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Abstract

All nitrogen-fixing root nodule symbioses of angiosperms—legume and actinorhizal symbio-
ses—possess a common ancestor. Molecular processes for the induction of root nodules
are modulated by phytohormones, as is the case of the first nodulation-related transcription
factor NODULE INCEPTION (NIN), whose expression can be induced by exogenous cytoki-
nin in legumes. The process of actinorhizal nodule organogenesis is less well understood.
To study the changes exerted by phytohormones on the expression of the orthologs of
CYCLORPS, NIN, and NF-YAT1 in the actinorhizal host Datisca glomerata, an axenic hydro-
ponic system was established and used to examine the transcriptional responses (RT-
gPCR) in roots treated with the synthetic cytokinin 6-Benzylaminopurine (BAP), the natural
auxin Phenylacetic acid (PAA), and the synthetic auxin 1-Naphthaleneacetic acid (NAA).
The model legume Lotus japonicus was used as positive control. Molecular readouts for
auxins and cytokinin were established: DgSAURT for PAA, DgGH3.1. for NAA, and
DgARR9for BAP. L. japonicus NIN was induced by BAP, PAA, and NAA in a dosage- and
time-dependent manner. While expression of D. glomerata NIN2 could not be induced in
roots, D. glomerata NIN1 was induced by PAA; this induction was abolished in the presence
of exogenous BAP. Furthermore, the induction of DgNIN1 expression by PAA required eth-
ylene and gibberellic acid. This study suggests that while cytokinin signaling is central for
cortex-induced nodules of L. japonicus, it acts antagonistically to the induction of nodule pri-
mordia of D. glomerata by PAA in the root pericycle.

Introduction

Root nodule symbioses between plants and nitrogen-fixing soil bacteria are restricted to spe-
cies from four orders of dicots: Fabales, Fagales, Cucurbitales and Rosales. Unicellular Gram-
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negative soil bacteria, collectively called rhizobia, induce the formation of nodules on roots of
legumes (Fabales) and, exceptionally, on those of a non-legume, Parasponia sp. (Cannabaceae,
Rosales). Filamentous Gram-positive soil actinobacteria from the genus Frankia induce nod-
ules on roots of 25 genera from eight families of the Fagales, Rosales, and Cucurbitales, collec-
tively called actinorhizal plants [1]. Both symbioses possess a common ancestor and are
restricted to a single clade, the Fabids [2]. Phylogenetic studies indicate that the ancestor of
Fabids was symbiotic [2-4], however proof of whether this ancestor could already form root
nodules remains to be shown [5]. While legume symbioses are essential in agriculture insofar
as they yield protein-rich seeds while rendering their host plants with an independent source
of nitrogen fertilizer, thereby contributing to increases of nitrogen pools in surrounding
ecosystems, actinorhizal species mostly represent pioneer plants and are often used in refores-
tation or soil recovery [6].

In all these interactions, the microsymbionts are not vertically transmitted; although the
microsymbionts can exceptionally be carried by host-produced seeds [7], nodule induction
always starts with bacteria in the soil, not with bacteria in the plant. Thus, each plant must be
colonized ab initio in a process that requires signal exchange. Rhizobia produce lipochitooligo-
saccharide (LCO) nodulation factors (Nod factors; [8]) to induce the response of early nodu-
lins genes. In comparison with model legumes, whose response to Nod factors have been
analysed in detail, and enabled the characterization of many components of the Nod factor
signal transduction pathway [9], in actinorhizal plants the key molecular components remain
less understood. In fact, in actinorhizal plants, only a few genes encoding enzymes involved in
nodule induction have been identified and characterized and the foundation of these studies
was based on direct homology with the corresponding legume proteins [10]. On the micro-
symbiont side, there is indication that most Frankia strains do not produce LCO Nod factors
[11]. Notwithstanding, homologs of the rhizobial canonical nod genes nodABC, which code
for enzymes committed with steps for the assembly of LCO backbone, are present in two
strains of the earliest branching Frankia clade and are expressed in symbiosis [12, 13]. Frankia
strains infecting Datisca glomerata and Datisca cannabina (Datiscaceae, Cucurbitales) contain
nodABC genes, however experimentation with these strains remains hampered by the impossi-
bility of culturing them, making it challenging to address questions concerning the symbiotic
signalling associated with these ancient symbioses.

The involvement of phytohormones in legume nodule induction has been examined in
detail. Cytokinin signaling is central to nodule organogenesis and it has been shown that the
external application of cytokinin or an autoactivated form of a cytokinin receptor can be suffi-
cient to induce the formation of legume nodules in the absence of rhizobia; however, cytokinin
has a negative effect on infection [14-18]. It has to be pointed out that in the only non-legumes
nodulated by rhizobia, Parasponia spp., the involvement of cytokinin signalling in nodule
organogenesis is not yet clear since knockout mutants of one cytokinin receptor are not
affected in nodulation; this may be a result of receptor redundancy-or not [19]. The role
played by cytokinin in nodulation has also changed when the intercellular infection pathway
of the model legume Lotus japonicus was examined, in that knockout mutants of the cytokinin
receptor showed a much stronger phenotype than those used for intracellular infection studies
[20]. Multiple studies have shown the involvement of auxin signaling not only in the induction
of legume nodules but also on their actinorhizal counterparts [21-24]. Altogether, it is widely
accepted that the interplay of cytokinin and auxin signalling is required to form a local and
polarized auxin maximum, essential to trigger cell division and nodule primordium formation
[25-27]. Gibberellin signalling mediated by DELLA proteins interacting with different tran-
scription factors underlines a positive and a negative role: gibberellins promote nodule organ-
ogenesis [28], but inhibit nodule infection [29-32]. Controversial roles were also discussed for
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ethylene: while negative effects were reported on induction of legume nodule primordium and
infection thread formation (reviewed by [33]), positive effects were shown for ethylene govern-
ing the transport of auxin from the shoot to the nodulation zone [34]. Furthermore, a positive
effect for ethylene was also observed on the nodulation of semi-aquatic legumes under flooded
conditions [35].

Phytohormone signalling is involved in several steps of legume nodule induction [36].
Expression of the first transcription factor specifically involved in nodulation, Nodule Incep-
tion (NIN), is induced by Nod factor signalling via Ca>* spiking sensed by the calmodulin-
dependent protein kinase CCaMK which interacts with the transcription factor CYCLOPS
[37]; NIN expression can also be induced by exogenous supply of cytokinin in L. japonicus
[17, 18]; NIN acts as a central regulator and is crucial to induce the expression of downstream
nodule-specific transcription factors, such as the CCAAT box-binding NF-Y transcription fac-
tor NF-YALI [38-40]. Previous studies indicate that NIN is involved in nodule organogenesis
and infection in the actinorhizal species Casuarina glauca (Casuarinaceae, Fagales) [11, 41].

D. glomerata is one of the few symbiotic species known so far whose genome contains two cop-
ies of NIN [3]. Promoter sequence analysis of D. glomerata NINI led to the identification of
multiple cytokinin- and auxin-responsive elements [42-45], suggesting that DgNINTI signaling
might depend on auxin and/or cytokinin.

Nodules of D. glomerata differ from those of L. japonicus in anatomy, physiology, and
ontology [46]. To understand whether the symbiotic programs of these two species share con-
served mechanisms for nodule induction, which might unravel conserved traits across far
related lineages, we set out to investigate the effects exerted by auxin and cytokinin on expres-
sion of D. glomerata NINI, while substantial information already existed for L. japonicus NIN
[17,47, 48]. The analysis was extended to the orthologous genes DgCYCLOPS and DgNF-YA1,
which, based on direct inference from research carried on model legumes, act upstream and
downstream of DgNINI, respectively; DgNF-YA1 codes for the CCAAT box-binding transcrip-
tion factor NF-YA1 and its promoter is transactivated by NIN in model legumes [38-40].

