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Abstract

Formic acid is consistently produced and detected in prebiotic chemistry experiments, con-

stituting a precursor of many carboxylic acids and amino acids. Its behavior with exposure to

gamma radiation varies with the pH and solution concentration. This work aimed to model

different environmental conditions for formic acid under ionizing radiation using a system of

coupled differential equations based on chemical kinetics. An ensemble of radiolysis reac-

tion mechanisms was generated for formic acid at pH 1.5 and formate ion at pH 9, both with

radiation doses from 0 to 2 kGy. This was also done for systems with both species in equilib-

rium, using high molar concentrations, long irradiation times, and large irradiation doses

(from 0 to 70 kGy). The results show that these systems can be modeled with a high statisti-

cal relationship between the computed solutions and the experimental data; furthermore,

the synthesis and degradation of the radiolysis products can be followed. Another dimension

of the issue of prebiotic environments was explored using ionizing radiation and analyzing

the reactions at various pH values (acidic to basic media). These models allow one to gain

insights into the behavior of molecules that are difficult to detect or analyze in the laboratory.

Additionally, they offer the possibility of studying potential prebiotic environments.

1 Introduction

Formic acid (HCOOH) is an organic molecule commonly found in the interstellar medium

[1], along with other molecules that can be considered essential building blocks of biomole-

cules, such as methanol (CH3OH), acetic acid (CH3COOH), acetamide (CH3CONH2), and

glycine (C2H5NO2), among others [2]. In addition, formic acid has been detected in various
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comets, such as 67P/Churyumov–Gerasimenko [1], C/2013 R1-Lovejoy [3], and C/1995

O1-Hale-Bopp [4]; the protoplanetary disk of TW Hydrae [5]; and meteorites, such as Murch-

inson, Allende, Parnallee, Leedey, and Abee [6].

Formic acid and other simple acids can be formed via the radiolysis of carbonates in hydro-

thermal systems [7, 8], by electric discharges in volcanic dust clouds, and from asteroid

impacts [9], all of which are typical scenarios for chemical evolution. Formic acid and formal-

dehyde are carbonylic compounds often produced in prebiotic simulation experiments under

reducing and oxidizing conditions [9–12].

On the geological timescale, the prebiotic era is limited to the time period from around 4.2

to 3.8 Gya ago [13, 14]. The existence of a variety of environments on primitive Earth that

could be linked to chemical evolution processes necessitates conducting experiments under

different conditions–by varying the pH, pressure, and temperature, among other variables

[15]. Ionizing radiation constitutes one of the energy sources that promote the synthesis and

degradation of organic molecules [16–18]. The primary contributors to this form of energy on

primitive Earth were the radionuclides 40K, 238U, 235U, and 232Th [19–21]. The experiments

presented in this work explore the irradiation of carboxylic acid under various pH conditions,

concentrations, and dose intensities. These conditions could be present in environments such

as acidic lakes [22], alkaline lakes [23], parts of hot spring systems [24, 25], shallow fresh water

bodies [26, 27], and oceans [28, 29]. In particular, pH variations in prebiotic simulations are a

common feature when subjecting a system to energy sources such as radiation or heat [10, 12,

30–32]. This represents a priority problem to investigate because the solution pH can affect the

reactions of a system and, the resulting products [33].

The radiolysis of formic acid has formed the subject of various studies [34–37]. Different

reaction mechanisms have been proposed at different pH values [38–40] and concentrations

[41] and under oxygen [38] and oxygen-free [42] conditions. In addition, as a reducing agent,

formic acid can convert some hydroxyamino acids to their reduced amino acid forms [11].

Formic acid exist in an acid-base equilibrium with the formate ion, HCOO−[43]; with formic

acid dominating at pH� 1.5 and the formate ion dominating at pH� 6 (Fig 1).

This work aimed to study the behavior of formic acid, the formate ion and their products

under a high ionizing radiation field and different pH conditions and concentrations to simu-

late prebiotic environments, using a mathematical model to reproduce the experimental data.

Given that formic acid, the formate ion, and their mixture entail different sets of reactions

(and reaction rate constants), each system constitutes a separate problem of study, relevant to

a complex prebiotic system with a variation of its initial conditions. Experimental data from

previous studies have been used to validate our numerical models. The study concludes with

an inter- and multidisciplinary perspective, addressing problems related to chemical evolution,

chemical kinetics, radiation chemistry, differential equations, and computer modeling.

