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Abstract

Sparse estimation of a Gaussian graphical model (GGM) is an important technique for mak-

ing relationships between observed variables more interpretable. Various methods have

been proposed for sparse GGM estimation, including the graphical lasso that uses the ℓ1
norm regularization term, and other methods that use nonconvex regularization terms. Most

of these methods approximate the ℓ0 (pseudo) norm by more tractable functions; however,

to estimate more accurate solutions, it is preferable to directly use the ℓ0 norm for counting

the number of nonzero elements. To this end, we focus on sparse estimation of GGM with

the cardinality constraint based on the ℓ0 norm. Specifically, we convert the cardinality con-

straint into an equivalent constraint based on the largest-K norm, and reformulate the resul-

tant constrained optimization problem into an unconstrained penalty form with a DC

(difference of convex functions) representation. To solve this problem efficiently, we design

a DC algorithm in which the graphical lasso algorithm is repeatedly executed to solve con-

vex optimization subproblems. Experimental results using two synthetic datasets show that

our method achieves results that are comparable to or better than conventional methods for

sparse GGM estimation. Our method is particularly advantageous for selecting true edges

when cross-validation is used to determine the number of edges. Moreover, our DC algo-

rithm converges within a practical time frame compared to the graphical lasso.

Introduction

Background

Quantifying structural relationships between variables from observed data is a fundamental

task in data mining. One commonly used measure is Pearson’s product-moment correlation

coefficient, defined as the covariance of standardized variables. However, this measure has

obvious limitations, such as its inability to deal with spurious correlations. In contrast, the

Gaussian graphical model (GGM) involves learning partial correlations that correspond to ele-

ments of the precision matrix (i.e., the inverse of the covariance matrix). This approach pro-

vides a conditional independence graph, which graphically represents the relationships

between variables while taking into account the influence of other variables. Such structural
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estimation has been effectively used in various fields, including analysis of brain activity pat-

terns [1], anomaly detection [2], and sentiment analysis on social networks [3].

Since most variables usually have some relationship between them, the direct application of

GGM often produces dense graphs, which have edges for many pairs of variables. For this rea-

son, sparse estimation methods for GGM have been actively studied to estimate simple and

essential relationships between variables [4–6]. The sparse estimation of GGM aims to create a

conditional independence graph in a sparse form by reducing the number of nonzero elements

in the estimated precision matrix. This approach allows us to estimate an interpretable graph

even when the number of variables is larger than the sample size. However, sparse estimation

of GGM faces several technical challenges, such as reducing the computational complexity and

ensuring the positive definiteness of the precision matrix.

Related work

Methods for estimating sparse precision matrices have long existed, including statistical testing

methods [7] and threshold-based methods [8] for selecting nonzero elements. The lasso [9], a

least-squares regression model with the ℓ1 norm regularization term, has also been used to esti-

mate relationships between variables [10, 11]. However, these methods face computational

challenges, such as the enormous computation time required for high-dimensional data and

the inability to guarantee the positive definiteness of the precision matrix.

We focus on the method of adding regularization terms to the negative log-likelihood,

which has become mainstream in recent years. Sparse GGM estimation was formulated as a

convex optimization problem by adding the ℓ1 norm of elements of the precision matrix to the

negative log-likelihood [12, 13]. The graphical lasso [14] is widely used to solve this optimiza-

tion problem because it works quickly and stably even when the number of variables is larger

than the sample size or when correlations between variables are high. It is also known that

upon (asymptotic) convergence, the graphical lasso provides a positive definite precision

matrix [15]. The graphical lasso is an iterative algorithm that minimizes the negative log-likeli-

hood and the ℓ1 norm regularization term for GGM, where the strength of sparsity is adjusted

by a regularization parameter. Various methods for sparse GGM estimation have been derived

from the graphical lasso [15–17].

Methods for tuning regularization parameters include using information criteria, perform-

ing cross-validation, and analyzing the stability of the estimation results. Regularization

parameters tuned using information criteria such as AIC and BIC work well for low-dimen-

sional data, but tend to estimate graphs with high false positive rates for high-dimensional data

[18]. The extended BIC is more effective at reproducing the true graph than the original BIC

when the number of true edges is small [19, 20]. Cross-validation allows for more accurate

selection of true edges than the use of information criteria, but suffers from high model vari-

ability [19]. Methods for analyzing the stability of the estimation results (e.g., by subsampling)

have shown high accuracy in reproducing the true graph for high-dimensional data [18, 20].