Using an axenic hydroponic system that facilitates the transfer of plantlets from one
medium to another, gene expression studies (RT-qPCR) on L. japonicus and D. glomerata
were performed on three genes which are induced consecutively during nodule induction in
legumes: CYCLOPS, NIN1, and NF-YAI. Their expression in response to treatment with cyto-
kinin and auxins was examined alone and in combination with inhibitors of gibberellin and
ethylene signalling. The synthetic cytokinin 6-Benzylaminopurine (BAP) was chosen for this
study because it had been used in several legume nodule induction studies [17, 49]. The deci-
sion for the type of auxin was onerous because the most common endogenous plant auxin,
Indoleacetic Acid (IAA), is light sensitive and thus may lead to false negative results when
applied in glass vials. The most commonly used synthetic auxin, 1-Naphthaleneacetic Acid
(NAA), in contrast to natural auxins, diffuses through membranes in the absence of specific
transporters, which, again, might distort the results [50]. Since the dominant auxin in roots of
D. glomerata is not Indoleacetic Acid, but Phenylacetic Acid (PAA) [51], and significant
amounts of PAA were also found in other actinorhizal plants [22, 23], special emphasis was
given to PAA in this study. Since gibberellin and ethylene are involved in nodule induction, in
particular ethylene whose effects are known to often overlap with those of cytokinin [18, 19,
33, 52, 53], the effects of the ethylene biosynthesis inhibitor aminoethoxyvinyl glycine (AVG)
and those of the gibberellin biosynthesis inhibitor paclobutrazol (PBZ) were examined in this
study.

With this work, we strove to extend to actinorhizal nodules the abundant body of knowl-
edge that transpired from studies carried on model legumes to what concerns the role played
by auxin, cytokinin, ethylene, and gibberellin signalling in legumes root nodules development.

PLOS ONE | https://doi.org/10.1371/journal.pone.0315798 February 3, 2025 3/26


https://doi.org/10.1371/journal.pone.0315798

PLOS ONE

PAA induces NIN expression in Datisca glomerata

Results

Establishment of a hydroponic system and identification of reporter genes
for phytohormone responses in roots of D. glomerata

To analyse the effects of phytohormones on the expression of genes involved in nodule devel-
opment, we established an axenic hydroponic system that served to exogenously challenge
roots of Lotus japonicus and Datisca glomerata (Fig 1).

D. glomerata contains two copies of NIN [3] and although both NINI and NIN2 are induced
in nodules compared to roots, only NIN2 is expressed nodule-specifically with no detectable
levels of expression on roots of either seedlings or greenhouse-grown plants (Fig 2A; for NIN1
see also [55]). Cathebras et al. [54] have shown the presence of the cis-regulatory element
PACE within the promoter of DgNIN2 (termed DgNINI in [54]) as a requirement for induc-
tion by the CCaMK/CYCLOPS complex, whilst the promoter of DgNIN1 contains an uncom-
mon and extended version of PACE, which compared to that of DgNIN2, or those of other
root nodule-forming plants, contains an insertion of eight nucleotides at the core of PACE and
displays high nucleotide conservation across PACE-Y and PACE-X, and a fair conservation
(ca. 67%) at the core of the PACE element (Fig 2B). DgNINI combined with its PACE element
could complement the nin15 mutant of L. japonicus, i.e., this non-standard PACE element
conferred induction by the CCaMK/CYCLOPS complex of L. japonicus [54]. To examine
whether DgNIN1 PACE holds physical properties for distortion and to adopt a structural con-
formation to bend around a protein, inference about the DNA rigidity of the helices formed by
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Fig 1. Establishment of an axenic hydroponic system. Seeds were surface-sterilized and imbibed with sterile MilliQ
water at 4°C for 5 days in the dark. After thorough washing, seeds were placed on 20x20 (mm) metal grids and allowed
to germinate in a thin layer (ca. 2 mm) of % strength Hoagland’s medium [87] supplied with 10 mM nitrogen
(Hoaglands N*) and 0.8% plant agar (Duchefa). Panel A shows a detail of a recently germinated Lotus japonicus root.
One week after germination, metal grids containing germinated seeds (like the one depicted in panel A) were placed
over vials filled with 18 ml of Hoagland’s N*. This way, recently emerged root tips were able to develop within a fully
controlled environment. Growing proceeded in Magenta boxes under white light [200 uEm™" * m > at 16h light/23°C
and 8h dark/18°C]. Panels B and C show hydroponically treated roots of Datisca glomerata.

https://doi.org/10.1371/journal.pone.0315798.g001
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Fig 2. The PACE elements of DgNIN1 and DgNIN2 put in context. (A) Expression profile of genes encoding orthologs of nuclear transcription factors
associated with nodule development in Datisca glomerata; transcript abundance was analysed by RT-qPCR in roots (R) and nodules (N) of greenhouse-
grown plants and is given relative to that of the housekeeping gene EFI-o (n = 3 for both technical and biological replicates); differences between R and
N are shown at p<0.001 (student’s ¢ test). (B) In silico analysis of the cis-regulatory element PACE in DgNIN1 and DgNIN2 promoters; representative
logo profile of PACE depicted as position weight matrix out of 14 FaFaCuRo species and 2 non-nodulators (Prunus persica and Ziziphus jujuba) along
with a comparison of NIN PACE sequences in D. glomerata showing an 8-nucleotide insertion at the core of DgNINI PACE. (C) Evaluation of
secondary order effects by propeller-twist (ProT) of base-pairs across the PACE landscape of D. glomerata and model legumes. (D) Implications of
primary sequence dissimilarity in secondary structure of CYCLOPS shown as 3D models. Partial alignment of CYCLOPS from 8 nodulating species
and 1 non-nodulator (Trema tomentosa) shows dissimilarities in a region encompassing 24 residues (see dashed box) (full alignment in S2A Fig). (E)
AlphaFold 3D models showing the implications in secondary structure of DgCYCLOPS at the site of the region covered by the dashed box, highlighting
the presence of an a-helix in DgCYCLOPS, from 402Q to 412D, which is absent in Ceanothus thyrsiflorus and model legumes.

https://doi.org/10.1371/journal.pone.0315798.9002

PLOS ONE | https://doi.org/10.1371/journal.pone.0315798 February 3, 2025 5/26


https://doi.org/10.1371/journal.pone.0315798.g002
https://doi.org/10.1371/journal.pone.0315798

PLOS ONE

PAA induces NIN expression in Datisca glomerata

PACE was conducted by propeller-twisting (ProT) of base-pairs. The angle predicted for
DgNIN1 PACE by ProT analysis was always lower than 11,06° across the landscape of 37 nucle-
otides, a measure that correlates with lower rigidity of the helices spanning the PACE
sequences DgNIN2 and those of the model legumes L. japonicus and Medicago truncatula (Fig
2C). To gain a better understanding of the PACE-CYCLOPS interactions in D. glomerata, we
compared the amino acid sequence of DgCYCLOPS with those of CYCLOPS proteins from a
range of root nodule-forming plants and one non-nodulator, Trema tomentosa. Alignment of
CYCLOPS orthologs showed that the primary structure of CYCLOPS, along with its ortholog
in Ceanothus thyrsiflorus, displays a ~40 amino acid sequence extension at its N-terminus that
is neither present in Alnus glutinosa, Parasponia andersonni, nor in the legumes included in
the analysis (S2A Fig); importantly, the first 20 amino acids represent a disordered domain
whose presence at the N-terminus seems to be a feature of actinorhizal plants as it was only
found in Datisca glomerata (position 1-20), Alnus glutinosa (position: 1-33) and Ceanothus
thyrsiflorus (position 16-36) (S2A Fig). Furthermore, 17 amino acids upstream of the largest
and well-conserved disordered domain, placed at the C-terminus, the primary structure of
DgCYCLOPS shows high dissimilarity with that of other orthologs (Fig 2D; full alignment in
S2A Fig). To investigate whether this dissimilarity could lead to alterations in protein second-
ary structure, AlphaFold structure predictions were carried out and the comparison of the pre-
dicted models showed the presence of an a-helix in Datisca glomerata that is absent in
Ceanothus thyrsiflorus, L. japonicus, and in Medicago truncatula (Fig 2E).