2 Methods

We develop models with different conditions of pH, radiation dose, and concentrations

(Table 1); with the aim of modeling the physico-chemical conditions of different probable pre-

biotic environments as described in the Introduction section. In addition, some of these spe-

cific conditions have been determined by experiments previously published by other authors

that we can adapt to a prebiotic environment.

2.1 Numerical modeling

We developed numerical models for four chemical systems, all under oxygen-free and room

temperature conditions: (1) formic acid at pH 1.5, concentration = 1*10−3 mol/L, maximum
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irradiation dose = 2 kGy, and dose intensity = 0.90 Gy/min; (2) formate at a pH 9,

concentration = 1*10−3 mol/L, maximum irradiation dose = 2 kGy, and dose intensity = 0.90

Gy/min; (3) formic acid and formate mixture at pH 2, respective concentrations = 1.96*10−2

mol/L and 0.04*10−2 mol/L, maximum irradiation dose = 70 kGy, and dose intensity = 266

Gy/min; (4) formic acid and formate mixture at pH 3.75, concentrations of both = 1*10−2 mol/

L respectively, maximum irradiation dose = 90 kGy, and dose intensity = 266 Gy/min. We also

Fig 1. Species distribution diagram of formic acid and formate as a function of pH.

https://doi.org/10.1371/journal.pone.0315409.g001

Table 1. Chemical systems modeled in this work. Each model is in oxygen-free conditions and room temperature.

Reactants pH Concentration

[mol/L]

Maximum irradiation dose [kGy] Dose intensity

[Gy/min]

Experimental data

Formic acid 1.5 1*10−3 2 0.90 [42]

Formate ion 9 1*10−3 2 0.90 [42]

Formic acid and formate ion 2 1.96*10−2 and 0.04*10−2 (respectively) 70 266 This work

Formic acid and formate ion 3.75 1*10−2

(both)

90 266 Only theoretical model

Formic acid and formate ion 3.75 1*10−3

(both)

2 0.90 Only theoretical model

https://doi.org/10.1371/journal.pone.0315409.t001
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varied the initial concentration and maximum irradiation dose from the minimum values of

1*10−3 mol/L and 2 kGy, respectively (see Table 1).

The numerical models for formic acid (pH 1.5) and formate (pH 9) were compared with

experimental data from the study by Horne et al. (2020). The numerical model at pH 2 was

compared with experimental data obtained with the setup presented in Section 2.2. Further,

we proposed a reaction mechanism for each chemical system in Table 1 based on a literature

review.

Each chemical reaction system was written as a set of coupled differential equations, and

each chemical species in a system was represented by one equation [44, 45]. The Eq 1 includes

information about the molecules formed, the molecules that decay, and a source term (fi) sim-

ulating the radiation source [46, 47]:

dXiðtÞ
dt
¼ fi þ

XN

m¼0

XN

n¼0

kðiÞm;nXmðtÞXnðtÞ � XiðtÞ
XN

j6¼0

kðiÞi;j XjðtÞ; ð1Þ

where Xi(t), Xj(t), Xm(t), and Xn(t), is the molar concentration of chemical species i, j, m and n,

at time t; kðiÞi;j is the rate constant of the reaction between the species i and j, kðiÞm;nis the rate con-

stant for the reaction between chemical species m and n that produced the i species.
dXiðtÞ
dt is the

change in the molar concentration of species i at time t. The positive part of the sums repre-

sents the formation of the species i as a result of the reaction between the molecules m and n at

a rate kðiÞm;n. The negative part of the sums represents the degradation of the species i by the reac-

tion of the molecules i and j at a rate kðiÞi;j :fi is an external energy source, which in this case is the

gamma radiation source.

The source term (fi) is given by the Eq 2 [45, 47, 48]:

fi Idð Þ ¼
6:2 ∗ 1011

3:6 NA

Mi

MH2O
Gi Id∗ 6∗103

� �� �
; ð2Þ

where NA is Avogadro’s number (6.022*1023 molecules), Mi is the molecular mass of species i,
MH2O

is the molecular mass of water (18.02 g/mol), Gi is the radiochemical yield of species i
when the system absorbs 100 eV, and Id is the dose rate (Gy/min).

Each coupled nonlinear differential equation system was solved building a Python (3.7.9)
code, employing the solve.ivp function from the numpy library and implementing BDF, an

implicit multistep method of variable order (1 to 5) utilizing a backward differentiation for-

mula for the derivative approximation [49]. The general algorithm and full code are available

at https://github.com/A-Paredes-Arriaga/Chemical-kinetics_EDO [50]. Finally, the statistical

analysis included calculations of the root mean square error (RMSE), R2 value, and standard

deviation and a quantile-quantile (Q-Q) plot of the residuals.

