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Abstract

Formic acid is consistently produced and detected in prebiotic chemistry experiments, con-
stituting a precursor of many carboxylic acids and amino acids. Its behavior with exposure to
gamma radiation varies with the pH and solution concentration. This work aimed to model
different environmental conditions for formic acid under ionizing radiation using a system of
coupled differential equations based on chemical kinetics. An ensemble of radiolysis reac-
tion mechanisms was generated for formic acid at pH 1.5 and formate ion at pH 9, both with
radiation doses from 0 to 2 kGy. This was also done for systems with both species in equilib-
rium, using high molar concentrations, long irradiation times, and large irradiation doses
(from 0 to 70 kGy). The results show that these systems can be modeled with a high statisti-
cal relationship between the computed solutions and the experimental data; furthermore,
the synthesis and degradation of the radiolysis products can be followed. Another dimension
of the issue of prebiotic environments was explored using ionizing radiation and analyzing
the reactions at various pH values (acidic to basic media). These models allow one to gain
insights into the behavior of molecules that are difficult to detect or analyze in the laboratory.
Additionally, they offer the possibility of studying potential prebiotic environments.

1 Introduction

Formic acid (HCOOH) is an organic molecule commonly found in the interstellar medium
[1], along with other molecules that can be considered essential building blocks of biomole-
cules, such as methanol (CH;OH), acetic acid (CH3;COOH), acetamide (CH;CONH,), and
glycine (C,H;NO,), among others [2]. In addition, formic acid has been detected in various
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comets, such as 67P/Churyumov-Gerasimenko [1], C/2013 R1-Lovejoy [3], and C/1995
O1-Hale-Bopp [4]; the protoplanetary disk of TW Hydrae [5]; and meteorites, such as Murch-
inson, Allende, Parnallee, Leedey, and Abee [6].

Formic acid and other simple acids can be formed via the radiolysis of carbonates in hydro-
thermal systems [7, 8], by electric discharges in volcanic dust clouds, and from asteroid
impacts [9], all of which are typical scenarios for chemical evolution. Formic acid and formal-
dehyde are carbonylic compounds often produced in prebiotic simulation experiments under
reducing and oxidizing conditions [9-12].

On the geological timescale, the prebiotic era is limited to the time period from around 4.2
to 3.8 Gya ago [13, 14]. The existence of a variety of environments on primitive Earth that
could be linked to chemical evolution processes necessitates conducting experiments under
different conditions-by varying the pH, pressure, and temperature, among other variables
[15]. Ionizing radiation constitutes one of the energy sources that promote the synthesis and
degradation of organic molecules [16-18]. The primary contributors to this form of energy on
primitive Earth were the radionuclides 40K, 38, 25U, and #*Th [19-21]. The experiments
presented in this work explore the irradiation of carboxylic acid under various pH conditions,
concentrations, and dose intensities. These conditions could be present in environments such
as acidic lakes [22], alkaline lakes [23], parts of hot spring systems [24, 25], shallow fresh water
bodies [26, 27], and oceans [28, 29]. In particular, pH variations in prebiotic simulations are a
common feature when subjecting a system to energy sources such as radiation or heat [10, 12,
30-32]. This represents a priority problem to investigate because the solution pH can affect the
reactions of a system and, the resulting products [33].

The radiolysis of formic acid has formed the subject of various studies [34-37]. Different
reaction mechanisms have been proposed at different pH values [38-40] and concentrations
[41] and under oxygen [38] and oxygen-free [42] conditions. In addition, as a reducing agent,
formic acid can convert some hydroxyamino acids to their reduced amino acid forms [11].
Formic acid exist in an acid-base equilibrium with the formate ion, HCOO™[43]; with formic
acid dominating at pH < 1.5 and the formate ion dominating at pH > 6 (Fig 1).

This work aimed to study the behavior of formic acid, the formate ion and their products
under a high ionizing radiation field and different pH conditions and concentrations to simu-
late prebiotic environments, using a mathematical model to reproduce the experimental data.
Given that formic acid, the formate ion, and their mixture entail different sets of reactions
(and reaction rate constants), each system constitutes a separate problem of study, relevant to
a complex prebiotic system with a variation of its initial conditions. Experimental data from
previous studies have been used to validate our numerical models. The study concludes with
an inter- and multidisciplinary perspective, addressing problems related to chemical evolution,
chemical kinetics, radiation chemistry, differential equations, and computer modeling.

