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Abstract

Physics informed neural networks have been gaining popularity due to their unique ability to

incorporate physics laws into data-driven models, ensuring that the predictions are not only

consistent with empirical data but also align with domain-specific knowledge in the form of

physics equations. The integration of physics principles enables the method to require less

data while maintaining the robustness of deep learning in modelling complex dynamical sys-

tems. However, current PINN frameworks are not sufficiently mature for real-world ODE

systems, especially those with extreme multi-scale behavior such as mosquito population

dynamical modelling. In this research, we propose a PINN framework with several improve-

ments for forward and inverse problems for ODE systems with a case study application in

modelling the dynamics of mosquito populations. The framework tackles the gradient imbal-

ance and stiff problems posed by mosquito ordinary differential equations. The method

offers a simple but effective way to resolve the time causality issue in PINNs by gradually

expanding the training time domain until it covers entire domain of interest. As part of a

robust evaluation, we conduct experiments using simulated data to evaluate the effective-

ness of the approach. Preliminary results indicate that physics-informed machine learning

holds significant potential for advancing the study of ecological systems.

Introduction

Arboviruses can spread quickly and cause major disease epidemics. Mosquitoes are vectors

of some of the world’s most severe diseases such as malaria, dengue, Zika, Chikungunya, and

West Nile Virus disease [1–5]. Different modelling approaches have been developed to simu-

late the abundance and seasonal dynamics of mosquito vectors and support disease risk pre-

diction. They can be viewed in two broad categories: mathematical and statistical models.

Mathematical models rely on laboratory and field data for the parameterisation of key life

history traits such as the development and mortality rates of different stages in the mosquito

life cycle [6–11]. On the other hand, statistical models use correlative and other machine
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Éireann – Research Ireland through the Insight

Centre for Data Analytics (SFI/12/RC/2289\_P2)

and by COST Action CA20108, supported by COST

(European Cooperation in Science and

Technology).The funders had no role in study

https://orcid.org/0009-0004-7841-4809
https://orcid.org/0000-0002-1329-2570
https://doi.org/10.1371/journal.pone.0315762
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0315762&domain=pdf&date_stamp=2024-12-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0315762&domain=pdf&date_stamp=2024-12-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0315762&domain=pdf&date_stamp=2024-12-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0315762&domain=pdf&date_stamp=2024-12-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0315762&domain=pdf&date_stamp=2024-12-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0315762&domain=pdf&date_stamp=2024-12-23
https://doi.org/10.1371/journal.pone.0315762
https://doi.org/10.1371/journal.pone.0315762
http://creativecommons.org/licenses/by/4.0/
https://github.com/dinhvietcuong1996/pinn-mosquito
https://github.com/dinhvietcuong1996/pinn-mosquito


learning (ML) techniques to infer the relationship between vector abundance and a set of

abiotic factors [12–18]. These models typically require multi-year time-series of mosquito

surveillance data (derived from labour intensive longitudinal field studies) to produce accu-

rate outputs, and are often subject to various sources of variability that could lead to biased

results.

In this paper we explore the feasibility of using Physics Informed Neural Networks (PINNs)

trained on an ordinary differential equation (ODE) mosquito population dynamics model to

bridge the gap between conventional mathematical modelling and data-science approaches

while conserving the physical and biological constraints and consistencies that govern these

systems and processes.

Physics informed neural networks

Recent advancements in computational capabilities and the exponential growth in data

availability have made data-driven analytics one of the predominant strategies in both

research and practical applications. Deep learning using different forms of neural networks

is central to this development and has been extensively applied across various domains such

as computer vision [19, 20], natural language processing [21, 22], genomic prediction in

plants [23] and finance [24, 25]. In data-driven approaches, neural networks are trained to

minimize discrepancies between model predictions and observed data. However, this purely

data-driven approach has a number of limitations, including poor interpretability [26], poor

out-of-distribution generalization [27], and the requirement for substantial amounts of

training data [28].

Physics-informed neural networks (PINNs) [29] have emerged as an alternative for scenar-

ios where data is governed by underlying physical laws expressed through differential equa-

tions. This approach integrates domain-specific knowledge into machine learning by

incorporating physical laws as additional objective loss functions alongside the traditional

data-fitting loss functions. This multi-task optimization strategy not only attempts to align

with observational data but also to approximate the governing differential equations. As a

result, PINNs adhere to physical laws and thereby, enhance model generalizability and also

uncover latent patterns within empirical data. This type of framework also facilitates an

uncomplicated solution to both forward and inverse problems, where we can simultaneously

learn the system state (forward problem) and the system’s parameters (inverse problem). Suc-

cessful deployments of PINNs have been demonstrated across various fields, as surveyed in

[28, 30–34].

However, despite this potential, PINN deployments continue to face significant challenges,

particularly in training models that involve multi-scale and stiff solutions [28, 35, 36]. In recent

years, numerous advancements have been made to enhance the foundational framework ini-

tially proposed in [29]. These enhancements include the development of innovative neural net-

work architectures [35–38] and novel adaptive activation functions [39, 40]. Several studies

have focused on optimizing the multi-task training process by adaptively adjusting the weights

of different loss components [36, 41, 42]. Others have explored modifications in the distribu-

tion of collocation points [43–46]. Additionally, some researchers have adopted a sequential

learning approach, where training is conducted on one subdomain at a time before progress-

ing to the next [47–49], thereby preserving the causality within the system [50]. Moreover,

there are efforts where the input domain is divided into smaller subdomains with PINNs

trained separately on each subdomain, significantly enhancing the model’s convergence and

accuracy [51–53].
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Contribution and paper structure

While the majority of research on PINNs has concentrated on enhancing techniques for the

effective training of Partial Differential Equations (PDEs), there has been less focus on custom-

izing these methods for multi-variate, multi-equation Ordinary Differential Equation (ODE)

systems. In this study, we explore the applicability and effectiveness of existing PINN method-

ologies to ODE systems. We introduce specific adjustments designed to optimize the training

of ODE systems, including the individual normalization and loss weight balancing tailored for

each variable and equation involved in the system. Moreover, we implement two additional

steps in the training process to enhance both the effectiveness and accuracy of the models, and

to simplify domain decomposition for practical application scenarios. We evaluate our modi-

fied framework using the Lorenz system, a classical model in dynamical systems theory, to

demonstrate its applicability and value. Finally, we apply our approach to the modelling of

mosquito population dynamics to validate its effectiveness in a practical biological context.

The contributions of this research can be articulated as follows:

• The development of a systematic framework for training physics-informed neural networks

(PINNs) on real-world ordinary differential equation (ODE) systems. This framework incor-

porates a range of customized techniques, including ODE normalization, gradient balancing,

causal training, and domain decomposition, to address common challenges in training

PINNs with ODE systems.

• Our method includes a comprehensive normalization not only for inputs and outputs but

also ODEs, ensuring more stable and accurate training processes in multi-variate multi-

equation systems. In this respect, we implement an adaptive re-weighting of loss functions

that individually adjusts the ODE loss weights, thus ensuring balanced training across phys-

ics constraints and data loss. Model training is further enhanced by incorporating a 3-phase

progressive learning approach that respects temporal causality. This begins with data fitting

for initialization, followed by cumulative training across sub-domains of increasing size, and

informed neural networks guide mechanistic modelling from sparse experimental data

finally tuning across the entire domain. In addition, we simplify domain decomposition,

enforcing equality of boundary values at the interface between sub-domains and as a result,

avoid extensive calculations to achieve continuity in high-order derivatives.

• A robust 2-step validation is carried out, firstly through an ablation study involving the

Lorenz system and secondly, using mosquito population dynamical modelling, to validate

the effectiveness of our approach and demonstrate its potential for continued study.

The remainder of this paper is structured as follows: section Related Work reviews the liter-

ature relevant to our study; section Methods introduces our PINN framework as applied to a

system of ODEs and including our proposed extensions; in section Ablation Study with Lorenz

System, an ablation study using the Lorenz system is used to evaluate the effectiveness of each

component in our framework; section Case Study-Based Validation examines the wider

impact and applicability of our approach by modelling mosquito populations; and finally in

section Discussion and Future Work, we conclude with some limitations of our current meth-

ods with suggestions for future work in this important research area.