2.2 Experimental setup

2.2.1 Preparation and irradiation of formic acid solution. Formic acid (0.02 mol/L) was

prepared using a formic acid solution (95% pure, Sigma-Aldrich, Saint Louis, Missouri, USA)

and triple distilled water. The samples were degassed with argon for 15 minutes and then irra-

diated with gamma rays (60Co source, Gamma-beam 651 PT at the Instituto de Ciencias

Nucleares, UNAM). Formic acid aliquots (5 mL, pH 2) were exposed to doses of gamma radia-

tion from 0 to 70 kGy.

2.2.2 Determination of formic acid degradation by titration. The decomposition of for-

mic acid was measured by titration after exposure to gamma radiation. Sodium hydroxide
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(0.02 mol/L) was used as the titrant, 0.5% phenolphthalein (Sigma-Aldrich) as the indicator,

and formic acid (1*10−3 mol/L) as the standard.

2.2.3 Quantification of carbon dioxide from formic acid solutions after irradiation.

A combined ion-selective electrode, ISE (Orion ™ 9502BNWP), was used for the detection of

carbon dioxide (CO2) in the formic acid solutions. Standard CaCO3 solutions (1*10−2 and

1*10−4 mol/L) were prepared to calibrate the electrode. Subsequently, 5 mL of a CO2 buffer

solution was added to 50 mL of each solution.

3 Results

3.1 Formic acid at pH 1.5

The reaction mechanism for formic acid at pH 1.5 is represented by Reactions 1.1 to 1.8, based

on different studies detailing various possibles routes (Table 2). At a low pH, the solvated elec-

tron and aqueous hydrogen react to generate H• radicals (Reaction 1.2). Formic acid is

attacked by •OH and H• radicals to form •COOH, which reacts again with the water radicals

to form CO2 and O2. CO2 can react with H• to generate the •COOH radical.

Reactions 1.1 to 1.8 were transformed into a system of coupled ordinary differential equa-

tions (Eqs 1 and 2). Fig 2 displays the outcomes of computed solutions for the system of equa-

tions and depicts the degradation of formic acid under gamma radiation and the resultant

production of CO2 and H2.

3.2 Formate at pH 9

The system involving formate at pH 9 comprises reactions that are different from and inde-

pendent of the radiolysis of formic acid (Table 3). The primary attack is conducted by three

water radicals (•OH, H•, and e�aq), forming the �CO�
2

radical. This last radical serves as the

basis for the secondary reactions that lead to the formation of oxalate (� OOC� COO� ). In

addition, oxalate reacts continuously with water radicals (Reactions 2.8 to 2.10).

The numerical model indicates the continuous decay of formate and the formation of the

oxalate ion as the main radiolysis product (Fig 3). In this case, we also compared our numerical

model with the experimental data of Horne et al. (2020) [42].

3.3 Formic acid and formate at pH 2 and high irradiation doses

Formic acid and formate maintain an acid-base equilibrium at pH 2 (Fig 1). In this scenario,

the concentration ratio of formic acid to formate is 98:2, according to the equilibrium

Table 2. Reaction mechanism for formic acid at pH 1.5 under a gamma radiation field.

Reaction k (s-1) Reference React. No.

H2O!
g� radiation

�OH; e�aq;H�;H2O2
- [33] {1.1}

e�aq þHþaq!
k0 H� k0 = 2.6*1012 [51] {1.2}

HCOOHþH �!k1
� COOHþH2

k1 = 4.4*105 [52] {1.3}

HCOOHþ �OH!k2
� COOHþH2O k2 = 1.4*108 [52] {1.4}

�COOHþH �!k3 H2 þ CO2
k3 = 2.1*108 [34–36] {1.5}

�COOHþ �OH!k4 CO2 þH2O k4 = 2.6*109 [34–36] {1.6}

�COOHþH2O2!
k5 CO2 þ �OHþH2O k5 = 5.0*107 [33, 42] {1.7}

H � þCO2!
k6
� COOH k6 = 1.0*106 [53] {1.8}

https://doi.org/10.1371/journal.pone.0315409.t002
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established in the studies by Joo et al. (2013, 2014) [43, 55]. Then, if the total molar concentra-

tion is 0.02 mol/L, the initial concentration of formic acid is 0.0196 mol/L, and that formate is

0.0004 mol/L.