2 Methods

We develop models with different conditions of pH, radiation dose, and concentrations
(Table 1); with the aim of modeling the physico-chemical conditions of different probable pre-
biotic environments as described in the Introduction section. In addition, some of these spe-
cific conditions have been determined by experiments previously published by other authors
that we can adapt to a prebiotic environment.

2.1 Numerical modeling

We developed numerical models for four chemical systems, all under oxygen-free and room
temperature conditions: (1) formic acid at pH 1.5, concentration = 1¥10~> mol/L, maximum
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Fig 1. Species distribution diagram of formic acid and formate as a function of pH.

https://doi.org/10.1371/journal.pone.0315409.9001

Table 1. Chemical systems modeled in this work. Each model is in oxygen-free conditions and room temperature.

irradiation dose = 2 kGy, and dose intensity = 0.90 Gy/min; (2) formate at a pH 9,
concentration = 1¥10~> mol/L, maximum irradiation dose = 2 kGy, and dose intensity = 0.90
Gy/min; (3) formic acid and formate mixture at pH 2, respective concentrations = 1.96%¥1072
mol/L and 0.04*10~% mol/L, maximum irradiation dose = 70 kGy, and dose intensity = 266
Gy/min; (4) formic acid and formate mixture at pH 3.75, concentrations of both = 11072 mol/
L respectively, maximum irradiation dose = 90 kGy, and dose intensity = 266 Gy/min. We also

Reactants pH Concentration Maximum irradiation dose [kGy] | Dose intensity Experimental data
[mol/L] [Gy/min]
Formic acid 15 1*107 0.90 [42]
Formate ion 9 1*107° 0.90 [42]
Formic acid and formate ion 2 1.96*1072 and 0.04*1072 (respectively) 70 266 This work
Formic acid and formateion | 3.75 1*1072 90 266 Only theoretical model
(both)
Formic acid and formateion | 3.75 1*107 2 0.90 Only theoretical model
(both)

https://doi.org/10.1371/journal.pone.0315409.t001

PLOS ONE | https://doi.org/10.1371/journal.pone.0315409 December 12, 2024

3/18


https://doi.org/10.1371/journal.pone.0315409.g001
https://doi.org/10.1371/journal.pone.0315409.t001
https://doi.org/10.1371/journal.pone.0315409

PLOS ONE

Numerical modeling vs experiment of formic acid and formate ion behavior under gamma radiation

varied the initial concentration and maximum irradiation dose from the minimum values of
1¥10° mol/L and 2 kGy, respectively (see Table 1).

The numerical models for formic acid (pH 1.5) and formate (pH 9) were compared with
experimental data from the study by Horne et al. (2020). The numerical model at pH 2 was
compared with experimental data obtained with the setup presented in Section 2.2. Further,
we proposed a reaction mechanism for each chemical system in Table 1 based on a literature
review.

Each chemical reaction system was written as a set of coupled differential equations, and
each chemical species in a system was represented by one equation [44, 45]. The Eq 1 includes
information about the molecules formed, the molecules that decay, and a source term (f;) sim-
ulating the radiation source [46, 47]:

d)iét(t) =fi+ D) KLX(0X,(1) - X,(0) k)X (), (1)

m=0 n=0 Jj#0

where X(1), X;(t), X,,(t), and X,(t), is the molar concentration of chemical species i, j, m and n,

at time t; kg) is the rate constant of the reaction between the species i and j, k! is the rate con-

n

dx(0);
=i=is the
change in the molar concentration of species i at time . The positive part of the sums repre-

sents the formation of the species i as a result of the reaction between the molecules m and 7 at

stant for the reaction between chemical species m and » that produced the 7 species.

arate k! . The negative part of the sums represents the degradation of the species i by the reac-
tion of the molecules i and j at a rate kf‘? f; is an external energy source, which in this case is the
gamma radiation source.

The source term (f;) is given by the Eq 2 [45, 47, 48]:

C62x10" M

fi(I,) = L G,[1,#(6%10%)], (2)

36N, My,
where N, is Avogadro’s number (6.022*10* molecules), M; is the molecular mass of species i,
My, is the molecular mass of water (18.02 g/mol), G; is the radiochemical yield of species i
when the system absorbs 100 eV, and I,; is the dose rate (Gy/min).

Each coupled nonlinear differential equation system was solved building a Python (3.7.9)
code, employing the solve.ivp function from the numpy library and implementing BDF, an
implicit multistep method of variable order (1 to 5) utilizing a backward differentiation for-
mula for the derivative approximation [49]. The general algorithm and full code are available
at https://github.com/A-Paredes-Arriaga/Chemical-kinetics EDO [50]. Finally, the statistical
analysis included calculations of the root mean square error (RMSE), R* value, and standard
deviation and a quantile-quantile (Q-Q) plot of the residuals.