Recently proposed methods include minimizing a network-characteristic-based function with

respect to the regularization parameter [21], and assuming multivariate probability distribu-

tions other than the normal [22, 23].

While there are many successful methods based on the lasso for sparse estimation, it is well

known that estimators with the ℓ1 norm regularization term are biased. A desirable property of

estimators, known as the oracle property [24], has led to methods that compensate for the

shortcomings of the lasso. Such methods include SCAD [25] and MCP [26], which use contin-

uous nonconvex functions as regularization terms, and the adaptive lasso [27], which gives dif-

ferent regularization weights to each element of the precision matrix. SELO [28] was designed
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with a regularization term that closely approximates the ℓ0 norm, which represents the number

of nonzero elements. A nonconvex regularization term was also proposed using an inverse

trigonometric function that converges to the ℓ0 norm [29]. Although these approaches aim to

approximate the ℓ0 norm by more tractable functions, it is more preferable to directly use the

ℓ0 norm for counting the number of nonzero elements. A different approach is to solve the

Lagrangian dual problem for estimating cardinality-constrained graphical models [30]. How-

ever, since the ℓ0 norm is a discontinuous nonconvex function, the associated sparse estima-

tion is known to be NP-hard [31] and involves a positive duality gap. To the best of our

knowledge, there is no sparse estimation method that directly uses the cardinality constraint

based on the ℓ0 norm for GGM.

The DC (difference of convex functions) algorithm has been used to solve sparse optimiza-

tion problems with the ℓ0 norm [32–34]. This method expresses a nonconvex objective func-

tion as the difference of two convex functions and repeatedly solves a convex optimization

problem based on a linear approximation of the concave function to find a high-quality solu-

tion to the original nonconvex optimization problem [35, 36]. The DC algorithm have been

applied to a variety of problem classes, including quadratic and bilevel optimization [37]. Phan

et al. [38] designed a DC algorithm based on approximated DC representations for sparse esti-

mation of the covariance matrix, whereas we focus on sparse estimation of the precision

matrix based on the ℓ0 norm. Recently, Gotoh et al. [34] proposed new DC formulations and

algorithms for sparse optimization problems, reporting favorable experimental results com-

pared to the lasso. This DC optimization approach also allows us to estimate regularization

parameter values that guarantee optimality for specific problems, avoiding the use of exces-

sively large regularization parameter values.

Our contribution

The main goal of this paper is to propose a high-performance algorithm for sparse GGM esti-

mation with the ℓ0 norm. To this end, we apply the DC optimization framework proposed by

Gotoh et al. [34] to sparse GGM estimation. Specifically, we first equivalently rewrite the cardi-

nality constraint based on the ℓ0 norm by using the largest-K norm defined by Gotoh et al.

[34]. We then reformulate this constrained optimization problem into an unconstrained pen-

alty form with a DC representation, which is the difference of two convex functions. To solve

this problem efficiently, we design a DC algorithm, which repeatedly executes the graphical

lasso algorithm to solve convex optimization subproblems.

The effectiveness of our method is validated through computational experiments using two

types of synthetic datasets. We investigate the results when the number of edges is determined

by 5-fold cross-validation and when it is given in common to all methods. Experimental results

show that our method can generate true graphs with accuracy comparable to or better than

conventional methods for sparse GGM estimation. In particular, our method provides supe-

rior accuracy when estimating the number of edges through cross-validation. Furthermore,

the computation time of our DC algorithm is only a few times longer than the graphical lasso,

confirming that the algorithm converges within a practical time frame.

Methods

In this section, we first give an overview of conventional models for sparse GGM estimation,

then describe our method for sparse GGM estimation using the DC algorithm. Throughout

this paper, we denote the set of consecutive integers as [n]≔ {1, 2, . . ., n}.
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Sparse estimation of Gaussian graphical models

Gaussian graphical model. Let x≔ðx1; x2; . . . ; xpÞ
>
2 Rp

be a vector composed of p ran-

dom variables that follow a multivariate normal distribution. A Gaussian graphical model

(GGM) is a method for estimating a graph of the relationships between variables. Let N ðm;s2Þ

denote a normal distribution with mean μ and variance σ2, and Ω≔ðojkÞðj;kÞ2½p��½p� 2 R
p�p

denote the precision matrix, which is the inverse of the covariance matrix Σ≔ðsjkÞðj;kÞ2½p��½p� 2

Rp�p
of random vector x. Then, the conditional distribution of xj given the other variables x−j

≔ (xk)k6¼j can be written as follows:

Prðxj j x� jÞ ¼ N �
1

ojj

X

k6¼j

ojkxk;
1

ojj

 !