In this case, the reaction system includes components from the preceding systems. It begins

with Reactions 1.1 to 1.8 from the formic acid system and Reactions 2.1 and 2.2 from the for-

mate system. High concentrations of formic acid under ionizing radiation result in the forma-

tion of larger molecules [41], (Table 4).

Fig 2. Numerical modeling of the radiolysis of formic acid at pH 1.5 under oxygen-free conditions; the dashed lines

represent the computed solutions for the resultant production of CO2 and H2. The experimental data were extracted from

the study by Horne et al. (2020), [42].

https://doi.org/10.1371/journal.pone.0315409.g002

Table 3. Reaction mechanism for the formate ion at pH 9 under a gamma radiation field.

Reaction k (s-1) Reference React. No.

H2O!
g� radiation

�OH; e�aq;H�;H2O2
[33] {1.1}

HCOO� þ �OH!k7
� CO�

2
þH2O k7 = 2.6*109 [52] {2.1}

HCOO� þH �!k8
� CO�

2
þH2

k8 = 2.1*108 [52] {2.2}

HCOO� þ e�aq þH2O!
k9
� CO�

2
þH2 þOH� k9 = 8.0*103 [52] {2.3}

2 �CO�
2

� �
!
k10 OCOCOO2� k10 = 7.6*108 [37, 42] {2.4}

OCOCOOO2� !
k11 � OOC� COO�

(oxalate)
k11 = 1.0*109 [40, 42] {2.5}

�CO�
2
þH �!k12 HCOO� k12 = 9.0*109 [52] {2.6}

�CO�
2
þ e�aq þH2O!

k13 HCOO� þOH� k13 = 9.0*109 [52] {2.7}

� OOC� COO� þ �OH!k14 CO2 þ �CO
�

2
þOH� k14 = 7.7*106 [54] {2.8}

� OOC� COO� þH �!k15 HOOC � CðOHÞ
2
þ 2OH� k15 = 1.0*104 [54] {2.9}

� OOC� COO� þ e�aq!
k16 HOOC � CðOHÞ

2
þ 3OH� k16 = 4.8*107 [54] {2.10}

https://doi.org/10.1371/journal.pone.0315409.t003
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At pH 2, the available concentration of the solvated electron (e�aq) is low though not null

[33]. This species reacts with formic acid to produce the OC•H radical, serving as an interme-

diate in the reaction that leads to the formation of acids and aldehydes. Formaldehyde

(HCHO) and glyoxylic acid (CHOCOOH) have been reported as radiolysis products of con-

centrated formic acid solutions in previous studies [35].

At pH 2, �CO�
2

radical reacts rapidly to produce CO2, via either an electron transfer or dis-

proportionation reaction [42, 56]. The rate constants of k18, k19, and k20 are unknown; they

correspond to secondary reactions between many unstable intermediates, making their deter-

mination difficult. The numerical stability window of the model caused by the variation of

these unknown rate constants is between 1.0*102 s-1 and 1.0*108 s-1. The calculated solutions

for formic acid and CO2 show no significant changes in this interval. This stability window is

wide because the reactions 3.2–3.4 are at the end part of the chain reaction, suggesting that the

main reactions are controlled by the primary attack of the water radicals. The structure of the

numerical model requires a number in each rate constant, so in order not to increase the

Fig 3. Computed numerical model for formate under gamma radiation and the formation of oxalate. The dots represent

the experimental results of Horne et al. (2020), [42].

https://doi.org/10.1371/journal.pone.0315409.g003

Table 4. Complement of the reaction mechanism for formic acid and formate at pH 2 under a gamma radiation field.

Reaction k (s-1) Reference React. No.

HCOOHþ e�aq!
k17 OC�HþOH� k17 = 1.9 *105 [33] {3.1}

HCOOHþOC�H!k18 HCHOþH2O
(formaldehyde)

k18 = unknown [35] {3.2}

2 OC�Hð Þ!
k19 HCHOþ CO K19 = unknown [41] {3.3}

�COOHþOC�H!k20 CHOCOOH
(glyoxylic acid)

k20 = unknown [36] {3.4}

2 � CO�
2

� �
þH2O!

k21 CO2 þHCOO� k21 = 6.2*108 [42] {3.5}

https://doi.org/10.1371/journal.pone.0315409.t004
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numerical stiffness of the system, we assumed a rate constant of k = 1.0*104 s-1 for the reactions

between the intermediates (Reactions 3.2 to 3.4). It is important to note that with this assump-

tion we are not able to give information about the molecules that are produced in these reac-

tions (formaldehyde or glyoxylic acid). If experimental information on these constants were

obtained, and the constants were outside of the interval of stability, it would be necessary to

resort to other numerical methods or to modify the one used to obtain a stable solution.