2.2 Experimental setup

2.2.1 Preparation and irradiation of formic acid solution. Formic acid (0.02 mol/L) was
prepared using a formic acid solution (95% pure, Sigma-Aldrich, Saint Louis, Missouri, USA)
and triple distilled water. The samples were degassed with argon for 15 minutes and then irra-
diated with gamma rays (**Co source, Gamma-beam 651 PT at the Instituto de Ciencias
Nucleares, UNAM). Formic acid aliquots (5 mL, pH 2) were exposed to doses of gamma radia-
tion from 0 to 70 kGy.

2.2.2 Determination of formic acid degradation by titration. The decomposition of for-
mic acid was measured by titration after exposure to gamma radiation. Sodium hydroxide
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(0.02 mol/L) was used as the titrant, 0.5% phenolphthalein (Sigma-Aldrich) as the indicator,
and formic acid (1*10~> mol/L) as the standard.

2.2.3 Quantification of carbon dioxide from formic acid solutions after irradiation.
A combined ion-selective electrode, ISE (Orion ™ 9502BNWP), was used for the detection of
carbon dioxide (CO,) in the formic acid solutions. Standard CaCOj5 solutions (1*1072 and
1¥10~* mol/L) were prepared to calibrate the electrode. Subsequently, 5 mL of a CO, buffer
solution was added to 50 mL of each solution.

3 Results
3.1 Formic acid at pH 1.5

The reaction mechanism for formic acid at pH 1.5 is represented by Reactions 1.1 to 1.8, based
on different studies detailing various possibles routes (Table 2). At a low pH, the solvated elec-
tron and aqueous hydrogen react to generate He radicals (Reaction 1.2). Formic acid is
attacked by «OH and He radicals to form «COOH, which reacts again with the water radicals
to form CO, and O,. CO, can react with He to generate the « COOH radical.

Reactions 1.1 to 1.8 were transformed into a system of coupled ordinary differential equa-
tions (Eqs 1 and 2). Fig 2 displays the outcomes of computed solutions for the system of equa-
tions and depicts the degradation of formic acid under gamma radiation and the resultant
production of CO, and H,.

3.2 Formate at pH 9

The system involving formate at pH 9 comprises reactions that are different from and inde-
pendent of the radiolysis of formic acid (Table 3). The primary attack is conducted by three
water radicals (¢OH, He, and ea’q), forming the #CO, radical. This last radical serves as the
basis for the secondary reactions that lead to the formation of oxalate ("OOC-COOQO™). In
addition, oxalate reacts continuously with water radicals (Reactions 2.8 to 2.10).

The numerical model indicates the continuous decay of formate and the formation of the
oxalate ion as the main radiolysis product (Fig 3). In this case, we also compared our numerical
model with the experimental data of Horne et al. (2020) [42].

3.3 Formic acid and formate at pH 2 and high irradiation doses

Formic acid and formate maintain an acid-base equilibrium at pH 2 (Fig 1). In this scenario,
the concentration ratio of formic acid to formate is 98:2, according to the equilibrium

Table 2. Reaction mechanism for formic acid at pH 1.5 under a gamma radiation field.

Reaction

H,0 i o OH, e, He, H,O0,

s Yaq?

kO
- t
e, +H,—He

HCOOH + He 5 ¢ COOH + H,

HCOOH + ¢OH-% o COOH + H,0
*COOH + H e *4 H, + CO,

«COOH + ¢OH- CO, + H,0

*COOH + H,0,-% CO, + ¢OH + H,0

He +CO,~% o COOH
https://doi.org/10.1371/journal.pone.0315409.t002

k(™ Reference React. No.

- [33] {1.1}
ko = 2.6%10"2 [51] (1.2}
k, = 4.4*10° [52] {1.3}
k, = 1.4*10® [52] {1.4}
k; = 2.1%10® [34-36] {1.5}
k, =2.6"10° [34-36] (1.6}
ks = 5.0%10” (33, 42] (1.7}
k¢ = 1.0*10° [53] (1.8}

PLOS ONE | https://doi.org/10.1371/journal.pone.0315409 December 12, 2024 5/18


https://doi.org/10.1371/journal.pone.0315409.t002
https://doi.org/10.1371/journal.pone.0315409

PLOS ONE Numerical modeling vs experiment of formic acid and formate ion behavior under gamma radiation

