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Abstract

Sparse estimation of a Gaussian graphical model (GGM) is an important technique for mak-
ing relationships between observed variables more interpretable. Various methods have
been proposed for sparse GGM estimation, including the graphical lasso that uses the ¢,
norm regularization term, and other methods that use nonconvex regularization terms. Most
of these methods approximate the £, (pseudo) norm by more tractable functions; however,
to estimate more accurate solutions, it is preferable to directly use the £, norm for counting
the number of nonzero elements. To this end, we focus on sparse estimation of GGM with
the cardinality constraint based on the £, norm. Specifically, we convert the cardinality con-
straint into an equivalent constraint based on the largest-K norm, and reformulate the resul-
tant constrained optimization problem into an unconstrained penalty form with a DC
(difference of convex functions) representation. To solve this problem efficiently, we design
a DC algorithm in which the graphical lasso algorithm is repeatedly executed to solve con-
vex optimization subproblems. Experimental results using two synthetic datasets show that
our method achieves results that are comparable to or better than conventional methods for
sparse GGM estimation. Our method is particularly advantageous for selecting true edges
when cross-validation is used to determine the number of edges. Moreover, our DC algo-
rithm converges within a practical time frame compared to the graphical lasso.

Introduction
Background

Quantifying structural relationships between variables from observed data is a fundamental
task in data mining. One commonly used measure is Pearson’s product-moment correlation
coefficient, defined as the covariance of standardized variables. However, this measure has
obvious limitations, such as its inability to deal with spurious correlations. In contrast, the
Gaussian graphical model (GGM) involves learning partial correlations that correspond to ele-
ments of the precision matrix (i.e., the inverse of the covariance matrix). This approach pro-
vides a conditional independence graph, which graphically represents the relationships
between variables while taking into account the influence of other variables. Such structural
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estimation has been effectively used in various fields, including analysis of brain activity pat-
terns [1], anomaly detection [2], and sentiment analysis on social networks [3].

Since most variables usually have some relationship between them, the direct application of
GGM often produces dense graphs, which have edges for many pairs of variables. For this rea-
son, sparse estimation methods for GGM have been actively studied to estimate simple and
essential relationships between variables [4-6]. The sparse estimation of GGM aims to create a
conditional independence graph in a sparse form by reducing the number of nonzero elements
in the estimated precision matrix. This approach allows us to estimate an interpretable graph
even when the number of variables is larger than the sample size. However, sparse estimation
of GGM faces several technical challenges, such as reducing the computational complexity and
ensuring the positive definiteness of the precision matrix.

Related work

Methods for estimating sparse precision matrices have long existed, including statistical testing
methods [7] and threshold-based methods [8] for selecting nonzero elements. The lasso [9], a
least-squares regression model with the ¢} norm regularization term, has also been used to esti-
mate relationships between variables [10, 11]. However, these methods face computational
challenges, such as the enormous computation time required for high-dimensional data and
the inability to guarantee the positive definiteness of the precision matrix.

We focus on the method of adding regularization terms to the negative log-likelihood,
which has become mainstream in recent years. Sparse GGM estimation was formulated as a
convex optimization problem by adding the ¢; norm of elements of the precision matrix to the
negative log-likelihood [12, 13]. The graphical lasso [14] is widely used to solve this optimiza-
tion problem because it works quickly and stably even when the number of variables is larger
than the sample size or when correlations between variables are high. It is also known that
upon (asymptotic) convergence, the graphical lasso provides a positive definite precision
matrix [15]. The graphical lasso is an iterative algorithm that minimizes the negative log-likeli-
hood and the ¢; norm regularization term for GGM, where the strength of sparsity is adjusted
by a regularization parameter. Various methods for sparse GGM estimation have been derived
from the graphical lasso [15-17].

Methods for tuning regularization parameters include using information criteria, perform-
ing cross-validation, and analyzing the stability of the estimation results. Regularization
parameters tuned using information criteria such as AIC and BIC work well for low-dimen-
sional data, but tend to estimate graphs with high false positive rates for high-dimensional data
[18]. The extended BIC is more effective at reproducing the true graph than the original BIC
when the number of true edges is small [19, 20]. Cross-validation allows for more accurate
selection of true edges than the use of information criteria, but suffers from high model vari-
ability [19]. Methods for analyzing the stability of the estimation results (e.g., by subsampling)
have shown high accuracy in reproducing the true graph for high-dimensional data [18, 20].
Recently proposed methods include minimizing a network-characteristic-based function with
respect to the regularization parameter [21], and assuming multivariate probability distribu-
tions other than the normal [22, 23].

