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Abstract

Mental illnesses put a tremendous burden on afflicted individuals and society. Identification

of novel drugs to treat such conditions is intrinsically challenging due to the complexity of

neuropsychiatric diseases and the need for a systems-level understanding that goes

beyond single molecule-target interactions. Thus far, drug discovery approaches focused

on target-based in silico or in vitro high-throughput screening (HTS) have had limited suc-

cess because they cannot capture pathway interactions or predict how a compound will

affect the whole organism. Organismal behavioral testing is needed to fill the gap, but mam-

malian studies are too time-consuming and cost-prohibitive for the early stages of drug dis-

covery. Behavioral medium-throughput screening (MTS) in small organisms promises to

address this need and complement in silico and in vitro HTS to improve the discovery of

novel neuroactive compounds. Here, we used cheminformatics and MTS in the freshwater

planarian Dugesia japonica–an invertebrate system used for neurotoxicant testing–to evalu-

ate the extent to which complementary insight could be gained from the two data streams.

In this pilot study, our goal was to classify 19 neuroactive compounds into their functional

categories: antipsychotics, anxiolytics, and antidepressants. Drug classification was per-

formed with the same computational methods, using either physicochemical descriptors or

planarian behavioral profiling. As it was not obvious a priori which classification method was

most suited to this task, we compared the performance of four classification approaches.

We used principal coordinate analysis or uniform manifold approximation and projection,

each coupled with linear discriminant analysis, and two types of machine learning models–

artificial neural net ensembles and support vector machines. Classification based on physi-

cochemical properties had comparable accuracy to classification based on planarian
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profiling, especially with the machine learning models that all had accuracies of 90–100%.

Planarian behavioral MTS correctly identified drugs with multiple therapeutic uses, thus

yielding additional information compared to cheminformatics. Given that planarian behav-

ioral MTS is an inexpensive true 3R (refine, reduce, replace) alternative to vertebrate testing

and requires zero a priori knowledge about a chemical, it is a promising experimental system

to complement in silico cheminformatics to identify new drug candidates.

Introduction

Mental illness covers a wide range of conditions that cause significant disturbances in cogni-

tion, emotional regulation, or behavior. In 2019, 970 million people or 1 in every 8 people

across the world had a mental disorder [1, 2]. Moreover, the number of people experiencing

anxiety or depressive disorders worldwide has significantly increased since the COVID-19

pandemic [3]. These statistics are worrisome because psychiatric diseases are intrinsically diffi-

cult to treat and pose substantial costs to the affected individuals, families, and society [4, 5].

While there is an urgent need for effective therapeutics, neuropsychiatric drug discovery

and validation has been stagnant and lags behind that of other diseases [6, 7]. Computational

and in vitro methods that try to predict interactions with specific molecular targets are widely

used for candidate drug discovery for many illnesses. Although some successful psychiatric

drugs, such as fluoxetine, have been identified using this hypothesis-driven approach [8], tar-

get-specific methods have been largely insufficient for neuropsychiatric drug discovery due to

the complex and still enigmatic pathologies of these disorders [6, 9, 10]. Mental illnesses, such

as schizophrenia and major depressive disorder, can stem from polygenic and non-genetic eti-

ologies that likely depend on an interplay between many different molecular targets (reviewed

in [11]). Consequently, successful psychiatric drugs tend to be neuroactive compounds with

multiple pharmacological targets [12]. Thus, organismal models that provide systems-level

insight into neuronal function are needed. However, mammalian tests are prohibitively time

and cost intensive to screen the large number of chemicals evaluated during the early stages of

lead identification [10, 13].

One possible solution to integrate organismal information into first-tier lead identification

is to use behavioral phenotyping with small organisms. Fish larvae, worms, and flies are inex-

pensive to maintain compared to mammals and lend themselves to medium- to high-through-

put screening (MTS/HTS, respectively) (reviewed in [14, 15]). Because phenotypic drug

discovery does not rely on mechanistic knowledge and can identify polypharmacological

drugs (reviewed in [16, 17]), it is especially well-suited for neuropsychiatric drug discovery.

Behavioral barcodes, which reduce the multidimensional phenotypic information into a

string of numeric features, provide a quantitative readout of a phenotype [18]. Using statistical

tools such as hierarchical clustering or multidimensional scaling, behavioral profiling can be

used to identify patterns characterizing drug classes and have been used to predict the effects

of novel chemicals for psychiatric uses [17–19]. For example, behavioral barcoding derived

from a series of motor responses of zebrafish larvae to different auditory and visual stimuli was

used to identify potential novel antipsychotic compounds by comparing to the phenotypic

profile produced by classical antipsychotics, such as haloperidol [20]. Similar methodology has

also been employed to identify novel monoamine oxidase and acetylcholinesterase inhibitors

[21] and sedatives that induce paradoxical excitation [22]. However, the zebrafish larvae used
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for these studies were> 7 days old and thus qualify as animal tests that require Institutional

Animal Care & Use Committee approval [23].

Here, we test the hypothesis that MTS using an aquatic invertebrate, the planarian Dugesia
japonica, allows for unbiased classification of neuroactive drugs and augments the information

obtained from the physical and chemical properties of the drugs. Freshwater planarians are

small (a few mm long) flatworms, have a long history of use in neurotoxicity and neurophar-

macology studies (reviewed e.g., in [24–27]), and show promise as a tool for neuroactive drug

discovery. The planarian nervous system shares many of the same neurotransmitters and cell

types as the mammalian nervous system, yet remains tractable, consisting of approximately

10,000 neurons [26, 28], making the planarian nervous system of intermediate size and com-

plexity compared to nematodes and zebrafish. Genomes and transcriptomes are publicly avail-

able [29, 30], and RNA interference can be used to connect genotypes and phenotypes [31–

38]. Planarians display stereotypical behavioral responses to drugs of abuse and prescription

drugs [39–41]. The development of computational methods for quantitative assessment of

these behaviors [42–44] have reignited interest in planarian behavioral studies [15, 26–28, 45].

We have shown that the asexual planarian D. japonica is well-suited for behavioral MTS [43,

44, 46, 47] and that the phenotypic profiles gained from planarian MTS can distinguish

between different chemical classes/modes of action for neurotoxic compounds [44, 46, 48].

Planarian MTS has unique strengths that complement screening using zebrafish larvae or

roundworms for developmental neurotoxicology [14]. Adult nervous system function can be

evaluated in planarians at a fraction of the time and cost required for zebrafish.

We hypothesized that D. japonica behavioral phenotyping would be a good model for the

identification of prospective neuroactive drugs. To test this, we used our robotic screening

platform to determine how well our battery of phenotypic endpoints could distinguish

between classes of known neuropsychiatric drugs and add value to a classification of these

compounds based on their physicochemical properties. We studied 19 neuroactive com-

pounds from three functional classes: antipsychotics, anxiolytics, and antidepressants. We clas-

sified these compounds using either physicochemical descriptors or planarian behavioral

profiling using four different classification approaches. We used principal coordinate analysis

(PCoA) or uniform manifold approximation and projection (UMAP), each coupled with lin-

ear discriminant analysis (LDA), and two types of machine learning models—artificial neural

net ensembles (ANNE) and support vector machines (SVMs). We found that the classification

based on physicochemical properties had comparable accuracy to planarian profiling. Planar-

ian profiling correctly identified polytherapeutic drugs and thus yielded additional informa-

tion that would have been missed by cheminformatics. Thus, combining these two approaches

may be an economical and useful method for identifying novel drug candidates.

Results and discussion

The purpose of this study was to investigate the extent to which members of neuroactive drug

classes can be identified and distinguished using computational classification using either che-

minformatics or in vivo behavioral phenotyping in planarians. To do this, we used a set of 19

neuroactive drugs that were functionally defined by the supplier as one of three categories:

antidepressants (7), antipsychotics (7), or anxiolytics (5), (Table 1, Fig 1).

We assigned each chemical a barcode consisting of a numerical string based on either their

computed physicochemical properties or responses observed in planarian phenotypic screen-

ing. We then used the same computational pipeline to study how well these compounds could

be accurately classified based on either in silico cheminformatics or in vivo planarian behav-

ioral phenotyping. We compared the results obtained from four different computational
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Table 1. Study compounds.

CAS # ID Common Namea Classb Sourcec Purity Solvente Study

Typef
Tested Concentrations (units)

(Method)d

129722-12-

9

ARI Aripiprazole�HCl 2 A �98% DMSO E,C 1, 3.16, 10, 31.6, 100 (μM)

(HPLC)

10457-90-6 BRO Bromperidol 2 A 100% DMSO E,C 0.316, 1, 3.16, 10, 31.6, 100 (μM)

(EP reference standard)

437723-96-

1

BUA (R)-isomer of BUP 1 NA NA NA C NA

324548-43-

8

BUB (S)-isomer of BUP 1 NA NA NA C NA

31677-93-7 BUP Bupropion�HCl 1 A �98% water E 10, 31.6, 100, 316, 1000 (μM)

Racemic mixture (HPLC)

33386-08-2 BUS Buspirone�HCl 3 A �99% water E,C 0.316, 1, 3.16, 10, 31.6, 100 (μM)

(TLC)

59729-32-7 CIT Citalopram�HBr 1 A quality level 300; certified

reference material

DMSO E 1, 3.16, 10, 31.6, 100, 316, 1000 (μM)

Racemic mixture

(HPLC)

128196-02-

1

CIR (R)-isomer of CIT 1 NA NA NA C NA

5786-21-0 CLO Clozapine 2 B �99% DMSO E,C 0.1, 0.316, 1, 3.16, 10, 31.6, 100 (μM)

(HPLC)

439-14-5 DIA Diazepam 3 C 99.3% DMSO E,C 1, 3.16, 10, 31.6, 100 (μM)

(GC)