0.0010 A

0.0008 A

0.0006 A

0.0004 A

Concentration [mol/L]

0.0000 ~—=

0.0002 - -z

Formic acid

H>

Experimental data

0 500

Fig 2. Numerical modeling of the radiolysis of formic acid at pH 1.5 under oxygen-free conditions; the dashed lines

1000
Dose [Gy]

1500 2000

represent the computed solutions for the resultant production of CO, and H,. The experimental data were extracted from

the study by Horne et al. (2020), [42].
https://doi.org/10.1371/journal.pone.0315409.9002

established in the studies by Joo et al. (2013, 2014) [43, 55]. Then, if the total molar concentra-
tion is 0.02 mol/L, the initial concentration of formic acid is 0.0196 mol/L, and that formate is

0.0004 mol/L.

In this case, the reaction system includes components from the preceding systems. It begins
with Reactions 1.1 to 1.8 from the formic acid system and Reactions 2.1 and 2.2 from the for-
mate system. High concentrations of formic acid under ionizing radiation result in the forma-

tion of larger molecules [41], (Table 4).

Table 3. Reaction mechanism for the formate ion at pH 9 under a gamma radiation field.

Reaction k(s

H,0 = o OH, e, He, H,O0,

s Yaq)

HCOO™ + ¢OH-% ¢ CO; + H,0 ky = 2.6*10°
HCOO +He 5 «CO, +H, kg =2.1*10°
HCOO™ + e, + H,0-% ¢ CO, + H, + OH ko = 8.0*10°
2(#CO; )% 0COCO0* kyo=7.6*10°
0COCO00* % ~00C-CO0™ ky; = 1.0%10°
(oxalate)

«CO; + He X8 HCOO™ k;, = 9.0%10°
*COj + e, +H,0-% HCOO™ + OH™ ky3=9.0%107
~00C-COO™ + ¢OH CO, + CO; + OH" kyq = 7.7°10°
~00C-COO~ + H o 2 HOOC — C(OH), + 20H" kis = 1.0*10"
“00C-COO™ + ¢, > HOOC — C(OH), + 30H" kg = 4.8%107

https://doi.org/10.1371/journal.pone.0315409.t003

Reference
[33]

[52]

[52]

[52]
[37, 42]

[40, 42]

[52]
[52]
[54]
[54]
[54]

React. No.
{1.1}
2.1}
{22}
{2.3}
{24}
{2.5}

{2.6}
{2.7}
{2.8}
{2.9}
{2.10}
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Fig 3. Computed numerical model for formate under gamma radiation and the formation of oxalate. The dots represent
the experimental results of Horne et al. (2020), [42].

https://doi.org/10.1371/journal.pone.0315409.9003

At pH 2, the available concentration of the solvated electron (e,,) is low though not null

[33]. This species reacts with formic acid to produce the OCeH radical, serving as an interme-
diate in the reaction that leads to the formation of acids and aldehydes. Formaldehyde
(HCHO) and glyoxylic acid (CHOCOOH) have been reported as radiolysis products of con-
centrated formic acid solutions in previous studies [35].
At pH 2, ¢COj, radical reacts rapidly to produce CO,, via either an electron transfer or dis-
proportionation reaction [42, 56]. The rate constants of kyg, k;9, and ko are unknown; they

correspond to secondary reactions between many unstable intermediates, making their deter-
mination difficult. The numerical stability window of the model caused by the variation of
these unknown rate constants is between 1.0¥10% s and 1.0¥10% s™". The calculated solutions
for formic acid and CO, show no significant changes in this interval. This stability window is
wide because the reactions 3.2-3.4 are at the end part of the chain reaction, suggesting that the
main reactions are controlled by the primary attack of the water radicals. The structure of the

numerical model requires a number in each rate constant, so in order not to increase the

Table 4. Complement of the reaction mechanism for formic acid and formate at pH 2 under a gamma radiation field.

Reaction k(s Reference React. No.

HCOOH + e, *> OC*H + OH~ ky; = 1.9 *10° [33] 3.1}
HCOOH + OC*H-3 HCHO + H,0 kg = unknown (35] {3.2}
(formaldehyde)

2(0C°H)~2 HCHO + CO K;y = unknown [41] {3.3}
«COOH + OC'HX3 CHOCOOH ka9 = unknown [36] {3.4}
(glyoxylic acid)

2(e CO;) + H,0*% CO, + HCOO™ ky; = 62"10° [42] {3.5)

https://doi.org/10.1371/journal.pone.0315409.t004
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numerical stiffness of the system, we assumed a rate constant of k = 1.0*10* s for the reactions
between the intermediates (Reactions 3.2 to 3.4). It is important to note that with this assump-
tion we are not able to give information about the molecules that are produced in these reac-
tions (formaldehyde or glyoxylic acid). If experimental information on these constants were
obtained, and the constants were outside of the interval of stability, it would be necessary to
resort to other numerical methods or to modify the one used to obtain a stable solution.