While there are many successful methods based on the lasso for sparse estimation, it is well
known that estimators with the ¢; norm regularization term are biased. A desirable property of
estimators, known as the oracle property [24], has led to methods that compensate for the
shortcomings of the lasso. Such methods include SCAD [25] and MCP [26], which use contin-
uous nonconvex functions as regularization terms, and the adaptive lasso [27], which gives dif-
ferent regularization weights to each element of the precision matrix. SELO [28] was designed
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with a regularization term that closely approximates the £, norm, which represents the number
of nonzero elements. A nonconvex regularization term was also proposed using an inverse
trigonometric function that converges to the £, norm [29]. Although these approaches aim to
approximate the £, norm by more tractable functions, it is more preferable to directly use the
£o norm for counting the number of nonzero elements. A different approach is to solve the
Lagrangian dual problem for estimating cardinality-constrained graphical models [30]. How-
ever, since the £, norm is a discontinuous nonconvex function, the associated sparse estima-
tion is known to be NP-hard [31] and involves a positive duality gap. To the best of our
knowledge, there is no sparse estimation method that directly uses the cardinality constraint
based on the £, norm for GGM.

The DC (difference of convex functions) algorithm has been used to solve sparse optimiza-
tion problems with the £y norm [32-34]. This method expresses a nonconvex objective func-
tion as the difference of two convex functions and repeatedly solves a convex optimization
problem based on a linear approximation of the concave function to find a high-quality solu-
tion to the original nonconvex optimization problem [35, 36]. The DC algorithm have been
applied to a variety of problem classes, including quadratic and bilevel optimization [37]. Phan
et al. [38] designed a DC algorithm based on approximated DC representations for sparse esti-
mation of the covariance matrix, whereas we focus on sparse estimation of the precision
matrix based on the £, norm. Recently, Gotoh et al. [34] proposed new DC formulations and
algorithms for sparse optimization problems, reporting favorable experimental results com-
pared to the lasso. This DC optimization approach also allows us to estimate regularization
parameter values that guarantee optimality for specific problems, avoiding the use of exces-
sively large regularization parameter values.

Our contribution

The main goal of this paper is to propose a high-performance algorithm for sparse GGM esti-
mation with the £, norm. To this end, we apply the DC optimization framework proposed by
Gotoh et al. [34] to sparse GGM estimation. Specifically, we first equivalently rewrite the cardi-
nality constraint based on the £, norm by using the largest-K norm defined by Gotoh et al.
[34]. We then reformulate this constrained optimization problem into an unconstrained pen-
alty form with a DC representation, which is the difference of two convex functions. To solve
this problem efficiently, we design a DC algorithm, which repeatedly executes the graphical
lasso algorithm to solve convex optimization subproblems.

The effectiveness of our method is validated through computational experiments using two
types of synthetic datasets. We investigate the results when the number of edges is determined
by 5-fold cross-validation and when it is given in common to all methods. Experimental results
show that our method can generate true graphs with accuracy comparable to or better than
conventional methods for sparse GGM estimation. In particular, our method provides supe-
rior accuracy when estimating the number of edges through cross-validation. Furthermore,
the computation time of our DC algorithm is only a few times longer than the graphical lasso,
confirming that the algorithm converges within a practical time frame.

Methods

In this section, we first give an overview of conventional models for sparse GGM estimation,
then describe our method for sparse GGM estimation using the DC algorithm. Throughout
this paper, we denote the set of consecutive integers as [n] == {1, 2, ..., n}.
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Sparse estimation of Gaussian graphical models

Gaussian graphical model. Letx:=(x,x,, ... ,xp)T € R? be a vector composed of p ran-
dom variables that follow a multivariate normal distribution. A Gaussian graphical model
(GGM) is a method for estimating a graph of the relationships between variables. Let A/ (i, 6?)