Like for M. truncatula NIN, promoter sequence analysis of D. glomerata NINI [3] showed
the presence of multiple cytokinin- and auxin-responsive elements [42-45] (see https://doi.
org/10.17045/sthlmuni.9275285.v1). To link transcriptional responses in roots to exogenous
application of phytohormones, the genetic dependencies of the effects exerted by phytohor-
mones had to be confirmed independently. Although marker genes for phytohormone
responses are well established in several plant species, so far none were characterized in D. glo-
merata. To assess potential candidates that could serve as molecular readouts for phytohor-
mone responses in D. glomerata, we conducted homology analysis by mining a previously
published transcriptome [55, 56]. For cytokinin, three potential marker genes were identified
from the orthologous group ENOG411BR8V and named after the two-component response
regulator orthologs ARR4, ARRS5, and ARR9 of Arabidopsis thaliana. Preliminary assays con-
firmed ARRY as a suitable marker gene for cytokinin in D. glomerata, owing to an increase of
ARR9 mRNA levels in the presence of BAP (see below).

To identify reporter genes for auxin, we searched for candidate members of the Gretchen
Hagen3 (GH3), Small Auxin Upregulated RNA (SAUR), and GATA families. Although some
representatives of the GATA family of transcription factors could be identified in the nodule
transcriptome of D. glomerata (GATA15-, 16-, 24-, and 26-like), none of these candidates
were orthologous to auxin-responsive GATA23 of Arabidopsis [57]. However, a member of
the Small Auxin Upregulated RNA (SAUR) gene family was identified based on the ortholo-
gous group ENOG410JVA8 and the encoded protein shares high sequence similarity with
other relatives in Viridiplantae (SAURI; S1A Fig). Furthermore, the hidden Markov model
returned by the profile of AtGH3.5 enabled the identification of two proteins in D. glomerata,
which we named GH3.1 and GH3.2. These proteins were analysed in silico for the presence of
motifs previously linked with auxin responsiveness [58] and this analysis indicated that GH3.1
was very likely orthologous to the auxin responsive AtGH3.5/WES1, while GH3.2 was proba-
bly responsive to jasmonic acid [59] (S1B Fig). As a result, SAURI and GH3.1 were selected for
downstream analysis as putative auxin markers in D. glomerata.

To validate the responsiveness of GH3.1 and SAURI to auxins, their transcript abundance
was analysed by real-time quantitative PCR (RT-qPCR) on cDNA from roots treated with
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NAA and PAA across a wide range of concentrations. Under the conditions tested in this
experiment, only GH3.1 showed a convincing transcriptional response to NAA (p = 0.09, 10
nM; p = 0.0021, 100 nM; p = 0.0014, NAA 500 nM; S2 Table; S1C Fig). Given that no differ-
ences were observed between 100 nM and 500 nM, this observation suggested that 100 nM
may be already above the optimum for GH3.1I response to NAA. Expression levels of SAURI
were neither affected by NAA nor by PAA, but the range of concentration tested for PAA in
this assay (5nM—25nM) was very likely below the optimum (S1C Fig). Because PAA is the
dominant auxin in roots of D. glomerata [51], we reasoned that the response of SAURI should
be examined in greater detail for a higher concentration of PAA (see below). Taken together,
results showed GH3.1 as a suitable candidate to address effects exerted by NAA, whereas
SAURI did not respond to NAA (10nM—500nM) nor to PAA (<25 nM) under the conditions
applied in this assay.

Use of the hydroponic system to address responses in gene regulation in
roots exogenously treated with phytohormones: Proof of concept using the
model legume Lotus japonicus

To assess the possibility of using the hydroponic system coupled with RT-qPCR to assess the
effects of phytohormones on nodulation-related gene expression in D. glomerata, the effects
exerted by phytohormones were first examined in the well-studied symbiotic model L. japoni-
cus. The expression of L. japonicus cytokinin oxidase/dehydrogenase3 (LjCkx3; [60]) was
induced by BAP when applied for a period of 8 h (p<0.01) and its effect persisted after 24 h at
100 nM (p<0.01; Fig 3). Auxin responsiveness was analysed based on the expression of the
well-known L. japonicus auxin-responsive promoter LiGH3 [61, 62], which in this assay was
induced exclusively by NAA at 10 nM and 100 nM when applied for 8 h or 24 h (p<0.01). Yet,
LjGH3 suppression by 100 nM of BAP applied for 8 h (p<0.01) indicates that auxin and cyto-
kinin act antagonistically on LjGH3 expression in L. japonicus roots.

As for differential regulation of LiCYCLOPS and LjNIN expression in roots of L. japonicus,
the expression level of LiCYCLOPS did not change under any of the conditions examined, in
contrast with that of LiNIN which did change in response to cytokinin and auxins. The tran-
scription of LiNIN was induced after 8 h of exposure to 100 nM of BAP (p<0.01) and this
effect persisted after 24 h at both 10 nM and 100 nM (p<0.05). The auxin NAA induced
changes of LiNIN expression in roots treated with 10 nM or 100 nM over a period of 8 h or 24
h, respectively (p<0.01). Likewise, NIN was induced by the natural auxin PAA, but only in
roots exposed for 24 h to a concentration of 10 nM (p<0.05).

These results show that the cytokinin BAP is able to modulate the expression of LiNIN in a
dosage- and time-dependent manner when exogenously applied to roots of 30-day-old seed-
lings grown hydroponically, which is in line with a previous study carried with roots grown in
Petri dishes on agar containing BAP [15]. Thus, proof of concept was obtained.

