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Abstract

Salmonella enterica and Escherichia coli are well-known bacteria commonly associated

with foodborne illnesses in humans and animals. Genomic characterization of these patho-

gens provides valuable insights into their evolution, virulence factors and resistance deter-

minants. This study aimed to characterized previously isolated Salmonella (n = 14) and E.

coli (n = 19) from milk, meat and its associated utensils in Ghana using whole-genome

sequencing. Most of the Salmonella serovars (Fresno, Plymouth, Infantis, Give and Orle-

ans) identified in this study are yet to be reported in Ghana. Most Salmonella isolates were

pan-sensitive, but genes conferring resistance to fosfomycin (fosA7.2) and tetracycline (tet

(A)) were detected in one and three isolates, respectively. Seven of the Salmonella isolates

carried the IncI1-I(Gamma) plasmid replicon. Although antimicrobial resistance was not

common among Salmonella strains, most (11/19) of the E. coli strains had at least one resis-

tance gene, with nearly half (8/19) being multidrug resistant and carried plasmids. Three of

the 19 E. coli strains belonged to serovars commonly associated with enteroaggregative E.

coli (EAEC) pathotype. While strains belonging to virulence-associated lineages lacked key

plasmid-encoded virulence plasmids, several plasmid replicons were detected in most of

the E. coli (14/19) strains. Food contaminated with these pathogens can serve as a vehicle

for disease transmission, posing a significant public health risk and necessitating stringent

food safety and hygiene practices to prevent outbreaks. Hence, there is need for continuous

surveillance and preventive measures to stop the spread of foodborne pathogens and

reduce the risk of associated illnesses in Ghana.
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Introduction

Milk and meat are essential protein sources that constitute a significant and nutrient-rich com-

ponent of human diets. However, their consumption is often associated with foodborne infec-

tions [1], particularly those caused by Salmonella and Escherichia coli [2–5]. Salmonellosis is

under-reported in Ghana, and only a few studies have investigated the plausible role of con-

taminated milk [6], meat, meat products, handlers’ hands and associated surfaces such as kni-

ves, tables and aprons [7–9] in facilitating their transmission. Knowledge of food safety

practices by key food handlers in Ghana has recently been reported to be suboptimal, as have

food safety infrastructure and regulatory enforcement [10, 11]. There have been a few reports

of meat samples contaminated with E. coli in Ghana [11–14]. Similarly, E. coli has been recov-

ered from milk, milking utensils, faeces of lactating cow and milkers’ hands [15]. Some of

these E. coli strains harbour both virulence and antimicrobial resistance genes (ARGs), raising

public health concerns. However, few of these strains have been thoroughly characterized.

There are public health and food safety implications of finding Salmonella and E. coli in food

because they are invariably of faecal origin. Globally, in addition to contamination risks, Salmonella
and E. coli sourced from milk and meat increasingly exhibit resistance to different classes of antibi-

otics that is commonly mediated by mobile elements [13, 16–18]. The prevalence of multidrug-

resistant (MDR) Salmonella and E. coli is also on the rise in clinical infections [19, 20]. Notably,

resistance to extended spectrum beta-lactams, trimethoprim/sulfamethoxazole, chloramphenicol

and ciprofloxacin has been reported, often associated with plasmids that could mediate their

spread, in both Salmonella and E. coli isolates from milk and retail meats in Ghana [6, 12, 14].

Various methods, including serotyping, antibiotic profiling, pulsed-field gel electrophoresis

and whole genome sequencing, have been employed to elucidate the phenotypic and genotypic

attributes of foodborne pathogens and to determine their interrelationships and connections

to pandemic clones of interest [13, 21]. Next-generation sequencing (NGS) technology, the

most versatile and informative approach, has gained recent prominence [22, 23]. NGS is now

used by PulseNet to categorize foodborne diseases, enabling nuanced epidemiological investi-

gations [24]. Identification of virulence factors, antibiotic resistance genes, and serotypes are

all possible by genomic analysis, which can also provide enhanced information on strain inter-

relatedness, and therefore enable source attribution. Data on the genomic characterization of

Salmonella and E. coli from milk and meat are few from low- and middle-income countries,

including Ghana [7, 25]. In light of this gap, this study aims to characterize the resistance, viru-

lence and plasmid profile of previously isolated Salmonella and E. coli isolated from fresh dif-

ferent retail meats, milk, and associated samples (handler’s hand swab, table, knife and faecal

samples) in Saboba district and Bolgatanga Municipality of Ghana.

