PLOS ONE

Check for
updates

G OPEN ACCESS

Citation: Ireland D, Rabeler C, Rao S, Richardson
RJ, Collins E-MS (2025) Distinguishing classes of
neuroactive drugs based on computational
physicochemical properties and experimental
phenotypic profiling in planarians. PLoS ONE
20(1): e0315394. https://doi.org/10.1371/journal.
pone.031539%4

Editor: Michael Schubert, Laboratoire de Biologie
du Développement de Villefranche-sur-Mer,
FRANCE

Received: August 28, 2024
Accepted: November 25, 2024
Published: January 30, 2025

Copyright: © 2025 Ireland et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the original
author and source are credited.

Data Availability Statement: All relevant data are
within the manuscript and its Supporting
information files.

Funding: S.R. was funded through a Swarthmore
College summer fellowship. The sponsors played
no role in study design, data collection and
analysis, decision to publish or preparation of the
manuscript.

RESEARCH ARTICLE

Distinguishing classes of neuroactive drugs
based on computational physicochemical
properties and experimental phenotypic
profiling in planarians

Danielle Ireland®, Christina Rabeler', Sagar Rao', Rudy J. Richardson?3*%6* Eva-Maria
S. Collins»"7*

1 Department of Biology, Swarthmore College, Swarthmore, Pennsylvania, United States of America,

2 Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, United States
of America, 3 Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States of
America, 4 Center of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor,
Michigan, United States of America, 5 Michigan Institute for Computational Discovery and Engineering,
University of Michigan, Ann Arbor, Michigan, United States of America, 6 Michigan Institute for Data and Al in
Society, University of Michigan, Ann Arbor, Michigan, United States of America, 7 Department of
Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United
States of America

* rjrich@umich.edu (RJR); ecollin3@swarthmore.edu (EMSC)

Abstract

Mental illnesses put a tremendous burden on afflicted individuals and society. Identification
of novel drugs to treat such conditions is intrinsically challenging due to the complexity of
neuropsychiatric diseases and the need for a systems-level understanding that goes
beyond single molecule-target interactions. Thus far, drug discovery approaches focused
on target-based in silico or in vitro high-throughput screening (HTS) have had limited suc-
cess because they cannot capture pathway interactions or predict how a compound will
affect the whole organism. Organismal behavioral testing is needed to fill the gap, but mam-
malian studies are too time-consuming and cost-prohibitive for the early stages of drug dis-
covery. Behavioral medium-throughput screening (MTS) in small organisms promises to
address this need and complement in silico and in vitro HTS to improve the discovery of
novel neuroactive compounds. Here, we used cheminformatics and MTS in the freshwater
planarian Dugesia japonica—an invertebrate system used for neurotoxicant testing—to evalu-
ate the extent to which complementary insight could be gained from the two data streams.
In this pilot study, our goal was to classify 19 neuroactive compounds into their functional
categories: antipsychotics, anxiolytics, and antidepressants. Drug classification was per-
formed with the same computational methods, using either physicochemical descriptors or
planarian behavioral profiling. As it was not obvious a priori which classification method was
most suited to this task, we compared the performance of four classification approaches.
We used principal coordinate analysis or uniform manifold approximation and projection,
each coupled with linear discriminant analysis, and two types of machine learning models—
artificial neural net ensembles and support vector machines. Classification based on physi-
cochemical properties had comparable accuracy to classification based on planarian
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profiling, especially with the machine learning models that all had accuracies of 90—100%.
Planarian behavioral MTS correctly identified drugs with multiple therapeutic uses, thus
yielding additional information compared to cheminformatics. Given that planarian behav-
ioral MTS is an inexpensive true 3R (refine, reduce, replace) alternative to vertebrate testing
and requires zero a prioriknowledge about a chemical, it is a promising experimental system
to complement in silico cheminformatics to identify new drug candidates.

Introduction

Mental illness covers a wide range of conditions that cause significant disturbances in cogni-
tion, emotional regulation, or behavior. In 2019, 970 million people or 1 in every 8 people
across the world had a mental disorder [1, 2]. Moreover, the number of people experiencing
anxiety or depressive disorders worldwide has significantly increased since the COVID-19
pandemic [3]. These statistics are worrisome because psychiatric diseases are intrinsically diffi-
cult to treat and pose substantial costs to the affected individuals, families, and society [4, 5].