N . . _ pxp
denote a normal distribution with mean g and variance o, and 9'—(5"]'1()(;‘@ cbixil € RP*
denote the precision matrix, which is the inverse of the covariance matrix Z:=(0) ; ey €

R?*? of random vector x. Then, the conditional distribution of x; given the other variables x_;
= (xi)xj can be written as follows:

Pr(x; |x ) = N(—iijkxk, ;) (1)

i k#j i

Note here that the relationship between x; and x; can be determined from the corresponding
element wj of the precision matrix.

Typically, the precision matrix is estimated through maximum likelihood estimation.
Given n observed data points x, € R? (i € [n]), the sample mean vector and the sample covari-
ance matrix are defined as
— AN d — 15N T
mi= ;;xi and S:= —Z(xi —m)(x,—m) ,

n i=1

respectively. Then, the log-likelihood function of the precision matrix Q is written as

Q) =log (ﬁ(Qn)gdet(Q)% exp [%(xi —m) Q(x, m)D

- _% log(2m) +g log det(Q) — %Z(xi - m)TQ(xi —m)

i=1

= —% log(27) +g log det(Q) — gtr(QS), x' Qx = tr(Qxx ")

where det(-) and tr(-) are the determinant and the trace (i.e., the sum of diagonal elements) for
a square matrix, respectively. By removing from the log-likelihood function the constant terms
and coefficients that are irrelevant to the optimization and multiplying it by (1), we obtain
the following loss function (i.e., the negative log-likelihood) to be minimized:

—log det(Q) + tr(QS). (2)

After differentiation, we can derive the maximum likelihood estimator  of the precision
matrix as

Q'48=0 = Q=8

where O is the zero matrix of appropriate size.

Regularization. If ;=0 (j # k) in Eq (1), xx does not influence x; given x_;, and this situ-
ation is called conditional independence. Therefore, a conditional independence graph, which
connects only the variables that are not conditionally independent, is made sparse by assuming
that wj, is exactly zero for many (j, k) € [p] x [p]. To estimate such a sparse graph (or sparse
precision matrix), we add a regularization term p,(Q) to the loss function (2) to penalize the
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absolute values of elements of the precision matrix as
—log det(Q) + tr(QS) + p, (), (3)

where A > 0 is the regularization parameter for adjusting the strength of the penalty. As A gets
larger, more elements of (2 are estimated to be zero.

Various types of sparse estimators can be represented by the choice of the regularization
term p, (€2). For example, the regularization term for the graphical lasso [14] is defined based
on the £; norm as

() = A|vec(Q)];, (4)
where the vec(-) operator rearranges the elements of a matrix into a vector as follows:
vec(Q):=(w,,, Wy, . .. ,a)pp)T eR".
Next, let us define for x € R,
Alx| if x| <A,

aklx| — (x> +27)/2
SCAD, ,(x) = a—1

if A< x| <al,

(a4 1)\

5 if |x| > ak,

with a parameter a > 2. Then, the SCAD regularization term [25] is defined as

p(Q) = ZZSCADx,u(wjk)- (5)

j=1 k=1

Additionally, let Q:=(® ) 0)cip) <) DE @ consistent estimator of Q. Then, the regularization

term for the adaptive lasso [27], a weighted version of lasso, is written as
»

p
1
pA(Q) = 7\‘§ § :|(I) |v |wjk|7 (6)
k=1 jk

=1

with a parameter y > 0.

Fig 1 illustrates graphs of p;(x) of the graphical lasso, SCAD, and the adaptive lasso for x €
[-2, 2] with parameters A = 0.5, a =3.7,x = 0.5, and y = 0.5.

Graphical lasso. The graphical lasso [14], which is closely related to our algorithm, uses
the regularization term (4) based on the ¢; norm. Let us define the sign function of x € R as

1 if x>0,
sign(x)==4¢ 0 if x=0, (7)
-1 if x<O.

Then, the following optimality condition is derived by differentiating Eq (3) with respect to Q
as

—-Q7' + §+AI(Q) = 0, (8)
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1.0
=== Adaptive lasso
S
E === Graphical lasso
=== SCAD
0.5
0.0
-2 -1 0 1 2
X
Fig 1. Graphs of the regularization terms.
https://doi.org/10.1371/journal.pone.0315740.g001
where
P(Q) = (7;(®)) jwepi € R,
{sign(w;)} if w, #0, (9)
ij(wjk) € )
[-1,1] if w; =0.