: ð1Þ

Note here that the relationship between xj and xk can be determined from the corresponding

element ωjk of the precision matrix.

Typically, the precision matrix is estimated through maximum likelihood estimation.

Given n observed data points xi 2 R
p
ði 2 ½n�Þ, the sample mean vector and the sample covari-

ance matrix are defined as

m≔
1

n

Xn

i¼1

xi and S≔
1

n

Xn

i¼1

ðxi � mÞðxi � mÞ>;

respectively. Then, the log-likelihood function of the precision matrix O is written as

‘ðΩÞ ≔ log
Yn

i¼1

ð2pÞ
�
p
2detðΩÞ

1
2 exp �

1

2
ðxi � mÞ>Ωðxi � mÞ

� � !

¼ �
pn
2
logð2pÞ þ

n
2
log detðΩÞ �

1

2

Xn

i¼1

ðxi � mÞ>Ωðxi � mÞ

¼ �
pn
2
logð2pÞ þ

n
2
log detðΩÞ �

n
2
trðΩSÞ; ∵x>Ωx ¼ trðΩxx>Þ

where det(�) and tr(�) are the determinant and the trace (i.e., the sum of diagonal elements) for

a square matrix, respectively. By removing from the log-likelihood function the constant terms

and coefficients that are irrelevant to the optimization and multiplying it by (−1), we obtain

the following loss function (i.e., the negative log-likelihood) to be minimized:

� log detðΩÞ þ trðΩSÞ: ð2Þ

After differentiation, we can derive the maximum likelihood estimator Ω̂ of the precision

matrix as

� Ω� 1
þ S ¼ O ) Ω̂ ¼ S� 1;

where O is the zero matrix of appropriate size.

Regularization. If ωjk = 0 (j 6¼ k) in Eq (1), xk does not influence xj given x−j, and this situ-

ation is called conditional independence. Therefore, a conditional independence graph, which

connects only the variables that are not conditionally independent, is made sparse by assuming

that ωjk is exactly zero for many (j, k) 2 [p] × [p]. To estimate such a sparse graph (or sparse

precision matrix), we add a regularization term pλ(O) to the loss function (2) to penalize the
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absolute values of elements of the precision matrix as

� log detðΩÞ þ trðΩSÞ þ plðΩÞ; ð3Þ

where λ> 0 is the regularization parameter for adjusting the strength of the penalty. As λ gets

larger, more elements of O are estimated to be zero.

Various types of sparse estimators can be represented by the choice of the regularization

term pλ(O). For example, the regularization term for the graphical lasso [14] is defined based

on the ℓ1 norm as

plðΩÞ ¼ lkvecðΩÞk1; ð4Þ

where the vec(�) operator rearranges the elements of a matrix into a vector as follows:

vecðΩÞ≔ðo11;o21; . . . ;oppÞ
>
2 Rn2

:

Next, let us define for x 2 R,

SCADl;aðxÞ ≔

ljxj if jxj � l;

aljxj � ðx2 þ l
2
Þ=2

a � 1
if l < jxj � al;

ðaþ 1Þl
2

2
if jxj > al;

8
>>>>>>><

>>>>>>>:

with a parameter a> 2. Then, the SCAD regularization term [25] is defined as

plðΩÞ ¼
Xp

j¼1

Xp

k¼1

SCADl;aðojkÞ: ð5Þ

Additionally, let ~Ω≔ð~o jkÞðj;kÞ2½p��½p� be a consistent estimator of O. Then, the regularization

term for the adaptive lasso [27], a weighted version of lasso, is written as

plðΩÞ ¼ l
Xp

j¼1

Xp

k¼1

1

j~o jkj
g jojkj; ð6Þ

with a parameter γ> 0.

Fig 1 illustrates graphs of pλ(x) of the graphical lasso, SCAD, and the adaptive lasso for x 2
[−2, 2] with parameters λ = 0.5, a = 3.7, ~x ¼ 0:5, and γ = 0.5.