Related work

Mosquito population dynamics modelling

The main methods that are currently being used in mathematical modelling of mosquito

dynamics are linear and nonlinear systems of coupled ordinary (ODE) [6–9, 11] or delayed

PLOS ONE Physics-informed neural networks and mosquito population modelling

PLOS ONE | https://doi.org/10.1371/journal.pone.0315762 December 23, 2024 3 / 30

https://doi.org/10.1371/journal.pone.0315762


differential equations (DDE) [10, 54, 55]. These models are compartmental, stage-structured

models which divide the population into sub-groups corresponding to the developmental

stages of the mosquito vector. They typically include at least four compartments separating the

aquatic or immature stages (egg, larva and pupa) from the airborne adult stages, but are usually

more complex, including additional adult stages to accurately simulate resting, feeding and

gestating females, as well as density dependent competition within the immature stages [56].

The rate at which individuals progress from one stage to the other is simulated by the species-

specific development and mortality rates, which depend on micrometeorological variables

including air temperature, precipitation and relative humidity, as well as a complex set of

interactions between the individuals of the same and competing species, breeding site avail-

ability etc. [9, 57–59]. These dependencies introduce temporal constraints to the system in

terms of “stiffness” which has an effect on the overall stability and the numerical integration

[60–62]. The magnitude of the stiff problem is defined by the time scale and variability of the

driving biotic and abiotic processes. This determines the choice of the time-differencing

scheme used to solve the equations, number of steps, local accuracy and length of the numeri-

cal integration [61, 62]. A common issue in current approaches is the lack of experimental

data for the accurate calibration of the development and mortality parameters, as well as appli-

cability to locations with different ecoclimatic settings [63]. Although there has been recent

research on the use of physics-informed neural networks in the field of biological systems

[64, 65], this is, to the best of our knowledge, the first paper to investigate the feasibility of

applying PINNs to an ODE mosquito population dynamics model. In this study, we aim to

provide a first step toward an integrated deep learning vector population dynamic modelling

framework.

Normalization

Normalization is a crucial yet often overlooked step in the training of PINNs. In [53], research-

ers employed a strategy that involved dividing the input domains and applying individual

input normalization alongside a unified global output normalization within their model com-

putations. In [66], the authors suggested not only normalizing the inputs and outputs of the

models but also non-dimensionalizing the differential equations integrated into the objective

functions. In both [34, 64, 65], both approaches added input- and output- scaling layers that

multiply the inputs and outputs with their average magnitudes. However, this is carried out at

the model level and thus, still affects the objective functions and training efficiency. Despite

recognizing the advantages of these approaches, there remains a lack of a systematic methodol-

ogy for normalization, particularly in the context of dynamical systems characterized by multi-

variate system states and numerous differential equations. To address this in our research, we

developed a normalization procedure that applies the MIN-MAX scheme to both the inputs

and outputs of the neural networks, while appropriately transforming the system of ODEs.

This procedure aids not only in aligning with the assumptions of model initialization but also

in addressing the challenges associated with multi-scale and stiff issues commonly encoun-

tered in training PINNs.

Loss re-weighting

PINNs operate as a multi-task learning framework that incorporates distinct losses for data

fidelity and adherence to physical laws. The different scaling and convergence rates of these

losses can lead to imbalances, potentially direct the model towards incorrect solutions as one

objective may disproportionately influence the training process. A common solution is the

re-weighting of losses to achieve a more balanced training. [36] demonstrated that one of
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the primary training pathologies in PINNs is the imbalance in gradients propagated from

the different losses. These authors proposed an adaptive method that adjusts the weights of

the losses based on the ratio between the maximum gradient magnitude of the physics task

loss and the mean gradient magnitude of the data task loss, with respect to the model param-

eters. The authors in [66] used a similar approach utilizing the ratio of the L2-norm of the

gradients instead while in [41], researchers opted to balance the variances of the gradients

instead. In [42], they applied the Neural Tangent Kernel to demonstrate that losses from

physical laws converge substantially faster than those from initial or boundary conditions,

proposing an algorithm to equalize the convergence rates by monitoring the kernels of the

losses. We differ to the above approaches, in that while we adopt the strategy proposed by

[36], we did so with several modifications. Similar to [34], we set the weight for the data loss

at a fixed value of 1.0 and adjusted the weights for the physics law losses, which exhibited

more significant variability. And we assigned individual weights to different differential

equations, providing the flexibility needed to accommodate the diverse scales and behaviors

of these equations.

Collocation points

Collocation points (residual points), where physics constraints are minimized, are traditionally

selected uniformly at random across the domain. However, this uniform approach may not be

optimal for systems exhibiting steep derivatives. A method known as residual-based adaptive

refinement (RAR) proposed by [43] enhances this process by adding new collocation points

with the highest differential equation residuals every few iterations, enabling models to focus

adaptively on the most challenging areas during training. In [44], the authors adopt a similar

strategy by sampling collocation points based on a probability distribution proportional to

these residuals. Elsewhere [45], researchers used importance sampling technique to derive a

distribution proportional to the 2-norm of the gradient of the loss function, approximated by

the loss value to lower computational demands. In [46], they also derived an improved colloca-

tion point distribution but use a generative deep learning model to approximate the

distribution.

In [48], the authors implemented a sequential training approach, dividing the input domain

into subdomains and using predictions from one as initial conditions for the next. Conversely,

researchers in [49] leverage predictions from all prior subdomains to enable a single global

approximation network. A different approach is presented in [47, 67] where the authors intro-

duce a progressive learning approach with residual points drawn uniformly from a dynami-

cally expanding subdomain, starting from a single point and growing to cover the desired

domain. This way, the training process starts by solving the ODEs at earlier in time before

moving to what happens later. This technique respects the time causality essential for accu-

rately predicting dynamical systems’ evolution. The authors in [50] also emphasize time cau-

sality by weighting the residuals to prioritize earlier time points.

We build on the methods presented in [47, 67] but crucially add two new steps: one for ini-

tial data fitting to improve model initialization (such as [34, 64]) and include a final step which

tunes across the entire domain.

Domain decomposition

When dealing with extremely large input domains, convergence in training PINNs can be

particularly challenging. A domain decomposition approach addresses this by dividing the

domain into smaller subdomains and training PINNs for each. To maintain solution conti-

nuity and smoothness across these subdomains, additional objective functions, known as
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interface losses are integrated into the optimization. In [51], the authors introduce two

interface conditions: one ensures the alignment of solution values at the interfaces, while

the other enforces the consistency of conservation laws across these boundaries. For inverse

problems, these conditions also extend to parameter values at the interfaces. The authors in

[52] further expanded on these interface conditions to accommodate arbitrary differential

systems by ensuring the continuity of the differential equations at the interfaces. In [53, 68],

they adopt an implicit approach by employing a gating function. For real-world applications

where a high degree of smoothness in the solution is negligible, we simplify the approach by

[52]. Instead, we opt to implement only the value enforcement at the interfaces, which

serves both as the initial condition and as a means to ensure continuity across the

subdomains.

Methods

In this section, we formulate the problem and over a number of steps, present our proposed

methodology which creates a solution for problems employing Ordinary Differential Equa-

tions (ODEs).

PINN structure

Consider u(t) = (u(1), u(2), . . ., u(V)) as a V-dimensional vector representing the state of a

dynamical system at any given time t, where t ranges from 0 to T. This dynamical system u is

governed by a set of F ODEs as shown in Eq (1), where . . .

du
dt
¼ f ðiÞ t; u; yð Þ; i ¼ 1; 2; � � � ; F: ð1Þ

In these equations, the system’s behavior over time is shaped by a set of P parameters θ =

(θ(1), θ(2), . . ., θ(P)), which might or might not be known in advance. The functions f(i) are

known functions defining the system’s dynamics. Suppose that we have some observations of

the system at different times, Du ¼ fðt1; u1Þ; ðt2; u2Þ; . . . ; ðtj; ujÞ; . . .g. Our objective is to find a

solution u and possibly θ that simultaneously matches these observations and is consistent

with the ODEs.

In the standard PINN framework [29], a neural network U (parameterized by WU), is used

to approximate the solution u. This network, as a function defined in [0, T], tries to estimate u
at any given time t, with WU being the trainable parameters of the network. In inverse prob-

lems where a few or all the parameters θ is not available, we can use a neural network, Θ(l), to

predict the unknown values θl. For the sake of simplicity, we denote the set of all parameters,

including the known or ones to be learnt by neural networks, as Θ and regard it as neural net-

works. The parameters Θ, parameterized by WΘ, are also defined as functions in the domain

[0, T]. If we let W = {WU, WΘ}, then the task now becomes an optimization problem when

determining the parameters W as shown in Eq (2), which aims to minimize the multi-task

objective function defined in Eq (3).