548-73-2 DRO Droperidol 2 A �98% DMSO E,C 0.1, 0.316, 1, 3.16, 10, 31.6, 100 (μM)

(TLC)

136434-34-

9

DUL Duloxetine�HCl 1 A �98% DMSO E,C 1, 3.16, 10, 31.6, 100 (μM)

(S)-isomer (HPLC)

219861-08-

2

ESC Escitalopram�oxalate 1 A �98% DMSO E,C 1, 3.16, 10, 31.6, 100, 316, 1000 (μM)

(S)-isomer of CIT (HPLC)

57653-26-6 FEN Fenobam 3 A �98% DMSO E,C 56.2, 100, 178, 316, 562 (μM)

(HPLC)

100568-03-

4

FLR (R)-isomer of FLU 1 NA NA NA C NA

100568-02-

3

FLS (S)-isomer of FLU 1 NA NA NA C NA

56296-78-7 FLU Fluoxetine�HCl 1 A �98% DMSO E,C 1, 3.16, 10, 31.6, 100 (μM)

Racemic mixture (TLC)

52-86-8 HAL Haloperidol 2 A �98% DMSO E,C 1, 3.16, 10, 31.6, 100 (μM)

(TLC)

113-52-0 IMI Imipramine�HCl 1 A �99% DMSO E,C 0.316, 1, 3.16, 10, 31.6 (μM)

(TLC)

110-16-7 MAL Maleic acid 4 A �99% (HPLC) DMSO E,C 200 (μM)

59467-70-8 MID Midazolam 3 A 100% DMSO E,C 10, 17.8, 31.6, 56.2, 100 (μM)

(USP reference standard)

132539-06-

1

OLA Olanzapine 2 A �98% DMSO E,C 0.001, 0.00316, 0.01, 0.0316. 0.1, 0.316, 1, 3.16,

10, 31.6, 100, 316 (μM)(HPLC)

144-62-7 OXA Oxalic acid 4 A Analytical standard DMSO E,C 100, 316, 1000 (μM)

(redox titration)

84-02-6 PRO Prochlorperazine� 2 A �98% DMSO E,C 0.316, 1, 3.16, 10, 31.6, 100 (μM)

dimaleate (TLC)

(Continued)
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methods, including PCoA followed by LDA (PCoA-LDA), UMAP followed by LDA

(UMAP-LDA), and two machine-learning approaches (ANNE and SVMs) (Fig 2), to investi-

gate whether a specific method would work best on either or both types of data. In the Meth-

ods section, we provide background on each method and explain why we chose to apply it to

our data.

Classification based on physicochemical properties

The neuroactive drugs studied here represent a diverse range of chemical structures, as shown

by their differing Tanimoto similarity coefficients, compared to ARI as a reference compound

(Fig 3). While some clustering by functional pharmacological class is visible, several com-

pounds (e.g., the antipsychotics OLA and CLO and most anxiolytics) are structurally distinct

from the other members of their class. This structural diversity reflects the purpose of this

library–to serve as a pilot to determine the extent to which our models could assign the com-

pounds to their functional pharmacological classes despite structural dissimilarities within

each class.

As shown in Table 1, some drugs (BUP, CIT, FLU) are mixtures of stereoisomers. Thus, we

had to consider whether to treat these chemicals as 2D structures, without considering stereo-

chemistry, or as 3D structures, considering each stereoisomer separately thereby increasing

the number of entities considered. Because the number of compounds affects the classification

and we wanted to keep the data size comparable to the planarian data, which considers each

tested compound as a single entity, we present the classifications based on 2D structural fea-

tures here without consideration of stereochemistry (Figs 4–6). Results from using 3D chemi-

cal features, considering each stereoisomer separately, are shown in S1–S3 Figs. The 3D

models show similar, though slightly better, classification accuracies than the models using

only 2D features, which may be due to the increased information per compound and/or the

increase in the number of compounds (18 versus 21) compared to 2D. Of note, when

Table 1. (Continued)

CAS # ID Common Namea Classb Sourcec Purity Solvente Study

Typef
Tested Concentrations (units)

(Method)d

79559-97-0 SER Sertraline�HCl 1 A �98% DMSO E,C 1, 3.16, 10, 31.6, 100 (μM)

cis-(1S,4S)-isomer (HPLC)

7647-15-6 SOB Sodium bromide 4 A �99.9% DMSO E 100, 316, 1000 (μM)

(trace metal analysis)

7647-14-5 SOC Sodium chloride 4 A �99.0% water E 3.47 (mM)

(titration with AgNO3)

1135210-

68-2

TRA Tracazolate�HCl 3 B �99.0% DMSO E,C 1, 3.16, 10, 31.6, 100 (μM)

(HPLC)

a All common names are those provided in the National Institutes of Health Global Substance Registration System. Except for maleic acid, oxalic acid, sodium bromide

and D-sorbitol, all names also represent the recommended International Non-Proprietary Name.
b Primary functional pharmacological class as indicated by the manufacturer and literature: 1 = antidepressant; 2 = antipsychotic; 3 = anxiolytic; 4 = counterion control.
c Source of chemicals used in experimental determinations: A = Sigma-Aldrich; B = Tocris; C = Spectrum Chemicals; NA = not applicable (molecular structures used

only for in silico determinations).
d Method used by the supplier to assess purity. HPLC: High-performance liquid chromatography; EP: European Pharmacopeia; GC: Gas chromatography; TLC: Thin

layer chromatography; USP: US Pharmacopeia.
e Solvent used for stock solutions.
f Study type: E = experimental; C = computational. For computational studies, counterions were not present.

https://doi.org/10.1371/journal.pone.0315394.t001
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Fig 1. Chemical structures. Molecular structures depicted as 2D with stereochemistry indicated by wedged bonds are provided for

the different chemical classes: A) Antidepressants, B) Antipsychotics, C) Anxiolytics, and D) Counterions. Counterions are not

shown with their respective drug because they were not included in the computational studies. Table 1 lists the experimental

compounds, including counterions, that were tested in planarians. Protonation states were based on the dominant form at pH 7.4 as

determined by the protonation module in the ChemAxon Marvin suite (https://www.chemaxon.com).

https://doi.org/10.1371/journal.pone.0315394.g001
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considering 2D structures, CIR and ESC were treated as one structure, which we labeled CIT,

leading to only 18 drugs in these models.

Comparisons were made both with and without the counterions to determine how inclu-

sion of these presumedly null-effect compounds would affect neuroactive drug classification.

Fig 2. Study overview. Chemical and behavioral profiles were determined for 19 neuroactive drugs, consisting of 7

antidepressants, 7 antipsychotics, and 5 anxiolytics. Using quantitative analyses, we then determined molecular and

phenotypic barcodes for each compound. These barcodes were used in the same computational models to determine

how well each method performed at classifying the 3 neuroactive drug classes. Created with BioRender.com.

https://doi.org/10.1371/journal.pone.0315394.g002
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ANNE and SVMs were each initially run across 10 different models (S1–S9 Tables) and then

the best performing model for each was chosen (see Methods) for comparison across methods.

The accuracy of these models on the small data set used here was high and comparable

between PCoA-LDA, ANNE, and SVMs (Figs 5–6). Overall, the UMAP-LDA performed

worse than the other three models on all data sets (2D, 3D +/- counterions), which could also

be seen in the high overlap between 95% confidence intervals of the chemical clusters in Fig 4.

Interestingly, when using the 2D chemical features and excluding the counterions,

UMAP-LDA misclassified most anxiolytics (Fig 6B). Only FEN was correctly classified. Gener-

ally, classification accuracies were improved by including the counterions, which may be due

to the increased number of chemicals.

Fig 3. Tanimoto similarity coefficients. Chemical similarity was quantified using the Tanimoto coefficient (Tc).

Overlaps were determined after 3D alignment of each structure with the reference compound, ARI. ARI was chosen as

the reference compound as it had the largest molecular volume as assessed by the van der Waals radii of the

constituent covalently bonded atoms (see Methods). Tc Shape refers to similarity based on overlap of molecular

volume. Tc Color refers to similarity based on overlap of 6 pharmacophores (H-bond acceptor, H-bond donor, anion,

cation, hydrophobe, or ring). Tc Combined = Tc Shape + Tc Color. Range of Tc Shape and Tc Color = (0,1); range of

Tc Combined = (0,2). Chemicals are ordered by their Tc Combined scores and color-coded by functional class.

https://doi.org/10.1371/journal.pone.0315394.g003
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When comparing the misclassifications from the 2D and 3D chemical descriptors, we

found that the antidepressant BUP was the most frequently misclassified drug across the differ-

ent methods when using 2D structural features (Figs 5 and 6). In contrast, the classifications

based on 3D chemical structures did not misclassify any antidepressants, including the BUP

stereoisomers (BUA and BUB), and most frequently misclassified anxiolytics (S2 and S3 Figs).

When considering 3D chemical features, the most misclassified chemical across the different

methods was the anxiolytic BUS (S2 and S3 Figs). BUS has a very different structure compared

to the other anxiolytics (Fig 1) and looks more similar to some of the antipsychotics (Fig 3),

which could explain its frequent misclassification as an antipsychotic. Moreover, while the

anxiolytic class had the fewest members (5), its members are also the most diverse as can be

seen by the greater spread in the Tanimoto similarity coefficients (Fig 3).

Planarian behavioral phenotyping

Activity and potency determined by benchmark concentration (BMC) modeling. The

chemicals were screened acutely (< 3 hour exposure) in adult planarians and assessed for 13

endpoints spanning effects on lethality, body shape, stickiness, locomotion, and reaction to

Fig 4. Functional pharmacological classification of the study compounds based on their 2D chemical descriptors using

LDA-based approaches. Computational methods are arranged by rows: (A) PCoA-LDA; (B) UMAP-LDA. Counterion

inclusion/exclusion is arranged by columns: (1) with counterions; (2) without counterions. Ellipses represent 95% confidence

intervals. The axes show the percentage of the total eigenvalues; this does not sum to 100% in (A1) because there was a third

axis that accounted for the remaining 0.60%.

https://doi.org/10.1371/journal.pone.0315394.g004
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Fig 5. Confusion matrices of the classification methods based on 2D chemical descriptors of the drugs and counterions.