The graphical lasso simultaneously searches for solutions Q and £ = Q™" to the nonlinear
Eq (8) by sequentially updating each column j € [p] of the matrices. For this purpose, the
matrices are decomposed into blocks (after row and column rearrangements) as

Q= . T= : (10)

where Q X € RF-Dx=D; 0,0, € R’'; and ®;,0; € R. Then, the nonlinear Eq (8) with
respect to the j-th column can be reduced to the lasso regression [9], and thus, each column

can be computed efficiently using the coordinate descent method [14].

PLOS ONE | https://doi.org/10.1371/journal.pone.0315740 December 23, 2024 6/23


https://doi.org/10.1371/journal.pone.0315740.g001
https://doi.org/10.1371/journal.pone.0315740

PLOS ONE

DC algorithm for estimation of sparse Gaussian graphical models

The procedure of the graphical lasso is summarized in Algorithm 1. The covariance matrix
is initialized as X, = § + AI, which is derived from the diagonal elements determined from Eq
(8) and the off-diagonal elements obtained by maximum likelihood estimation, where I is the
identity matrix of appropriate size. The algorithm terminates when the update of the precision
matrix becomes smaller than a threshold parameter € > 0 in terms of the Frobenius norm
|I]|- Note also that since this algorithm has been criticized for the fact that the objective func-
tion does not decrease monotonically, several methods have been proposed to accelerate the
convergence [15].

Algorithm 1 Graphical Lasso for Sparse GGM Estimation

Input: Sample covariance matrix S, regularization parameter A > O,
convergence threshold ¢ > 0.

Output: Precision matrix Q.

Initialize: Iteration number t « 0, covariance matrix Z; = S + AI,
precision matrix QU::EJR

1: (Q, Z) «— (Q, Zg) .

2: repeat

3: for j € [p] do

4. Decompose Q and & into block matrices (after rearrangement) as

in Eg (10).
5: Update @;, w5, 04, 05 using the lasso regression [14].
6: Rearrange the elements of Q and & back into the original
matrices.
7: end for
8: (Qev1, Bey1) = (Q, B) .

9: t «— t + 1.
10: until ||, —Q_ |} <e.
11: return Q,.

DC algorithm for sparse GGM estimation

Formulation. For w:=(w,),,, € R", we denote the ¢, (pseudo) norm by

ie[m
[wlly=[{i € [m] | w; # O},

which counts the number of nonzero elements of w. To find a positive definite precision
matrix Q > O, we impose the constraint Q > § I (i.e., Q — 81 is positive semidefinite) with a
small positve constant § > 0. Then, sparse GGM estimation can be naturally posed as the fol-
lowing cardinality-constrained optimization problem:

minimize —log det(R) + tr(QS) (11)
subject to ||vec(Q)]l, < K, (12)

where K € [p?] is a cardinality parameter for limiting the number of nonzero elements of the
precision matrix.

Following Gotoh et al. [34], we now define the largest-K norm as follows.

Definition 1. For wi=(w,),,; € R", let 7 be a permutation of [m] satisfying [w,)| > |wx

@| = -+ > |Wagm|- Then, the largest-K norm is defined as the sum of the K largest absolute
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values as
K
Wil =Wy (13)
i=1
Note here that
wlly < K<=Y || = 0<==wl|, — [[|w][| = 0.
i=K+1

Therefore, problem (11) and (12) can be equivalently rewritten as
minimize —log det(L) + tr(QS) (14)

Q>ol

subject to ||vec(RQ)]l, — |||vec()]|| = 0. (15)

Although the £y norm in Eq (12) is a discontinuous function, Eq (15) is represented by the dif-
ference of two convex continuous functions and defines the same feasible region as the original
problem (11) and (12).