Nanomolar concentrations of the synthetic cytokinin BAP repressed the
transcription of CYCLOPS, NIN1, and NF-YA1I in 30-day-old roots of D.
glomerata seedlings

The D. glomerata orthologs of CYCLOPS and NF-YAI were identified phylogenetically (S2 and
S3 Figs). To address the question whether the phytohormone background required for nodule
development in D. glomerata shares commonalities with that of L. japonicus, 30-day-old roots of
D. glomerata were challenged with concentrations of BAP ranging from 10 nM to 500 nM, in 24
h assays. Unlike the transcriptional response observed in roots of L. japonicus (see Fig 3),
increasing amounts of cytokinin led instead to repression in expression of both CYCLOPS
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Fig 3. Lotus japonicus transcriptional response to cytokinin (BAP) and auxins (PAA and NAA). Transcript
abundance was analysed by RT-qPCR after 30-day-old Gifu roots treated during 8h and 24h (technical replicates,

n = 3). Y-axis shows the mRNA quantity relative to that of PUQ, ATPs, and PP2A. Phytohormones and molarities are
given on the X-axis. With the exception of Ctr, 24h (n = 5), Ctr, 8h; PAA100, 8h; NAA100, 8h/24h (n = 4), the number
of biological replicates was n = 3. Gene names are given. Significant differences to control are highlighted at p<0.05 (*)
and p<0.01 (**).

https://doi.org/10.1371/journal.pone.0315798.9003

(p =0.09, 50 nM BAP; p<0.001 for both 100 nM BAP and 500 nM BAP) and NINI (p = 0.032,
500 nM BAP) in a dosage-dependent manner (S2 Table; Fig 4). The transcriptional profile
exhibited by CYCLOPS in this assay indicates that its transcription is tightly regulated by BAP
levels within the range of 10 nM to 100 nM. Since the promoters of legume Nuclear Factor-Y
(NF-Y) subunit genes are expected to be targeted and activated by NIN1 in analogy with
legumes [38-40], we then set to investigate whether increases in BAP levels would be
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accompanied by changes in expression of NF-YAI. Notably, the transcriptional profile exhibited
by NF-YA1 was similar to that of CYCLOPS and NINI insofar as the transcript abundance of
NF-YA1I decreased inversely with BAP levels (p<0.001, 100 nM and 500 nM; S2 Table; Fig 4).

Transcription of NIN1 and NF-YA1I was induced by nanomolar
concentrations of PAA in 52-day-old roots of D. glomerata

Since in D. glomerata, BAP acted antagonistically towards the expression of genes whose pro-
tein products act upstream of NF-YAI induction in model legumes, we hypothesized that
either D. glomerata roots exhibit a different temporal window in which nodulation-related
gene expression can be activated when compared with roots of L. japonicus, or that instead of
cytokinin, another phytohormone was involved in regulating the expression of these nodula-
tion-related transcription factors. The different temporal window could be explained by the
fact that while legume seeds are large and nutrient-rich [63] which means that legume seed-
lings can afford the carbon expense required for nodule formation, seeds of D. glomerata are
similar in size to those of Arabidopsis, and greenhouse plantlets do not nodulate before they
have reached a height of at least 7 cm (K. Pawlowski, unpublished observations).

In a trial experiment using roots of 30-day-old D. glomerata seedlings, the exogenous appli-
cation of 50 nM PAA did not lead to any changes in expression of either CYCLOPS or NINI in
24 h treatments (results not shown). To explore the possibility that root development could
have a pivotal influence on the transcription of CYCLOPS and NIN1 in assays carried with
PAA, a time course experiment was conducted to test the effects of exposure for 2 h, 8 h, and
24 h but, this time, in 54-day-old roots. This assay indicated that the temporal dynamics of
NINTI expression in response to PAA may be linked to and depend on the age of the plant,
meaning that ideally the treatments should be performed on roots of ~54-day-old seedlings
over a 24 h period (p = 0.013; S2 Table; S4 Fig). This result was then reproduced in two inde-
pendent series of experiments showing induction of NINI in PAA-treated roots at concentra-
tions as low as 10 nM (p = 0.008) and 50 nM (p = 0.006) (S2 Table; Fig 5). Consistently, 50 nM
PAA exerted a positive effect on NF-YAI transcription (p = 0.037) (S2 Table; Fig 5). Although
neither BAP nor NAA exerted an effect on the expression of CYCLOPS, NIN1I, or NF-YA1I, the
changes observed on the expression of their respective marker genes ARR9 (p = 0.036, 10 nM
BAP; p =0.008, 50 nM BAP) and GH3.1 (p =0.2, 10 nM NAA; p = 0.002, 50 nM NAA) con-
vincingly reflected the effects of these phytohormones (S2 Table; Fig 5). Collectively, these
findings reinforce the idea that, in D. glomerata, GH3.1 represents a marker gene to address
responses to NAA, while SAURI represents a marker gene for responses to PAA (p = 0.061, 10
nM PAA; p<0.001, 50 nM PAA; S2 Table). More important, these findings suggest that
DgNINI mRNAs were translated, and their products were able to induce the expression of
their presumable target gene, DgNF-YAI.

Addition of BAP or inhibition of ethylene or gibberellic acid biosynthesis
abolished the induction of NINI by 50 nM PAA

In an attempt to understand the effects caused by the removal of ethylene and gibberellic acid
(GA), inhibitors of their biosynthesis were introduced into the experiments, namely L-alpha-
(2-aminoethoxy vinyl) glycine (AVG) and paclobutrazol (PBZ), which inhibit, respectively,
key enzymes for ethylene and GA biosynthesis. Experiments without added inhibitor (control
group) were included to interpret the crosstalk between ethylene or GA signalling and auxin
and cytokinin signalling. The cytokinin BAP was used at 10 nM, the natural auxin PAA was
used at 50 nM, and, in the combined treatment, 10 nM of BAP were mixed with 50 nM of
PAA.

PLOS ONE | https://doi.org/10.1371/journal.pone.0315798 February 3, 2025 10/26


https://doi.org/10.1371/journal.pone.0315798

PLOS ONE

PAA induces NIN expression in Datisca glomerata

NN
@ NN =

Relative mRNA levels

CYCLOPS o158 NIN1 LA NF-YA1 *
o2 , 2' \

o 9 g o 8 ol 2 | S
o o 2 o 8 8 27 o : e
° § s ° 2o, o 3 o 8 :

o) o o § o 8 o1l o :
SR A R ¢ O
¢ o o418 o | o2 o
0 22
ARR9 2" SAUR1 - *% GH3.1 *%
* *k » 20 8
. 8 s 2 P B 5
g e S 2 5
O [ ) 2—2 [ ] é 8 ‘
g 8 o °© g o 8 o4 XX
¢] . : _3 9 b4 9 8 8 [ ] é o
) 2 8 . 26 8 B
o O o) ]
® 2—4 8 2—8 e © 8 e
Ctr 10 50 10 50 10 50 Ctr 10 50 10 50 10 50 Ctr 10 50 10 50 10 50

Concentration of phytohormones (nM)
oControl eBAP «PAA eNAA

Fig 5. Datisca glomerata transcriptional response to cytokinin (BAP) and auxins (PAA and NAA). The data was collected from two independent
experiments (empty and full circles). Transcript abundance was analysed by RT-qPCR after 52-day-old roots treated during 24h (technical replicates,
n = 3). Y-axis shows the mRNA quantity relative to that of PUQ and TIP41. Phytohormones and molarities are given on the X-axis (number of
biological replicates: n = 8 for Ctr, P10, and N50; n = 7 for P50 and N10; n = 6 for B10 and B50). Significant differences to the control are highlighted at
p<0.05 (*) and p<0.01 (**). Gene names are given.
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The effects exerted by BAP in this experiment were not as prominent as in previous assays,
however BAP effects were still moderately at play based on the expression of ARR9 in the con-
trol group (p = 0.057) (S2 Table; Fig 6). SAURI expression was significantly induced by PAA
in the control group (p<0.01), but this induction was abolished in the presence of BAP
(p=0.081), AVG (p = 0.18) or PBZ (p = 0.25) (52 Table; Fig 6). Consistent with these results,
expression of NINI (p = 0.015) and NF-YAI (p = 0.006) was also induced by PAA in the con-
trol group, but not when BAP was added as well (NINI, p = 1.0; NF-YA1, p = 1.0), or when eth-
ylene (NIN1, p = 0.77; NF-YAI, p = 0.089) or GA (NIN1, p =0.31; NF-YAI, p = 1.0) were
depleted (Fig 6; S2 Table). It is worthwhile to note that roots treated with PBZ for 11 days
before analysis showed a significant decrease in mRNA abundance of CYCLOPS (p = 0.031)
when compared with their control and AVG-treated counterparts (Fig 6).