All reactions in the formic acid and formate system are expressed as a system of coupled

ordinary differential equations (ODEs), according to Eqs 1 and 2:

dXH � ðtÞ
dt

¼ fH� þ � k1XHCO2H
ðtÞXH�ðtÞ � k3X�COOHðtÞXH�ðtÞ

� k6XCO2
ðtÞXH�ðtÞ � k8XHCO�

2
ðtÞXH�ðtÞ

ð3:1Þ

dX�OHðtÞ
dt

¼ fOH� þ k5X�COOHðtÞXH2O2
ðtÞ

� k2XHCO2H
ðtÞX�OHðtÞ � k4X�COOHðtÞX�OHðtÞ

� k7XHCO�
2
ðtÞX�OHðtÞ

ð3:2Þ

dXH2O2
ðtÞ

dt
¼ fH2O2

� k5X�COOHðtÞXH2O2
ðtÞ ð3:3Þ

dXHþaq
ðtÞ

dt
¼ fH�aq � k0Xe�aq

ðtÞXH�aq
ðtÞ ð3:4Þ

dXe�aq
ðtÞ

dt
¼ feþaq � k0Xe�aq

ðtÞXH�aq
ðtÞ � k17XHCO2H

ðtÞXe�aq
ðtÞ ð3:5Þ

dXHCO2H
ðtÞ

dt
¼ � k1XHCO2H

ðtÞXH�ðtÞ � k2XHCO2H
ðtÞX�OHðtÞ

� k17XHCO2H
ðtÞXe�aq

ðtÞ � k18XHCO2H
ðtÞXOC�HðtÞ

ð3:6Þ

dX�COOHðtÞ
dt

¼ þk1XHCO2H
ðtÞXH�ðtÞ þ k2XHCO2H

ðtÞX�OHðtÞ þ k6XCO2
ðtÞXH�ðtÞ

� k3X�COOHðtÞXH�ðtÞ � k4X�COOHðtÞX�OHðtÞ � k5X�COOHðtÞXH2O2
ðtÞ

� k20X�COOHðtÞXOC�HðtÞ

ð3:7Þ

dXH2
ðtÞ

dt
¼ þk1XHCO2H

ðtÞXH�ðtÞ þ k3X�COOHðtÞXH�ðtÞ þ k8XHCO�
2
ðtÞXH�ðtÞ ð3:8Þ

dXH2O
ðtÞ

dt
¼ þk2XHCO2H

ðtÞX�OHðtÞ þ k4X�COOHðtÞX�OHðtÞ

þk5X�COOHðtÞXH2O2
ðtÞ þ k7XHCO�

2
ðtÞX�OHðtÞ

þk18XHCO2H
ðtÞXOC�HðtÞ � k21X�CO�

2
ðtÞXH2O

ðtÞ

ð3:9Þ
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dXCO2
ðtÞ

dt
¼ þk3X�COOHðtÞXH�ðtÞ þ k4X�COOHðtÞX�OHðtÞ þ k5X�COOHðtÞXH2O2

ðtÞ

þk21 X�CO�
2
ðtÞ=2

h i
XH2O
ðtÞ � k6XCO2

ðtÞXH�ðtÞ
ð3:10Þ

dXHCOO� ðtÞ
dt

¼ � k7XHCO�
2
ðtÞX�OHðtÞ � k8XHCO�

2
ðtÞXH�ðtÞ

þk21 X�CO�
2
ðtÞ=2

h i
XH2O
ðtÞ

ð3:11Þ

dX�CO�
2
ðtÞ

dt
¼ þk7XHCO�

2
ðtÞX�OHðtÞ þ k8XHCO�

2
ðtÞXH�ðtÞ � k21X�CO�

2
ðtÞXH2O

ðtÞ ð3:12Þ

dXOC�HðtÞ
dt

¼ þk17XHCO2H
ðtÞXe�aq

ðtÞ � k18XHCO2H
ðtÞXOC�HðtÞ � k19XOC�HðtÞ

� k20X�COOHðtÞXOC�HðtÞ
ð3:13Þ

dXOH� ðtÞ
dt

¼ þk17XHCO2H
ðtÞXe�aq

ðtÞ ð3:14Þ

dXHCHOðtÞ
dt

¼ þk18XHCO2H
ðtÞXOC�HðtÞ þ k19XOC�HðtÞ=2 ð3:15Þ

dXCOðtÞ
dt

¼ þk19XOC�HðtÞ=2 ð3:16Þ

dXCHOCOOHðtÞ
dt

¼ þk20X�COOHðtÞXOC�HðtÞ ð3:17Þ

The solutions of the coupled ODEs system of Eqs 3.1–3.17 are shown in Figs 4 and 5. Fig 4

shows the continuous decrease of the total molar concentration of formic acid and formate

and the formation of CO2 from 0 to 70 kGy. The total concentration of formic acid and for-

mate are quantified together. CO2 is the principal radiolysis product and is continuously

formed.