In what follows, we focus on the following penalized version of problem (14) and (15):

minimize — log det(Q) + tr(QS) + 11<||Vec(52)|\1 - H|Vec(9)|HK), (16)

Q=01
or equivalently,

minimize ( — log det(Q) + tr(QS) + n||vec(§2)||l) —n|||vec()]||¢: (17)

Q>oI

where 77 > 0 is a penalty parameter. Problem (17) is called a DC optimization problem [35]
because its objective is the difference of two convex functions.
Algorithm. Each iteration of the DC algorithm constructs a linear approximation of the
concave function and solves the resultant convex optimization problem to update the solution.
Following Gotoh et al. [34], we calculate a subgradient of the largest-K norm based on the
sign function (7) as

s(w) = (;(W))icpy € Ol 1wl (18)

where

(i € [m]). (19)

Si(w) =

{ sign(w,) if n7'(i) € [K],
0 otherwise

Let Q, be an incumbent solution at the ¢-th iteration of the DC algorithm. By introducing a
linear approximation of the largest-K norm, a surrogate objective function is given by

2(Q) = — logdet(€) + tr(28) + nllvec(R)]], — ns(vec(,)) vec(L). (20)

By differentiating g,(€2), we obtain the following optimalitiy condition based on Eq (9):

%~ 0 (s V(@) +ir@) = 0. @

where V(Q,):=vec™" (s(vec(R,))) € RP*". Note that this nonlinear equation corresponds to Eq
(8), where S is replaced by § — nV(€2;). Accordingly, the graphical lasso algorithm can be

PLOS ONE | https://doi.org/10.1371/journal.pone.0315740 December 23, 2024 8/23


https://doi.org/10.1371/journal.pone.0315740

PLOS ONE DC algorithm for estimation of sparse Gaussian graphical models

applied to Eq (21) and gives a solution Q, which is positive definite upon (asymptotic)
convergence.

Our DC algorithm for estimating a sparse precision matrix is described in Algorithm 2.
Although the graphical lasso assumes that the sample covariance matrix is positive definite
(i.e., S > 0), the corresponding matrix S — 7V(£2,) in Eq (21) may not be positive definite
depending on the value of the penalty parameter 7. Note here that if  ~ 0, then § — nV(Q,) ~
S > 0. In addition, all diagonal elements of V(€,) are equal to 1 due to the positive definiteness
of the precision matrix; therefore, if 7 > A, (S), then S — nV(Q,) ¥ O, where A,;,(-) denotes
the smallest eigenvalue of a matrix. For this reason, our algorithm adaptively searches for the
largest possible 77 € [0, Ayin(S)] such that S — nV(Q,) >~ O.

Algorithm 2 DC Algorithm for Sparse GGM Estimation

Input: Sample covariance matrix S, cardinality parameter K € [p
convergence threshold ¢ > 0, shrinking parameter o € (0, 1).
Output: Precision matrix Q.

Initialize: Iteration number t « 0, precision matrix Q, > O.

1: repeat

1,

2 Compute the subgradient s(vec(Q.)) € d|||vec(Qy) || |x as in Egs
(18) and (19).

3: N «— Apin (S) .

4: repeat

5: n < on.

6: until S - nV(Q.) > O.

7 Solve Eqg (21) using Algorithm 1 to compute Q1.

8: t — t+ 1.

9: until |Q, - |’ <e.

10: return Q..

Experimental results and discussion

In this section, we report experimental results on two types of synthetic datasets to validate the
effectiveness of our method for sparse GGM estimation (The source code of the experiments is
available at https://github.com/torikaze/DC-GGM).

Synthetic datasets

Following Mazumder and Hastie [15], and Yuan and Lin [13], we prepared two types of syn-
thetic datasets based on random and chain graphs. For each dataset, we begin by defining a
ground-truth precision matrix as follows.

Random graph: Create a symmetric matrix A,:==(A, + A/ )/2 € R”, where each element of
A, € RP? is independently generated from the standard normal distribution. Randomly
set some of the off-diagonal elements of A, to zeros while maintaining symmetry of the
matrix. Define Q4 := A, + 1nal, with 7,4 being set such that A, (Qna) = 1.