Graphical lasso. The graphical lasso [14], which is closely related to our algorithm, uses

the regularization term (4) based on the ℓ1 norm. Let us define the sign function of x 2 R as

signðxÞ≔

1 if x > 0;

0 if x ¼ 0;

� 1 if x < 0:

8
>>><

>>>:

ð7Þ

Then, the following optimality condition is derived by differentiating Eq (3) with respect to O

as

� Ω� 1
þ Sþ lΓðΩÞ ¼ O; ð8Þ
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where

ΓðΩÞ ≔ ðgjkðojkÞÞðj;kÞ2½p��½p� 2 R
p�p;

gjkðojkÞ 2

fsignðojkÞg if ojk 6¼ 0;

½� 1; 1� if ojk ¼ 0:

8
<

:

ð9Þ

The graphical lasso simultaneously searches for solutions O and S = O−1 to the nonlinear

Eq (8) by sequentially updating each column j 2 [p] of the matrices. For this purpose, the

matrices are decomposed into blocks (after row and column rearrangements) as

Ω ¼
Ω� j ωj

ω>j ojj

2

4

3

5; Σ ¼
Σ� j σj

σ>j sjj

2

4

3

5 ; ð10Þ

where Ω� j;Σ� j 2 R
ðp� 1Þ�ðp� 1Þ; ωj;σj 2 R

p� 1; and ojj; sjj 2 R. Then, the nonlinear Eq (8) with

respect to the j-th column can be reduced to the lasso regression [9], and thus, each column

can be computed efficiently using the coordinate descent method [14].

Fig 1. Graphs of the regularization terms.

https://doi.org/10.1371/journal.pone.0315740.g001
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The procedure of the graphical lasso is summarized in Algorithm 1. The covariance matrix

is initialized as S0 = S + λI, which is derived from the diagonal elements determined from Eq

(8) and the off-diagonal elements obtained by maximum likelihood estimation, where I is the

identity matrix of appropriate size. The algorithm terminates when the update of the precision

matrix becomes smaller than a threshold parameter ε> 0 in terms of the Frobenius norm

k�kF. Note also that since this algorithm has been criticized for the fact that the objective func-

tion does not decrease monotonically, several methods have been proposed to accelerate the

convergence [15].

Algorithm 1 Graphical Lasso for Sparse GGM Estimation
Input: Sample covariance matrix S, regularization parameter λ > 0,
convergence threshold ε > 0.
Output: Precision matrix Ω.
Initialize: Iteration number t  0, covariance matrix Σ0 = S + λI,
precision matrix Ω0 ¼ Σ� 1

0
.

1: (Ω, Σ)  (Ω0, Σ0).
2: repeat
3: for j 2 [p] do
4: Decompose Ω and Σ into block matrices (after rearrangement) as

in Eq (10).
5: Update ωj, ωjj, σj, σjj using the lasso regression [14].
6: Rearrange the elements of Ω and Σ back into the original

matrices.
7: end for
8: (Ωt+1, Σt+1) = (Ω, Σ).
9: t  t + 1.
10: until kΩt � Ωt� 1k

2

F < ε.
11: return Ωt.

DC algorithm for sparse GGM estimation

Formulation. For w≔ðwiÞi2½m� 2 R
m

, we denote the ℓ0 (pseudo) norm by

kwk
0
≔jfi 2 ½m� j wi 6¼ 0gj;

which counts the number of nonzero elements of w. To find a positive definite precision

matrix O� O, we impose the constraint O� δ I (i.e., O − δI is positive semidefinite) with a

small positve constant δ> 0. Then, sparse GGM estimation can be naturally posed as the fol-

lowing cardinality-constrained optimization problem:

minimize
Ω�dI

� log detðΩÞ þ trðΩSÞ ð11Þ

subject to kvecðΩÞk
0
� K; ð12Þ

where K 2 [p2] is a cardinality parameter for limiting the number of nonzero elements of the

precision matrix.

Following Gotoh et al. [34], we now define the largest-K norm as follows.

Definition 1. For w≔ðwiÞi2½m� 2 R
m, let π be a permutation of [m] satisfying |wπ(1)|� |wπ

(2)|� � � � � |wπ(m)|. Then, the largest-K norm is defined as the sum of the K largest absolute
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values as

jjjwjjjK ≔
XK

i¼1

jwpðiÞj: ð13Þ

Note here that

kwk0 � K,
Xm

i¼Kþ1

jwpðiÞj ¼ 0,kwk1 � jjjwjjjK ¼ 0:

Therefore, problem (11) and (12) can be equivalently rewritten as

minimize
Ω�dI

� log detðΩÞ þ trðΩSÞ ð14Þ

subject to kvecðΩÞk1 � jjjvecðΩÞjjjK ¼ 0: ð15Þ

Although the ℓ0 norm in Eq (12) is a discontinuous function, Eq (15) is represented by the dif-

ference of two convex continuous functions and defines the same feasible region as the original

problem (11) and (12).