The numerical model allows for the separation of the calculated solutions of the formic acid

and formate equilibrium. In this case, it is displayed using both linear and log10 scales on the

y-axis, with the latter enhancing the visualization of the molecules’ behavior (Fig 5). Addition-

ally, it is possible to follow the molar concentration of each molecule involved in the system.

3.4 Formic acid and formate at a pH of 3.75

Formic acid has an equivalence point (pKa) at a pH of 3.75 [43]. Here, the concentration ratio

of formic acid to the formate ion is 1:1. As a theoretical exercise, we developed a numerical

model with a high concentration of formic acid at pH 3.75, to approximate the behavior of for-

mic acid and the formate ion mixture under ionizing radiation. The aim of the exercise is to

simulate another possible prebiotic environment. From a numerical point of view, we compute

models at the two extremes of the pH gradient, when the systems have pure formic acid (sec-

tion 3.1) and formate ion (section 3.2); and we have the elements to simulate the system when
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Fig 4. The sum of formic acid and formate concentrations under gamma radiation from 0 to 70 kGy. The lines represent the numerical model, and the dots

correspond to the results obtained from the experimental setup used here.

https://doi.org/10.1371/journal.pone.0315409.g004

Fig 5. Numerical model of the behavior of formic acid and formate under gamma radiation. The left axis represents a linear scale, and the right

axis involves the same computed solution on a log10 scale to enhance the visualization of formate decay.

https://doi.org/10.1371/journal.pone.0315409.g005
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both molecules interact in the same environment at the same initial concentration. With this

information we propose a system on the behavior of both molecules in conditions of an acid

lake that their radiolysis generates a cluster of other molecules with biological importance.

In a 0.02 mol/L solution, the concentrations of both formic acid and formate are 0.01 mol/

L. The reaction mechanism is the same as that of previously mentioned models, following

Reactions 1.1 to 1.8, 2.1 and 2.2, and 3.1 to 3.4. Reaction 3.5 is substituted with Reaction 3.6

[33], as shown in Table 5, because above pH 3 the yield of CO2 decreases, and it is replaced by

oxalic acid [33, 57].

The model reveals the rapid degradation of formate followed by the degradation of formic

acid. The available formate is depleted at 55 kGy, at which point the degradation rate of formic

acid increases. The sum of formic acid and formate decay is a continuous function, and the

major radiolysis product is oxalic acid. The model also shows a low formation of CO2

(Fig 6A). For further theoretical insights, the initial conditions of this system at pH 3.75 were

changed to an initial concentration of 0.001 mol/L for formic acid and the formate ion (1:1)

and a total absorbed dose of 2kGy. This calculated solution was compared with the solutions

of pure formic acid at pH 1.5 and pure formate at pH 9 (Fig 6B). The three computed solutions

reveal the continuous decay of the molar concentrations under gamma irradiation with differ-

ent degradation rates.

3.5 Statistical analysis

Finally, statistical analyses between the experimental data and the numerical calculations were

performed (Table 6 and Fig 7). Each model yields an RMSE < 4%. The residual mean and

residual standard deviation are< 3% for all the systems, except for the residual standard

Fig 6. Theoretical model of formic acid and formate under various pH conditions and total irradiation doses. (a) Degradation of formic acid and the formate ion and

the synthesis of oxalic acid and carbon dioxide at pH 3.75 under high irradiation doses from 0 to 80 kGy. (b) Formic acid degradation under various pH conditions and

doses from 0 to 2 kGy.

https://doi.org/10.1371/journal.pone.0315409.g006

Table 5. Reaction mechanism for two formic acid radicals.

Reaction k (s-1) Reference React. No.

2ð�COOHÞ!k23
ðCOOHÞ

2

(oxalic acid)

K23 = 4.0*105 Reaction [36]

Constant [33]

{3.6}

https://doi.org/10.1371/journal.pone.0315409.t005
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deviation of the system at pH 2. The residual analysis reveals a close relationship between the

calculated and experimental data from the three systems. The Q-Q plot suggests similar behav-

ior for the laboratory experiments and the computational models (Fig 7).