W ¼ argminWL ð2Þ

L ¼ Ldata þ
1

F

XF

i¼1

liLf ðiÞ ð3Þ
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where

Ldata ¼
1

Nu

X

ðti ;uiÞ2Du

ðUðtiÞ � uiÞ
2

ð4Þ

Lf ðiÞ ¼
1

Nf

X

j

dU
dt
� f ðiÞ tj;UðtjÞ;YðtjÞ

� ��
�
�
�

�
�
�
�

2

ð5Þ

Where U(tj), Θ(tj) are the output values of the neural networks valuated as tj. By minimizing

the objective Ldata, we decrease the discrepancy between the network predictions and the

observed data. Likewise, by minimizing the residuals with Lf ðiÞ , the neural network U aligns

with the differential equations at low errors. Here, λi are balancing factors between fitting to

the data and adhering to the dynamics, and Nf is the number of residual points randomly sam-

pled from a distribution μ, typically uniform, in the domain [0, T]. We resample the residual

points every step to ensure the losses are minimized everywhere in the entire period. Overall,

by minimizing this overall loss function L, the network can fit observed data while also

approximately follows the dynamic rules at the same time.

The loss function is minimized using gradient-based algorithms. The methods iteratively

update the parameters W in the directions of reducing the loss function, based on its gradients

with respect to the parameters, namely,rWL. Specifically, the updates are performed accord-

ing to the following rule

Wnew ¼Wold � ZrWL ¼Wold � Z rWLdata þ
XF

i¼0

lirWLf ðiÞ

 !

ð6Þ

where η is the learning rate, which dictates how big of a step to take in the direction opposite

to the gradient. To carry out this optimization, the Adam algorithm [69], a variant of the gradi-

ent descent algorithm that has been widely used on training PINNs, is used. The calculations

of gradients, whether it is the network U with respect to time t or the loss function L with

respect to W, can rely on automatic differentiation supported by popular deep learning frame-

works such as Pytorch [70], Tensorflow [71] or JAX [72].

According to the universal approximation theorem [73], multi-layer perceptrons (MLP)

[74] can approximate any continuous function on a given domain provided the MLP has suffi-

cient complexity, as represented by the number of hidden layers and parameters in those hid-

den layers. It is shown that challenges in PINN may not be due to the capabilities of MLP [48].

For an MLP with L layers, the mathematical formulation that describes its operation, layer by

layer, is presented in Eq (7) where x is the input to the neural network, h(l) is the hidden state

at layer l, W(l) and b(l) are the parameters of the layer l, and σ is the activation function which

provides non-linearity for the model.

hð0Þ ¼ x

hðlÞ ¼ sðWðlÞhðl� 1Þ þ bðlÞÞ; l ¼ 1; � � � ; L � 1

hðLÞ ¼WðLÞhðL� 1Þ þ bðLÞ
ð7Þ

The GELU activation function [75] is employed for its smooth properties which is essential

for differential problems, offering an advantage over the ReLU function. For the initialization

of the MLP’s weights and biases, the Glorot scheme [76] is utilized.

The “vanilla” PINN framework described above can approximate well when the ODE sys-

tems are relatively simple. However with more complex systems, especially ones that exhibit
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extreme stiffness, chaotic and multi-scale behavior, the basic setup tends to have difficulties in

converging to a satisfactory local minimum. For this reason, we now proceed to describing our

approaches to aid PINN training for both forward and inverse problem involved ODE

systems.

ODE normalization

Under normal circumstances, NNs’ output is in the range [-1,1] and so for output values out-

side this range, data normalization plays a crucial role in the machine learning workflow,

ensuring that both input and output variables remain within a reasonable range to enhance

model convergence and accuracy. In the PINN context, this normalization process requires

careful consideration, as any transformation results in modification to the corresponding

ODE systems. In [34, 53], the authors consider normalization and de-normalization as parts of

the overall model. However, this type of approach retains the original variable scales of the var-

iables, potentially leading to significant imbalances in the objective function. [66] suggests nor-

malizing the differential equations as well but its generalization is omitted. In this paper, we

propose a systematic approach to do normalizations using PINNs involving ODEs. In particu-

lar, we utilize the MIN-MAX normalization scheme for both input and output variables, i.e.

t, u and θ. To normalize the input variable, i.e. time t, we employ the transformation shown in

Eq (8), where [Tmin, Tmax] represents the time domain in which the models are trained. This

will have the effect of normalizing the time variable t to the range of [−1, 1].

t0 ¼ 2 �
t � T min

Tmax � T min
� 1 ð8Þ

To normalize the outputs from the neural networks, we define Lu;Uu;Ly, and Uy as the

lower and upper bounds for u and θ, respectively. When the difference between the lower and

upper bounds is small, we adjust the bounds around the mean as L ¼ min ðL;M � 1Þ and

U ¼ min ðU;Mþ 1Þ whereM ¼ LþU
2

is the middle point. It is important to note that these

bounds are specific to each dimension in the dynamical system. These bounds can be esti-

mated through collected data, inferred from domain knowledge, or estimated through approx-

imate simulations when data is scarce. The normalization of the variables u and θ at a

normalized time t0 is then obtained using Eqs (9) and (10) respectively.

u0ðt0Þ ¼
uðt0Þ � Lu

Uu � Lu
� 2 � 1, uðt0Þ ¼ ðu0ðt0Þ þ 1Þ

Uu � Lu

2
þ Lu ð9Þ

y
0
ðt0Þ ¼

yðt0Þ � Ly
Uy � Ly

� 2 � 1, yðt0Þ ¼ ðy0ðt0Þ þ 1Þ
Uy � Ly

2
þ Ly ð10Þ

Following the normalization above, the transformed inputs and outputs, t0, u0 and θ0, now

vary within the range [-1, 1]. Thus, instead of having neural networks approximating u and θ,

it is instead more beneficial to use U and Θ as surrogate models for u0 and θ0. Following the

normalization transformation in Eqs (9) and (10), it is necessary to adapt the loss functions

accordingly. When computing du0
dt and applying Eq (1), we arrive at the result shown in Eq (11).

du0

dt
¼

2

Uu � Lu

du
dt
¼

2

Uu � Lu
f ðiÞ t; u; yð Þ ð11Þ

Instead of using objective functions (4) and (5), we now consider the alternative (12) and

(13) as these will provide re-scaling of the losses to the magnitude order of u and du
dt , which are
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more similar to each other than the original objective functions are.

Ldata ¼
1

Nu

X

j

Uðt0jÞ �
uj � Lu

Uu � Lu
� 2 � 1

� �2

ð12Þ

Lf ðiÞ ¼
1

Nf

X

j

dU
dt
�

2

Uu � Lu
f ðiÞ tj; ðUðt

0

jÞ þ 1Þ
Uu � Lu

2
þ Lu; ðYðt

0

jÞ þ 1Þ
Uy � Ly

2
þ Ly

� ��
�
�
�

�
�
�
�

2

ð13Þ

The modifications to the objective functions, as detailed above, not only trying to balance

the data loss and ODE terms, and also across the ODE components. This re-scaling is particu-

larly beneficial in scenarios where variables exhibit significant differences in scale, arising from

their inherent characteristics or the units used for measurement. By normalizing these vari-

ables, we prevent any single variable from dominating others, balancing the impact of each

terms the training process and hence enhancing the convergence. This approach is also aligned

with the assumptions of Glorot initialization for neural networks [76]. However, despite these

normalizations, dU
dt might not be completely re-scaled and could still reflect the inherent stiff-

ness of the system. Further measures need to be taken, such as domain decomposition and

weight re-balancing discussed in other subsections.

Gradient balancing

As this is a multi-task problem, we have different objective functions (e.g. Eq (3)) as we are

measuring different constraints. Previous research [36] highlighted that one point of failure in

PINN training is the imbalance in gradientsrWLdata andrWLf ðiÞ in the update rule (6). It is

observed that the differential equation residual loss dominates the overall loss due to the stiff-
ness of the system. This makes the model prioritise optimizing the ODE constraint over match-

ing the initial, boundary condition or data observations, leading the model to converge to a

trivial solution, i.e. the null solution, violating conditions for the data. We address this issue by

adopting a similar approach to [36] where balancing adjusts the weights λ in the objective

function based on statistics from the gradientsrWLdata andrWLf ðiÞ . We extend this further to

ODE systems by separately and individually assigning and adjusting the weights to each and

every differential equation. In objective functions (3) and (6), the weights for data are set to 1

with component weights λi each adjusted individually, to ensure that every equation in the sys-

tem is given equal importance while aligning with the importance given to data. This extension

to previous work is crucial because the scale and complexity of each equation are different and

require different treatment during training.