In summary, ethylene and gibberellin were required for the induction of SAURI, NINI and
NEF-YAI expression by PAA, while BAP abolished the induction of the expression of these
three genes by PAA (Fig 7). In combination with the negative effect of BAP on the expression
of CYCLOPS, NIN1 and NF-YA1I in 30-day-old plantlets (Fig 4), these results suggest that in
contrast with legumes, cytokinin acts negatively on the nodulation of D. glomerata.

Discussion

With this study we sought to (i) gain qualitative insight in the involvement of phytohormones
in the developmental program of actinorhizal nodules of Datisca glomerata, (ii) quantify the
impact of phytohormones on transcription of early transcription factors in nodule
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development and (iii) build up knowledge on the prospect that the D. glomerata NF-YAI pro-
moter is, as is the case in model legumes, targeted by the transcription factor NODULE INCEP-
TION (DgNINI; [55]). From here, we set out to understand the regulation of DgNIN1 and
DgNIN2; even though no functional studies have been carried out for either NIN gene, their
relevance for root nodulation has been established by comparative phylogenomics and phylo-
transcriptomics studies [3, 64]. In silico analysis of PACE sequences from DgNIN1 and
DgNIN2 promoters support the possibility of protein-DNA interactions (Fig 2B and 2C), a pre-
diction that is line with the findings of Cathebras et al. [54] that have shown that the PACE ele-
ments of both DgNIN genes suffice for induction by the Lotus japonicus CCaMK/CYCLOPS
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complex; indeed, DgNINI combined with its PACE element could complement the nin15
mutant of L. japonicus, meaning that this non-standard PACE element conferred induction by
the CCaMK/CYCLOPS complex of L. japonicus [54]. Thus far no functional studies were per-
formed on CYCLOPS of actinorhizal plants, however protein 3D models analysis indicate that
the distinct features of DgCYCLOPS might correlate with a larger plasticity of the protein [65],
in comparison with CYCLOPS of other actinorhizal plants or those of legumes (Fig 2D and
2E). Altogether, there is no reason to exclude the possibility that DgCYCLOPS might play a
pivotal role by transactivating both DgNINI and DgNIN2Z, but evidence about these events has
yet to be provided.

The induction of NIN by exogenously applied cytokinin had been demonstrated for the
model legumes Lotus japonicus [17] and Medicago truncatula [18] using seedlings growing on
agar in Petri dishes. As proof of concept for our hydroponic system, we took advantage of the
knowledge transpired from these studies to address the response of NIN transcription to exog-
enously applied synthetic cytokinin 6-Benzylaminopurine (BAP) and synthetic auxin
1-Naphthaleneacetic acid (NAA) in roots of L. japonicus, using L. japonicus Ckx3 cytokinin
oxidase/dehydrogenase3 as a marker gene for the cytokinin response [61], and Gretchen
Hagen3 (GH3; [62]) as marker gene for the auxin response. In line with the findings of Heck-
mann et al. [17], we showed that LiNIN expression could be induced using BAP and NAA in
the hydroponic system (Fig 3). Additionally, we showed that the expression of LiNIN could
also be induced in a time- and dosage-dependent manner by the natural auxin Phenylacetic
Acid (PAA), although PAA could not be detected in roots of L. japonicus [66]. Interestingly,
expression of the auxin response marker gene GH3.1 was upregulated by NAA, but not by
PAA. This divergence suggests that some auxin effects are likely to have been overlooked in L.
japonicus.

The LjNIN promoter is activated by the CYCLOPS/CCaMK complex [37]. Since the expres-
sion of LiCYCLOPS was neither induced by BAP, NAA nor by PAA in this study, we conclude
that the induction of LiNIN expression did not require an increase in CYCLOPS mRNA. The
induction of LiNIN by cytokinin had been linked to the well-established fact that cytokinin sig-
naling occurs in the root cortex during legume nodule organogenesis [15]. The induction of
LjNIN by auxin was not reported previously and is likely to be linked to the accumulation of
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auxin at the onset of nodule induction as well as to the fact that NIN recruits the lateral root
development program for nodule organogenesis [25, 67-69].

When establishing marker genes to track responses to NAA, PAA, and BAP in D. glomer-
ata, the results were in line with those observed previously for L. japonicus: the expression of
the ortholog of the cytokinin-induced type A response regulator gene ARRY from Arabidopsis
[70] was upregulated by BAP in D. glomerata, while the expression of the D. glomerata ortho-
log of LiGH3, DgGH3.1, was upregulated by NAA. DgSAUR1, a member of another group of
genes known for auxin responsiveness [71], was identified and served as marker gene for PAA
effects. PAA had been discovered as auxin-type phytohormone in 1935 [72-74]; however,
because experiments on pea and oat showed that the activity of PAA was much lower than that
of TAA, PAA was not examined in detail. The synthesis of PAA does not follow the same path-
way as that of IAA [75], and it does not show basipetal transport like IAA [76, 77]. In spite of
this, IAA and PAA effects on gene expression showed some overlap when examined for Arabi-
dopsis, e.g., four members of the Arabidopsis GH3 family were induced by both IAA and PAA
(GH3.2, GH3.3, GH3.4 and GH3.5), while all Arabidopsis SAUR genes reacting to auxin were
only induced by IAA, not by PAA [77]. It should be pointed out, however, that Sugawara et al.
[77] examined gene expression already after one hour of exposure to auxin and used much
higher auxins concentrations, namely 1 uM IAA and 10 uM PAA- 20 or 200 times higher,
respectively, than the concentration established as optimal for the induction of LiNIN/DgNIN1
expression in this study, 50 nM for both NAA and PAA. At any rate, these results showed that
the differential effects of NAA and PAA on gene expression during nodule development
require further examination.

As discussed above, the induction of legume NIN expression by exogenously applied cytoki-
nin had been ascribed to the fact that cytokinin signalling takes place in the root cortex in the
course of legume nodule organogenesis, leading to the formation of the legume nodule pri-
mordium [17, 18]. On the other hand, shoot-derived cytokinin transported in the phloem has
been implicated in the systemic repression of nodulation during the autoregulation of nodula-
tion [78]. Legume nodule primordia are induced in the root cortex and the root pericycle,
while actinorhizal nodule primordia are induced in the root pericycle [46]. Therefore, we do
not necessarily expect the same involvement of phytohormones in both processes. For induc-
tion of an organ primordium in the root pericycle, close to the auxin maximum at the protoxy-
lem pole [79], auxin would be expected as inducer. Indeed, the results of this study showed
unambiguously that the expression of D. glomerata NIN1 is induced by the natural auxin PAA,
though not by the synthetic auxin NAA, and that the induction by PAA is abolished in the
presence of the synthetic cytokinin BAP. The difference between PAA and NAA effects on
DgNINI expression is consistent with the facts that (i) PAA is the dominant auxin in D. glo-
merata roots [51] and (ii) NAA is unlikely to replace PAA in every context since both auxins
were shown to be transported differently in Arabidopsis [77]. Intriguingly, when 50 nM PAA
and 10 nM BAP were applied simultaneously, the induction of expression of DgNINT as well
as that of DgSAURI by PAA was abolished (Fig 6). This was a striking finding that, for
DgNINI, can be discussed from two angles: first, it reinforces the idea that BAP is indeed act-
ing as a negative regulator of DgNIN1 expression, but treatment with 10 nM BAP alone does
not seem to suffice to reduce DgNINI expression in 30-day-old plants. At this age, as shown in
Fig 4, BAP has the strongest negative effect on the expression of DgCYCLOPS, in concentra-
tions equal to or above 50 nM, while it only affected DgNIN1 expression at 500 nM. Combined,
the data suggest that in the presence of exogenous BAP, two synergistic effects for negative reg-
ulation of DgNINI expression occur: one, direct, via downregulation of DgNINI transcription,
the other, indirect, abolishing the induction by PAA. In this context, it is interesting to note
that the response of DgCYCLOPS expression to 50 nM PAA was inconsistent throughout our
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experiments, ranging from non-induced (Fig 5, p = 0.19; Fig 6, p = 0.12) to induced (54 Fig;
p = 0.013). This raises the possibility that the discrepancies observed were linked to variable
amounts of endogenous auxins or cytokinins (S5A Fig).