Methods

Strains

A total of 33 bacterial isolates (14 Salmonella and 19 E. coli species) previously isolated from

various fresh and ready-to-eat meats, meat sellers’ tables, milk, milk-collecting utensils, milk-

ers’ hands and faeces of lactating cows were characterized for this study (Table 1) [8, 15, 26,

27]. The isolates originated from markets and farms in Bolgatanga Municipality and Saboba

District in Northern Ghana and were cryopreserved in 50% glycerol in Luria broth at -80˚C.

Ethical considerations

All isolates were recovered in earlier studies from vended food or at informal food vending

premises, including milk cow droppings [8, 15, 26, 27]. Study design and sampling was
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approved by the Department of Veterinary Science, UDS. No other permissions were obtained

or deemed necessary by the department. No humans or animals were use in the research and

therefore ethical approval was deemed not required.

Salmonella and E. coli identification

Salmonella isolates were initially confirmed using a latex agglutination kit for Salmonella
(Oxoid Limited, Basingstoke, UK) and by PCR targeting the invA gene as described by Rahn

et al. (1992) [28], using PCR oligonucleotides invA139f GTGAAATTATCGCCACGTTCGGGCAA
and invA141r TCATCGCACCGTCAAGGAACC. PCR was performed using PuRe Taq Ready-

To-Go PCR Beads (illustraTM). The PCR cycle used an initial denaturation temperature of

95˚C for two minutes, followed by 35 cycles of denaturation at 95˚C for 30 seconds, annealing

Table 1. E. coli and Salmonella isolates characterized in this study.

Id Code Collection date Species Sample Ref-erence

GH-FA-M23_S31 M2 3 2/10/2020 Salmonella enterica Milk [27]

GH-FA-M87_S6 M8 1 2/10/2020 Salmonella enterica Milk [27]

GH-FA-FS24_S23 FS24 2/10/2020 Salmonella enterica Faecal sample (Milking cow) [27]

GH-FA-M25_S2 M25 2/10/2020 Salmonella enterica Milk [27]

GH-FA-US15_S32 US15-2 22/10/2020 Salmonella enterica Utensil sample [27]

GH-FA-FK4_S10 FK4 22/10/2020 Salmonella enterica Knife (Fresh meat) [8]

GH-FA-FK4d_S7 FK4d 22/10/2020 Salmonella enterica Knife (Fresh meat) [8]

GH-FA-RCH2_S11 Rch2 extra 22/10/2020 Salmonella enterica RTE Chicken [8]

GH-FA-RG2_S29 RG2 22/10/2020 Salmonella enterica RTE Guinea fowl [8]

GH-FA-RK4_S19 RK4 2/10/2020 Salmonella enterica Knife (RTE utensil) [8]

GH-FA-RM4_S20 RM4 2/10/2020 Salmonella enterica RTE Mutton [8]

GH-FA-RP5_S5 RP5 12/10/2020 Salmonella enterica RTE Pork [8]

GH-FA-RP5D_S11 RP5D 12/10/2020 Salmonella enterica RTE Pork [8]

GH-FA-RPSD_S30 RPSD 12/10/2020 Salmonella enterica RTE Pork [8]

GH-FA-FS23_S22 FS23 22/10/2020 Escherichia coli Faecal sample (milking cow) [27]

GH-FA-US24_S14 US24 22/10/2020 Escherichia coli Utensil Sample [15]

GH-FA-HS11_S26 HS11 22/10/2020 Escherichia coli Hand swab [15]