Algorithm 1 gradient_balancing()
Require: step  current training step; α smoothing factor; updates
are made every N steps
Ensure: re-calculating λi such that gradients from different loss
terms are balanced
if step = 0 then
Initialize λi  1, 8i = 1, . . ., F

end if
if step mod N = 0 then
Compute l̂i by

l̂i  
jrWLdataj

maxfjrWLf ðiÞ jg
; i ¼ 1; . . . ; F ð14Þ
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where jrWLdataj is the average of the absolute gradients over all model parame-

ters W.

Adjust the weights l̂i by

li  a � li þ ð1 � aÞl̂i; i ¼ 1; . . . ; F ð15Þ

end if
This gradient-balancing algorithm is described in Algorithm 1, where all weights λi are ini-

tialized to 1 and are updated every N steps. We compute the weight l̂i by calculating the ratio

between the mean of absolute values of gradientrWLdata and the maximum of the absolute

values for the gradients ofrWLf ðiÞ . Due to the stochastic nature of gradient descent, the weight

from these calculations can be highly volatile and thus, we update the weights λi using the

moving average formula in Eq (15). The recommended values for hyper-parameters α and N
in the original study [36] are α = [0.5, 0.9]. However, we set N = 100 and tune α in extreme

cases α = 0.99, 0.9, 0.5, or set N = 1 with α = 0.

Causal training

When training PINNs, it is important to consider the order of causal effect [50], especially

when dealing with problems where data is quite sparse. Usually, PINN models are trained to

follow differential equations at every point in the input domain at the same time. However a

problem can arise where the model starts to follow these rules at later values for t but it has

properly adhered to the rule at an earlier point t. This discrepancy leads to a situation where

efforts to conform to ODEs at a one point cause violations at other points during the learning

process. Furthermore, if the penalty for not following ODEs at the earlier point outweighs the

fitting at the later, the model may get stuck in a local minimum, unable to satisfy ODEs over

the entire period anymore. To solve this, a causal approach to training is recommended. In a

causal training, the task of meeting the data conditions is given priority while ensuring that the

model complies with ODEs at the earlier values t before attempting compliance later values t.
In this study, we divide the training process into three phases: data fitting, progressive

causal training, and final tuning.

• First, in the data fitting phase, we focus on making the model match the data conditions but

training only with the data loss term Ldata. This helps set a good starting point for the model

so that later, it can follow the rules of differential equations more easily.

• In the progressive causal training phase, we take the growing-interval approach used in [67].

We gradually teach the models to follow the differential equations starting from a small

interval and slowly covering more domain as the training progresses. Both data loss term

and ODE loss terms are included but the ODE residual points for Lf ðiÞ are drawn from a

growing interval. If N2 is the number of update steps in the second phase, then at the n2-th

step, residual points are uniformly drawn from the interval 0;
n2

N2
� T

h i
.

• In the final tuning phase, we train the model using both data loss and ODE losses, with the

ODE residual points drawn at random with uniform distribution across the entire domain.

The goal here is to refine and improve the solutions the model has learned so far, ensuring it

follows the differential equations more accurately over the entire period.

The training process mainly happens during the second and third stages, with the first stage

being the shortest. This is because neural networks can quickly learn to fit the given data too
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well. We usually limit the first phase, where the model learns to match the initial data, to

between 5,000 and 10,000 steps. In the progressive causal phase, the model gradually learns to

solve the differential equations over an expanding area. This phase takes longer because the

model must successfully reduce its errors to a required level before it can extend its learning to

new areas. For systems that do not reliably converge, the number of steps for this phase should

be sufficiently high. We set this phase to last between 50,000 and 100,000 steps to ensure thor-

ough learning. Then, in the final tuning phase, the early stopping approach is adopted. The

model’s performance is checked every 1,000 steps with an evaluation loss, where all weights λs

are set to 1.0. If no improvement is recorded in the model’s performance after several checks,

the training ends. This ensures the model is as accurate as possible without time spent on

unnecessary training.

Domain decomposition

One of the issues when working with PINNs is that the time series may be too large. Domain

decomposition is a effective way to train PINN when the solution is overly complex for a par-

ticular time interval or the target input domain is too large, which is often the case in real

world applications. The method is particularly useful in the extrapolation forward problem

where there are little or no data in the period of interest, or the data condition (i.e. initial or

boundary condition) needs to rely on predictions from some other domain. In such cases, the

shape of the solution relies heavily on training the models to fit the ODE constrains, which is a

difficult task due to issues such as causal effect violation [50] or gradient imbalance [36]. The

decomposition of domains reduces the domain the models are trained on and subsequently,

reduces the complexity of the optimization task.

In particular, the approach divides the input domain into S non-overlapped subdomains,

Ds = [Ts−1, Ts], s = 1, . . ., S, with T1 = 0, TS = T. In each subdomain Ds, a neural network Us is

defined, with the overall solution is defined in Eq (16). With this definition, the goal is to train

Us to approximate the solution u in the subdomain Ds.

UðtÞ ¼
X

s

1Ds
ðtÞ � UsðtÞ; 8t 2 ½0;T� ð16Þ

Let D∗
s ¼ ½Ts� 1 � O;Ts þ O� be the extended subdomain of Ds, O be 50% of overlapped size.

We treat each subdomain D∗
s as a separate PINN problem, where the model is trained using

the framework described in section Methods, including the normalization and gradient bal-

ancing measure. Starting from the first subdomain D0, the model is trained with the initial

condition data Du provided by users. For subsequent subdomains D∗
s , the model is trained

with data Du generated by the previously trained model Us−1 in the overlapped domain [Ts−1,

Ts−1 + O]. The volume of data generated could be unlimited, we set the number from 10 to

100, depending on the granularity and the continuity across subdomains required. This pro-

cess is repeated until the entire domain is covered. The final solution would be the combined

predictions in Eq (16).

This divide-and-conquer scheme offer several advantages in training PINNs: it reduces the

complexity of the overall problem into many smaller less-complex problems; it reduces the

explosion of gradients which has always been an important issue when training PINN; it allows

optimized customization of models in each subdomain, enhancing the individual and overall

convergence and accuracy.

In this study, we experiment with domain decomposition for the forward problem only.

However, this approach could be expanded to inverse problem by adding similar interface

conditions on ODE-parameter neural networks.
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Ablation study with lorenz system

As different NN configurations or structures have been constructed for this task, we now eval-

uate the efficacy of the proposed PINN methodologies utilizing the Lorenz system, which con-

sists of three coupled, nonlinear differential equations and is the common choice when

evaluating ODEs [77]. This system is a classic example of chaotic behavior and is described in

Eq (17). Here, x, y, and z represent the state variables of the system at any given time t while

σ, ρ, and β are physical parameters of the system. We define two temporal domains for our

experiments: a shorter duration with a maximum time of T = 2.0 and a longer duration

extending to T = 40.0.

dx
dt
¼ sðy � xÞ

dy
dt
¼ xðr � zÞ � y

dz
dt
¼ xy � bz

8
>>>>>>>><

>>>>>>>>:

ð17Þ

The shorter duration is employed to assess the impact of techniques such as ODE Normali-

zation, Gradient Balancing and Causal Training on the model’s performance. Conversely, the

longer duration is utilized to investigate the effectiveness of Domain Decomposition in man-

aging extended temporal intervals. For the generation of both training and ground-truth data-

sets, we employ a well-established numerical method [78] for solving ODE systems,

implemented in Python’s Scipy library [79].

Normalization is a crucial preprocessing step in machine learning. In our study, we utilize

ODE normalization as a baseline model and integrate various additional techniques to evaluate

their impact on model performance. We investigate the following models:

1. OdePINNorig: Original framework without additional techniques.

2. OdePINNbaseline: ODE Normalization only. This model represents a baseline model for the

more complex models 3–6 below.

