAUH. This was demonstrated by comparing GCN with SVM, RF, and MLP

in the three binary classification tasks and multiclass classification task, using the stratified

nested 5 × 4-fold CV. In all the binary classification tasks, GCN-CS-com and GCN-ED-com,

which utilized both FBB PET images and clinical indicators for edge assignment, consistently

outperformed the other multimodal models. In the multiclass classification task, GCN-ED-

com achieved an average test accuracy of 90.43%, significantly outperforming the other mod-

els. However, the performances of GCN-CS-img and GCN-ED-img also indicate that GCN is

not always an effective model. These results support our initial expectation that leveraging

both image and non-image data for edge assignment is the most effective method for popula-

tion graph construction.

In multiclass classification, unlike binary classifications, the notable performance difference

according to the edge assignment method is probably due to the problem with cosine similar-

ity-based edge assignment method. As detailed in Section 2.4, the PET imaging feature vectors

and non-imaging feature vectors were standardized using the training dataset before edge

assignment. To explore this problem visually, we conducted a principal component analysis

(PCA) on standardized PET imaging feature vectors and on standardized non-imaging feature

vectors, as illustrated in Fig 9. Fig 9A and 9B illustrate the first two principal components

(PCs), which account for approximately 78.47% and 64.79% of the total variance in the stan-

dardized PET imaging feature vectors and non-imaging feature vectors, respectively. This

allows the visualization of the original high-dimensional dataset, albeit with some loss of

information.

Fig 9A indicates that classifying NC and MCI using only PET imaging features is challeng-

ing, pointing to the difficulty of properly assigning edges using cosine similarity or the Euclid-

ean distance-based edge assignment method. Fig 9B suggests that the Euclidean distance-

Fig 9. Visualization of PET imaging features and clinical indicators using PCA. (A) Scatter plot of PET imaging

features using PCA, (B) Scatter plot of clinical indicators using PCA.

https://doi.org/10.1371/journal.pone.0315809.g009
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based edge assignment method is likely to connect nodes with the same labels. However, using

the cosine similarity-based edge assignment method can lead to multiple connections between

NC and MCI because cosine similarity is determined by the angle between two vectors [36].

This is indirectly confirmed by the confusion matrices of both GCN-CS-nimg and GCN-CS-

com in Fig 6, which show poorer classification performances between NC and MCI compared

with both GCN-ED-nimg and GCN-ED-com.

Additionally, we numerically analyzed the edges of the input population graphs for

GCN-CS-com and GCN-ED-com in NC vs. MCI vs. AD classification, as shown in Table 7.

Table 9 presents the average number of edges between labels across 20 population graphs for

each similarity measure, represented as ‘number of edges/total possible edges (average

percentage ± SD)’. The total possible number of edges is calculated as nþ n
2

� �
for the same

label and as n1 × n2 for different labels. Since the DAUH multimodal dataset includes 76 NC,

155 MCI, and 237 AD subjects, the corresponding edge counts are shown in the Table 9.

In Table 9, it can be seen that cosine similarity connected more edges than Euclidean dis-

tance, implying that it requires more computation. Additionally, more edges are connected

between NC and MCI with cosine similarity compared to Euclidean distance. This might

explain why GCN-CS-com does not predict NC and MCI as well as GCN-ED-com in Fig 6.

While classifying between NC and AD is relatively easy, accurately classifying MCI is more

challenging [5, 21, 33, 34]. The GCN-ED-com in this study demonstrated higher accuracy and

lower standard deviation than other models in multiclass classification with stratified nested

5 × 4-fold CV, indicating its potential for future applications in AD stage classification.