Confusion matrices for the different classification methods: (A) PCoA-LDA; (B) UMAP-LDA; (C) ANNE; (D) SVMs; AD:

antidepressant, AP: antipsychotic, AX: anxiolytic; CI: counterion. In A and B, predicted accuracy was calculated following an

exhaustive jackknifing. In C and D, predicted accuracy refers to the overall accuracy of the best of 10 models of each type. *indicates

randomly chosen members of the test set. In (D) two models were tied for the best so that the test set members are marked with both

* (model 07_2i) and + (model 09_2i). See the Methods for model selection. Test set accuracies were 80.0% for ANNE (S2 Table) and

100% for SVMs (S4 Table).

https://doi.org/10.1371/journal.pone.0315394.g005
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Fig 6. Confusion matrices of the classification methods based on 2D chemical descriptors of the drugs only. Confusion matrices

for the different classification methods: (A) PCoA-LDA; (B) UMAP-LDA; (C) ANNE; (D) SVMs; AD: antidepressant, AP:

antipsychotic, AX: anxiolytic. In A and B, predicted accuracy was calculated following an exhaustive jackknifing. In C and D,

predicated accuracy refers to the overall accuracy of the best of 10 models of each type. *indicates randomly chosen members of the

test set. See the Methods for model selection. Test set accuracies were 100% for ANNE (S3 Table) and 100% for SVMs (S5 Table).

https://doi.org/10.1371/journal.pone.0315394.g006
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Fig 7. Overview of planarian screening and data analysis. A) Schematic of plate setup, including the orientations

used in the triplicate runs, and representative image of a 48-well plate containing one planarian per well. Each plate

contained a solvent control (c0) and 5 concentrations of a chemical and was tested acutely in phototaxis, stickiness,

and noxious heat assays. B-G) Examples of various planarian body shapes: B) Normal planarian with smooth gliding.

C) Contracted with shortened length and often associated with ruffling of the edges of the planarian. D) C-shape/

curled and often on its side. E) Corkscrew showing multiple twists across the body axis. F) Pharynx extrusion. Arrow

points at the unpigmented pharynx protruding from the underside of the planarian. G) Example image sequence of a

planarian undergoing scrunching in response to chemical exposure at room temperature, showing oscillations of body

length. This is one type of behavior, among others, which constitute the hyperkinesis category. Each frame is 1 sec

apart. Examples shown are exposed to 0.5% (v/v) DMSO (B), 10 μM DRO (C and D), 10 μM BRO (E), 10 μM DUL (F),

and 1 μM OLA (G). Scale bars: 2 mm. H) Representative plot of speed over time during the phototaxis assay. During a
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light and noxious heat (Fig 7, Tables 2 and 3). None of the tested compounds caused lethality

at the tested concentrations, though a few compounds caused a substantial number of planari-

ans to crawl out of their wells and dry out (“crawl-out behavior”). The BMC was calculated for

each endpoint to determine when phenotypic responses exceeded empirically determined

noise levels, defined by the benchmark response (BMR) (Fig 8, Tables 2 and 3, S10–S11

Tables).

Except for FEN, all chemicals showed activity in at least one endpoint in at least one tested

concentration. FEN did not show any observable effects up to 562 μM (the highest tested solu-

ble concentration). Moreover, no lethality (0%, n = 32) or qualitative defects were observed in

562 μM FEN after a 12-day exposure (S5 Fig), suggesting it may not be bioavailable to planari-

ans. ESC, the (S)-stereoisomer of CIT, was only active at�316 μM. However, OXA, its coun-

terion control, also caused similar phenotypes at these concentrations (S12 Table). MAL at

normal phototaxis response, planarians increase their speed during the blue light period. I) Minimum intensity

projections of the shaking portion of the stickiness assay. A “stuck” planarian adheres to the bottom of the well and is

not displaced, whereas an “unstuck” planarian dislodges and is displaced around the well. J) Length over time plots

showing normal gliding or the oscillatory scrunching gait [49] that is induced during the noxious heat assay. Given

that scrunching is the expected behavior during the noxious heat assay, we scored the number of planarians that do not

scrunch. K) Example schematic representation of the behavioral barcodes. First, a barcode is created for each chemical

concentration, consisting of a numerical vector of the compiled normalized score for each endpoint (columns). One

master barcode is made for each chemical by concatenating the barcodes for the individual concentrations. For details,

see Methods.

https://doi.org/10.1371/journal.pone.0315394.g007

Table 2. Binary endpoints.

Endpoint Description BMRa

Crawl-out % planarians that crawled out of the water 25b

Stickiness % stuck individuals 25

Shape (any) % individuals with any abnormal body shape 25b

Phototaxis % planarians that did not phototax [50] 35

Scrunching % planarians that did not scrunch in response to noxious heat 30

aBMR: benchmark response
bVariance was already minimized at all tested thresholds, thus the BMR was manually defined. See Methods.

https://doi.org/10.1371/journal.pone.0315394.t002

Table 3. Continuous endpoints.

Endpoint Description normalization Directiona BMRb

Anxiety Fraction of time spent in outer region of well [48] (Responsechemical/ Responsevehicle)*100–100 - 30

Resting_dark Fraction of time spent resting in 2nd dark cycle (Responsechemical-Responsevehicle)*100 + 60c

Resting_blue Fraction of time spent resting in 2nd blue cycle (Responsechemical-Responsevehicle)*100 + 35c

Speed_dark Mean speed (mm/s) in 2nd dark cycle (Responsechemical/ Responsevehicle)*100–100 - 60c

Speed_blue1 Mean speed (mm/s) in 1st 30 seconds of blue cycle (Responsechemical/ Responsevehicle)*100–100 - 80c

Speed_blue2 Mean speed (mm/s) in 2nd 30 seconds of blue cycle (Responsechemical/ Responsevehicle)*100–100 - 70c

Locomotor bursts (total) Sum of locomotor bursts in phototaxis assay Responsechemical-Responsevehicle + 20c

Noxious stimuli (strength) Median displacement at end of noxious heat [47] (Responsechemical/ Responsevehicle)*100–100 - 55c

a The directionality (increasing (+) or decreasing (-) compared to the median control response) of the effect.
bBMR: benchmark response
cBMR was determined based on the 5th or 95th percentile of the histograms of the normalized vehicle control response (S4 Fig)

https://doi.org/10.1371/journal.pone.0315394.t003
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200 μM, the counterion control for PRO, showed a significant effect on scrunching (S12

Table), but as PRO induced scrunching defects starting at much lower concentrations

(3.16 μM), this is likely not driven by the effects of the counterion. All other counterions for

the salt forms of the drugs were found to be negative. To assess whether any of the observed

effects were due to pH effects instead of compound-specific effects, the pH of the highest tested

concentration of each chemical was measured (S13 Table). For reference, we measured the pH

of Instant Ocean (IO) water as 6.72 ± 0.41 and that of 0.5% (v/v) DMSO as 6.63 ± 0.17

(mean ± SD, n = 5), which is consistent with previous reports of acceptable pH ranges for pla-

narian culture conditions [51]. Acute behavioral effects were seen with acidic conditions at pH

<4 (S13 Table). Both ESC and OXA had pH values<4 at the two highest tested concentrations

(316 and 1000 μM), while at 100 μM, where no behavioral effects were observed, the pH was

>4. Together, these data suggest that the effects seen at these concentrations may be due to

low pH. Of note, 1000 μM CIT, which did cause behavioral effects, had a pH of 6.42, suggesting

that the pH effects of ESC may have been driven by the OXA counterion. All other compounds

were within acceptable pH ranges where no adverse effects were observed and thus the

observed effects are presumed to be due to the pharmacological activity of the drugs.

Even within the same class, potency differences of several orders of magnitude were seen,

which may reflect differences in uptake and metabolism or in affinity to the planarian neuro-

nal targets. Lipophilicity can affect chemical bioavailability; therefore, we plotted BMC versus

the calculated distribution coefficient, logD for each chemical. Because logD can vary depend-

ing on the pH, we plotted the range of logD values corresponding to the presumed pH range

Fig 8. Activity of neuroactive drugs in planarians. Heatmap comparing the benchmark concentrations (BMCs) for

all neuroactive compounds in planarians after acute exposure. The first column shows the highest tested

concentration. As both “speed_blue” endpoints had similar BMC scores, only “speed_blue2” is shown as this was the

more sensitive of the two timepoints. AD: antidepressant, AP: antipsychotic, AX: anxiolytic, NS: noxious stimuli.

https://doi.org/10.1371/journal.pone.0315394.g008
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of the tested concentrations (ranging from the pH of the solvent as a proxy for the pH of the

lowest concentration to the measured pH of the highest tested concentration (S13 Table)). We

found no correlation between logD and BMC (S6 Fig), suggesting lipophilicity alone cannot

explain the differences in potency.

Because of the observed potency differences, we evaluated the phenotypic profiles indepen-

dent of concentration to identify any class-specific patterns (Fig 9). A significant loss of

scrunching behavior, i.e., hits in scrunching, was seen in almost all the tested compounds,

agreeing with our previous data showing that absence of heat-induced scrunching is a sensitive

readout of disturbed neuronal function across a broad range of chemical types [44, 46, 48].