3. OdePINNgrad: ODE Normalization combined with Gradient Balancing.

4. OdePINNcausal: ODE Normalization combined with Causal Training.

5. OdePINNgrad+causal: ODE Normalization, Gradient Balancing, and Causal Training

combination.

6. OdePINNgrad+causal+domain: The model combines ODE Normalization, Gradient Balancing,

Causal Training, and Domain Decomposition.

Where a bespoke technique is not applied, conventional methods are used by default. Spe-

cifically, in the absence of ODE normalization, input and output variables retain their original

scale; without Gradient Balancing, the weights λi are set to a fixed value of 1; without Causal

Training, collocation points are uniformly sampled across the domain; and without Domain

Decomposition, the model is trained on the entire domain of interest in a single training. In

this approach, experiments were conducted on both forward and inverse problems using the

Lorenz system, setting a shorter time frame of T = 2.0 to test the first five models. The sixth

model OdePINNgrad+causal+domain is assessed on the forward problem over a longer duration

with T = 20.0.
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Forward problem with T = 2

Now, we explore how the techniques described earlier work together, particularly on their

capacity to extrapolate in forward problem scenarios using the Lorenz system. The data loss

condition, Ldata, involves using only the initial condition as a single data point (x, y, z) = (1, 1,

1) at t = 0. The physical parameters are set constant over time, as: σ = 10, ρ = 28, and b ¼ 8

3
.

These parameters are all known to the framework.

The framework utilizes an MLP, U, to approximate the solution u. The architecture of U
comprises four hidden layers, each consisting of 100 units, with the GELU activation function

applied in all hidden layers. For Gradient Balancing, the hyperparameters α and N are tuned

across four settings: (0.99, 100), (0.9, 100), and (0.0, 1). The configuration (0.99, 100) is identi-

fied as the most effective through this tuning process. In the absence of Gradient Balancing, α
defaults to 0 and N to None, maintaining the λis at a constant value of 1.0 throughout the train-

ing. Causal Training involves three phases: the first phase of 1,000 steps, followed by the sec-

ond phase of 199,000 steps, and the final phase includes early stopping up to 100,000 steps.

Should Causal Training be deactivated, the model bypasses the initial two phases and proceeds

directly to the last phase, extending training up to a maximum of 300,000 steps without the

implementation of early stopping.

Fig 1 presents the solution approximations produced by the five models, starting with the

poorest performing models.

• OdePINNorig tends to converge towards the null solution due to the dominant factor of

ODE loss.

• OdePINNcausal is similar to the original model, while capturing the system’s dynamics effec-

tively, deviates from the correct initial condition and subsequently converges to the trivial

null solution.

• The baseline model manages to obtain the general shape of the solution but has difficulties

in matching both the initial condition and the governing differential equations.

• OdePINNgrad achieves a better alignment with the initial condition but it fails to sufficiently

satisfy the physics constraints, leading to inaccurate approximation of the correct solution.

• OdePINNgrad+causal demonstrates a close convergence to the true solution, showing superior

performance to the other models.

In summary, OdePINNgrad+causal successfully integrates both methodologies, ensuring

adherence to the initial condition and minimizing ODE loss. This dual approach enables the

Fig 1. Lorenz ODE system for the forward problem, with U approximation of the system state. The blue line u_true represents the target for each of

the 5 models used in the experiment. Graphs illustrate the performance across the x,y and z dimensions.

https://doi.org/10.1371/journal.pone.0315762.g001
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model to more accurately approximate the true solution. These observations are further illus-

trated in Fig 2. Note that evaluation losses are computed across the entire period, with the

weighting coefficients λi maintained at 1.0; OdePINNorig are not shown as the losses are at dif-

ferent scales and its approximation is similar to OdePINNcausal. Fig 2a demonstrates that the

OdePINNgrad+causal model achieves a significantly low final total loss of 1.6 � 10−4, which is

considerably less than that of the OdePINNcausal at 2.2 � 10−3. The remaining models display

higher losses of 0.046 and 0.056, with the baseline model showing slightly better performance.

Comparison of errors across the models indicates that Gradient Balancing substantially

enhances convergence towards the data loss term Ldata. The data losses for OdePINNgrad and

OdePINNgrad+causal are recorded at 1.4 � 10−8 and 8.9 � 10−9, respectively, which are signifi-

cantly lower than the approximately 10−2 or 10−3 observed in the other models. Despite achiev-

ing a significantly lower data loss, the total loss of OdePINNgrad is 6.3 � 10−2, slightly higher

than the baseline model’s 4.5 � 10−2, due to a higher ODE loss. This technique enables the neu-

ral network to better fit the initial condition but simultaneously makes it harder to satisfy the

ODE loss, resulting in higher ODE and overall losses. Greater detail on the usage and analysis

of this method is provided in [36]. Ultimately, the root mean squared error between the grad

model and the true solution is 11.9, slightly better than the baseline’s 12.18, though both

remain far from a perfect solution.

However, the Gradient Balancing technique on its own does not address the issue of causal

effects: Causal Training is essential in this case. Gradient Balancing averages gradients from

different times, leading to scenarios in Fig 2b, where at later time t = 1.5 or t = 2.0, the model

can quickly minimize the physics constraints to a negligible level of 10−5 at an early stage in the

training. Notably, within the domain t 2 [1.0, 2.0], the model converges to the null solution (as

illustrated in Fig 1), which satisfies the ODE system. However, at earlier times, such as t = 0 or

t = 0.5, the model consistently struggles throughout the training duration. We hypothesize that

this premature convergence of the ODE constraints at later times traps the model in a local

minimum, preventing it from satisfying the constraints at earlier times and thus resulting in

an inaccurate solution approximation. To address this, we employ a Causal Training strategy

that trains the physics-laws term using residual points drawn from a progressively expanding

interval, starting from the 1,000th to the 200,000th step. This growing interval strategy ensures

Fig 2. Loss analysis of OdePINN framework with Lorenz system, t 2 [0, 2.0]. (a) Loss Terms across final models selecting through Early Stopping;

the bars are presented in a logscale pointing downwards, with the lower the value the better the performance. (b) ODE errors of the OdePINNgrad

model at different time t during the training, motivating the need for Causal Training; (c) The x-value Approximation Solution U of the model

OdePINNgrad+causal at different steps during the training.

https://doi.org/10.1371/journal.pone.0315762.g002
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that the model adheres to the system dynamics at earlier times before progressing to later

times, thereby respecting the causal effects. The domain in which the model complies with the

differential equations broadens as the training advances, as depicted in Fig 2c. Outside this

domain, the model’s behavior remains arbitrary. Ultimately, the OdePINNgrad+causal model

effectively combines these techniques, effectively minimizing both data and physics losses to

achieve a highly accurate solution approximation.

Forward problem T = 20

For a more robust test, we also performed a tougher evaluation attempting to predict all values

on a continuous scale between 0 and 20. We demonstrate domain decomposition by solving

the Lorenz system over an extended domain, from t = 0 to T = 20.0. The initial condition is set

as (1, 1, 1), with constant, known parameters σ = 10, ρ = 28, and b ¼ 8

3
.

Fig 3 displays the the results when the domain is larger where none of the models achieve a

close approximation to the reference solution. The two models OdePINNbaseline and Ode-

PINNgrad demonstrate some level of ability to learn the initial condition and marginally adhere

to the ODE equations. However, their errors grow sufficiently large by t = 0.75, leading them

to diverge significantly from the true solution, eventually converging to a trivial constant solu-

tion beyond t = 3. Other models, OdePINNorig, OdePINNcausal and OdePINNgrad +causal exhibit

a similar pattern as observed in the T = 2 experiment, converging to the null solution. The

models’ inaccuracies can be attributed to the increased domain size, which raises the solution’s

complexity. Therefore, it was necessary to apply Domain Decomposition to manage the larger

domain size.

The domain is divided into 40 subdomains, each with a size of 0.6 and an overlap of 0.05 on

both ends. Each subdomain is independently modeled and trained by a distinct neural net-

work. The predictions from the previous subdomain, uniformly distributed over 100 points

within the overlapped region, serve as the data conditions for the subsequent subdomain. The

hyper-parameters remain identical across all subdomains. The neural network U is structured

as an MLP with four hidden layers, each comprising 100 units and utilizing the GELU activa-

tion function. The training process is limited to a maximum of 150,000 steps, starting with an

initial phase of 5,000 steps dedicated to data fitting, followed by 100,000 steps focused on

causal training and the remaining are for final tuning phase. Additionally, the gradient balanc-

ing weights, λi, are updated every 100 steps, utilizing a smoothing factor of α = 0.99.