All reactions in the formic acid and formate system are expressed as a system of coupled
ordinary differential equations (ODEs), according to Eqs 1 and 2:

dXHT:(t) :fH' + _klecozH(t)X ( ) k. XoCOOH( )XH.(t)

_kGXC02 (t)XHo (t) - k8XHco; (t)XH- (t)

(3.1)

dx%?(t) = fona + ks XeCOOH( )XHZOZ (t)
—kXunco,n () Xeon(£) = ki Xucoon (D X o (1) (3.2)

_k7XHC02’ ( )X-OH(t)

dXy0,(1)
T szo> - oCOOH(t)XHQOQ(t) (3‘3)
dXH:;q (t>
ar = fH;q - kOXe;q (t)XH;q (t) (3'4)
X, (1)
;t :fe;q - kOXe;q(t)XH;i(t) - k17XHC02H(t)Xe;q(t) (3~5)
Dot _ kX X, k,X )X
T* Rt HCOZH(t) ( ) HCO,H ( ) -OH(t) (3.6)
_kl 7XHCO2H (t)Xe;q (t) - k18XHCO2H(t)XOC‘H (t)
dX.coou(t)
dt
= +k XHCO H(t)X (t) +k XHCOZH( ) -OH( ) +k Xco (t)XHo(t) (3,7)
—ksXocoon ()X () — kXocoon () Xeon (£) — ks Xocoon ()Xo, (t)
_kQUX-COOH ( t)XOCoH (t)
dX, (t)
dzt = +k1XHc02H(t)XH.(t) + k3X-COOH(t)XH-(t) + kSXHCOZ’ (t)XH-(t) (3~8)
dXHQO(t)
T a = +k2XHC02H(t)X-OH(t) + k4X-COOH(t)XoOH(t)
kX oot ()Xo, () + ki Xirco- (1) Xon (1) (39)

+k18XHCOZH (t)XOC‘H (t) - k21X-co; (t)XH20 (t)
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dXeo, (1)
T - +k3XoCOOH(t)XH-(t> + k4XoCOOH(t)XoOH(t) + k5X-c00H(t)XHQo2 (t) (3 10)

+k21 |:X.co; (t)/2} XHZO(t) - k(;Xco2 (t)XHo (t)

AXyco0-(t
%() = *k7XHc0; (t)XoOH(t) - kSXHCO; (£) X (1)
(3.11)
o [Xeco, (8)/2] X0 (1)
dX - (1)
T = +k7XHCO; (t)XoOH(t) + ktSXHCO; (t)XH-(t) - k21X.cO; (t)XHZO(t) (3‘12)
AX oo (1)
% = +k17XHCOQH(t)Xe;q(t) - leXHCOQH(t)XOCOH(t) - k19Xoc°H(t) (3.13)
_kZOX-COOH(t)XOOH(t)
dX oy (t
Pt 0 4 X DX 0 (3.14)
dax t
Pt 4 Koo (e 1) + KuXocr(6)/2 3.15)
dX o (t
7;? ) = +kiyXoceu(t)/2 (3.16)
X t
%OH() =tk Xocoon () Xocn (1) (3.17)

The solutions of the coupled ODEs system of Eqs 3.1-3.17 are shown in Figs 4 and 5. Fig 4
shows the continuous decrease of the total molar concentration of formic acid and formate
and the formation of CO, from 0 to 70 kGy. The total concentration of formic acid and for-
mate are quantified together. CO, is the principal radiolysis product and is continuously
formed.

The numerical model allows for the separation of the calculated solutions of the formic acid
and formate equilibrium. In this case, it is displayed using both linear and log;, scales on the
y-axis, with the latter enhancing the visualization of the molecules’ behavior (Fig 5). Addition-
ally, it is possible to follow the molar concentration of each molecule involved in the system.