Generally, the antipsychotics and anxiolytics showed a broader range of effects across multiple

endpoints than the antidepressants (Fig 9A). For example, decreased motility in the dark and

increased number of locomotor bursts were seen in >70% of the tested antipsychotics and

anxiolytics, respectively, but only 29% of antidepressants. Effects in phototaxis and anxiety

were more prominent in the antipsychotics than in the other classes. While “any abnormal

body shape” was seen with almost all the tested drugs, the specific type of body shape differed

across the drug classes (Fig 9B). For example, the antidepressants were largely characterized by

the presence of hyperactive shapes/behaviors, without the inclusion of other body shape clas-

ses. In contrast, antipsychotics and anxiolytics had more mixed phenotypes with instances of

contraction, C-shapes, and hyperactivity or C-shapes and hyperactivity, respectively.

One possible confounding factor in this hit comparison, which aggregates effects at all con-

centrations, is that some of the highest tested concentrations may reach toxic levels and thus

Fig 9. The drug classes showed different planarian phenotypic profiles. Radar plots showing the percentage of

chemicals in each class that had a hit at any concentration in (A) any endpoint or (B) specific body shape classes. In

(A) speed and resting endpoints in each light period were combined into a “motility” readout. LB: locomotor bursts;

NS: noxious stimuli.

https://doi.org/10.1371/journal.pone.0315394.g009
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the observed phenotypes may be due to a mix of neuroactivity and toxicity. In fact, a common

struggle in studies on neuroactive compounds is to distinguish neuroefficacy from toxicity,

which both need to be considered during the drug discovery process. Importantly drug toxicity

is the second most common reason (after lack of clinical efficacy) for promising drugs to fail in

clinical trials [52]; thus, it is important to identify possible toxicity early in the drug discovery

pipeline. While we currently do not have sufficient understanding of the phenotypic readouts

to be able to delineate neuroactive vs adverse effects, effects at low concentrations are likely to

constitute efficacy and not toxicity. Because nominal concentrations do not necessarily reflect

tissue concentrations due to compound-specific differences in uptake and metabolism, it is

impossible to define a water concentration threshold that would separate efficacy from toxic-

ity. Future work characterizing planarian drug metabolism will be helpful to gain a better

understanding of how physicochemical properties affect chemical bioavailability. Therefore, in

the absence of this knowledge, we included all nominal test concentrations for the planarian

classifications.

Classification of neuroactive drug classes using planarian behavioral phenotyping.

Ultimately, the strength of planarian behavioral screening is in the multidimensional informa-

tion gained from looking across multiple endpoints testing various neurological functions and

not just at each endpoint in isolation. To this end, each tested concentration of a compound

was given a phenotypic barcode consisting of the compiled normalized score compared to in-

plate solvent controls (see Methods, Fig 7K). For each chemical, one master barcode was cre-

ated by concatenating the barcodes of all tested concentrations in relative order (S7 Fig). To

keep comparisons similar across different test concentrations, the relative order of the concen-

trations was considered rather than the absolute concentration. For the classification methods,

the data were truncated to only the highest 5 concentrations such that negative/missing data

were not driving the classifications. These planarian barcodes were then evaluated using the

same computational methods as for the chemical features to determine how well the neuroac-

tive drug classes could be separated (Figs 10–12). Compared to Fig 4, which uses the chemical

descriptors as input, Fig 10 shows more overlap between the clusters in the LDA-based

approaches. The anxiolytics category completely overlaps with the other categories.

As with the chemical descriptors, comparisons were made both with and without the coun-

terions. ANNE and SVMs were each initially run across 10 different models (S15–S18 Tables).

The best performing model for each was chosen (see Methods) for comparison across meth-

ods. It is important to note that the algorithm used for training the ANNE models incorpo-

rated a stopping procedure to guard against overfitting, whereas the SVM algorithm did not

provide this feature. However, while our process for selecting the best of ten models of each

type included terms to reward accuracy, it also included terms to penalize complexity accord-

ing to the number of neurons and descriptors for ANNE models or the number of descriptors

for SVM models (see Methods for details).

All four classification methods were able to distinguish the neuroactive drug classes based

on planarian phenotypic barcodes, with accuracies ranging from 59.1% to 100%. The machine

learning methods, particularly SVMs, tended to perform better than PCoA-LDA or

UMAP-LDA. Similar to the classification based on physicochemical data, UMAP-LDA per-

formed the worst of the four methods. While this difference was clear when counterions were

included (accuracy of 59% versus >72% in all other models (Fig 11)), UMAP-LDA and

PCoA-LDA had practically the same adjusted accuracy when counterions were excluded (Fig

12). In contrast to the cheminformatic classifications, inclusion of the counterions decreased

accuracy for all methods except SVMs, which had 100% accuracy in all cases. This decreased

accuracy is likely because in both PCoA-LDA and UMAP-LDA the counterion OXA was “mis-

classified” as one of the drug classes due to the observed behavioral effects from the low pH.
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Because FEN was inactive in the planarian screen, it was not included in these classifica-

tions. Inclusion of FEN (S8–S10 Figs and S19–S22 Tables) led to similar classification of the

remaining drugs but showed overall lower accuracy due to the misclassification of FEN, either

as a counterion or as an antidepressant. Notably, the lack of effects with FEN cannot be

explained by its size or log D (S6 Fig). FEN is an atypical non-benzodiazepine anxiolytic,

which acts as an antagonist to the metabotropic glutamate receptor 5 (mGluR5) [53]. Planari-

ans have glutamatergic neurons [54, 55] and a mGlu5 receptor homolog is present in the D.

japonica transcriptome [29], suggesting this lack of activity is likely not due to lack of the tar-

get. However, FEN has been found to vary in bioavailability in humans [56, 57] and due to var-

ious side effects observed in clinical studies [58], is not currently used as an anxiolytic. Thus,

the situation with FEN is complex and the lack of both acute and chronic effects with FEN sug-

gest that uptake in planarians may be insufficient to cause effects. Notably, due to the poor

water solubility of FEN, we could not test higher concentrations.

Many of the compounds studied here have previously been tested in a behavioral screen in

7-day old zebrafish larvae [20]. Similar to our findings for the classifications based on planar-

ian data, the authors found that they could visually distinguish the three drug classes using

multidimensional scaling, with considerable overlap of the clusters, particularly of anxiolytics

Fig 10. Classification of planarian behavioral phenotyping based on LDA-based approaches. Computational methods are

arranged by rows: (A) PCoA-LDA; (B) UMAP-LDA. Counterion inclusion/exclusion is arranged by columns: (1) with

counterions; (2) without counterions. Ellipses represent 95% confidence intervals. The axes show the percentage of the total

eigenvalues.

https://doi.org/10.1371/journal.pone.0315394.g010
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Fig 11. Confusion matrices of the classification methods based on planarian behavioral phenotyping of the drugs and counterions.

Confusion matrices for the different classification methods: (A) PCoA-LDA; (B) UMAP-LDA; (C) ANNE; (D) SVMs. AD:

antidepressant, AP: antipsychotic, AX: anxiolytic; CI: counterion. In A and B, predicted accuracy was calculated following an exhaustive

jackknifing. In C and D, predicated accuracy refers to the overall accuracy. *indicates randomly chosen members of the test set. See the

Methods for model selection. Test set accuracies were 80.0% for ANNE (S15 Table) and 100% for SVMs (S17 Table).

https://doi.org/10.1371/journal.pone.0315394.g011
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Fig 12. Confusion matrices of the classification methods based on planarian behavioral phenotyping of the drugs only.

Confusion matrices for the different classification methods: (A) PCoA-LDA; (B) UMAP-LDA; (C) ANNE; (D) SVMs. AD:

antidepressant, AP: antipsychotic, AX: anxiolytic; CI: counterion. In A and B, predicted accuracy was calculated following

an exhaustive jackknifing. In C and D, predicated accuracy refers to the overall accuracy. *indicates randomly chosen

members of the test set. See the Methods for model selection. Test set accuracies were 100% for ANNE (S16 Table) and

100% for SVMs (S18 Table).

https://doi.org/10.1371/journal.pone.0315394.g012
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and antidepressants [20]. Given the lower complexity of planarians and their status as an

invertebrate model [14], it was encouraging to find that we were able to perform effective

behavioral classification schemes in a simple and cost-effective model.

Planarian phenotyping adds information to cheminformatics

The goal of this pilot study was to determine the extent to which planarian behavioral pheno-

typing could provide additional information for neuroactive drug classification that could not

be captured with cheminformatics alone. The value of using a combined cheminformatics and

organismal MTS approach has been demonstrated for developmental toxicity and neurotoxic-

ity studies using zebrafish larvae [59]. Here, we show that planarian phenotypic data on neuro-

active chemicals augments the cheminformatics data.

The classification of the chemicals based on the planarian behavioral phenotyping did not

use any information about the chemicals. Thus, the fact that classification accuracy

reached > 70% for all models (except for UMAP-LDA with counterions included) and>90%

for some models for the planarian data suggests that behavioral barcodes contain meaningful

information that reflects the underlying biology. Moreover, while PCoA-LDA and

UMAP-LDA classification methods had higher accuracy when using chemical descriptors

rather than planarian behavioral barcodes, the machine learning models had similarly high

accuracies (>90%) for both data streams. Thus, the choice of classification method can be

equally as impactful as the choice of input data. Taken together, our data imply that planarian

behavioral screening can identify and differentiate similarly acting compounds without knowl-

edge of the underlying biology or physicochemical properties, making it well suited for unbi-

ased, discovery-based screening of neuropsychiatric drug candidates.

When considering the primary classification indicated on the manufacturer’s website, DUL

and ARI were among the most misclassified compounds using behavioral responses across the

different methods (Figs 11 and 12). However, both compounds have known dual functions.