Fig 4 illustrates the solution approximated by the proposed framework, accompanied by

plots of the training losses and Root Mean Squared Error (RMSE) relative to the ground truth

Fig 3. Lorenz ODE system, forward problem, U approximation of the system state from the first 5 models, using the first five models, excluding

the domain decomposition model.

https://doi.org/10.1371/journal.pone.0315762.g003
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data. The model demonstrates a fairly good prediction of the system’s evolution. Initially, the

RMSE is approximately 5 � 10−4, but it exponentially increases as t progresses, where the RMSE

escalates to 10−3 at t = 8, to 10−1 at t = 13, and reaches an error magnitude of 101 by the end of

the period. The final four subdomains, as depicted in Fig 4 (12.5 to 20.0), show notable approx-

imation errors. This substantial error accumulation towards the end of the period is under-

standable given that the Lorenz system is highly sensitive to initial conditions where minor

predictive inaccuracies can significantly deviate the future states. As a result, initial training

errors rapidly accumulate over time, culminating in an RMSE of up to 10 by the end of the

time period. The training data loss remains below 10−4 throughout, with many instances drop-

ping to the 10−5 level. Furthermore, the errors related to physical constraints are consistently

maintained at the 10−3 level, indicating that the physical laws are satisfied with ODE loss

approaching zero. Notably, the losses peak in regions of the solution characterized by sharp

changes, consequently resulting in a steep increase in RMSE. On a positive front, the frame-

work exhibits consistent performance across all subdomains. However, the clear accumulation

of errors highlights a potential limitation of the technique, suggesting areas for further

improvement.

Fig 5 plots the relationship between the number of training steps and the RMSE across a

range of subdomains. The training steps increase linearly with the number of subdomains as

each subdomain requires approximately 200,000 to 300,000 training steps, equivalent to

around 30 minutes on the GPU NVIDIA GeForce RTX 4090 hardware used for all experi-

ments. The figure demonstrates a clear trade-off between the number of subdomains and

model accuracy: as the number of subdomains rise, the RMSE decreases exponentially, but at

the cost of longer training times. When the number of subdomains is low, such as 1 or 5, the

training domain remains too large, causing the model to converge to the null solution, yielding

an RMSE of 13.4. With an increase in subdomains, starting from 10, the training domain

Fig 4. Lorenz ODE system, forward problem, U approximation of the system state, using the domain composition model.

https://doi.org/10.1371/journal.pone.0315762.g004
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becomes smaller, reducing the solution complexity within each subdomain. This reduction

leads to a RMSE decrease, reaching 4.1 with 10 subdomains and 1.13 with 40 subdomains.

These results indicate that cumulative errors can be mitigated by increasing the number of

subdomains, allowing the model to focus on improving accuracy at finer levels of detail.

Inverse problem

In this section, we illustrate the application of the proposed framework to an inverse problem

scenario, using significantly more data. Here, the framework is employed to predict the physics

parameters and simultaneously interpolating the system state from a limited number of obser-

vations of the system’s state. We conduct these experiments using the Lorenz system over the

time domain t 2 [0, 2.0], with time-varying physical parameters defined as

s ¼ 10

2
sin 2ptð Þ þ 10, r ¼ 28

5
sin 2pt þ p

2

� �
þ 28, and b ¼ 8

3
. These formulas are unknown to

and are to be learnt by the framework. The initial conditions are set to (1, 1, 1), consistent with

previous experiments. The dataset for training comprises 21 simulated data points that are

evenly distributed across the input domain, resulting in a dataset dimension of (21, 3). Fig 6a

presents both the reference solution discussed earlier [78] and the simulated data points.

Fig 5. Trade-off between the number of subdomains and accuracy.

https://doi.org/10.1371/journal.pone.0315762.g005
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The configuration of the framework is similar to previously described experiments. The

main neural network U retains its structure from earlier experiments, comprising an MLP

with four hidden layers, each consisting of 100 units, with GELU activation. Additionally,

three smaller, distinct neural networks Θ are implemented to model the three physical param-

eters of the dynamical system. These networks are each equipped with four hidden layers con-

taining 10 units, using GELU as the activation function for all hidden layers. All networks

incorporate the time variable t as a singular input to capture the temporal dynamics of the

parameters. In terms of training enhancements, Gradient Balancing is used where the weights

of the objective function, λi, are adjusted every N = 100 steps, employing a smoothing factor of

α = 0.99. The Causal Training approach involves an initial data fitting phase comprising

10,000 steps, reflecting the increased data availability. This is followed by progressive causal

training and a final tuning phase, which are conducted over 200,000 and 100,000 steps,

respectively.

Fig 6b displays the dynamical system’s parameters as approximated by the neural network

Θ. While all models demonstrate an ability to capture the general trends of the parameters,

they also exhibit inherent inaccuracies. Notably, the original and baseline models show sub-

stantial errors particularly in regions where the derivatives of u with respect to time t are

remarkably high, as can be seen within the interval [0, 0.5] or by t = 2.0 in Fig 6a. Among the

models, OdePINNgrad achieves the most accurate parameter approximations throughout most

Fig 6. OdePINN framework solves the Lorenz system inverse problem. (a): Ground truth u and data provided to PINN; (b): Θ approximation of the

physics parameters (σ, ρ, β).

https://doi.org/10.1371/journal.pone.0315762.g006
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of the domain. However, it encounters difficulties at the period’s end, near t = 2.0. In this

inverse setting, the system’s parameters are not predefined and are subject to variation, leading

to non-unique solutions for u and θ in the absence of sufficient data. Consequently, OdePINN-

grad tends to favor solutions with smaller magnitude derivatives, which can result in significant

discrepancies when compared to the reference solution. Conversely, OdePINNcausal typically

exhibits error accumulation towards higher values of t, with noticeable inaccuracies in estimat-

ing parameters such as σ and ρ beyond t = 1.15, as illustrated in Fig 6b. This pattern of error

propagation is a recurring observation throughout our study. The combined model, Ode-

PINNgrad+causal, mirrors the performance of OdePINNgrad, maintaining reasonable accuracy

until the domain’s far end. The approximation U by the models can be found in S1 Fig.

Table 1 presents a detailed analysis of the errors associated with both the interpolation of u
and the estimation of parameters θ, benchmarked against the ground truth data, errors calcu-

lated in metrics presented in S1 Appendix. The original model registers highest errors, with

RMSE values of 3.9564 for u and 52.4141 for θ, alongside MDAPE of 2.6219 and 24.5114,

respectively. Compared to the original model, the baseline model shows slight improvements

but still incurs relatively high errors. Conversely, OdePINNgrad obtained significant improve-

ments in accuracy, recording the lowest errors across all evaluated metrics for both u and θ. It

achieves an RMSE of 0.2525 for u and an impressively low 0.7195 for θ. Additionally, it reports

MAE values of 0.0472 and 0.1602, and MDAPE scores below 0.01% for both variables. The

causal model records the best RMSE for u at 0.1039, although its performance on other metrics

does not reach the levels achieved by the grad model. OdePINNgrad+causal, which integrates the

approaches of the preceding two models, does not achieve top scores in any specific category

but secures the second-best results, including impressive MDAPE values below 0.01% and

Table 1. Approximation errors in the inverse problem with Lorenz system where smallest error values are best.