Chain graph: Set up a tridiagonal matrix as follows:
1 ifj=k
05 if j—k| =1, .
e I (LR R
0 otherwise

Randomly set some of the nonzero off-diagonal elements to zeros while maintaining sym-
metry of the matrix to obtain a precision matrix Q p, := (i) .k e px[p]-
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6 6
Random Chain

Fig 2. Examples of ground-truth graph structures with (p, n_,) = (10, 10).
https://doi.org/10.1371/journal.pone.0315740.g002

Fig 2 shows examples of graph structures based on the precision matrices Q,,4 and Q.
Let 1,0 be the number of true edges (i.e., half the number of nonzero off-diagonal elements of
the precision matrix). The procedure for creating synthetic datasets is described as follows:

} with 2 - No
nonzero off-diagonal elements, and create the corresponding covariance matrix as * 1=
@)

1. Generate a ground-truth precision matrix Q":=(®7) i ycvixp € {Rma @

'chn

2. Generate x; € R” (i € [n]) independently from a multivariate normal distribution
N(0,%"), and compute the sample covariance matrix S.

3. Compute § « {Dg + (1 — {)S based on the shrinkage estimation [39], where Dy is the diago-
nalized matrix of S, and { € [0, 1] is a shrinkage parameter.

For generation of synthetic datasets, we set the number of variables, the sample size, and
the number of true edges as follows:

p € {50,100,200,400}, ne{p/2,p,2p}, and n, = 30.

Due to the randomness of dataset generation, we created 30 precision matrices for each case
and show average results with 95% confidence intervals.

Experimental setup

To validate the effectiveness of our method, we compared the estimation accuracy and charac-
teristics of the following methods for sparse GGM estimation:

DC: Our DC algorithm (Algorithm 2);
glasso: Graphical lasso (Algorithm 1) [14];
SCAD: SCAD regularized estimation [25];
adapt: Adaptive lasso [27].

All experiments were conducted using the R programming language. We used the glasso
package [14] to implement the graphical lasso, and the GGMncv package [40] to implement
the SCAD regularized estimation and the adaptive lasso. In the DC algorithm, we set & = 0.5 as
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the shrinking parameter, and Qy = (S + D)7! as the initial solution. Following Fan and Li [24],
we set a = 3.7 in Eq (5) for the SCAD regularized estimation. In Eq (6) for the adaptive lasso,

we set y = 0.5 by following Fan et al. [25], and @ = §~" according to default configuration of
the GGMncv package. We set £ = 10~* as the convergence threshold.

. . . . A — A~ P p
To evaluate the accuracy of the estimated precision matrix Q:=(;) ; ycp.5 € R we

first define the true positive (TP), false positive (FP), and false negative (FN) rates as

)4 P
TP = ZZI(% # 0 and @), # 0),

P )4
FN = > > "1(d, = 0 and w}, # 0),

j=1 k=j+1

where I(Q) is an indicator function that returns 1 if the proposition Q is true, and 0 otherwise.
The F1 score is then defined as

2 x Recall x Precision

F1 score:= —
Recall + Precision
where
TP . TP
Recall = ——, Precision = ———.
TP + FN TP + FP

The F1 score is an appropriate evaluation metric for imbalanced datasets such as those used in
our experiments. The F1 score was also used for evaluation of regularized graphical models
[18] and subset selection for linear regression [41].

Results with number of edges determined by cross-validation

We will now investigate the results where the number of edges in an estimated graph was
determined through 5-fold cross-validation of the loss function (2). Here, the cardinality
parameter K for the DC algorithm was chosen from 100 equally spaced values between p + 2
and p”. The regularization parameter A for the other methods was chosen from 100 equally
spaced values in the range [0, Ap.y], where A, was set such that the number of selected edges
was zero.

Figs 3 and 4 respectively show the F1 scores and the numbers of selected edges for the ran-
dom graph dataset, where the number of variables is p € {50, 100, 200, 400}, and the sample
size is n € {p/2, p, 2p}. In Fig 3, our DC method often outperformed the other methods in
terms of the F1 score, except when p = 400. Additionally, the estimation accuracy of our DC
method tended to improve as the sample size increased. Fig 4 shows that the glasso, SCAD,
and adapt methods often selected too many edges, resulting in low F1 scores. In contrast, our
DC method showed relatively small variations in the number of selected edges, indicating that
it is possible for our DC algorithm to produce estimates that are robust to changes in the data.