GH-FA-HS3_S27 HS3 2/10/2020 Escherichia coli Hand swab [15]

GH-FA-M9_S16 M9 22/10/2020 Escherichia coli Milk [15]

GH-FA-US3_S21 US3 2/10/2020 Escherichia coli Utensil sample [15]

GH-FA-HS12_S21 HS12 2/10/2020 Escherichia coli Hand Swab [15]

GH-FA-M25D_S22 M25 2/10/2020 Escherichia coli Milk [15]

GH-FA-FB4_S24 FB4 22/10/2020 Escherichia coli Fresh Beef [26)

GH-FA-FC1_S23 FC1 2/10/2020 Escherichia coli Fresh Chicken [26]

GH-FA-FH2_S15 FH2 22/10/2020 Escherichia coli Hand Swab (Fresh meat vendor) [26]

GH-FA-FGS_S16 FG5 22/10/2020 Escherichia coli Fresh Guinea fowl [26]

GH-FA-FM4_S34 FM4 12/10/2020 Escherichia coli Fresh Mutton [26]

GH-FA-FT1_S17 FT1 12/10/2020 Escherichia coli Table swab (Fresh meat) [26)

GH-FA-RB4_S24 RB4 12/10/2020 Escherichia coli RTE Beef [26]

GH-FA-RH4_S3 RH4 12/10/2020 Escherichia coli Hand swab (RTE meat Vendor) [26]

GH-FA-RT3_S6 RT3 12/10/2020 Escherichia coli Table swab (RTE meat) [26]

GH-FA-RT3_S29 RT3d 12/10/2020 Escherichia coli Table swab (RTE meat) [26]

GH-FA-RCLI_S18 Rch1 12/10/2020 Escherichia coli RTE Chevon [26]

Key: RTE: Ready-to-eat–meats sampled in prepared form

https://doi.org/10.1371/journal.pone.0315583.t001
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at 55˚C for 30 seconds and extension at 72˚C for two minutes, then a terminal extension at

72˚C for five minutes. Visualization of the 284 bp amplicon was accomplished after electro-

phoresis on 1.5% (w/v) agarose gels stained with Gel red (biotium), using a UVP GelMax

transilluminator and imager. Salmonella isolates positive for invA and E. coli isolates were bio-

typed with the Gram-negative (GN) test kit (Ref: 21341) on VITEK 2 systems (version 2.0,

Marcy-l’Etoile, France, Biomérieux) according to manufacturer’s instructions

DNA extraction, library preparation and whole genome sequencing

Genomic DNA of the isolates was extracted using Wizard DNA extraction kit (Promega; Wis-

consin, USA) in accordance with manufacturer’s protocol. Using a dsDNA Broad Range quan-

tification assay, the extracted DNA was quantified on a Qubit fluorometer (Invitrogen;

California, USA). dsDNA libraries were prepared using NEBNext Ultra II FS DNA library kit

for Illumina with 96-unique indexes (New England Biolabs, Massachusetts, USA; Cat. No:

E6609L). DNA libraries was quantified using dsDNA High Sensitivity quantification assay on

a Quibit fluorometer (Invitrogen; California, USA) and fragment length analysed with the

Bioanalyzer (Agilent). Denatured libraries were sequenced on an Illumina MiSeq (Illumina,

California, USA). The raw sequence reads were de novo assembled using SPAdes v3.15.3 [29]

according to GHRU protocols (https://gitlab.com/cgps/ghru/pipelines/dsl2/pipelines/

assembly).

Sequence typing of Salmonella and E. coli genomes

Sequence reads were deposited in the Salmonella and E. coli database for Salmonella and E. coli
respectively on EnteroBase [30] and analyzed using publicly available tools that we have previ-

ously validated [31, 32]. Multi-locus sequence types (MLST) for the isolates were determined

using ARIBA [33]. Novel ST strains were assigned ST using EnteroBase [30]. The Salmonella
genome assemblies were analysed using the Salmonella In-Silico Typing Resource (SISTR) for

the prediction of serovars and serogroups [34] (https://github.com/phac-nml/sistr_cmd),

while the serotyping of the E. coli genome was done using ECtyper [35].