The response difference between 30-day-old D. glomerata seedlings to phytohormones
compared to 52- or 54-day-old seedlings can be explained by the fact that nodulation requires
a considerable carbon investment which has to be supplied from seeds or from photosynthesis.
Legume seedlings are routinely nodulated in Petri dishes, i.e., very young, given that they
obtain most of their nutrients from their large seeds. This is also possible for seedlings of the
actinorhizal shrub Coriaria myrtifolia which forms seeds similar in size to those of L. japonicus
[80]. However, in 30-days-old D. glomerata seedlings grown from seeds of 0.8-1 mm diameter,
nodulation has to be downregulated before they have produced enough leaves to provide pho-
tosynthates for additional strong carbon sinks (nodules), a process that would likely abolish or
at least weaken the effects of exogenous application of phytohormones on DgNINI expression,
as was observed in this study-no effect of PAA was found, and BAP only acted at 500 nM.

Altogether, our results support the observations of Gauthier-Coles et al. [81] for the actinor-
hizal tree Alnus glutinosa who showed that here, cytokinin (cis-zeatin, trans-zeatin, dihydro-
zeatin, and kinetin were used) does not act as positive regulator of pseudonodule development
as it does in legumes. Rodriguez-Barrueco et al. [82], on the other hand, found pseudonodule
development in response to treatment with two different cytokinins, 2-isopentenyl adenin
(2IP) and kinetin; however, the latter study was not performed under axenic conditions, which
means that other phytohormones produced by bacteria or fungi may have been involved.

Regarding DgSAURI repression, the available evidence suggests that the induction of
DgSAURI expression by exogenous PAA is abolished by the addition of exogenous BAP,
which might be connected to the presence of a dozen of cis-regulatory motifs for cytokinin
response in its promoter and which may bind repressor(s) (S5B Fig). Interestingly, the hypoth-
esis that cytokinin is downregulating DgSAURI expression is similar to the situation observed
for L. japonicus GH3 in presence of 100 nM BAP (Fig 3), further emphasizing that the interplay
between auxins and cytokinins must be considered when using these promoters as markers.

To test the effects of ethylene, D. glomerata plantlets were grown on media supplied with an
inhibitor of ethylene biosynthesis, 10 uM of L-alpha-(2-Aminoethoxyvinyl) glycine (AVG).
Inhibition of ethylene biosynthesis had a negative effect on DgNINI expression (Fig 6). Simi-
larly, DgSAURI was not induced by exogenous PAA In the presence of AVG (Fig 6). In short,
the effect of AVG in combination with PAA resembled the effect of the combination of BAP
and PAA. This effect could be ascribed to increased amounts of cytokinins as in legumes, eth-
ylene negatively regulates cytokinin accumulation during nodule induction [19]. However, it
has to be mentioned that in the actinorhizal species Casuarina glauca, whose nodule primordia
form in the root pericycle like in D. glomerata, ethylene has a negative effect on nodulation
like in legumes [83]. Another possible explanation could involve the role of ethylene in the
transport of auxin from the shoot to the nodulation site, shown to result in high auxin accumu-
lation [34] and implying that endogenous auxin levels in AVG-treated roots could be below
the level required for the induction of DgNINI. At any rate, the fact that the inhibition of ethyl-
ene biosynthesis abolished the induction of DgNINI expression by PAA in D. glomerata roots
(p = 0.77) was the second relevant difference found between D. glomerata and legumes with
regard to phytohormone effects on NIN expression [33]. It is relevant to point out that studies
of the effects of ethylene on legume nodulation were normally not performed in liquid culture,
but on seedlings growing on solid agar. While ethylene has been found as a requirement for
nodulation of Sesbania rostrata under waterlogged conditions [84], it inhibited nodulation
under non-flooded conditions in the same species [85]. This suggests that the positive role of
ethylene in the regulation of DgNINI expression might be a feature of nodulation under
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waterlogged conditions, or for nodulation that does not involve the formation of infection
threads in root hairs, as is the case for D. glomerata [46]. However, later studies have shown
that nodulation via root hairs in L. japonicus involves the production of ethylene by the plant
[53].

For the inhibition of gibberellin biosynthesis, the growth conditions had to be modified to
enable root development before exposure to the inhibitor paclobutrazol (PBZ); PBZ was added
after 41 days of seedling growth. This pre-treatment with PBZ was necessary because the inhi-
bition of gibberellins biosynthesis during the 24 h exposure to auxin/cytokinin would not
affect existing gibberellins [86]. Thus, the possibility that a growth-retardant effect caused by
PBZ interfered with the experiment cannot be ruled out, given the significant differences in
the effect on DgNINI expression observed between roots assays on day 30 vs. day 52. At any
rate, in the presence of PBZ, PAA did not cause significant changes in the expression levels of
any gene examined, including that of SAURI (p = 0.25; Fig 6). Yet, in the presence of PBZ, the
expression of DgCYCLOPS was significantly reduced (Fig 6), suggesting that the induction of
DgCYCLOPS expression involves a DELLA protein. Combined, these results are consistent
with the positive involvement of gibberellin signalling in legume nodule organogenesis medi-
ated by the GRAS transcription factor DELLA1 as shown in Medicago truncatula [24].

Opverall, these findings indicate that the symbiotic program for nodule induction in D. glo-
merata significantly differs from that of L. japonicus (Fig 7). LiNIN could be induced directly
by application of Nod factors [17] as well as directly by exogenous supply of BAP and NAA,
and later also by PAA, in a time- and dosage-dependent manner (Fig 3). The data obtained
with the model legume L. japonicus confirm the well-known role played by cytokinin signaling
towards nodule organogenesis in the root cortex of legumes, a divergent trait that has probably
emerged ~60 Mya ago in nodulating species of legumes but is absent in non-nodulating
legumes as well as in non-legumes, including actinorhizal plants [81, 87]. In contrast, in D. glo-
merata, the expression of DgNIN1 was induced by PAA, an effect that was abolished in the
presence of cytokinin (Fig 6), arguing for a pivotal role of auxin in the nodulation of D. glomer-
ata regarding the regulation of DgNIN1I, and in turn DgNF-YA1. In analogy to legumes, local
auxin accumulation-equivalent to cytokinin accumulation in legumes as a result of rhizobial
Nod factor signaling-might be induced via Frankia signalling, maybe involving ethylene on
the plant side (Figs 5 and 6), inducing DgNIN1 expression and, consequently, nodule
organogenesis.