4 Discussion

Each investigated system requires a different reaction mechanism because the equilibrium

between formic acid and the formate ion depends on the pH [55]. Formic acid dominates at

pH of 1.5. The exposure of pure formic acid to gamma radiation involves a relatively simple

reaction mechanism (Reactions 1.1 to 1.8) and progressive decomposition. The numerical

model based on this reaction system shows a continuous decrease in the molar concentration

of formic acid from 0 to 2 kGy upon exposure to a γ-radiation field (Fig 1). CO2 and H2 are

the main products of the radiolysis of formic acid [41]. The computed solution reveals the for-

mation of these two molecules, with CO2 constituting the major product, even with Reaction

1.8 regenerating the formic acid radical (H � þCO2!
k6
� COOH). The statistical calculations

support the correspondence between the numerical model and the experimental data of

Horne et al. (2020), with R2 > 0.99.

The aqueous formate solution involves a more complex reaction mechanism than formic

acid. At pH 9 and a concentration of 0.001 mol/L, oxalate (� OOC� COO� ) is the major radiol-

ysis product [57]. Oxalate is formed by the interaction of two formate radicals (�CO�
2

); it also

interacts with water radicals (Reactions 2.8 to 2.10), leading to the formation of other larger

molecules. This is the final stage of the reaction mechanism in our numerical model since this

Table 6. Statistical analysis of the numerical solutions and the experimental results.

Molecule RMSE % Residuals mean % Residuals SD %
Formic acid 3.71x10-5 3.71 2.61x10-5 2.61 2.68x10-5 2.68

Formate ion 1.41x10-5 1.41 1.96 x10-5 1.96 1.40 x10-5 1.40

Formic & formate (pH 2) 1.79x10-3 8.96 3.61x10-4 1.80 1.86 x10-3 9.31

https://doi.org/10.1371/journal.pone.0315409.t006

Fig 7. Quantile-quantile plot of residual data from the three models and experimental results: (a) formic acid at pH 1.5, (b) formate ion at pH 9, and (c) formic acid and

formate at pH 2.

https://doi.org/10.1371/journal.pone.0315409.g007
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study aimed to model the first steps of radiolysis and the main products. The calculated results

closely correspond to the experimental data, with R2 > 0.97.

The system at pH 2, comprising the formic acid and formate equilibrium, a high-concentra-

tion solution, and at high radiation dose, behaves differently. These variables generate more

reactions in the system (Reactions 3.1 to 3.5) and yield more products, such as formaldehyde,

glyoxylic acid, and acetaldehyde. The experimental results indicates that the decomposition of

formic acid is constant between 0 and 70 kGy and that CO2 is the major radiolysis product.

Computational solutions for the coupled system of Eqs 3.1–3.17 can reproduce the general

behavior of the experimental results, and monitoring all the molecules of this system, including

the formation of each product, is possible. The solution can be observed separately for formic

acid and formate, allowing the detailed tracking of each molecule (Fig 6). The calculated solu-

tion and experimental data yield an R2 value> 0.96. Notably, all statistical analyses yield a high

correlation between the experimental data and the calculated solutions. R2 > 0.96 in each

model, and the RMSE is less than 4% for pure formic acid and pure formate and less than 9%

for the system at pH 2. The residual mean is less than 3% in each system, validating the model.

We developed the model of formic acid at pH 3.75 to obtain a theoretical approximation of

the behavior of formic acid and the formate ion under ionizing radiation. The numerical

model (Fig 6A) agrees with the observed decrease in CO2 yield and increase in oxalic acid con-

centration, indicating that the main radiolysis product is oxalic acid, and that CO2 is formed at

a low concentration. Furthermore, it shows that the concentration of formate decreases faster

than that of formic acid; this is attributed to the substitution of Reaction 3.5,

2 �CO�
2

� �
þH2O!

k21 CO2 þHCOO� , with Reaction 3.6, 2ð�COOHÞ!k23
ðCOOHÞ

2
, restricting

the regeneration of formic acid [33]. This model shows faster decay under ionizing radiation

than the model at pH 2 (Figs 4 and 6A). It is possible to separate the numerical solutions of for-

mic acid and the formate ion, and Fig 6A indicates that the formate ion decays faster than for-

mic acid. This can be explained by the attack of H• radical on both molecules because the

mixture displays competition reactions. The rate constant for the reaction of formic acid with

H• is k1 = 4.4*105 s-1 (Reaction 1.3, HCOOHþH � !k1
� COOHþH2, and that for the reac-

tion between the formate ion and H• is k8 = 2.1*108 s-1 (Reaction 2.2,

HCOO� þH � !k8
� CO�

2
þH2). The reactions display a difference in the order of magnitude

of the rate constant, with the formate ion exhibiting a faster reaction rate than formic acid.