In what follows, we focus on the following penalized version of problem (14) and (15):

minimize
Ω�dI

� log detðΩÞ þ trðΩSÞ þ Z
�
kvecðΩÞk

1
� jjjvecðΩÞjjjK

�
; ð16Þ

or equivalently,

minimize
Ω�dI

�
� log detðΩÞ þ trðΩSÞ þ ZkvecðΩÞk

1

�
� ZjjjvecðΩÞjjjK ; ð17Þ

where η> 0 is a penalty parameter. Problem (17) is called a DC optimization problem [35]

because its objective is the difference of two convex functions.

Algorithm. Each iteration of the DC algorithm constructs a linear approximation of the

concave function and solves the resultant convex optimization problem to update the solution.

Following Gotoh et al. [34], we calculate a subgradient of the largest-K norm based on the

sign function (7) as

sðwÞ ≔ ðsiðwÞÞi2½m� 2 @jjjwjjjK ; ð18Þ

where

siðwÞ ≔
signðwiÞ if p� 1ðiÞ 2 ½K�;

0 otherwise
ði 2 ½m�Þ:

(

ð19Þ

Let Ot be an incumbent solution at the t-th iteration of the DC algorithm. By introducing a

linear approximation of the largest-K norm, a surrogate objective function is given by

gtðΩÞ ≔ � log detðΩÞ þ trðΩSÞ þ ZkvecðΩÞk1 � ZsðvecðΩtÞÞ
>vecðΩÞ: ð20Þ

By differentiating gt(O), we obtain the following optimalitiy condition based on Eq (9):

@gt
@Ω
¼ � Ω� 1 þ ðS � ZVðΩtÞÞ þ ZΓðΩÞ ¼ O; ð21Þ

where VðΩtÞ≔vec� 1ðsðvecðΩtÞÞÞ 2 R
p�p. Note that this nonlinear equation corresponds to Eq

(8), where S is replaced by S − ηV(Ot). Accordingly, the graphical lasso algorithm can be
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applied to Eq (21) and gives a solution O, which is positive definite upon (asymptotic)

convergence.

Our DC algorithm for estimating a sparse precision matrix is described in Algorithm 2.

Although the graphical lasso assumes that the sample covariance matrix is positive definite

(i.e., S� O), the corresponding matrix S − ηV(Ot) in Eq (21) may not be positive definite

depending on the value of the penalty parameter η. Note here that if η� 0, then S − ηV(Ot)�

S�O. In addition, all diagonal elements of V(Ot) are equal to 1 due to the positive definiteness

of the precision matrix; therefore, if η> λmin(S), then S − ηV(Ot)⊁O, where λmin(�) denotes

the smallest eigenvalue of a matrix. For this reason, our algorithm adaptively searches for the

largest possible η 2 [0, λmin(S)] such that S − ηV(Ot)� O.

Algorithm 2 DC Algorithm for Sparse GGM Estimation
Input: Sample covariance matrix S, cardinality parameter K 2 [p2],
convergence threshold ε > 0, shrinking parameter α 2 (0, 1).
Output: Precision matrix Ω.
Initialize: Iteration number t  0, precision matrix Ω0 � O.
1: repeat
2: Compute the subgradient s(vec(Ωt)) 2 @|||vec(Ωt)|||K as in Eqs

(18) and (19).
3: η  λmin(S).
4: repeat
5: η  αη.
6: until S − ηV(Ωt) � O.
7: Solve Eq (21) using Algorithm 1 to compute Ωt+1.
8: t  t + 1.
9: until kΩt � Ωt� 1k

2

F < ε.
10: return Ωt.

Experimental results and discussion

In this section, we report experimental results on two types of synthetic datasets to validate the

effectiveness of our method for sparse GGM estimation (The source code of the experiments is

available at https://github.com/torikaze/DC-GGM).

Synthetic datasets

Following Mazumder and Hastie [15], and Yuan and Lin [13], we prepared two types of syn-

thetic datasets based on random and chain graphs. For each dataset, we begin by defining a

ground-truth precision matrix as follows.

Random graph: Create a symmetric matrix A2≔ðA1 þ A>
1
Þ=2 2 Rp�p, where each element of

A1 2 R
p�p

is independently generated from the standard normal distribution. Randomly

set some of the off-diagonal elements of A2 to zeros while maintaining symmetry of the

matrix. Define Ornd ≔ A2 + ηrndI, with ηrnd being set such that λmin(Ornd) = 1.