The possibility that the expression of DgNINT is linked to a role in the regulation of lateral
root formation, as was found for lipochitooligosaccharide Nod factor-responsive NIN genes of
legumes and poplar [88], should be considered, however the fact that the expression of
DgNINI cannot be induced in plantlets too young to nodulate (Fig 4) and it shows high levels
of expression in nodules (Fig 2) make it clear that DgNINT has to play a relevant role in nodu-
lation. Since the standard cis-regulatory element PACE of DgNIN2 is involved in infection
thread progression [54], a role for DgNINT and its uncommon PACE in nodule organogenesis
can be hypothesized, however functional characterization studies are required to unravel the
role played by DgCYCLOPS in this context. As it stands, it is tempting to speculate that DgCY-
CLOPS plays a pivotal role in the nodule development program of Datisca glomerata by driv-
ing nodule organogenesis via DgNINI and Frankia accommodation via DgNIN2. At this point,
however, it is unclear whether the regulation of CYCLOPS in roots by phytohormones
observed in this study is relevant for nodulation, or only for arbuscular mycorrhization. If the
former, it would have to involve the induction of the expression of other transcription factor
genes as DgNIN2 expression was not detected in roots under the conditions described in this
study. Altogether, the data obtained in this study suggest that the ancient program for
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symbiosis established between Frankia and D. glomerata, whose nodules originate from the
root pericycle, requires auxin to induce the expression of DgNINI and DgNF-YA1.

Conclusions

An axenic hydroponic system was established to examine the effects of exogenously applied
phytohormones on the expression of key genes required for nodule organogenesis on roots of
the actinorhizal plant Datisca glomerata and on those of the model legume Lotus japonicus,
which we used as a control. Marker genes for phytohormone perception were established:
DgARR9 served as marker for the synthetic cytokinin BAP, whilst DgGH3.1 and DgSAURI
served as markers for the synthetic and natural auxins NAA and PAA, respectively. The col-
lected data showed that DgNINZ2, whose promoter contains a standard PACE cis-regulatory
element, is not expressed in roots, whereas DgNIN1, whose promoter harbors a non-standard
PACE, showed induction by the auxin PAA, but not by the cytokinin BAP. In contrast, LiNIN
expression was induced by BAP, NAA, and, when measured 24 h after application of 10 nM,
by PAA. The induction of DgCYCLOPS, DgNINI and DgNF-YAI transcription by PAA was
abolished when either BAP, the ethylene biosynthesis inhibitor AVG or the gibberellin biosyn-
thesis inhibitor PZB were added together with PAA, suggesting that the induction by PAA
required certain levels of ethylene and gibberellin, but could be abolished by low levels of exog-
enously applied cytokinin BAP. Altogether, the phytohormone involvement in the induction
of nodules in the actinorhizal species D. glomerata differs from that of legumes concerning the
roles of auxin, cytokinin and ethylene, while the role of gibberellin has been likely conserved
across lineages.

Material and methods
Plant material

Datisca glomerata (C. Presl) Baill seeds were originally obtained from plants in Gates Canyon,
Vacaville, CA, USA [89]. Plants for seed production were cultivated in a greenhouse in a 1:1
(v/v) mixture of germination soil (Weibull Tridgard AB, Hammenhdog, Sweden) and sand (1-
2 mm Quartz; Rddasand AB, Lidképing, Sweden). Light conditions in the greenhouse were
150-300 uEm ' s™' m™2 at 13 h light/22 °C and 11 h dark/19 °C. Experiments involving the
model legume Lotus japonicus were performed with ecotype Gifu.

Hydroponic system

To use roots challenged with exogenous hormones in downstream gene expression studies, an
axenic hydroponic system was developed (Fig 1). Irrespective of the plant species investigated,
seeds were surface-sterilized [5 min in 70% ethanol, 0.1% SDS; 20 min in 2% sodium hypo-
chlorite, 0.05% SDS; rinsed 4 times in sterile MilliQ water] and imbibed in sterile MilliQ water
at 4°C, during 5 days in the dark. After thorough washing, seeds were disposed in 20 mm x 20
mm metal grids and allowed to germinate in a thin layer of % strength Hoagland’s solution
[90] supplemented with 10 mM nitrogen (Hoagland’s N*) and 0.8% plant agar (Duchefa, The
Netherlands) (Fig 1A). One week later, metal grids containing germinated seeds were placed
over 18 ml vials filled with liquid Hoagland’s N™. Note that the employed strategy enables
recently emerged root tips to develop within a fully controlled environment. The bioassay pro-
ceeded in Magenta boxes (Sigma-Aldrich, Germany) under continuous white light for 53+1
days for D. glomerata and 30 days for L. japonicus. Light conditions in the growth chamber
were 200 uE s~' m™> at 16h light/23°C and 8h dark/18°C.
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Treatments used in this study included exogenous applications of the phytohormones cyto-
kinin 6-Benzylaminopurine (BAP; Duchefa cat. no. B0904), the natural auxin Phenylacetic
Acid (PAA; Sigma-Aldrich cat. no. P6061), and the synthetic auxin 1-Naphthaleneacetic Acid
(NAA; Sigma-Aldrich cat. no. N0640) in combination or not with antagonists of ethylene or
gibberellic acid (GA) biosynthesis. Equal molarities of the solvent sodium hydroxide (for BAP)
and ethanol (for PAA and NAA) were added in control assays.

For inhibition of ethylene biosynthesis, D. glomerata plantlets were grown on Hoagland’s
N* supplied with 10 uM of the inhibitor L-alpha-(2-aminoethoxy vinyl) glycine (AVG; Sigma-
Aldrich cat. no. 32999) for 52 days before being transferred to phytohormone-containing
medium or mock control medium. For inhibition of GA biosynthesis, D. glomerata plantlets
were grown for 41 days on Hoaglands N™. Then, plantlets were transferred to Hoagland’s N*
supplied with 100 nM of the GA inhibitor Paclobutrazol (PBZ; Sigma-Aldrich cat. no. 43900)
and grown for 10 days before being transferred to phytohormone-containing medium or
mock control medium.

All phytohormone treatments were carried out in % strength Hoagland’s solution without
nitrogen (Hoagland’s N*). Time treatments ranged between experiments from 2h to 24h.
Upon treatment, roots were shock-frozen in liquid nitrogen and stored at -80°C. Special atten-
tion was paid during this step to avoid mechanical disturbance that could lead to the synthesis
of jasmonates as previously reported [91]. Frozen roots were used for isolation of total RNA
and subsequent gene expression analysis.

Bioinformatic analysis: Identification of orthologs, promoter comparative
analysis, and protein structure prediction

To identify putative legume orthologs, the transcriptome of D. glomerata was searched using
as a query previously characterized proteins from model legumes [56]. The survey relied on
reciprocal Blast searches combined with HMMER (v. 3.2.1) models [92] and top candidate
proteins were then used for phylogenetic reconstruction.

To select sequences for phylogenetic reconstruction of CYCLOPS, the orthologous group
ENOG410IGIK (http://eggnogdb.embl.de) was searched at UniProtKB (E-value = 1e-200) and
truncated proteins were removed (total = 71). For NF-YA1, the M. truncatula protein [93] was
queried at UniProtKB and the HMMER profile built after the top 66 hits was used in a second
search into the same database (E-value = 1.5e-59), rendering 93 curated proteins. To these pro-
tein sets, candidate orthologs from D. glomerata and Ceanothus thyrsiflorus were added.
Sequences were aligned using ProbCons version 1.12 [94]. Aligned positions were selected
with BMGE using the BLOSUMG62 substitution matrix [95]. Phylogenetic trees were estimated
using RAXML v.8.2.10 [96] using the "PROTGAMMAAUTO" model and rapid bootstrapping
where bootstrap replicates were automatically stopped upon convergence with autoMRE boot-
stopping [97].