Model Metric x y z u σ ρ β θ
orig RMSE 4.4453 4.9325 1.6939 3.9564 5.4294 90.5381 3.8850 52.4141

baseline 3.4995 2.8182 0.6591 2.6219 8.4507 41.5828 1.3683 24.5114

grad 0.1011 0.3556 0.2336 0.2525 0.8727 0.8498 0.2629 0.7195

causal 0.1363 0.0949 0.0692 0.1039 1.3853 2.4592 0.0740 1.6302

grad+causal 0.0862 0.3760 0.2659 0.2705 1.2593 0.8922 0.3316 0.9114

orig MAE 1.7002 1.0028 0.3667 1.0232 3.6059 47.0012 1.4000 17.3357

baseline 0.9579 0.6687 0.2430 0.6232 3.1751 10.9855 0.5066 4.8891

grad 0.0207 0.0759 0.0449 0.0472 0.2116 0.2078 0.0611 0.1602

causal 0.0844 0.0654 0.0452 0.0650 0.7099 1.3002 0.0472 0.6858

grad+causal 0.0192 0.0904 0.0543 0.0546 0.2845 0.2590 0.0827 0.2087

orig MDAPE 0.0063 0.0064 0.0015 0.0025 0.1271 0.0127 0.0058 0.0200

baseline 0.0019 0.0029 0.0016 0.0019 0.0382 0.0114 0.0086 0.0162

grad 0.0001 0.0002 0.0001 0.0001 0.0005 0.0005 0.0003 0.0004

causal 0.0004 0.0012 0.0016 0.0013 0.0175 0.0044 0.0074 0.0090

grad+causal 0.0000 0.0001 0.0001 0.0001 0.0006 0.0003 0.0007 0.0006

orig nRMSE 0.2562 0.2450 0.0703 0.2086 2.7147 16.1675 3.8850 9.7271

baseline 0.2017 0.1400 0.0274 0.1426 4.2253 7.4255 1.3683 4.9955

grad 0.0058 0.0177 0.0097 0.0121 0.4364 0.1517 0.2629 0.3069

causal 0.0021 0.0025 0.0008 0.0019 0.2210 0.0608 0.0156 0.1326

grad+causal 0.0079 0.0162 0.0140 0.0132 0.5519 0.1572 0.3124 0.3772

Bold text highlight the best performing models with respect to a specific metric and Underlined numbers represent the second best performing model.

https://doi.org/10.1371/journal.pone.0315762.t001
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0.06%. This final training stage of OdePINNgrad+causal mirrors the training process of the entire

OdePINNgrad+causal model, albeit with an improved initialization and a reduced number of

training steps.

With an increase in data availability, the preliminary two phases of causal training contrib-

ute little to overall improvement in performance. This is mainly because a dataset of sufficient

volume can establish a robust initialization, diminishing the relative advantage of the first two

phases. On the other hand, OdePINNgrad+causal, with its shorter training duration, does not

attain performance levels comparable to those of the Gradient-Balancing model.

Case study-based validation

In addition to a theoretical validation, our PINN framework is also validated in the practical

environment of dynamical modelling of the mosquito population. Here, our approach is

adopted on the ODE-based model of mosquito population dynamics proposed in [80]. The

model divides the mosquito life cycle into 10 stages: Egg (E), Larva (L), Pupa (P), Emerging

Adults (Aem), Nulliparous Bloodseeking Adults (Ab1), Nulliparous Gestating Adults (Ag1), Nul-

liparous Ovipositing Adults (Ao1), Parous Bloodseeking Adults (Ab2), Parous Gestating Adults

(Ag2) and Parous Ovipositing Adults (Ao2). The 10 stages are related via ordinary equations as

show in Eq (18), with parameters explained in S1 Table. A diagram illustrating the stages and

transitions is available in S2 Fig. System parameters are modelled as a function depending on

temperature with data acquired for Culex pipiens spieces from [11].

dE
dt

¼ gAoðb1Ao1 þ b2Ao2Þ � ðmE þ fEÞE

dL
dt

¼ fEE � mL 1þ L
kL

� �
þ fL

� �
L

dP
dt

¼ fLL � ðmP þ fPÞP

dAem

dt
¼ fPse

� mem 1þ 1
kPð ÞP � ðmA þ gAemÞAem

dAb1

dt
¼ gemAem � ðmA þ mr þ gAbÞAb1

dAg1

dt
¼ gAbAb1 � ðmA þ fAgÞAg1

dAo1

dt
¼ fAgAg1 � ðmA þ mr þ gAoÞAo1

dAb2

dt
¼ gAoðAo1 þ Ao2Þ � ðmA þ mr þ gAbÞAb2

dAg2

dt
¼ gAbAb2 � ðmA þ fAgÞAg2

dAo2

dt
¼ fAgAg2 � ðmA þ mr þ gAoÞAo2

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð18Þ

This part of the evaluation comprised two challenges: first, solving the mosquito population

dynamics with an initial condition; and second, determining mortality and growth rates over

time from available data. We conducted tests under a varying temperature condition, where
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the temperature changes according to a sine function t ¼ 10sin 2p t
365

� �
þ 10 with time, t,

measured in days.

Forward problem

For the forward problem, the goal was to solve the mosquito population dynamics using only a

single data point at the beginning, known as the initial condition. Specifically, we employ a

numerical method [78] for solving ordinary differential equations (ODEs), available in Python

Scipy library [79], to simulate data over three years (t ranging from 0 to 1096 days). We use the

data point at t = 730 (two years into the simulation) as the starting point and trained a PINN

for the period from 730 to 1, 096 days. The simulated data within this period serves as the

ground truth solution against which we evaluate the model’s performance. The advanced tech-

niques presented in the section Methods, including ODE normalization, domain decomposi-

tion, gradient balancing and causal training, were implemented.

The time period was separated into 12 subdomains where for each, training was carried out

for 10,000 steps to fit the data, followed by 100,000 steps focusing on causal training. Early

stopping was used after 100 evaluations without improvement in the final phase. The lower

and upper bounds for each domain are acquired from the ground truth data. The solution neu-

ral network U was configured as an MLP with 4 hidden layers with 100 units each GELU as

activation function for every hidden layer. The subdomains are trained sequentially, with the

predictions in the overlapped domain of previous subdomain models used as the initial data

condition for the next domain.

The results for solving the mosquito population dynamics as a forward problem are shown

in Fig 7, with error measurements provided in Table 2. The trained neural network shows

impressive performance in extrapolating and providing a fairly accurate approximation of the

solution in Fig 7. However, towards the end of the time period, accumulated error can be seen

in Ag1 and Ag2 stages of mosquitoes development.

In Table 2, the overall RMSE is quite high at 92,296 (organisms). Errors vary significantly

across different life stages of mosquitoes, ranging from as low as 19 in Ao2 stage to as high as

243,295 at the P stage, most likely due to the different scales of these life stages The MAE

shows a similar range of variation, from 10 (Ao2 stage) to 123,936 (P stage), with an average of

Fig 7. Mosquito ODE system, forward problem, U approximation of the solution.

https://doi.org/10.1371/journal.pone.0315762.g007
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26,021. Despite these high values for RMSE and MAE, the Median Absolute Percentage Error

(MDAPE), is relatively low at an average of 0.19%, which indicates a good performance in gen-

eral from a machine learning perspective. MDAPE tends to be lower for stages with larger

scales, suggesting that stages with larger scales are more tolerant of minor errors. For instance,

the smallest MDAPE is 0.0759% for the L stage, which has the second highest values in both

RMSE and MAE. Conversely, the highest MDAPE, at 0.3921%, occur in the Ao1 stage, which

has relatively lower RMSE and MAE.

Inverse problem

In solving inverse problems, the goal was to predict 10 specific parameters using available data.

Three parameters (γAem, γAb and γAo) are treated as constants and are represented by learnable

parameters that remain constant over time. The remaining seven parameters (fE, fP, fL, fAg, mL,

mP and mA) vary over time with neural networks using time as input to estimate these parame-

ters. This experiment was conducted under the same conditions and temperatures as previous

experiments but here, it was necessary to generate simulation data over a three-year period,

from day 0 to day 1096, using the numerical method in [78]. For the data condition loss, we

used daily data from t = 730 to t = 1096, totaling 367 days times 10 data points. Both the solu-

tion u and the ODE parameters θ were obtained from the simulation data as ground truth.

With this setup, the high data volumes allow for the use of simpler techniques. Due to sig-

nificant differences in the number of instances across various stages, ODE normalization and

gradient balancing are applied. Techniques such as domain decomposition and causal training

were not used (set the number of subdomains to 1 and the number for the first two phases to

0), as the data condition with sufficient data provides a solid base for the framework’s conver-

gence. The boundaries for the stages and ODE parameters were determined based on the data

from the simulations. For the neural network solution U, an MLP with 4 hidden layers, each

containing 100 units, and utilizing the GELU activation function, was created. The constant

parameters are represented by individual trainable weights. Time-dependent parameters, on

the other hand, are each represented by a smaller MLP, consisting of four hidden layers with

10 units per layer and also using the GELU activation function.

Fig 8 shows the system parameters learnt from the PINN framework. The plots generally

illustrate accurate parameter approximations although there are noticeable inaccuracies, par-

ticularly for parameters mL and mP within the domain [943, 1064]. The error metrics detailed

in Table 3, reveal an average RMSE of 0.132615, with mL and mP contributing the highest

Table 2. Approximation errors for mosquito ODE solution.