Chain graph: Set up a tridiagonal matrix as follows:

ojk≔

1 if j ¼ k;

0:5 if jj � kj ¼ 1;

0:25 if jj � kj ¼ 2;

0 otherwise

ððj; kÞ 2 ½p� � ½p�Þ:

8
>>>><

>>>>:

Randomly set some of the nonzero off-diagonal elements to zeros while maintaining sym-

metry of the matrix to obtain a precision matrix Ochn ≔ (ωjk)(j,k)2[p]×[p].
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Fig 2 shows examples of graph structures based on the precision matrices Ornd and Ochn.

Let n6¼0 be the number of true edges (i.e., half the number of nonzero off-diagonal elements of

the precision matrix). The procedure for creating synthetic datasets is described as follows:

1. Generate a ground-truth precision matrix Ω?≔ðo?
jkÞðj;kÞ2½p��½p� 2 fΩrnd;Ωchng with 2 � n6¼0

nonzero off-diagonal elements, and create the corresponding covariance matrix as S?≔
(O?)−1.

2. Generate xi 2 R
p
ði 2 ½n�Þ independently from a multivariate normal distribution

N ð0;Σ?Þ, and compute the sample covariance matrix S.

3. Compute S zDS + (1 − z)S based on the shrinkage estimation [39], where DS is the diago-

nalized matrix of S, and z 2 [0, 1] is a shrinkage parameter.

For generation of synthetic datasets, we set the number of variables, the sample size, and

the number of true edges as follows:

p 2 f50; 100; 200; 400g; n 2 fp=2; p; 2pg; and n 6¼0 ¼ 30:

Due to the randomness of dataset generation, we created 30 precision matrices for each case

and show average results with 95% confidence intervals.

Experimental setup

To validate the effectiveness of our method, we compared the estimation accuracy and charac-

teristics of the following methods for sparse GGM estimation:

DC: Our DC algorithm (Algorithm 2);

glasso: Graphical lasso (Algorithm 1) [14];

SCAD: SCAD regularized estimation [25];

adapt: Adaptive lasso [27].

All experiments were conducted using the R programming language. We used the glasso
package [14] to implement the graphical lasso, and the GGMncv package [40] to implement

the SCAD regularized estimation and the adaptive lasso. In the DC algorithm, we set α = 0.5 as

Fig 2. Examples of ground-truth graph structures with (p, n6¼0) = (10, 10).

https://doi.org/10.1371/journal.pone.0315740.g002
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the shrinking parameter, and O0 = (S + I)−1 as the initial solution. Following Fan and Li [24],

we set a = 3.7 in Eq (5) for the SCAD regularized estimation. In Eq (6) for the adaptive lasso,

we set γ = 0.5 by following Fan et al. [25], and ~Ω ¼ S� 1 according to default configuration of

the GGMncv package. We set ε = 10−4 as the convergence threshold.

To evaluate the accuracy of the estimated precision matrix Ω̂≔ðô jkÞðj;kÞ2½p��½p� 2 R
p�p

, we

first define the true positive (TP), false positive (FP), and false negative (FN) rates as

TP ≔
Xp

j¼1

Xp

k¼jþ1

Iðôjk 6¼ 0 and o?

jk 6¼ 0Þ;

FP ≔
Xp

j¼1

Xp

k¼jþ1

Iðôjk 6¼ 0 and o?

jk ¼ 0Þ;

FN ≔
Xp

j¼1

Xp

k¼jþ1

Iðôjk ¼ 0 and o?

jk 6¼ 0Þ;

where I(Q) is an indicator function that returns 1 if the proposition Q is true, and 0 otherwise.

The F1 score is then defined as

F1 score≔
2� Recall� Precision
Recallþ Precision

;

where

Recall ¼
TP

TPþ FN
; Precision ¼

TP
TPþ FP

:

The F1 score is an appropriate evaluation metric for imbalanced datasets such as those used in

our experiments. The F1 score was also used for evaluation of regularized graphical models

[18] and subset selection for linear regression [41].

Results with number of edges determined by cross-validation

We will now investigate the results where the number of edges in an estimated graph was

determined through 5-fold cross-validation of the loss function (2). Here, the cardinality

parameter K for the DC algorithm was chosen from 100 equally spaced values between p + 2

and p2. The regularization parameter λ for the other methods was chosen from 100 equally

spaced values in the range [0, λmax], where λmax was set such that the number of selected edges

was zero.