DUL affects both serotonin (5-hyroxytryptamine; 5HT) and noradrenaline reuptake [60], and

while it is mainly classified as an antidepressant, it has been shown to have anxiolytic effects

upon chronic exposure in mice [60, 61]. Across all classification methods except for SVMs,

DUL was often classified as an anxiolytic. Similarly, ARI was originally classified as an atypical

antipsychotic but is also used clinically to augment antidepressant efficacy [62, 63]. When

using planarian phenotyping, ARI was often classified as either an antidepressant or anxiolytic.

Thus, planarian phenotyping was able to detect known “off-label” effects of these drugs that

could not be detected by cheminformatics alone. Moreover, planarian behavioral barcoding

correctly identified BUP as an antidepressant in all models–in contrast to our findings with

the physicochemical data. BUP is an aminoketone and its mode of action as a norepinephrine

and dopamine reuptake inhibitor is distinct from that of the other antidepressants which are

all selective serotonin reuptake inhibitors [64]. This knowledge of the in vivo effects can only

be gained from an organismal systems-level approach, where the effects of these pathway inter-

actions can be observed.

Study limitations and considerations for follow-up studies

This pilot study was small in scope (19 compounds) and faced limitations that need to be con-

sidered when designing follow-up studies with larger compound libraries to support or refute

the findings reported here. First, we tested only 5 anxiolytics because most are controlled sub-

stances, and thus more expensive and difficult to obtain and use than other compounds. Fur-

thermore, given that FEN was inactive in planarians up to the solubility limit, this reduced the

anxiolytic category to only 4 active compounds for the planarian classifications compared to 7
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compounds in each of the other two categories. While the numbers of compounds were still

comparable here, class imbalance is something to consider when screening larger libraries

[65, 66].

For planarian behavioral phenotyping, we created an aggregated barcode that included

effects across all tested concentrations, thus potentially including toxic effects at higher con-

centrations for some chemicals. By looking at the whole concentration profile for a chemical,

we anticipated finding phenotypic signatures for compounds that act similarly, but it is possi-

ble that the effects were not aligned by relative concentration or that toxicity of different chem-

icals can manifest in different ways and confound the classifications. Some zebrafish studies

have overcome this issue by selecting single representative concentrations of a chemical to use

as a comparator [20]. However, it is not always straightforward to determine which concentra-

tion is truly representative and reflective of substantial neuroefficacy without the confounders

of toxicity.

We evaluated four computational models and found them to have comparable performance

on our data, which made it difficult to decide on a “best” classification method, likely due to

the small scope of this study. The machine learning models reached >90% for all cases, thus

generally performed better than the LDA methods, but they differed in misclassifications and

information content. The LDA methods provide insight into the similarity/distances between

chemicals which allows for visualization of the classification (Figs 4 and 10) and are not pro-

vided by the ANNE and SVMs, which are more enigmatic in how the models create the

classifications.

The next steps to further test these classification methods would be to screen larger libraries

of neuroactive compounds that are commercially available, as for example in [20, 22]. Having

a larger library would allow for a truly separate and larger test set of chemicals to evaluate

model performance instead of the jackknifing approach conducted here. For these initial scal-

ing-up efforts, it will be important to select chemical libraries that contain several members of

the same category while also spanning different classes and to include chemicals with both

known and unknown modes of action.

One consideration for testing larger libraries of 1000+ chemicals is feasibility. While small

organism MTS is substantially faster than vertebrate testing it is still an experimental method

and thus will be rate-limiting compared to a purely computational approach. To screen larger

libraries, one could select one or two concentrations based on the tests conducted in this pilot

study for an initial screen. Further screening for concentration response information could

then be performed on promising candidates from the initial screen. This approach has been

successfully used in zebrafish larvae to conduct such large library screens [20, 22]. Moreover,

the increased incorporation of robotic handling systems will expand the throughput capabili-

ties of small organismal screens. Upon generating larger datasets, the next step would be to

integrate the two data streams used here (cheminformatics and planarian phenotyping) to gen-

erate a single classification. Other available data streams, such as those generated from in vitro
HTS [67, 68] or computational modeling of drug-target interactions [69, 70], could also be

integrated, similar to the Integrated Approaches to Testing and Assessment (IATA) frame-

work used in toxicology to combine multiple data streams to assess chemical toxicity [71, 72].

Combining multiple data streams allows for a broader understanding of complex biological

processes that are not well captured by single assays [73]. Moreover, findings can be validated

across models, allowing for weight of evidence-based decision making. This implies that there

must be a degree of inter-model information redundancy while simultaneously having each

model bring in complementary information, such that the information content from the test

battery is more than the sum of its parts.
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A few recent studies have implemented such a synthesis based on different types of infor-

mation, e.g., cheminformatics, and/or HTS data, including in vitro cell painting and gene

expression profiles, e.g. [74, 75]. To the best of our knowledge, such an integrative approach

including MTS behavioral data has not yet been attempted. How heterogeneous data streams

are combined and weighed is a non-trivial decision [73] that will itself require validation with

known chemical libraries. Thus, there are multiple steps to take and decisions to make that

need to be carefully considered and scrutinized to build upon the results from this pilot study.

The important contribution of this work is that it has shown the feasibility and promise of

invertebrate behavioral MTS as a viable experimental alternative to vertebrate testing for first-

tier screening of novel drug candidates.

Materials and methods

Chemicals and chemical structures

Neuroactive compounds that have been functionally classified as antidepressants, antipsychot-

ics or anxiolytics were studied. Functional classifications were assigned based on the primary

classification indicated on the manufacturer’s website and/or previous literature [20]. Table 1

lists the chemicals studied including the chemical abstracts service (CAS) numbers and infor-

mation pertaining to the use of the compounds in the experimental studies. Some chemicals

were provided in salt form; thus, we also tested the respective counterions alone (Table 1).

For computational models based on two-dimensional (2D) chemical structures of drugs

and counterions, 2D coordinates were downloaded as structure-data format (SDF) files from

PubChem (https://pubchem.ncbi.nlm.nih.gov/) and concatenated into a single 2D SDF file

using OpenBabel 3.1.1 (https://github.com/openbabel/openbabel) [76] for Linux (Linux Mint

21.3 Xfce, https://linuxmint.com/). For computational models based on three-dimensional

(3D) chemical structures of drugs and counterions, 3D coordinates were downloaded as SDF

files from PubChem, energy-minimized in the AMBER14 force field at pH 7.40 [77, 78] using

YASARA-Structure 23.12.24 [79] for Linux and exported as a single concatenated 3D SDF file.

Version 2000 was used for both 2D and 3D SDF files. The ionization state of each compound

at pH 7.40 was confirmed using the pKa module of Marvin Sketch 23.1.0 for Linux (https://

www.chemaxon.com). Structures, names, 3-letter codes, and primary functional pharmacolog-

ical classes of the drugs and counterions used in the computational studies are shown in Fig 1.

Chemical similarity

Chemical similarity of the 3D SDF structures of drugs and counterions relative to ARI as a ref-

erence structure was assessed using vROCS 3.6.1.3 (OpenEye, Cadence Molecular Sciences,

Santa Fe, NM, https://www.eyesopen.com; [69]) for Linux. The choice of a reference com-

pound is arbitrary. However, given that the algorithm was based on computing the volume of

overlap between each molecule and the reference compound after a 3D alignment of the two

structures, we chose to use the reference compound with the largest molecular volume as

assessed by the van der Waals radii of the constituent covalently bonded atoms. Similarity was

expressed quantitatively in terms of the Tanimoto coefficient (Tc), which is the most widely

used similarity metric in cheminformatics [80, 81]. The program calculates three Tc values: Tc

Shape, based on a 3D alignment of two molecules that maximizes the volume of overlap; Tc

Color, derived from a 3D alignment of two molecules with respect to six molecular features

(H-bond donor, H-bond acceptor, anion, cation, hydrophobe, and ring); and Tc Combined,

the sum of Tc Shape and Tc Color. The numerical values of Tc Shape or Tc Color range from

0 (no similarity) to 1 (complete similarity); therefore, Tc Combined ranges from 0 (no similar-

ity) to 2 (complete similarity). Note that two identical molecules would have Tc Shape and Tc
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Color coefficients of 1. However, if two structures have Tc Shape and Tc Color coefficients of

1, this does not necessarily mean that the molecules are identical because two non-identical

compounds could have distinctive features that were not accounted for in the similarity algo-

rithms [82].

Chemical descriptors

Chemical descriptors (comprising computed chemical properties and fingerprints) were calcu-

lated for 2D and 3D structures of drugs and counterions using absorption, distribution, metab-

olism, excretion, and toxicity (ADMET) Predictor1 11.0.3 (Simulations Plus, Lancaster, CA)

for Windows (10 Pro 22H2) (S1 and S2 Files). The fingerprint type was extended connectivity

fingerprint diameter 6 (ECFP6). Within ADMET Predictor1, fingerprints were converted to

descriptor format and combined with the other computed chemical properties descriptors for

use in the computational models. For each of the 2D structures (18 drugs and 5 counterions)

there were 908 descriptors (514 fingerprints and 394 directly calculated properties), and for

each of the 3D structures (21 drugs and 5 counterions) there were 948 descriptors (516 finger-

prints and 432 directly calculated properties). Importantly, when considering 2D structures

CIT and ESC are treated as one structure which we label as CIT, leading to only 18 drugs.

Because 3 of the 18 drugs were administered as racemic mixtures in the behavioral assays, the

separate structures of the (R) and (S) stereoisomers of these compounds were included in the

3D computational models, thereby giving rise to 21 3D drug structures (and 5 counterions).

The 2D and 3D descriptors were exported from ADMET Predictor1 as two separate data files

in CSV format for use in classification models. To keep the data size comparable to the planar-

ian data, which considers each of the 19 tested compounds as one entity, we focused on the 2D

structural features in the main text.