Identification of AMR, plasmids and virulence genes

PlasmidFinder [36] was utilized to identify plasmid replicons that were present in the assem-

bled genomes. AMRFinderPlus v3.10.24 [37] and its associated database (version 2022-04-

04.1) were used to predict the antimicrobial resistance genes carried by the isolates and the

drug classes to which they probably conferred resistance. Using ARIBA [33] and the virulence

factor database (VFDB, http://www.mgc.ac.cn/VFs/), we were also able to identify the viru-

lence genes that were present in the isolates.

Single Nucleotide Polymorphism (SNP) calling and phylogenetic analysis

For phylogenetic analysis, reference sequences for the Salmonella and E. coli genomes were

objectively selected from the National Center for Biotechnology Information Reference

Sequence (RefSeq) database (https://www.ncbi.nlm.nih.gov/refseq/) using BactinspectorMax

v0.1.3 (https://gitlab.com/antunderwood/bactinspector). The selected references were the S.

enterica subsp. enterica serovar Fresno strain (assembly accession: GCF_003590695.1) and the

E. coli O25b:H4-ST131 strain (assembly accession: GCF_000285655.3). The sequence reads for

each species were then mapped to the chromosome of the reference using BWA (v0.7.17) [38]

and variants were called and filtered using bcftools (v1.9) [39] as implemented in the GHRU

SNP phylogeny pipeline (https://gitlab.com/cgps/ghru/pipelines/snp_phylogeny). Variant
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positions were concatenated into a pseudoalignment and used to generate a maximum likeli-

hood tree using iqtree (v1.6.8) [40]. SNP distances between the genome pairs were calculated

using snp-dists v.0.8.2 (https://github.com/tseemann/snp-dists).

Results

Salmonella serotypes, sequence types (STs), virulence factors and

phylogeny

We used SISTR software to predict the serovars of the 14 Salmonella strains characterized in

this study from whole genome sequence reads, which are deposited in the European Nucleo-

tide Archive with the study accession PRJEB58695 (S1 Table). The most common serotype

was Fresno (n = 6) followed by Give (n = 3), Orleans (n = 2), Plymouth (n = 1), Agona (n = 1)

and Infantis (n = 1). The S. Fresno and S. Orleans isolates were from previously unreported

sequence types, now designated ST10742 and ST10465 respectively (S2 Table). As shown in

Fig 1, all the isolates from ready-to-eat pork, mutton and chicken belonged to serovar Fresno.

S. Fresno isolates were also isolated from a meat vendor’s knife, as was S. Orleans. The three

milk isolates, which were all from Saboba, belonged to the serovars Plymouth (ST565), Give

(ST516) and Agona (ST13) (Fig 1). Two more ST516 S. Give isolates were recovered from the

faeces of milking cow and from a milking utensil.

Phylogenetic analysis of the 14 Salmonella isolates from this study showed that all S. Fresno

isolates, irrespective of source, clustered together and differed by< 3 SNPs. The two S. Orleans

isolates were identical (0 SNPs) and the three S. Give isolates were also identical, with the iso-

lates originating from milk, faeces of milking cow and from a milking utensil, also in Saboba.

All Salmonella isolates harboured curli (csg) genes as well as bcf, fim and ste fimbrial oper-

ons and ten of them, representing all serovars except S. Give and Plymouth, carried long polar

fimbriae (lpf) genes. The S. Infantis and S. Agona strains carried ratB and shdA. Type III secre-

tion system effector genes, such as: inv, org, prg, sif, spa, sse, ssa and sop were detected in all the

Fig 1. Core genome SNP-based maximum likelihood tree showing phylogenetic relationships among strains

sequenced in this study. The matrix below the tree shows the sequence types, serotypes, location of isolation

(Bolgatanga municipality or Saboba district) as well as the source/host sample and presence or absence of the IncI1-I

(Gamma) plasmid replicon, tetA and fosA resistance genes.

https://doi.org/10.1371/journal.pone.0315583.g001
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isolates while avr was present in 57.1% (8/14) of the isolates and only one isolate harboured

gogB. Four of the isolates also encoded the cytholethal distending toxin gene, cdtB (S3 Table).