To examine the number of edges selected through cross-validation in more detail, Fig 5
shows the relationship between the average number of selected edges and the average log-like-
lihood in cross-validation on the random graph dataset. Note that this figure shows the result
of one of 30 trials, and that each method selected the number of edges that maximizes the log-
likelihood. As a general trend, fewer edges were selected when p > n, whereas more edges
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Fig 3. F1 score of edges selected through cross-validation on the random graph dataset.
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were selected when p < n. Our DC method often maximized the log-likelihood at close to the
true number of edges compared to the other methods. However, with our DC method, the
relationship between the number of selected edges and the log-likelihood was not as smooth as

with the other methods.
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Fig 4. Number of edges selected through cross-validation on the random graph dataset.
https://doi.org/10.1371/journal.pone.0315740.9004
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Fig 5. Log-likelihood as a function of the number of selected edges on the random graph dataset (black dashed line: The true number of edges).

https://doi.org/10.1371/journal.pone.0315740.9005

Figs 6 and 7 respectively show the F1 scores and the numbers of selected edges for the chain
graph dataset. In Fig 6, our DC method significantly outperformed the other methods in terms
of the F1 score. Fig 7 implies that the glasso, SCAD, and adapt methods had low F1 scores
because they produced very dense graphs. In contrast, our DC method selected a relatively
small and stable number of edges, consistent with the trends observed in the random graph

dataset.
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Fig 6. F1 score of edges selected through cross-validation on the chain graph dataset.
https://doi.org/10.1371/journal.pone.0315740.9006

Fig 8 shows the relationship between the average number of selected edges and the average
log-likelihood in cross-validation on the chain graph dataset. Our DC method often maxi-
mized the log-likelihood at close to the true number of edges compared to the other methods;
however, as with the random graph dataset, the relationship between the number of selected
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Fig 7. Number of edges selected through cross-validation on the chain graph dataset.
https://doi.org/10.1371/journal.pone.0315740.9007
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Fig 8. Log-likelihood as a function of the number of selected edges on the chain graph dataset (black dashed line: The true number of edges).
https://doi.org/10.1371/journal.pone.0315740.9008

edges and the log-likelihood was not very smooth, and the number of selected edges was biased
relative to the true number of edges.

These results confirm that our method was very accurate in edge selection when cross-vali-
dation was used to determine the number of edges. In contrast, other methods often selected
an excessively large number of edges, resulting in low F1 scores.
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DC
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SCAD
adapt

We will now investigate the results where the number of edges in an estimated graph was

given as 20, 30, and 40 commonly for all methods.

Fig 9 shows the F1 scores with different numbers of selected edges for the random graph
dataset, where the number of variables is p € {50, 100, 200, 400}, and the sample size is n € {p/
2, p, 2p}. Overall, the F1 scores were better for Fig 9 than for Fig 3, with the DC and adapt
methods performing particularly well in Fig 9. Conversely, the glasso and SCAD methods gen-

erally had low F1 scores. As the sample size increased, the F1 scores of all methods improved,

possibly due to more accurate estimation of the sample covariance matrix. Additionally, as the
number of selected edges increased, the F1 scores of all methods tended to decrease, likely due

to an increase in the number of false positive edges.
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Fig 10. F1 score of a given number of selected edges on the chain graph dataset.

https://doi.org/10.1371/journal.pone.0315740.g010

Fig 10 shows the F1 scores with different numbers of selected edges for the chain graph
dataset. The F1 scores were generally high compared to the random graph dataset, with the
DC and adapt methods showing slight superiority. Although the F1 scores of our DC method
were comparable to or lower than those of the other methods when p > 7, our DC method
performed relatively well when p < n. As with the random graph dataset, when p > n, increas-
ing the number of selected edges tended to decrease the F1 score. When p < n, setting the
number of edges to 30, which is equal to the number of true edges, often yielded the best
results. These results show that it was easier to select true edges in the chain graph dataset than
in the random graph dataset, and that setting the number of edges to the true number resulted
in fewer false positive and false negative edges when the sample size was large enough.
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https://doi.org/10.1371/journal.pone.0315740.9011

These results confirm that for the random graph dataset, the DC and adapt methods per-
formed better than the other methods when selecting a given number of edges. On the other
hand, for the chain graph dataset, all methods showed very high scores, with small differences.