3.4 Formic acid and formate at a pH of 3.75

Formic acid has an equivalence point (pK,) at a pH of 3.75 [43]. Here, the concentration ratio
of formic acid to the formate ion is 1:1. As a theoretical exercise, we developed a numerical
model with a high concentration of formic acid at pH 3.75, to approximate the behavior of for-
mic acid and the formate ion mixture under ionizing radiation. The aim of the exercise is to
simulate another possible prebiotic environment. From a numerical point of view, we compute
models at the two extremes of the pH gradient, when the systems have pure formic acid (sec-
tion 3.1) and formate ion (section 3.2); and we have the elements to simulate the system when
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Fig 4. The sum of formic acid and formate concentrations under gamma radiation from 0 to 70 kGy. The lines represent the numerical model, and the dots
correspond to the results obtained from the experimental setup used here.
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Fig 5. Numerical model of the behavior of formic acid and formate under gamma radiation. The left axis represents a linear scale, and the right
axis involves the same computed solution on a log; scale to enhance the visualization of formate decay.

https://doi.org/10.1371/journal.pone.0315409.9005
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Table 5. Reaction mechanism for two formic acid radicals.

Reaction k(s Reference React. No.
2(eCOOH) % (COOH), K, = 4.0%10° Reaction [36] (3.6}
(oxalic acid) Constant [33]

https://doi.org/10.1371/journal.pone.0315409.t1005

both molecules interact in the same environment at the same initial concentration. With this
information we propose a system on the behavior of both molecules in conditions of an acid
lake that their radiolysis generates a cluster of other molecules with biological importance.

In a 0.02 mol/L solution, the concentrations of both formic acid and formate are 0.01 mol/
L. The reaction mechanism is the same as that of previously mentioned models, following
Reactions 1.1 to 1.8, 2.1 and 2.2, and 3.1 to 3.4. Reaction 3.5 is substituted with Reaction 3.6
[33], as shown in Table 5, because above pH 3 the yield of CO, decreases, and it is replaced by
oxalic acid [33, 57].

The model reveals the rapid degradation of formate followed by the degradation of formic
acid. The available formate is depleted at 55 kGy, at which point the degradation rate of formic
acid increases. The sum of formic acid and formate decay is a continuous function, and the
major radiolysis product is oxalic acid. The model also shows a low formation of CO,

(Fig 6A). For further theoretical insights, the initial conditions of this system at pH 3.75 were
changed to an initial concentration of 0.001 mol/L for formic acid and the formate jon (1:1)
and a total absorbed dose of 2kGy. This calculated solution was compared with the solutions
of pure formic acid at pH 1.5 and pure formate at pH 9 (Fig 6B). The three computed solutions
reveal the continuous decay of the molar concentrations under gamma irradiation with differ-
ent degradation rates.

3.5 Statistical analysis

Finally, statistical analyses between the experimental data and the numerical calculations were
performed (Table 6 and Fig 7). Each model yields an RMSE < 4%. The residual mean and
residual standard deviation are < 3% for all the systems, except for the residual standard

(@) (b)

0.020f ~

0.015

0.010 1

0.005 1
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0

—— Formic acid G.001017
—— Fomate ion -
== Oxalic acid = 0.00087
-= CO, £
__. Formicacid + | 5 0.0006 1
S Formate ion %
JGC_; 0.00047 . Formic acid (pH 1.5)
e Formic acid and formate
§ 0.0002 1 ion mixture (1:1), (pH 3.75)
—— Formate ion (pH 9)
| ] 0.0000 i . . i
60 80 0 500 1000 1500 2000
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Fig 6. Theoretical model of formic acid and formate under various pH conditions and total irradiation doses. (a) Degradation of formic acid and the formate ion and
the synthesis of oxalic acid and carbon dioxide at pH 3.75 under high irradiation doses from 0 to 80 kGy. (b) Formic acid degradation under various pH conditions and

doses from 0 to 2 kGy.
https://doi.org/10.1371/journal.pone.0315409.9006
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Table 6. Statistical analysis of the numerical solutions and the experimental results.

Molecule RMSE % Residuals mean % Residuals SD %
Formic acid 3.71x10” 3.71 2.61x10° 2.61 2.68x107 2.68
Formate ion 1.41x10°° 1.41 1.96 x10°° 1.96 1.40x10°° 1.40

Formic & formate (pH 2) 1.79x107 8.96 3.61x10™ 1.80 1.86x10°° 9.31

https://doi.org/10.1371/journal.pone.0315409.t006

deviation of the system at pH 2. The residual analysis reveals a close relationship between the
calculated and experimental data from the three systems. The Q-Q plot suggests similar behav-
ior for the laboratory experiments and the computational models (Fig 7).