Plasmid replicons and ARG profiles of Salmonella
The Salmonella isolates were largely pan-sensitive but genes conferring resistance to fosfomy-

cin (fosA7.2) and tetracycline (tet(A)) were detected in one and three isolates respectively.

Both S. Orleans isolates and one of the S. Fresno, from ready-to-eat mutton carried tetA, along

with an IncI1-I(Gamma) plasmid replicon, which was also seen in six other tetA-negative

strains. Interestingly, the IncI1-I(Gamma) plasmid replicon was detected in all isolates from

Bolgatanga municipality, irrespective of serovar, and no isolate from Saboba district harboured

this plasmid. The fosfomycin resistance gene was found in the S. Agona genome, in which no

plasmid replicons were detected (Fig 1).

E. coli serotypes, sequence types (STs), virulence factors and phylogeny

A total of 19 E. coli isolates were identified. E. coli serotyping using the ECtyper revealed that

the most common serotypes among the E. coli isolates were -:H7 (n = 2), O138:H48 (n = 2),

O6:H16 (n = 2), and O8/O160:H16 (n = 2). A number of these serovars and STs are associated

with pathogenicity, notably O6:H16 [41], as well as O8/O160:H16 and O77/O17/O44/O106/

O73:H18 (ST394; [42–44]). The strains belonging to these lineages lacked the defining viru-

lence genes of the respective pathotypes but did contain accessory virulence genes, as shown in

S4 Table.

Irrespective of whether they belonged to a lineage commonly associated with virulence,

most of the isolates contained a range of adhesins and iron utilization genes. E. coli extracellu-

lar protein (ECP) export pathway (ecp/yag) and ompA and type I fimbriae-encoding operon,

fim, encoding genes seen in most E. coli genomes, were present in 94.7% (18/19) of E. coli iso-

lates. Fimbriae encoding gene, f17d, often seen in enterotoxigenic E. coli recovered from ani-

mals, was present in the two O8/O160:H16 isolates and an O-:H7 isolate.

The phylogenetic analysis of the 19 E. coli isolates from this study and a reference genome

(NZ_HG941718.1) based on SNP is presented in Fig 2. The range of isolates was broader than

with Salmonella but closely related pairs of isolates belonging to the same serovar, and ST were

found in three instances. Very similar (2347 SNPs) O6:H16 isolates were recovered from dif-

ferent food preparation table samples in Bolgatanga. One of the two isolates from milk in

Saboba belonged to ST2165 and was identical (0 SNPs) to a Saboba ST2165 utensil isolate. The

two ST4 isolates from fresh beef and a cow milker’s hand differed by 2347 SNPs and are

unlikely to be connected.

Plasmid replicons and ARG profiles of E. coli
Antimicrobial resistance determinants present in the E. coli isolates include those encoding

resistance to aminoglycosides (aph(3”)-Ib, aph(6)-Id, aph(6)-Id, aph(3”)-Ib), beta-lactams (bla-