Classification models

Linear discriminant analysis (LDA) preceded by principal coordinate analysis

(PCoA). LDA is a supervised linear ordination and classification technique that maximizes

the discrimination between classes of labeled data [83]. LDA is a preferred classification proce-

dure when there are more than two classes, in which cases the method is also known as canoni-

cal variate analysis (CVA) or canonical discriminant analysis (CDA). When the number of

predictor variables is greater than the number of samples, LDA is preceded by a dimension

reduction technique such as principal component analysis (PCA) or PCoA [84].

We chose PCoA as the dimension reduction step because PCoA can use any desired dis-

tance or dissimilarity measure, although Gower distance tends to be preferred [85], whereas

PCA is restricted to Euclidean distance. Moreover, PCoA has been combined with LDA to

create a successful sequential method for ordination and classification of standardized data

called canonical analysis of principal coordinates (CAP) or generalized discriminant analysis

(GDA) that preserves the initially chosen distance or dissimilarity measure in the resulting

ordination [86].

The procedures for PCoA-LDA were carried out as follows: Either the chemical descriptor

files or the barcode files of planarian behavioral responses were imported into the data analysis

program, PAST 4.16c for Windows (https://www.nhm.uio.no/english/research/resources/

past/; [87, 88]). Classifications based on 2D or 3D chemical descriptors were carried out with

or without the counterions. Classifications based on planarian responses were conducted on

data with or without FEN and with or without counterions. Columns that were deemed unin-

formative by the PAST software (non-numeric, all-zero, all-missing, singleton, and constant)

were removed, and the remaining data were standardized so that each column had mean = 0
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and SD = 1. Following dimension reduction in PAST using PCoA with Gower distances

[89–91], LDA was carried out in PAST using the number of PCoA coordinates that yielded the

highest classification accuracy (expressed as the percentage of correctly classified chemicals)

after applying an exhaustive leave-one-out procedure (jackknifing) [92, 93]. Clusters identified

by LDA were displayed as 2D scatterplots with the percentage of the total eigenvalues shown

on each of the two axes and the clusters demarcated as 95% confidence ellipses. When the

number of PCoA coordinates used for LDA was greater than two, the sum of the percentages

of the total eigenvalues on the two axes was less than 100%.

LDA preceded by uniform manifold approximation and projection (UMAP). UMAP

was carried out on standardized data files based on chemical descriptors or planarian behav-

ioral responses in PAST 4.16c using Gower distances as described above for PCoA. The

UMAP algorithm employed by PAST was derived from the original method of [94]. UMAP is

a nonlinear dimension reduction and ordination method that has capabilities for preserving

both the local and global structures of the original data, as an alternative dimension reduction

method prior to LDA. UMAP provides a complementary alternative to PCoA, which is a linear

dimension reduction and ordination technique that emphasizes preservation of the global

structure of the original data [95].

The numbers of embedded and UMAP neighbors, as well as the minimum distance

between samples, were systematically varied to achieve the maximum separation of clusters

after 100 UMAP iterations. Final UMAP coordinates were then used as input for running

LDA in PAST as described above for PCoA-LDA. The resulting LDA output included 2D scat-

terplots with 95% confidence ellipses and percent classification accuracies (unadjusted and

jackknifed).

Artificial neural network ensemble (ANNE). An artificial neural network (ANN) is a

mathematical construct that mimics a simple array of biological neurons consisting of an

input layer, a hidden layer, and an output layer [96]. Inputs with various weights are transmit-

ted to neurons in the hidden layer, where the summed weighted inputs are compared with a

threshold value generated by a sigmoid activation function. When the threshold value is

exceeded, a signal is conveyed to the output layer. ANNs have the capacity to accept nonlinear

and large numbers of inputs from which they can adapt and learn, thereby enabling them to

make predictions in the form of continuous outputs (regression models) or discrete assign-

ments to two or more categories (classification models) [97]. Multiple ANNs can be combined

into an ensemble (ANNE) so that their outputs are channeled to a voting or averaging algo-

rithm to create an ensembled output, resulting in enhanced performance of ANN-based

regression and correlation models [98].

ANNE classification was performed using the Modeler™ 11.0 module of ADMET Predic-

tor1 11.0.3, with CLASS as the dependent variable. The classes consisted of the four primary

functional categories (antidepressants, antipsychotics, anxiolytics, and counterions). Ten

final models were created for each of the following four sets of chemical descriptors: 2D

descriptors with or without counterions; and 3D descriptors with or without counterions.

Likewise, ten final models were created for each of the following four sets of planarian behav-

ioral data: including FEN with or without counterions; and excluding FEN with or without

counterions.

Before generating the models, the program screened all the descriptors to remove those

with the following characteristics: identical or with coefficients of variation� 1%; under-rep-

resented (non-zero for 1–3 data points); or highly correlated (Pearson r� 0.98). For chemical

descriptors, the culling process reduced the number of candidate 2D descriptors from 908 to

162 and the number of candidate 3D descriptors from 948 to 192. During the running of the

ANNE and SVMs models, the algorithms selected the smallest number of descriptors that
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optimized performance; for some ANNE models, the final number of descriptors was as low as

one, and for some SVMs models, the final number of descriptors was as low as two. S1 Table is

a compilation of all of the chemical descriptors that were used in constructing the ANNE and

SVM models listed in S2–S9 Tables. For planarian behavioral descriptors, the culling process

reduced the number of candidate descriptors from 87 to 80 (FEN with counterions), 87 to 81

(FEN without counterions), 87 to 80 (without FEN with counterions), and 87 to 81 (without

FEN and without counterions).

The training:test ratios of chemicals for chemical descriptor files were as follows: 2D with

counterions, 18:5; 2D without counterions, 14:4; 3D with counterions, 21:5; and 3D without

counterions, 17:4. These ratios for planarian behavioral files were as follows: FEN with coun-

terions, 18:5; FEN without counterions, 15:4; without FEN with counterions, 17:5; without

FEN without counterions, 14:4. Test set selection was done via randomized stratified sampling

by CLASS. During each run, the members of the ensemble automatically were selected by ini-

tially assigning random weights to each submodel and partitioning the training sets into train-

ing and verification sets in an approximate 2:1 ratio. After training, scores were assigned to

each model according to the summed verification set performance and the absolute difference

between verification and training set performance using the Youden index as the criterion. To

avoid overtraining of ANN models, training was automatically halted when the verification set

score failed to improve or increased beyond a preset number of iterations.

Generation of each of the 10 final models was initiated using a unique random seed num-

ber. Final descriptor selection for each model was carried out by the software using a genetic

algorithm to explore the effectiveness of different descriptor combinations. Models were then

run using default settings for the number of generations, number of neurons, and number of

descriptors; these settings were automatically adjusted to be appropriate for the number of

chemicals in the training and test sets.

For each run, the following performance metrics generalized to k classes and expressed as

percentages were calculated: Youden index (J) [99], Matthews correlation coefficient (MCC or

Rk) [100], and Accuracy (Acc) (overall percent correctly classified) [65]. These metrics were

calculated by the Modeler™ 11 software for the training set, test set, and all chemicals. The data

summaries include the following information for each model: mean and SE (n = 10 models)

for each of the 9 performance indicators; number of neurons and descriptors; and the numbers

and identities of misclassified chemicals. The rank for each ANNE and SVMs model, respec-

tively, was determined by applying the RANK.AVG function in Microsoft Excel 365 to SUM

(training metrics + test metrics + (100×Nmin/N) + (100×Dmin) /D)), where Nmin = minimum

number of neurons, N = number of neurons, Dmin = minimum number of descriptors, and D
= number of descriptors. Thus, the ranking rewarded models that produced high performance

with the smallest numbers of neurons and/or the smallest numbers of descriptors, in keeping

with the parsimony principle [101, 102]

Support vector machines (SVMs). This is a machine-learning technique that seeks to

define hyperplanes in n-dimensional space that maximize the separation of data points into

classes [103]. The name of the method stems from the fact that the points closest to a given

hyperplane are called support vectors [104]. Although SVMs can be used for regression models

and outlier detection, they are especially well suited for classification [105]. SVMs are intrinsi-

cally a binary classifier, but they have been successfully adapted for classifications involving

multiple classes.

SVMs classification was performed using the Modeler™ 11.0 module of ADMET Predictor1

11.0.3, with CLASS as the dependent variable, as described above for ANNE classification.

Likewise, the same evaluation statistics and data summaries employed by ANNE were used by

SVMs.
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The default correlation setting for our machine-learning models was� 0.98. Highly corre-

lated variables were automatically removed for both the physicochemical descriptors (includ-

ing the molecular fingerprints) and the behavioral endpoints.

Planarian care and culture

D. japonica planarians from an established lab culture were used for all experiments and culti-

vated according to standard protocols [44, 47]. The planarians were kept in 0.5 g/L Instant

Ocean (IO) Salts (Spectrum Brands, Blacksburg, VA, USA) in BPA-free polypropylene plastic

containers (approximately 25 cm L x 14 cm L x 8 cm H), with the lid on loosely and stored at

20˚C in a Panasonic refrigerated incubator in the dark when not used for experiments. The

planarians were fed 1-2x per week with 100% grass-fed beef liver (purchased from a local

farm) or USDA-certified organic chicken liver (Bell and Evans) and cleaned on the feeding

day and 2 days later. When not fed, the containers were cleaned weekly. Similarly sized intact

planarians that were fasted for 5–7 days were arbitrarily selected to be used in experiments, as

in [48].

Chemical exposure

Stock solutions were prepared at 200X of the highest test concentration in either DMSO

(Sigma-Aldrich, purity = 99.9%) or Milli-Q water, depending on solubility (Table 1). The

200X stocks were diluted to 10X stocks in IO water just prior to exposure. Planarians were

exposed to the chemicals in 48-well tissue culture-treated polystyrene plates (Genesee Scien-

tific, San Diego, CA, USA), with each well containing 1 planarian in 200 μL of chemical solu-

tion. When used as a solvent, DMSO was used at a final concentration of 0.5% (v/v) in all test

concentrations, which does not cause morphological or behavioral effects in D. japonica [43].