4 Discussion

Each investigated system requires a different reaction mechanism because the equilibrium
between formic acid and the formate ion depends on the pH [55]. Formic acid dominates at
pH of 1.5. The exposure of pure formic acid to gamma radiation involves a relatively simple
reaction mechanism (Reactions 1.1 to 1.8) and progressive decomposition. The numerical
model based on this reaction system shows a continuous decrease in the molar concentration
of formic acid from 0 to 2 kGy upon exposure to a y-radiation field (Fig 1). CO, and H, are
the main products of the radiolysis of formic acid [41]. The computed solution reveals the for-
mation of these two molecules, with CO, constituting the major product, even with Reaction

1.8 regenerating the formic acid radical (H e +CQO, X% o COOH). The statistical calculations
support the correspondence between the numerical model and the experimental data of
Horne et al. (2020), with R* > 0.99.

The aqueous formate solution involves a more complex reaction mechanism than formic
acid. At pH 9 and a concentration of 0.001 mol/L, oxalate ("OOC-COO") is the major radiol-
ysis product [57]. Oxalate is formed by the interaction of two formate radicals (¢CO, ); it also
interacts with water radicals (Reactions 2.8 to 2.10), leading to the formation of other larger
molecules. This is the final stage of the reaction mechanism in our numerical model since this

1.00

® R?=0.9581

R?=0.9186 o R?=0.9792 °°®

0.80

0.60

0.40

Real cumulative percentage

o©
)
o

(c)

0.00 020 040 060 0.8 1.00 0.00 020 040 060 0.8 1.00 0.00 020 040 060 0.8 1.00
Theoretical cumulative percentage

Fig 7. Quantile-quantile plot of residual data from the three models and experimental results: (a) formic acid at pH 1.5, (b) formate ion at pH 9, and (c) formic acid and
formate at pH 2.

https://doi.org/10.1371/journal.pone.0315409.9007

PLOS ONE | https://doi.org/10.1371/journal.pone.0315409 December 12, 2024 12/18


https://doi.org/10.1371/journal.pone.0315409.t006
https://doi.org/10.1371/journal.pone.0315409.g007
https://doi.org/10.1371/journal.pone.0315409

PLOS ONE

Numerical modeling vs experiment of formic acid and formate ion behavior under gamma radiation

study aimed to model the first steps of radiolysis and the main products. The calculated results
closely correspond to the experimental data, with R* > 0.97.

The system at pH 2, comprising the formic acid and formate equilibrium, a high-concentra-
tion solution, and at high radiation dose, behaves differently. These variables generate more
reactions in the system (Reactions 3.1 to 3.5) and yield more products, such as formaldehyde,
glyoxylic acid, and acetaldehyde. The experimental results indicates that the decomposition of
formic acid is constant between 0 and 70 kGy and that CO, is the major radiolysis product.
Computational solutions for the coupled system of Eqs 3.1-3.17 can reproduce the general
behavior of the experimental results, and monitoring all the molecules of this system, including
the formation of each product, is possible. The solution can be observed separately for formic
acid and formate, allowing the detailed tracking of each molecule (Fig 6). The calculated solu-
tion and experimental data yield an R* value> 0.96. Notably, all statistical analyses yield a high
correlation between the experimental data and the calculated solutions. R* > 0.96 in each
model, and the RMSE is less than 4% for pure formic acid and pure formate and less than 9%
for the system at pH 2. The residual mean is less than 3% in each system, validating the model.

We developed the model of formic acid at pH 3.75 to obtain a theoretical approximation of
the behavior of formic acid and the formate ion under ionizing radiation. The numerical
model (Fig 6A) agrees with the observed decrease in CO, yield and increase in oxalic acid con-
centration, indicating that the main radiolysis product is oxalic acid, and that CO, is formed at
a low concentration. Furthermore, it shows that the concentration of formate decreases faster
than that of formic acid; this is attributed to the substitution of Reaction 3.5,
2(eCO;) + H,0 2 CO, + HCOO™, with Reaction 3.6, 2(¢COOH) -3 (COOH),, restricting
the regeneration of formic acid [33]. This model shows faster decay under ionizing radiation
than the model at pH 2 (Figs 4 and 6A). It is possible to separate the numerical solutions of for-
mic acid and the formate ion, and Fig 6A indicates that the formate ion decays faster than for-
mic acid. This can be explained by the attack of He radical on both molecules because the
mixture displays competition reactions. The rate constant for the reaction of formic acid with

He isk, = 4.4%*10° s (Reaction 1.3, HCOOH + H X, ¢ COOH + H,, and that for the reac-
tion between the formate ion and He is kg = 2.1*10% s (Reaction 2.2,

HCOO +He =0 CO, + H,). The reactions display a difference in the order of magnitude
of the rate constant, with the formate ion exhibiting a faster reaction rate than formic acid.
Similarly, the reaction of the «OH radical with the formate ion (k; = 2.6¥10° s™') is one order of
magnitude faster than that with formic acid (k, = 1.4*10%s™"), as shown in Reactions 2.1 and
1.4, respectively. Formic acid and formate at pH 3.75 decay linearly and completely at 89 kGy,
whereas at pH 2, 75% of the total molar concentration decays at 70 kGy.