Figs 3 and 4 respectively show the F1 scores and the numbers of selected edges for the ran-

dom graph dataset, where the number of variables is p 2 {50, 100, 200, 400}, and the sample

size is n 2 {p/2, p, 2p}. In Fig 3, our DC method often outperformed the other methods in

terms of the F1 score, except when p = 400. Additionally, the estimation accuracy of our DC

method tended to improve as the sample size increased. Fig 4 shows that the glasso, SCAD,

and adapt methods often selected too many edges, resulting in low F1 scores. In contrast, our

DC method showed relatively small variations in the number of selected edges, indicating that

it is possible for our DC algorithm to produce estimates that are robust to changes in the data.

To examine the number of edges selected through cross-validation in more detail, Fig 5

shows the relationship between the average number of selected edges and the average log-like-

lihood in cross-validation on the random graph dataset. Note that this figure shows the result

of one of 30 trials, and that each method selected the number of edges that maximizes the log-

likelihood. As a general trend, fewer edges were selected when p> n, whereas more edges
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were selected when p< n. Our DC method often maximized the log-likelihood at close to the

true number of edges compared to the other methods. However, with our DC method, the

relationship between the number of selected edges and the log-likelihood was not as smooth as

with the other methods.

Fig 4. Number of edges selected through cross-validation on the random graph dataset.

https://doi.org/10.1371/journal.pone.0315740.g004

Fig 3. F1 score of edges selected through cross-validation on the random graph dataset.

https://doi.org/10.1371/journal.pone.0315740.g003
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Figs 6 and 7 respectively show the F1 scores and the numbers of selected edges for the chain

graph dataset. In Fig 6, our DC method significantly outperformed the other methods in terms

of the F1 score. Fig 7 implies that the glasso, SCAD, and adapt methods had low F1 scores

because they produced very dense graphs. In contrast, our DC method selected a relatively

small and stable number of edges, consistent with the trends observed in the random graph

dataset.

Fig 5. Log-likelihood as a function of the number of selected edges on the random graph dataset (black dashed line: The true number of edges).

https://doi.org/10.1371/journal.pone.0315740.g005
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Fig 8 shows the relationship between the average number of selected edges and the average

log-likelihood in cross-validation on the chain graph dataset. Our DC method often maxi-

mized the log-likelihood at close to the true number of edges compared to the other methods;

however, as with the random graph dataset, the relationship between the number of selected

Fig 6. F1 score of edges selected through cross-validation on the chain graph dataset.

https://doi.org/10.1371/journal.pone.0315740.g006

Fig 7. Number of edges selected through cross-validation on the chain graph dataset.

https://doi.org/10.1371/journal.pone.0315740.g007
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edges and the log-likelihood was not very smooth, and the number of selected edges was biased

relative to the true number of edges.

These results confirm that our method was very accurate in edge selection when cross-vali-

dation was used to determine the number of edges. In contrast, other methods often selected

an excessively large number of edges, resulting in low F1 scores.

Fig 8. Log-likelihood as a function of the number of selected edges on the chain graph dataset (black dashed line: The true number of edges).

https://doi.org/10.1371/journal.pone.0315740.g008
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Results with a given number of edges

We will now investigate the results where the number of edges in an estimated graph was

given as 20, 30, and 40 commonly for all methods.

Fig 9 shows the F1 scores with different numbers of selected edges for the random graph

dataset, where the number of variables is p 2 {50, 100, 200, 400}, and the sample size is n 2 {p/

2, p, 2p}. Overall, the F1 scores were better for Fig 9 than for Fig 3, with the DC and adapt

methods performing particularly well in Fig 9. Conversely, the glasso and SCAD methods gen-

erally had low F1 scores. As the sample size increased, the F1 scores of all methods improved,

possibly due to more accurate estimation of the sample covariance matrix. Additionally, as the

number of selected edges increased, the F1 scores of all methods tended to decrease, likely due

to an increase in the number of false positive edges.

Fig 9. F1 score of a given number of selected edges on the random graph dataset.

https://doi.org/10.1371/journal.pone.0315740.g009
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Fig 10 shows the F1 scores with different numbers of selected edges for the chain graph

dataset. The F1 scores were generally high compared to the random graph dataset, with the

DC and adapt methods showing slight superiority. Although the F1 scores of our DC method

were comparable to or lower than those of the other methods when p> n, our DC method

performed relatively well when p� n. As with the random graph dataset, when p� n, increas-

ing the number of selected edges tended to decrease the F1 score. When p< n, setting the

number of edges to 30, which is equal to the number of true edges, often yielded the best

results. These results show that it was easier to select true edges in the chain graph dataset than

in the random graph dataset, and that setting the number of edges to the true number resulted

in fewer false positive and false negative edges when the sample size was large enough.