LAP-2, blaTEM-1), fosfomycin (fosA7.5), quinolones (qnrB19, qnrS1), sulfonamide (sul2), tetracy-

cline (tet(A), tet(B)) and trimethoprim (dfrA14) (Fig 2). At least 3 antimicrobial resistance

genes (ARGs) which confer resistance to different classes of antibiotics were present in 8 iso-

lates. Three isolates carried one ARG each while 8 isolates had no ARGs. Six strains carried the

genes aph(3’’)-Ib, aph(6)-Id, blaTEM-1, dfrA14, sul2, qnrS1 and tet(A). The dfrA14-qnrS1-tet
(A) resistance gene combination has previously been reported from Nigeria, being part of a

transposon transmitted in an IncX plasmid [45]. In this study however, IncX replicons were

not detected. The most common plasmid replicon type detected among the E. coli isolates was

pO111 (n = 6), originally described in an E. coli virulence plasmid and found in the
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Fig 2. Phylogeny, plasmid replicons and resistance genes of E. coli isolates. (a). SNP-based phylogenetic tree of the E. coli
isolates showing the range of sequence types, serovars, plasmid replicons and resistance genes detected (b) AMR

determinants detected in E. coli and the resistance they confer.

https://doi.org/10.1371/journal.pone.0315583.g002
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aforementioned strains belonging to virulence-associated lineages. The other plasmid replicon

types detected were IncY (n = 5), IncFII (n = 2), IncFIA(HI1) (n = 2), Col(pHAD28) (n = 2),

IncFIB(pB171) (n = 1), IncR (n = 1), IncHI1A (n = 1) and IncI1-I(Gamma), which was com-

mon among the Salmonella, (n = 1) (Fig 2). All multidrug resistant E. coli strains in this study

encode pO111 or IncY replicons.

Discussion

Salmonella and E. coli are the main causes of bacterial foodborne illnesses in Ghana [46]. Retail

meat, along with milk and their products are recognized as primary sources of foodborne Sal-

monellosis [12] and E. coli infection [7]. Post-cooking handling practices, exposure during the

points of sale, and suboptimal meat storage conditions collectively contribute to an increased

presence of both pathogenic and spoilage bacteria in ready-to-eat (RTE) meat [47]. Within

Ghana, food safety has been inadequately studied in the northern region [10]. In this study, we

characterized the genomes of 14 Salmonella and 19 E. coli previously isolated from Saboba dis-

trict and Bolgatanga Municipality in northern Ghana.

The Salmonella serovars (Fresno, Plymouth, Infantis, Give and Orleans) identified in this

study are yet to be reported in Ghana, but Guinee et al. (1961) [48] isolated S. Agona from cat-

tle in Ghana and S. Give (but ST524, different from ST516 in this study) has been reported

from beef in Nigeria [49]. Isolation of S. Infantis from retail poultry meat has also been

reported in Ecuador [50], Belgium [51] and Italy [52] and all the serovars detected in this

study have been implicated in human infections. The identification of Salmonella serovars not

previously documented in the country in meat and milk products highlights the need for

heightened surveillance and preventive measures to curb the spread of foodborne pathogens

and reduce the risk of associated illnesses.

Unlike Salmonella, not all E. coli are potential pathogens. However, E. coli serve as markers

for faecal contamination and therefore the potential that other pathogens are present. The pre-

dominant E. coli STs (ST4, ST10, ST219, ST2522) detected in our study have been previously

isolated from food animals and have been associated with pathogenicity [53–55].

While none of the E. coli isolates carried genes encoding ETEC heat-sensitive or heat-labile

enterotoxins, f17d fimbrial genes present in four of the E. coli genomes encode ETEC coloniza-

tion factors commonly associated with colonization of cattle and other ruminant isolates [56].

E. coli, F17 fimbriae are associated with pathogenic E. coli recovered from diarrhoea and septi-

caemia outbreaks in calves, lambs, and humans, including from outbreaks.

Additionally, two of the ST4 E. coli isolates from this study not harbouring f17d fimbrial

genes belong to the serovar O6:H16, one of the most widely disseminated lineages of human

enterotoxigenic E. coli (ETEC). O6:H16 ETEC cause outbreaks, often associated with food

and/or inadequate handwashing [57–59]. ETEC, by definition, produce plasmid-encoded

heat-labile and/or heat stable toxins not present in the genomes of the isolates from this study.