Similarly, the reaction of the •OH radical with the formate ion (k7 = 2.6*109 s-1) is one order of

magnitude faster than that with formic acid (k2 = 1.4*108 s-1), as shown in Reactions 2.1 and

1.4, respectively. Formic acid and formate at pH 3.75 decay linearly and completely at 89 kGy,

whereas at pH 2, 75% of the total molar concentration decays at 70 kGy.

Experimental work for this model, with the radiolysis and identification of all products, can

be conducted in future studies. A variation of this model, changing the initial concentration of

the total formic acid and formate to 0.001 mol/L, was compared with the calculated solutions

of the models involving pure formic acid and pure formate (Fig 6B). The solution of the pure

formate ion is the most stable of these systems, probably because the attack of e�aq on the for-

mate ion (Reaction 2.3, k9 = 8.0*103 s-1) is slower than the attack of the H• radical on formic

acid (Reaction 1.3, k1 = 4.4*105 s-1). The H• radical and the e�aq are in an acid-base equilibrium,

where H• dominates in an acidic medium and e�aq dominates in a basic medium. The mixture

of formic acid and formate at pH 3.75 decays faster than pure formic acid and pure formate.

This can be attributed to the competition kinetics of the reactions because this system involves

more molecules reacting to gamma radiation, and there are fewer reactions allowing the regen-

eration of initial molecules or reaction intermediates.
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The dose constant (k̂) for each system was also calculated, as show in Fig 6B. The dose con-

stant is a function of the dose and concentration, expresses the reaction kinetics as a pseudo-

first-order equation as a first approximation, and is descriptive only. It is an empirical indica-

tor of the resistance of molecules to radiation [58, 59], as given by Eq 4:

ln
C
C0

� �

¼ � k̂D) k̂ ¼ � ln
C
C0

� �

=D ð4Þ

where C is the concentration, C0 is the initial concentration, D is the applied dose (Gy), and k̂
is the dose constant (Gy-1). The obtained constants with Eq 4 have the same order of magni-

tude and reinforce the abovementioned point, that the 1:1 mixture of formic acid and formate

degrades faster than the pure formic acid and pure formate ion systems (Fig 8).

Monitoring every molecule and free radical in a chemical system is essential to understand-

ing chemical evolution processes. One of the study goals was to elucidate the development and

implications of each molecule with a possible role in prebiotic chemistry processes. This was

based on the importance of formic acid and formate and their radiolysis products, such as

other carboxylic acids and amino acids, in biological systems. The agreement between the

numerical models and the experimental results supports the proposed reaction mechanisms

for the behavior of each system. The numerical models allow one to generate hypotheses

Fig 8. Dose constant (k̂) for 0.001 mol/L solutions of formic acid at pH 1.5, the 1:1 mixture of formic acid and formate at pH 3.75, and the formate ion at pH 9.

https://doi.org/10.1371/journal.pone.0315409.g008
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regarding the behavior of formic acid and its radiolysis products in various systems with high

ionizing radiation fields and pH variations (from acidic to basic media), such as shallow lakes,

certain zones of hydrothermal springs, comets, exoplanets, etc.

One should note that the method given herein to model the behavior of organic molecules

in aqueous solution under ionizing radiation fields is a simplified approximation of the phe-

nomenon, based only on chemical kinetics and not considering the diffusion coefficients of

the molecules in aqueous media.

5 Conclusions

The behavior of formic acid and formate under gamma radiation changes with the pH condi-

tions and molar concentrations used. Our numerical model can reproduce this behavior

under such different conditions, where the molecules in each system can undergo numerous

reactions. Since these models are based on reaction kinetics, identifying the dominant reaction

mechanism is necessary to provide robust solutions. The equilibrium model between formic

acid and formate involves more variables than the models for pure formic acid and pure for-

mate. The computed solutions show a strong relationship with the experimental data, and the

high statistical significance aids in validating each system and reaction mechanism. The mod-

els presented in this work can help elucidate the role played by formic acid and its products in

a variety of possible prebiotic environments. Our proposed model thus extends the potential

molecules and environments that can be simulated relevant to prebiotic chemistry.
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Methodology: Alejandro Paredes-Arriaga, Anayelly López-Islas.
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