Stage RMSE MAE MDAPE nRMSE

E 56107.947877 28619.218663 0.001900 0.000407

L 144952.348476 82367.593703 0.000759 0.000308

P 243295.690709 123936.043785 0.002170 0.001325

Aem 398.308537 175.715612 0.001821 0.001106

Ab1 342.155798 161.987210 0.001782 0.000850

Ag1 42095.722155 20403.707941 0.002158 0.019350

Ao1 34.564301 16.196719 0.003921 0.000293

Ab2 102.456176 50.194130 0.002831 0.000217

Ag2 7853.480625 4466.414135 0.001567 0.004155

Ao2 19.229490 9.978838 0.002394 0.000138

Overall 92296.312508 26020.705074 0.001918 0.006291

https://doi.org/10.1371/journal.pone.0315762.t002
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Fig 8. Mosquito ODE system, inverse problem, Θ approximation of the system’s parameters.

https://doi.org/10.1371/journal.pone.0315762.g008

Table 3. Mosquito ODE system’s parameter approximation errors.

Parameter RMSE MAE MDAPE nRMSE

γAem 0.042639 0.042639 0.037304 0.042639

γAb 0.034216 0.034216 0.038662 0.034216

γAo 0.072417 0.072417 0.036208 0.072417

fE 0.015570 0.012633 0.039964 0.015570

fP 0.004646 0.003270 0.078140 0.004646

fL 0.002816 0.001982 0.078126 0.002816

fAg 0.002769 0.001784 0.094168 0.002769

mL 0.286959 0.137099 0.125888 0.286959

mP 0.291548 0.139703 0.259069 0.291548

mA 0.002848 0.001828 0.033566 0.002848

Overall 0.132615 0.044757 0.059045 0.132615

https://doi.org/10.1371/journal.pone.0315762.t003

PLOS ONE Physics-informed neural networks and mosquito population modelling

PLOS ONE | https://doi.org/10.1371/journal.pone.0315762 December 23, 2024 23 / 30

https://doi.org/10.1371/journal.pone.0315762.g008
https://doi.org/10.1371/journal.pone.0315762.t003
https://doi.org/10.1371/journal.pone.0315762


errors at 0.286959 and 0.291548, respectively. The lowest RMSE values are for fAg and fL at

0.002769 and 0.002816, respectively. The MAE closely follows the RMSE trends, averaging at

0.044757. The highest MAE values correspond to mL and mP (0.137099 and 0.139703), and the

lowest to fAg and fL (0.001982 and 0.001784). The MDAPE averages at 5.9%, with mA showing

the lowest error at 3.3566% and the three constants (γAem, γAb, and γAo) ranging between

3.62% and 3.87%. The errors for mL and mP are notably higher at 12.59% and 25.91%,

respectively.

We interpret these results as follows: in colder temperatures, within the day range of 943 to

1064, where calculated air temperature is below 5.0˚C, the mosquito population decreases rap-

idly to zero (with the exception of Ag1 and Ag2) as can be seen in Fig 7. This situation makes it

challenging to gather useful information, negatively affecting the ability to determine several

system parameters, especially mL and mP as these parameters are primarily derived from equa-

tions related to dL
dt and dP

dt . Conversely, parameters γAem, γAb and γAo remain constant over time,

which makes them simpler to accurately estimate, as seen in their relatively low MDAPE.

Meanwhile, parameters like mA, fAg which are involved in several differential equations, tend

to receive more consistent and stable information and gradients. In fact, the target parameters

are not identifiable across the entire input domain due to the system setup (see S3 Fig), which

can result in inaccuracies in the approximations made by PINNs.

Discussion and future work

In this work, we introduced a hybrid framework based on Physics informed Neural Networks

that integrates physical laws into data-driven machine learning models. This particular frame-

work is designed to manage systems of ordinary differential equations, validated using a case

study modelling mosquito population dynamics. The approach employs a multi-task learning

strategy, incorporating multiple components in the objective function: one for data fitting, sev-

eral for weakly enforcing physical knowledge, with separate functions for the remaining condi-

tions. The framework includes several advanced techniques such as domain decomposition,

ODE normalization, gradient balancing, and causal training. We evaluated the effectiveness of

our approach through an ablation study using the Lorenz system before introducing the prob-

lem of a model for the dynamics of mosquito populations.

The application of PINNs to mosquito population dynamics represents a significant

advancement in ecological modelling for a number of reasons. Traditional data-driven models

often require extensive data and are limited to capturing the nonlinear, multi-scale behaviours

seen in real-world mosquito populations. However, PINNs integrate domain-specific knowl-

edge directly into the learning process by enforcing ODE constraints. This is crucial for mos-

quito population dynamics because it ensures that the model respects biological principles

even with limited data.

Our findings demonstrate that ODE Normalization and Gradient Balancing played an

important role in stabilizing the training process. These techniques ensured that no individual

component of the loss function disproportionately influenced the optimization, thus prevent-

ing premature convergence to suboptimal solutions. Causal Training preserves the temporal

causality inherent in the dynamical system, critical for achieving accurate model predictions,

especially in scenarios where extrapolation beyond the scope of the training data is necessary.

Domain Decomposition effectively manages significantly large input domains, particularly in

forward problem scenarios. The results also confirm the framework’s efficacy in modelling

mosquito population dynamics, highlighting its potential for application to other ODE-based

ecological models, which are commonly applied not only to mosquito populations but also to
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other vector species, such as ticks [81], also agricultural and forest pests, including Drosophila
suzukii [82], Batrocera oleae [83] and bark beetles [84].

Our research using PINNs revealed certain limitations. In the inverse problem setup, the

PINN tended to favor solutions with smaller gradients that still met the data and ODE con-

straints. Furthermore, the capability of the framework to extrapolate in inverse problems

remains uncertain; with lack of appropriate volume of data, the networks may converge to

arbitrary solutions. This aspect underscores the need for incorporating additional regulariza-

tion techniques or constraints in order to guide the network towards more plausible solutions.

In the current implementation, the models consider only time as an input, without accounting

for external factors. This restriction significantly limits predictive performance in real-world

applications, as the coordination inputs and the encoded physical laws may not fully capture

the underlying mechanisms of the processes. Allowing for external variables would not only

enhance performance but also add flexibility to the framework. Although the framework has

shown promising results on test systems, its scalability and ability to generalize to other types

of dynamical systems have not been thoroughly evaluated. Our current focus is on the develop-

ment of a new PINN framework that encodes complex, learned interactions of air temperature,

precipitation and relative humidity, to improve and demonstrate the effectiveness of this

approach in addressing inverse problems, such as inferring mosquito development and mor-

tality rates. Accurate mosquito population dynamics modelling is essential for predicting the

outbreaks of arbovirus diseases. By improving predictive accuracy, PINNs can provide more

reliable insights into population trends and help design targeted control measures (e.g., opti-

mal times for pesticide application). This leads to more effective, data-informed vector control

strategies that can be adapted across different geographic and climatic contexts.

Supporting information

S1 Appendix. Error metrics.

(PDF)

S1 Table. ODE parameters.

(PDF)

S1 Fig. OdePINN framework solves inverse problem with Lorenz system, U approximation

of the solution.

(TIF)

S2 Fig. Model scheme showing the 10 develpmental stages within the mosquito life cycle.

Egg (E), Larva (L), Pupa (P), Emerging Adults (Aem), Nulliparous Bloodseeking Adults (Ab1),

Nulliparous Gestating Adults (Ag1), Nulliparous Ovipositing Adults (Ao1), Parous Bloodseek-

ing Adults (Ab2), Parous Gestating Adults (Ag2) and Parous Ovipositing Adults (Ao2) (source:

[11]).

(TIF)

S3 Fig. Identifiability of parameters over time in the mosquito inverse problem, the sine-

shape temperature. This is achieved by expressing the system as a system of linear equations,

the parameters as unknown variables, and analyzing the Reduced row-echelon form of the

coefficient matrix, performed separately for each time t. In the figure, identifiable parameters

are defined as free parameters which can get arbitrary values. The values are rounded to

6-digit precision, aligning with the PINN’s level of precision after training. The figure explains

the PINN’s inaccuracies shown in Fig 8.

(TIF)
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