The key approaches of this study are as follows. First, 3D DenseNet was employed as a fea-

ture extractor to obtain PET imaging feature vectors from 3D FBB PET images. These PET

imaging feature vectors were then concatenated with non-imaging feature vectors consisting

of clinical indicators using a multimodal feature fusion method. This produced combined fea-

ture vectors that were used as inputs for multimodal models. Second, various adjacency matri-

ces were constructed using the edge assignment method based on either the cosine similarity

or Euclidean distance between the subjects’ PET imaging feature vectors and/or non-imaging

feature vectors. In addition, a grid search method was conducted to identify the best modality

usage ratio and edge assignment threshold for proper edge assignments. Third, as detailed in

Section 2.6, the challenge of identifying the best number of epochs for each deep learning

model was addressed by developing a stratified nested 5 × 4-fold CV and incorporating an

early stopping method. This nested CV method can prevent overfitting problem and improve

the reliability of model evaluation and comparison. Finally, the limitations of the cosine simi-

larity-based edge assignment method in multiclass classification were visually confirmed using

PCA and a confusion matrix. These findings were further supported by the numerical edge

analysis, as shown in Table 9. We believe that these approaches will contribute to future studies

of AD stage classification.

This study has the following limitations. First, we used a relatively simple GNN, GCN,

trained with a semi-supervised learning method. Although this approach was effective for our

Table 9. Numerical edge analysis of population graphs according to similarity measure.

Similarity measure NC-NC NC-MCI NC-AD MCI-MCI MCI-AD AD-AD

Cosine similarity 2869.20/2926 9982.40/11780 2187.90/18012 8930.20/12090 7987.45/36735 19513.25/28203

(98.06±0.34%) (84.74±0.89%) (12.15±0.92%) (73.86±1.66%) (21.74±1.40%) (69.19±1.89%)

Euclidean distance 2237.70/2926 7560.60/11780 1455.75/18012 8929.75/12090 10427/36735 12476.20/28203

(76.48±1.08%) (64.18±0.68%) (8.08±0.55%) (73.86±1.21%) (23.38±1.08%) (44.24±1.22%)

https://doi.org/10.1371/journal.pone.0315809.t009

PLOS ONE Multimodal feature fusion-based GCN for AD stage classification

PLOS ONE | https://doi.org/10.1371/journal.pone.0315809 December 23, 2024 19 / 23

https://doi.org/10.1371/journal.pone.0315809.t009
https://doi.org/10.1371/journal.pone.0315809


current dataset, it requires full batch learning, which may limit scalability. For larger datasets,

a fully supervised GNN will be necessary in future studies. Second, only FBB PET images and

numerical clinical indicators were used for population graph construction. We did not use cat-

egorical clinical indicators, such as gender and ApoE4, as values were missing for the latter. In

future studies, we plan to develop an edge assignment method that can properly incorporate

both numerical and categorical clinical indicators. The expected method for including categor-

ical variables in edge assignment can employ one-hot encoding or the Kronecker delta func-

tion [14, 32, 37]. Furthermore, by using unsupervised learning methods or neural networks to

reduce noisy information [12, 13, 38], a population graph would better represent the relation-

ships between subjects.

5 Conclusion

This study demonstrated the effectiveness of GCN for AD stage classification using multi-

modal data, specifically FBB PET images and clinical indicators from the DAUH and ADNI

multimodal datasets. A multimodal feature fusion method was employed to create combined

feature vectors using 3D DenseNet. Population graphs were constructed based on either cosine

similarity or Euclidean distance between combined feature vectors of subjects. The GCN was

compared with SVM, RF, and MLP models using a stratified nested 5 × 4-fold CV to ensure

reliable model comparisons.

In the NC vs. MCI vs. AD classification, GCN-ED-com using Euclidean distance-based

edge assignment achieved average test accuracies of 90.43% for DAUH and 90.11% for ADNI,

outperforming the other models. The GCN-CS-com using cosine similarity-based edge assign-

ment showed relatively lower accuracies of 82.63% for DAUH and 76.16% for ADNI. These

performance differences were analyzed visually and numerically in the previous section.

These findings suggest the importance of constructing an appropriate population graph.

Future studies are required to develop improved population graph construction methods and

employ advanced GNN models to achieve higher accuracy in AD stage classification.
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