For most chemicals, serial half-log dilutions were used to prepare the range of concentra-

tions tested, which were initially guided by previous results in developing zebrafish [20] or our

previous studies with D. japonica [106]. For FEN and MID, serial quarter-log dilutions were

used because preliminary tests had already narrowed an appropriate concentration range to

span no effects to strong effects (or maximum solubility). All chemicals were screened over at

least 5 concentrations, with each row of the 48-well plate consisting of one concentration

(n = 8). For some compounds, additional lower concentrations were screened if the original

lowest concentration showed effects in the preliminary data analysis. Moreover, some com-

pounds were screened at additional higher concentrations if no statistically significant effects

were observed in the original range and the compound was still soluble at higher concentra-

tions. The counterions were screened at the concentration equivalent to what would be found

in the highest concentration of the respective salt form of a tested drug. The pH of the highest

test concentration for each chemical was first measured with pH strips (VWR, Radnor, PA).

As we found the measurements with the pH strips were not precise nor reliable, we remea-

sured the pH using an Apera PH60-MS pH Tester kit for small volumes (Apera Instruments,

Columbus, Ohio), taking measurements after allowing the probe to equilibrate for 20 min.

Plates were sealed with thermal film (Excel Scientific, Victorville, CA, USA) immediately

after addition of chemicals. Experiments were run on intact planarians within 15 minutes– 3

hours of chemical introduction. This time window was chosen for throughput, to allow for

multiple plates to be set up and tested in one experiment. Which plates were screened first

was arbitrarily decided, to avoid any systematic bias in the treatment. Technical triplicates

were run for all chemicals (total n = 24 per concentration), employing a rotating orientation

of the chemical concentrations in the plate rows (Fig 7A) to account for edge effects when

screening [44].
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One screening plate consisted of negative and positive assay controls, each run at a single

concentration, which were used to evaluate proper performance of the assays. Negative con-

trols consisted of D-sorbitol and L-ascorbic acid (both from Sigma-Aldrich) at 100 μM [44].

Ethanol (1% v/v, Greenfield Global, Toronto, Canada), DMSO (3% v/v), and sodium dodecyl

sulfate (SDS, 1 mg/L, Life Technologies, Carlsbad, CA) were used as positive controls at con-

centrations that induce behavioral phenotypes in the absence of lethality in D. japonica [43].

The positive controls were prepared fresh at 10x in IO water on the day of the experiment. All

assay controls performed as expected (S23 Table).

Planarian screening methodology

Intact planarians were assayed for acute effects on lethality/crawl-out behavior, morphology,

stickiness, and various behaviors (locomotion, phototaxis, and noxious heat sensing) using the

screening platform and analysis methodology described in [44, 47, 48, 50]. Screening consisted

of three assays: Phototaxis, Stickiness and Scrunching (Fig 7A), which have been described in

detail in [47]. Image analysis was performed using object tracking [42] in MATLAB (Math-

Works, Natick, MA) or Python as described in [44, 47, 48, 50]. Because the liquid volume only

takes up 13% of the total well volume, planarians can crawl out of the liquid and dry out. Pla-

narians which crawled out of the water (crawl-out, also previously referred to as “suicide”

[44]) were excluded from the analysis of all subsequent endpoints. Worms were included in

the analysis for endpoints in which they were still alive and in the exposure solution.

The endpoints used are described in Tables 2 and 3 and consisted of two major classes:

unstimulated and stimulated behaviors. Unstimulated behaviors included lethality/crawl-out,

presence of abnormal body shapes/behaviors, and general locomotion (speed and resting in

the dark, locomotor bursts and anxiety). The “anxiety” endpoint [50, 106] measures the

amount of time spent in the outer portion of the well by the planarians [48] and is akin to simi-

lar measures in rodents [107] and adult zebrafish [108], wherein spatial exploration is used to

describe “anxiety-like” behaviors. It is also referred to as “wall preference” in the literature

[48, 109]. Specific distinctive body shape categories (contraction, C-shape, corkscrew, pharynx

extrusion, and hyperkinesis) were manually scored blind by a researcher (Fig 7B–7G). Con-

traction, C-shape, and corkscrew were scored as described in [106]. Hyperkinesis consisted of

an array of different types of generally hyperkinetic movements that could not be captured by

the other categories, such as muscle waves/scrunching [106], hyperextension, head flailing and

convulsive behavior, consisting of uncoordinated muscle twitching (S1 Video). A single pla-

narian could be scored as exhibiting up to three different shape categories. For benchmark

concentration (BMC) modeling, described below, the presence of any abnormal body shape

was used to determine activity, whereas for phenotypic profiling, both incidence rate of any

body shape and the incidence rates in the specific shape classes were used. Stimulated behav-

iors were measured in response to an environmental stimulus (shaking, light, or noxious heat,

Fig 7).

Benchmark concentration modeling

Benchmark concentrations (BMCs) were calculated for every chemical and endpoint to quan-

tify potency using the Rcurvep R package [110] similar to the procedure described in [48].

Briefly, the planarian responses for each endpoint were transformed as needed to allow for

determination of directional, concentration-dependent responses, as described in [48]. The

transformed data for each individual planarian is provided in S3 File. For the binary endpoints

(crawl-out, body shape, stickiness, phototaxis, scrunching), the incidence rates (number of pla-

narians affected and total number of planarians) from the combined data from all replicates
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(n = 24) was used. For all binary endpoints except crawl-out, the experimental incidence rates

for each concentration were normalized by the incidence number of the respective in-plate

vehicle controls. Any negative incidence numbers after normalization were set to 0. For con-

tinuous endpoints, the raw response of each individual planarian was normalized either by

dividing by or subtracting the median of vehicle control values for that plate (Table 3). Except

for locomotor bursts (total), the normalized outcome measures were multiplied by 100 to rep-

resent the percent change from the control populations and to provide an appropriate range to

perform the BMC analysis. The normalized data were used as input for the Rcurvep package to

calculate the benchmark response (BMR) as described in [48]. For some endpoints, the R

package could not converge to produce an accurate BMR due to high variance and/or non-

monotonic concentration responses. In these cases, the BMR was set to the 5th or 95th percen-

tile of the normalized response of the aggregated vehicle controls (S4 Fig), to set the threshold

above which effects would be seen. The determined BMR was then used to calculate the BMC,

the concentration that exceeds that BMR in the modeled concentration response curve [110],

for each endpoint, using n = 1000 bootstrapped curves. For all endpoints, we report the result-

ing median BMCs from this bootstrapped analysis. The lower and upper limits (5th and 95th

percentiles, respectively) of the BMC for each endpoint are listed in S4 File. Some endpoints

can be affected in both directions (e.g., increases or decreases in speed). For these endpoints,

BMRs and BMCs were calculated for each direction, but we found that hits were only deter-

mined in one direction and thus only report that direction (Table 3).

Phenotypic profiling

To quantitively describe the multidimensional phenotype observed for each test concentration,

a “phenotypic barcode” was created for each chemical concentration consisting of either the

incidence rate for all binary endpoints, multiplied by 100, or the median normalized response

for all continuous endpoints, as were input into the BMC analysis. Next, one master barcode

was created for each chemical by concatenating the barcodes of all tested concentrations in rel-

ative order (S5 File). To keep comparisons similar across different test concentrations, the rela-

tive order of the concentrations was considered rather than the absolute concentration.

Because different numbers of concentrations were tested across the different chemicals, we

“right-aligned” the barcodes such that the highest test concentrations were aligned across all

chemicals. For lower concentrations that were not tested in a specific chemical, the barcodes

were filled with 0s (indicative of no effects). When being input into the classification methods,

the data were truncated to only the highest 5 concentrations such that negative/missing data

were not driving the classifications (S7 Fig).

Supporting information

S1 Fig. Classification based on 3D chemical descriptors for LDA based approaches.

Computational methods are arranged by rows: (A) PCoA-LDA; (B) UMAP-LDA. Counterion

inclusion/exclusion is arranged by columns: (1) with counterions; (2) without counterions.

Misclassifications after jackknifing: (A) none; (B) PRO, BUS; (C) ARI, BUS, TRA; (D) ARI,

BUS, TRA. Ellipses refer to 95% confidence intervals. The axes show the percentage of the total

eigenvalues; this does not sum to 100% in (A1) because there was a third axis that accounted

for the remaining 0.60%.

(TIF)

S2 Fig. Confusion matrices of the classification methods based on 3D chemical descriptors

of the drugs and counterions. Confusion matrices for the different classification methods:
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(A) PCoA-LDA; (B) UMAP-LDA; (C) ANNE; (D) SVM; AD: antidepressant, AP: antipsy-

chotic, AX: anxiolytic; CI: counterion. In A and B, predicted accuracy was calculated following

an exhaustive jackknifing. In C and D, predicated accuracy refers to the overall accuracy.

*indicates randomly chosen members of the test set. In (C), model 05_1n7, marked with *, was

ranked first but did not include a member of the anxiolytic class in the test set. Thus, we also

included the second-place model (model 06_1n8), marked with +, which included at least one

member from each of the 4 classes. In (D), four models were tied for the best model but for

clarity only the first of the 4 tied models is indicated because there were no misclassifications

of any test set members. The members of the 4 test sets for the 4 tied first-place models were as

follows: 01_2i: CIR, FLR, DRO, DIA, BRD; 05_21: ESC, FLS, BRO, MID, MAL; 06_2i: BUA,

IMI, DRO, PRO, SOD; 08_21: BUA, FLS, BRO, FEN, MAL. Test set accuracies were 100% for

ANNE (S6 Table) and 100% for SVMs (S8 Table).