However, the serovars O8/O160:H16 and O77/O17/O44/O106/O73:H18 belong to a previ-

ously described enteroaggregative E. coli (EAEC) lineage [42, 44]. Isolates from this study

belonging to the serovars O8/O160:H16 and O77/O17/O44/O106/O73:H18 possessed no

EAEC accessory genes. These strains are from virulent lineages but lack key virulence genes

that are plasmid-encoded, which could mean that these plasmids were lost in the food chain or

during isolation but could be reacquired. Nevertheless, the presence of these strains in food

could increase the risk of foodborne illness.

While strains belonging to virulence-associated lineages lacked key plasmid-encoded viru-

lence plasmids, several plasmid replicons were detected in the isolate genomes. According to

McMillan et al. (2019) [60], plasmid replicons ColE, IncI1, IncF, and IncX were commonly
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detected in Salmonella from food animals in the US. In this study, the IncI1 replicon was pre-

dominant, with nine of the thirteen Salmonella strains harbouring IncI1 plasmid replicon, of

which three harboured the tetA gene. This is likely to be an instance of a successful mobile ele-

ment with extraordinary local reach, a few of which have been reported from West Africa,

including Ghana, in the past [45, 61–63]. The IncI1-I(Gamma) plasmid replicon observed

among Salmonella isolates was detected in all Salmonella isolates from Bolgatanga municipal-

ity—three different serovars—and none of the Saboba district isolates. However, one E. coli
isolate (from a recently reported ST, ST8274) from Saboba did have this replicon. As it is an

IncI1 plasmid replicon, its plasmid should be better characterized and, it should remain under

surveillance because numerous articles have reported association of the IncI1 plasmid replicon

with multiple ARGs, such as tetB, tetAR, blaCMY-2, blaTEM-1, aac3VIa, aphA, aadA and sul1
[60], blaCTXM-1 [64], strA, strB, cmlA, floR, blaSHV-12, blaOXA-2 and FosA3 [65] in IncI1 plasmids

in Salmonella. As our own sequence was generated by short read only, the first step would be

to generate long read sequence that could fully assemble the plasmid and make it possible to

identify genetic factors supporting its success.

Among the E. coli isolates, the plasmid replicons pO111 was the most common replicon. A

previous study by Balbuena-Alonso et al. (2022) [66], revealed that pO111 is usually associated

with extended spectrum beta lactamases gene and is very common in food and clinical isolates.

In this study, all isolates carrying pO111 harbour at least one beta-lactamase gene. Likewise, all

the pO111 plasmid bearing isolates in this study carried ARGs that confer resistance to at least

4 classes of antibiotics. Altogether, these data demonstrate a concerning reservoir of resistance

genes in these foodborne bacteria.

Conclusion

This study has characterized the genomes of Salmonella and E. coli in milk, meat and their

associated utensils. The diverse serovars and virulence genes detected in Salmonella strains

indicate potential pathogenicity. Although not all E. coli strains are pathogenic, their presence

serves as an indicator of faecal contamination, suggesting the potential presence of other

harmful pathogens. The presence of EAEC strains in food is concerning as EAEC is a well-

known cause of diarrhoeal diseases, particularly in children and immunocompromised indi-

viduals, making its presence in food a serious concern. While antimicrobial resistance was not

common among Salmonella strains, most of the E. coli strain had at least one resistance gene,

and almost half were multidrug resistant and carried mobile elements. Moreover, there have

been recent reports of resistant Salmonella and E. coli from meat and milk elsewhere in West

Africa [49].

A recent scoping review reported weak enforcement of food safety regulations, as well as a

lack of infrastructure, knowledge and skills to implement these regulations [10, 11, 46]. Food

contaminated with and Salmonella and E. coli can serve as a vehicle for their transmission, pos-

ing a significant public health risk. We recommend that food safety regulations be strength-

ened in northern Ghana and, by extension, West Africa. It is also important to increase

awareness among consumers so that food is handled in such a way to prevent pathogen trans-

mission. There is an additional need for continuous surveillance and preventive measures to

stop the spread of foodborne pathogens and reduce the risk of associated illnesses in Ghana.
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