Experimental work for this model, with the radiolysis and identification of all products, can
be conducted in future studies. A variation of this model, changing the initial concentration of
the total formic acid and formate to 0.001 mol/L, was compared with the calculated solutions
of the models involving pure formic acid and pure formate (Fig 6B). The solution of the pure
formate ion is the most stable of these systems, probably because the attack of e, on the for-
mate ion (Reaction 2.3, ko = 8.0%10% s!) is slower than the attack of the He radical on formic
acid (Reaction 1.3, k; = 4.4*10° s!). The He radical and the €,  areinan acid-base equilibrium,
where He dominates in an acidic medium and e;, dominates in a basic medium. The mixture
of formic acid and formate at pH 3.75 decays faster than pure formic acid and pure formate.
This can be attributed to the competition kinetics of the reactions because this system involves
more molecules reacting to gamma radiation, and there are fewer reactions allowing the regen-
eration of initial molecules or reaction intermediates.
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The dose constant (k) for each system was also calculated, as show in Fig 6B. The dose con-
stant is a function of the dose and concentration, expresses the reaction kinetics as a pseudo-
first-order equation as a first approximation, and is descriptive only. It is an empirical indica-
tor of the resistance of molecules to radiation [58, 59], as given by Eq 4:

In ((%) = —kD=k=—In (C%) /D (4)

where C is the concentration, Cj is the initial concentration, D is the applied dose (Gy), and k
is the dose constant (Gy’l). The obtained constants with Eq 4 have the same order of magni-
tude and reinforce the abovementioned point, that the 1:1 mixture of formic acid and formate
degrades faster than the pure formic acid and pure formate ion systems (Fig 8).

Monitoring every molecule and free radical in a chemical system is essential to understand-
ing chemical evolution processes. One of the study goals was to elucidate the development and
implications of each molecule with a possible role in prebiotic chemistry processes. This was
based on the importance of formic acid and formate and their radiolysis products, such as
other carboxylic acids and amino acids, in biological systems. The agreement between the
numerical models and the experimental results supports the proposed reaction mechanisms
for the behavior of each system. The numerical models allow one to generate hypotheses

Dose (Gy)

0 500 1000 1500 2000
0 - 1 1 1 |

In (C/Co)

N

—Formic acid (pH 1.5), k=5.38x10*
N

—Formic acid and formate ion (pH 3.75), k=5.95x10™*

N
15 J —Formateion (pH9), k=5.08x10"*

Fig 8. Dose constant (k) for 0.001 mol/L solutions of formic acid at pH 1.5, the 1:1 mixture of formic acid and formate at pH 3.75, and the formate ion at pH 9.
https://doi.org/10.1371/journal.pone.0315409.g008
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regarding the behavior of formic acid and its radiolysis products in various systems with high
ionizing radiation fields and pH variations (from acidic to basic media), such as shallow lakes,
certain zones of hydrothermal springs, comets, exoplanets, etc.

One should note that the method given herein to model the behavior of organic molecules
in aqueous solution under ionizing radiation fields is a simplified approximation of the phe-
nomenon, based only on chemical kinetics and not considering the diffusion coefficients of
the molecules in aqueous media.

5 Conclusions

The behavior of formic acid and formate under gamma radiation changes with the pH condi-
tions and molar concentrations used. Our numerical model can reproduce this behavior
under such different conditions, where the molecules in each system can undergo numerous
reactions. Since these models are based on reaction kinetics, identifying the dominant reaction
mechanism is necessary to provide robust solutions. The equilibrium model between formic
acid and formate involves more variables than the models for pure formic acid and pure for-
mate. The computed solutions show a strong relationship with the experimental data, and the
high statistical significance aids in validating each system and reaction mechanism. The mod-
els presented in this work can help elucidate the role played by formic acid and its products in
a variety of possible prebiotic environments. Our proposed model thus extends the potential
molecules and environments that can be simulated relevant to prebiotic chemistry.
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