Computation time

We will now investigate the computation time required by our DC algorithm for estimating
sparse precision matrices. Here, the cardinality parameter K in our DC method was set to half
the total number of edges (i.e., K = p(p — 1)/4), and the regularization parameter A in the glasso
method was set to the median of the absolute values of off-diagonal elements of the sample
covariance matrix. Since there were minor differences among the glasso, SCAD and adapt
methods, only the results for the glasso method are shown.

Figs 11 and 12 illustrate the relationship between the number of variables and the computa-
tion time for estimation on the datasets of random and chain graphs, respectively, with sample
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Fig 12. Computation time as a function of the number of variables on the chain graph dataset.

https://doi.org/10.1371/journal.pone.0315740.g012
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Fig 13. Computation time as a function of the sample size on the random graph dataset.

https://doi.org/10.1371/journal.pone.0315740.9013

sizes n € {100, 400}. There was a little difference in the computation time between the two
datasets, and our DC method took about four times longer than did the glasso method. This is
due to the two reasons, namely the repeated execution of the graphical lasso algorithm, and
the repeated eigenvalue calculations in tuning the penalty parameter 7 in Algorithm 2. How-
ever, both methods took less than 1.5 seconds for p < 400, and our DC method converged in
approximately 8 seconds even for p = 800, demonstrating that our algorithm was sufficiently
fast.

Figs 13 and 14 illustrate the relationship between the sample size and the computation time
for estimation on the datasets of random and chain graphs, respectively, where the number of
variables is p € {100, 400}. These figures confirm that the computation time for both methods
was strongly dependent on the number of variables and changed very little even when the sam-
ple size was increased several times.
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Fig 14. Computation time as a function of the sample size on the chain graph dataset.

https://doi.org/10.1371/journal.pone.0315740.9014
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Table 1. Numbers of iterations (#Ite) and eigenvalue calculations (#Eig) in the DC algorithm on the random and
chain graph datasets.

p n Random Chain
#Ite #Eig #Ite #Eig
100 50 2.0 8.0 2.0 8.0
100 2.0 8.0 2.0 10.0
200 2.0 10.0 2.0 10.0
400 200 2.0 10.0 2.0 10.0
400 2.0 10.0 2.0 12.0
800 2.0 10.0 2.0 12.0

https://doi.org/10.1371/journal.pone.0315740.t001

Table 1 lists the average numbers of iterations and eigenvalue calculations required by our
DC algorithm. Recall here that the DC algorithm executes the graphical lasso algorithm at each
iteration and repeatedly calculates the eigenvalues to tune the penalty parameter 7. We can see
from Table 1 that the DC algorithm terminated in only two iterations and calculated the eigen-
values around ten times.

Conclusion

We considered estimation of sparse Gaussian graphical models using the cardinality constraint
based on the €, norm. We reformulated the sparse estimation problem with the cardinality
constraint as an unconstrained penalty form using the largest-K norm. To solve this problem
efficiently, we designed a DC algorithm that repeatedly executes the graphical lasso algorithm.

To verify the performance of our method, we conducted computational experiments using
two types of synthetic datasets. In the experiments where the number of edges was selected
through cross-validation, our method estimated conditional independence graphs more accu-
rately than did other conventional methods. In the experiments where the number of selected
edges was given, our method outperformed the graphical lasso and SCAD regularization and
was comparable to the adaptive lasso in terms of the edge selection accuracy. In addition, our
method took only about four times as long as the graphical lasso, indicating that the computa-
tion of our algorithm is fast enough for practical use.

A future direction of study will be to overcome computational challenges of our algorithm
for sparse GGM estimation. As for the computational efficiency, Nakayama and Gotoh [42]
reported that proximal gradient methods outperformed DC algorithms in some aspects of
sparse regression, and Zhou et al. [43] proposed a proximal alternating direction method of
multipliers for DC optimization problems. Additionally, since our method solves a penalized
form of the problem, the obtained solutions do not always satisfy the original cardinality con-
straint. Another direction of future research will be to extend our method to multivariate time
series analysis [44-46].
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