Fig 10. F1 score of a given number of selected edges on the chain graph dataset.

https://doi.org/10.1371/journal.pone.0315740.g010
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These results confirm that for the random graph dataset, the DC and adapt methods per-

formed better than the other methods when selecting a given number of edges. On the other

hand, for the chain graph dataset, all methods showed very high scores, with small differences.

Computation time

We will now investigate the computation time required by our DC algorithm for estimating

sparse precision matrices. Here, the cardinality parameter K in our DC method was set to half

the total number of edges (i.e., K = p(p − 1)/4), and the regularization parameter λ in the glasso

method was set to the median of the absolute values of off-diagonal elements of the sample

covariance matrix. Since there were minor differences among the glasso, SCAD and adapt

methods, only the results for the glasso method are shown.

Figs 11 and 12 illustrate the relationship between the number of variables and the computa-

tion time for estimation on the datasets of random and chain graphs, respectively, with sample

Fig 11. Computation time as a function of the number of variables on the random graph dataset.

https://doi.org/10.1371/journal.pone.0315740.g011

Fig 12. Computation time as a function of the number of variables on the chain graph dataset.

https://doi.org/10.1371/journal.pone.0315740.g012

PLOS ONE DC algorithm for estimation of sparse Gaussian graphical models

PLOS ONE | https://doi.org/10.1371/journal.pone.0315740 December 23, 2024 18 / 23

https://doi.org/10.1371/journal.pone.0315740.g011
https://doi.org/10.1371/journal.pone.0315740.g012
https://doi.org/10.1371/journal.pone.0315740


sizes n 2 {100, 400}. There was a little difference in the computation time between the two

datasets, and our DC method took about four times longer than did the glasso method. This is

due to the two reasons, namely the repeated execution of the graphical lasso algorithm, and

the repeated eigenvalue calculations in tuning the penalty parameter η in Algorithm 2. How-

ever, both methods took less than 1.5 seconds for p� 400, and our DC method converged in

approximately 8 seconds even for p = 800, demonstrating that our algorithm was sufficiently

fast.

Figs 13 and 14 illustrate the relationship between the sample size and the computation time

for estimation on the datasets of random and chain graphs, respectively, where the number of

variables is p 2 {100, 400}. These figures confirm that the computation time for both methods

was strongly dependent on the number of variables and changed very little even when the sam-

ple size was increased several times.

Fig 13. Computation time as a function of the sample size on the random graph dataset.

https://doi.org/10.1371/journal.pone.0315740.g013

Fig 14. Computation time as a function of the sample size on the chain graph dataset.

https://doi.org/10.1371/journal.pone.0315740.g014
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Table 1 lists the average numbers of iterations and eigenvalue calculations required by our

DC algorithm. Recall here that the DC algorithm executes the graphical lasso algorithm at each

iteration and repeatedly calculates the eigenvalues to tune the penalty parameter η. We can see

from Table 1 that the DC algorithm terminated in only two iterations and calculated the eigen-

values around ten times.

Conclusion

We considered estimation of sparse Gaussian graphical models using the cardinality constraint

based on the ℓ0 norm. We reformulated the sparse estimation problem with the cardinality

constraint as an unconstrained penalty form using the largest-K norm. To solve this problem

efficiently, we designed a DC algorithm that repeatedly executes the graphical lasso algorithm.

To verify the performance of our method, we conducted computational experiments using

two types of synthetic datasets. In the experiments where the number of edges was selected

through cross-validation, our method estimated conditional independence graphs more accu-

rately than did other conventional methods. In the experiments where the number of selected

edges was given, our method outperformed the graphical lasso and SCAD regularization and

was comparable to the adaptive lasso in terms of the edge selection accuracy. In addition, our

method took only about four times as long as the graphical lasso, indicating that the computa-

tion of our algorithm is fast enough for practical use.

A future direction of study will be to overcome computational challenges of our algorithm

for sparse GGM estimation. As for the computational efficiency, Nakayama and Gotoh [42]

reported that proximal gradient methods outperformed DC algorithms in some aspects of

sparse regression, and Zhou et al. [43] proposed a proximal alternating direction method of

multipliers for DC optimization problems. Additionally, since our method solves a penalized

form of the problem, the obtained solutions do not always satisfy the original cardinality con-

straint. Another direction of future research will be to extend our method to multivariate time

series analysis [44–46].
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