Evaluation of secondary order effects of PACE cis-regulatory elements placed on promoter
regions of DgNINI and DgNIN2 was carried out by deepDNAshape with the number of layers
set to 4 and feature set to propeller-twisting of base-pairs (ProT) [98].

Three-dimensional model structures of CYCLOPS were predicted at the AlphaFold data-
base [99, 100].

RNA isolation and gene expression analysis (RT-qPCR)

Root tips grown hydroponically were mechanically disrupted using a TissueLyser II (Quiagen,
Germany) over 3 min at 28 Hz. Roots and nodules of greenhouse-grown D. glomerata were
macerated in liquid nitrogen. Macerated tissues were immediately used for total RNA isolation
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with an on-column DNase treatment (Sigma Aldrich, Spectrum Total RNA isolation kit). The
extraction method yielded high quality RNA (RIN>>7.8 measured in a 2100 Bioanalyzer; Agi-
lent Genomics). Prior to cDNA synthesis, a second step of gDNA removal was performed on
0.5-1.0 pg of total RNA using the Heat&Run kit from ArticZymes (Tromse, Norway). Total
RNA was reverse transcribed in a final volume of 20 pl following the instructions for the
TATAA GrandScript cDNA synthesis kit (TATAA Biocenter, Sweden). cDNA preparations
were diluted 10" and 2 pl each were used as templates in 10 pl PCR reactions in the presence
of 1x Maxima SYBR green (Thermo Fisher Scientific, Lithuania) supplied with 300 nM of each
primer in an Eco Real Time PCR instrument (Illumina, USA). PCR conditions were as
described in Zdyb et al. [91]. Controls for gDNA-derived copies and primer dimer assessment
were considered by the inclusion of water as a template, RT-minus runs, and examination of
melting dissociation curves. For all the experiments, statistical analyses were carried out based
on at least three biological replicates with a minimum of two technical PCR repeats. Primers
were designed using Primer3 at NCBI Primer-Blast server and are listed in S1 Table.

Gene expression data: Considerations for normalization and statistics

To identify stable reference genes in roots of D. glomerata, a subset of the genes listed by Cze-
chowski et al. [101] was used for a systematic validation of the RT-qPCR data generated in this
study. In a pilot assay, the stability of six reference candidate genes was compared using Norm-
Finder [102]. The pilot assay rendered three stable genes for L. japonicus and for D. glomerata.
Genes considered as a reference for roots of D. glomerata were: Ubiquitin carboxyl-terminal
hydrolase 5, TIP41, and Elongation factor 1-o: (GenBank accessions are provided in S1 Table).
Reference genes for roots of L. japonicus were Ubiquitin-conjugating enzyme [91], F-type H'-
transporting ATPase subunit beta [60], and Protein Phosphatase 2A [60]. For both D. glomerata
and L. japonicus, NormFinder stabilization indices of these three reference genes were calcu-
lated in every assay to identify the most stable internal normalizer (or combination of normal-
izers). Demonstrative exponential phase Cq values were then considered to calculate the
normalization factors of target genes by 2“4 [103]. Differences in gene expression were
assessed by analysis of variance (ANOVA). Equality of variances was evaluated by Levene’s
test. For equal variances, one-way ANOVA was fitted to log,-transformed 244“1 with treat-
ments as fixed term and biological repeats as random effects accounting for dependencies
between treatments; to estimate and adjust for pairwise multiple comparisons, a non-paramet-
ric post-hoc Tukey HSD test was applied. For unequal variances, a Welch’s pairwise t-test with
Holm’s correction was used. For the assay involving the interaction of two factors (treatments
vs. AVG treatment), a two-way ANOVA was fitted to the data with “treatments” as a fixed fac-
tor in the model. Biological repeats accounted for random effects nested under the interaction
term. Statistics were performed using R Statistical Software (v4.2.3; [104]) and are summarized
in S2 Table.

Supporting information

S1 Fig. Identification of auxin reporter genes for Datisca glomerata. (A) A member of the
Small Auxin-Up RNA family of D. glomerata (DgSAUR1) shows high sequence similarity with
members of the orthologous group ENOG410J0BD along with proteins from Parasponia
andersonii (PON39119.1) and Medicago truncatula (KEH36239.1). (B) Members of the
Gretchen Hagen 3 family are expressed in nodules of D. glomerata; DgGH3.1 and DgGH3.2
were compared by multiple sequence alignment with twelve sequences from the orthologous
group ENOG410THQ2 (B). To this set, previously characterized sequences from Arabidopsis
thaliana were added: AtGH3.5/WES1 and AtGH3.1/JAR1. While AtGH3.5/WES]1 has high
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affinity for both indole-3-acetic and salicylic acid (Westfall et al., 2016), AtGH3.11/JAR1
responds to jasmonic acid (Westfall et al., 2012). Illustrated blocks represent individual motifs
to which a link of structural arrangement with function has been demonstrated (refer to Fig-
ures 2 and 3 of Westfall et al., 2016). Additional metrics like conservation, quality, consensus,
and occupancy are given. (C) Genetic dependencies of these promoters to auxins on 54-day-
old D. glomerata roots. Y-axis shows the mRNA quantity relative to that of PUQ, EFI1-a, and
TIP41. Phytohormones and molarities are given on the X-axis. Significant differences to the
control are highlighted by Welch’s pairwise t-test with Holm’s correction at p<0.01 (**). Gene
names are given.

(PDF)

$2 Fig. Full alignment of CYCLOPS from 8 nodulating species and 1 non-nodulator (Trema
tomentosa) (A). For Datisca glomerata, regions spanning disorder predicted (purple) and coil
(light green) domains are depicted by a horizontal top bar. Note the presence of a disorder pre-
dicted domain at the N-terminus of Datisca glomerata that is only conserved in Ceanothus
thyrsiflorus and Alnus glutinosa. Maximum-likelihood phylogenetic reconstruction of
CYCLOPS/IPD3 (B). Multiple protein sequence alignment was produced after searching the
orthologous group ENOG410IGIK at UniProtKB. Model legume orthologs are highlighted in
pink, Ceanothus thyrsiflorus in green (GenBank accession MN388817), and Datisca glomerata
in blue.

(PDF)

S3 Fig. Rooted tree showing the maximum-likelihood phylogenetic reconstruction of
NUCLEAR FACTOR YA1 (NF-YA1). Nomenclature is from UniProtKb. Proteins from
model legumes were highlighted in pink, Ceanothus thyrsiflorus in green (GenBank accession
MN?388814), and Datisca glomerata in blue.

(PDF)

$4 Fig. Temporal dynamics of CYCLOPS and NIN1 expression in roots of 54-day-old
Datisca glomerata plantlets. Transcript abundance was analysed by RT-qPCR after 2h, 8h,
and 24h treatments with 10 and 50 nM of PAA (n = 3 for both technical and biological repli-
cates). Abundance of target mRNA is given relative to that of PUQ and EFI-a. X-axis shows
nanomolarities of PAA. Y-axis depicts fold changes compared to control roots. Welch’s pair-
wise t-test with Holm’s correction highlight differences at p<0.05 (*) and p<0.01 (**). Gene
names are given.

(PDF)

S5 Fig. Potential cis-regulatory elements found 2000 bases upstream of (a) DgCYCLOPS
and (b) DgSAURI coding regions, known to be involved in auxin and cytokinin responses.
(PDF)

S1 Table. Genes analysed in this study; primers used.
(XLSX)

$2 Table. Results of Welch t-test to compare expression levels between roots and nodules
of Datisca glomerata.
(XLSX)
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