(TIF)

S3 Fig. Confusion matrices of classification methods based on 3D chemical descriptors

without counterions. Confusion matrices for the different classification methods: (A)

PCoA-LDA; (B) UMAP-LDA; (C) ANNE; (D) SVM; AD: antidepressant, AP: antipsychotic,

AX: anxiolytic. In A and B, predicted accuracy was calculated following an exhaustive jackknif-

ing. In C and D, predicted accuracy refers to the overall accuracy. *indicates randomly chosen

members of the test set. In (C), model 03_1n7, marked with *, was ranked first but did not

include a member of the anxiolytic class in the test set. Thus, we also included one of the sec-

ond-place models (model04_2n2), marked with +, which included at least one member from

each of the 4 classes. 04_2n2 was tied for second place with 09_2n2, which had the following

test set members: BUA, FLS, OLA, MID. For clarity, we only marked model 04_2n2 in (C). In

(D), three models were tied for the best model but for clarity only the first of the 3 tied models

is indicated because there were no misclassifications of any test set members. Test set accura-

cies were 100% for ANNE (S7 Table) and 100% for SVMs (S9 Table).

(TIF)

S4 Fig. Normalized responses of the vehicle controls in the continuous endpoints. Plots

show the distribution of normalized responses for each individual vehicle control (n = 768)

when normalized by the median of the control population of the respective plate.

(TIF)

S5 Fig. FEN does not cause chronic toxicity. Minimum intensity projections showing the

behavior of planarians exposed to either 0.5% DMSO (solvent control) or 562 μM FEN for 12

days over the course of the 5 min phototaxis assay. Images show representative worms out of a

total of n = 32 per condition. Scale bar: 4 mm.

(TIF)

S6 Fig. LogD cannot explain potency differences. The range of logD values (error bars) for a

given chemical were calculated based on the logD at the pH of the solvent and at the measured

pH of the highest tested concentration (see S12 Table) to cover the suspected pH for all test

concentrations and plotted against the log10 of the most sensitive benchmark concentration

(BMC) in μM for that chemical. Markers were added at the median of the logD range to allow

for labeling by chemical. N/A indicates that fenobam (FEN) was inactive as this did not have a

calculated BMC.

(TIF)

S7 Fig. Heatmap of planarian barcodes used as input for classification methods. Each

chemical was assigned a master barcode by concatenating the barcodes of each concentration.

PLOS ONE Neuroactive drug profiling via cheminformatics and planarian behavior

PLOS ONE | https://doi.org/10.1371/journal.pone.0315394 January 30, 2025 29 / 38

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0315394.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0315394.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0315394.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0315394.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0315394.s007
https://doi.org/10.1371/journal.pone.0315394


Only the 5 highest concentrations (relative concentrations 8–12) were used for the classifica-

tion methods so that the inactive/missing data would not dominate the phenotypes. Columns

are labeled as “endpoint_relative concentration”. CRO: crawl-out, STK: stickiness, SHP: body

shape, SCR: scrunching, PTX: phototaxis, ANX: anxiety, RSD: resting_dark, RSB: resting_blue,

SPD: speed_dark, SB1: speed_blue1, SB2: speed_blue2, LBT: locomotor bursts_total; NSS: nox-

ious stimuli_strength. Chemicals are colored by class: antidepressants (red), antipsychotics

(blue), anxiolytics (magenta), and counterions (black).

(TIF)

S8 Fig. Classification of planarian data including FEN. Computational methods are

arranged by rows: (A) PCoA-LDA; (B) UMAP-LDA. Counterion inclusion/exclusion is

arranged by columns: (1) with counterions; (2) without counterions. Ellipses show 95% confi-

dence intervals. The axes show the percentage of the total eigenvalues.

(TIF)

S9 Fig. Confusion matrices of the classification methods based on planarian behavioral

phenotyping of the drugs, including FEN and counterions. Confusion matrices for the dif-

ferent classification methods: (A) PCoA-LDA; (B) UMAP-LDA; (C) ANNE; (D) SVMs. AD:

antidepressant, AP: antipsychotic, AX: anxiolytic; CI: counterion. In A and B, predicted accu-

racy was calculated following an exhaustive jackknifing. In C and D, predicated accuracy refers

to the overall accuracy. *indicates randomly chosen members of the test set. Test set accuracies

were 100% for ANNE (S19 Table) and 80% for SVMs (S21 Table).

(TIF)

S10 Fig. Confusion matrices of classification of planarian data including FEN without

counterions. Confusion matrices for the different classification methods: (A) PCoA-LDA; (B)

UMAP-LDA; (C) ANNE; (D) SVMs. AD: antidepressant, AP: antipsychotic, AX: anxiolytic. In

A and B, predicted accuracy was calculated following an exhaustive jackknifing. In C and D,

predicated accuracy refers to the overall accuracy. *indicates randomly chosen members of the

test set. Test set accuracies were 100% for ANNE (S20 Table) and 100% for SVMs (S22 Table).

(TIF)

S1 Table. Chemical descriptors used in the machine learning models (ANNE and SVMs).

(PDF)

S2 Table. ANNE classification models using 2D molecular descriptors of 18 drugs and 5

counterions.

(PDF)

S3 Table. ANNE classification models using 2D molecular descriptors of 18 drugs.

(PDF)

S4 Table. SVMs classification models using 2D molecular descriptors of 18 drugs and 5

counterions.

(PDF)

S5 Table. SVMs classification models using 2D molecular descriptors of 18 drugs.

(PDF)

S6 Table. ANNE classification models using 3D molecular descriptors of 21 drugs and 5

counterions.

(PDF)
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S7 Table. ANNE classification models using 3D molecular descriptors of 21 drugs.

(PDF)

S8 Table. SVMs classification models using 3D molecular descriptors of 21 drugs and 5

counterions.

(PDF)

S9 Table. SVMs classification models using 3D molecular descriptors of drugs only.

(PDF)

S10 Table. Calculated benchmark concentration values in logM.

(PDF)

S11 Table. Converted BMC values in μM.

(PDF)

S12 Table. Median normalized responses for each endpoint after exposure to the counter-

ions.

(PDF)

S13 Table. pH at highest tested concentration.

(PDF)

S14 Table. Median normalized responses for extreme pHs.

(PDF)

S15 Table. ANNE classification models using behavioral responses to 18 drugs (-FEN) and

4 counterions.

(PDF)

S16 Table. ANNE classification models using behavioral responses to 18 drugs (-FEN).

(PDF)

S17 Table. SVMs classification models using behavioral responses to 18 drugs (-FEN) and

4 counterions.

(PDF)

S18 Table. SVMs classification models using behavioral responses to 18 drugs (-FEN).

(PDF)

S19 Table. ANNE classification models using behavioral responses to 19 drugs (+FEN) and

4 counterions.

(PDF)

S20 Table. ANNE classification models using behavioral responses to 19 drugs (+FEN).

(PDF)

S21 Table. SVMs classification models using behavioral responses to 19 drugs (+FEN) and

4 counterions.

(PDF)

S22 Table. SVMs classification models using behavioral responses to 19 drugs (+FEN).

(PDF)

S23 Table. Compiled normalized responses for assay controls.

(PDF)
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S1 Video. Example planarian behaviors showing the normal gliding behavior compared to

two examples of hyperactive behavior.

(AVI)

S1 File. 2D chemical descriptors for drugs and counterions. Raw 2D molecular properties

exported from Simulations Plus ADMET Predictor 11 before pre-processing (see Methods).

(CSV)

S2 File. 3D chemical descriptors for drugs and counterions. Raw 3D molecular properties

exported from Simulations Plus ADMET Predictor 11 before pre-processing (see Methods).

(CSV)

S3 File. Individual planarian behavioral responses. Responses for continuous endpoints are

normalized by the response of in plate controls.

(XLSX)

S4 File. 95th percentile confidence intervals of the benchmark concentration (in logM) for

each planarian endpoint.

(XLSX)

S5 File. Concatenated planarian behavioral barcodes. Input data for classification models.

(XLSX)
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73. Güvenç Paltun B, Mamitsuka H, Kaski S. Improving drug response prediction by integrating multiple

data sources: Matrix factorization, kernel and network-based approaches. Brief Bioinform. 2021; 22

(1):346–59. https://doi.org/10.1093/bib/bbz153 PMID: 31838491

74. Moshkov N, Becker T, Yang K, Horvath P, Dancik V, Wagner BK, et al. Predicting compound activity

from phenotypic profiles and chemical structures. Nat Commun. 2023; 14(1):1–11.

75. Wang B, Mezlini AM, Demir F, Fiume M, Tu Z, Brudno M, et al. Similarity network fusion for aggregat-

ing data types on a genomic scale. Nat Methods. 2014; 11(3):333–7. https://doi.org/10.1038/nmeth.

2810 PMID: 24464287

76. O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open Babel: An open

chemical toolbox. J Cheminform. 2011 Oct; 3(10):33. https://doi.org/10.1186/1758-2946-3-33 PMID:

21982300

77. Krieger E, Nielsen JE, Spronk CAEM, Vriend G. Fast empirical pKa prediction by Ewald summation. J

Mol Graph Model. 2006 Dec; 25(4):481–6. https://doi.org/10.1016/j.jmgm.2006.02.009 PMID: 16644253

78. Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE, Simmerling C. ff14SB: Improving the

Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. J Chem Theory Comput.

2015 Jul 7; 11(8):3696–713. https://doi.org/10.1021/acs.jctc.5b00255 PMID: 26574453

79. Ozvoldik K, Stockner T, Krieger E. YASARA Model-Interactive Molecular Modeling from Two Dimen-

sions to Virtual Realities. J Chem Inf Model. 2023 Oct 23; 63(20):6177–82. https://doi.org/10.1021/

acs.jcim.3c01136 PMID: 37782001
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