While there is an urgent need for effective therapeutics, neuropsychiatric drug discovery
and validation has been stagnant and lags behind that of other diseases [6, 7]. Computational
and in vitro methods that try to predict interactions with specific molecular targets are widely
used for candidate drug discovery for many illnesses. Although some successful psychiatric
drugs, such as fluoxetine, have been identified using this hypothesis-driven approach [8], tar-
get-specific methods have been largely insufficient for neuropsychiatric drug discovery due to
the complex and still enigmatic pathologies of these disorders [6, 9, 10]. Mental illnesses, such
as schizophrenia and major depressive disorder, can stem from polygenic and non-genetic eti-
ologies that likely depend on an interplay between many different molecular targets (reviewed
in [11]). Consequently, successful psychiatric drugs tend to be neuroactive compounds with
multiple pharmacological targets [12]. Thus, organismal models that provide systems-level
insight into neuronal function are needed. However, mammalian tests are prohibitively time
and cost intensive to screen the large number of chemicals evaluated during the early stages of
lead identification [10, 13].

One possible solution to integrate organismal information into first-tier lead identification
is to use behavioral phenotyping with small organisms. Fish larvae, worms, and flies are inex-
pensive to maintain compared to mammals and lend themselves to medium- to high-through-
put screening (MTS/HTS, respectively) (reviewed in [14, 15]). Because phenotypic drug
discovery does not rely on mechanistic knowledge and can identify polypharmacological
drugs (reviewed in [16, 17]), it is especially well-suited for neuropsychiatric drug discovery.

Behavioral barcodes, which reduce the multidimensional phenotypic information into a
string of numeric features, provide a quantitative readout of a phenotype [18]. Using statistical
tools such as hierarchical clustering or multidimensional scaling, behavioral profiling can be
used to identify patterns characterizing drug classes and have been used to predict the effects
of novel chemicals for psychiatric uses [17-19]. For example, behavioral barcoding derived
from a series of motor responses of zebrafish larvae to different auditory and visual stimuli was
used to identify potential novel antipsychotic compounds by comparing to the phenotypic
profile produced by classical antipsychotics, such as haloperidol [20]. Similar methodology has
also been employed to identify novel monoamine oxidase and acetylcholinesterase inhibitors
[21] and sedatives that induce paradoxical excitation [22]. However, the zebrafish larvae used
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for these studies were > 7 days old and thus qualify as animal tests that require Institutional
Animal Care & Use Committee approval [23].

Here, we test the hypothesis that MTS using an aquatic invertebrate, the planarian Dugesia
japonica, allows for unbiased classification of neuroactive drugs and augments the information
obtained from the physical and chemical properties of the drugs. Freshwater planarians are
small (a few mm long) flatworms, have a long history of use in neurotoxicity and neurophar-
macology studies (reviewed e.g., in [24-27]), and show promise as a tool for neuroactive drug
discovery. The planarian nervous system shares many of the same neurotransmitters and cell
types as the mammalian nervous system, yet remains tractable, consisting of approximately
10,000 neurons [26, 28], making the planarian nervous system of intermediate size and com-
plexity compared to nematodes and zebrafish. Genomes and transcriptomes are publicly avail-
able [29, 30], and RNA interference can be used to connect genotypes and phenotypes [31-
38]. Planarians display stereotypical behavioral responses to drugs of abuse and prescription
drugs [39-41]. The development of computational methods for quantitative assessment of
these behaviors [42-44] have reignited interest in planarian behavioral studies [15, 26-28, 45].
We have shown that the asexual planarian D. japonica is well-suited for behavioral MTS [43,
44, 46, 47] and that the phenotypic profiles gained from planarian MTS can distinguish
between different chemical classes/modes of action for neurotoxic compounds [44, 46, 48].
Planarian MTS has unique strengths that complement screening using zebrafish larvae or
roundworms for developmental neurotoxicology [14]. Adult nervous system function can be
evaluated in planarians at a fraction of the time and cost required for zebrafish.

We hypothesized that D. japonica behavioral phenotyping would be a good model for the
identification of prospective neuroactive drugs. To test this, we used our robotic screening
platform to determine how well our battery of phenotypic endpoints could distinguish
between classes of known neuropsychiatric drugs and add value to a classification of these
compounds based on their physicochemical properties. We studied 19 neuroactive com-
pounds from three functional classes: antipsychotics, anxiolytics, and antidepressants. We clas-
sified these compounds using either physicochemical descriptors or planarian behavioral
profiling using four different classification approaches. We used principal coordinate analysis
(PCoA) or uniform manifold approximation and projection (UMAP), each coupled with lin-
ear discriminant analysis (LDA), and two types of machine learning models—artificial neural
net ensembles (ANNE) and support vector machines (SVMs). We found that the classification
based on physicochemical properties had comparable accuracy to planarian profiling. Planar-
ian profiling correctly identified polytherapeutic drugs and thus yielded additional informa-
tion that would have been missed by cheminformatics. Thus, combining these two approaches
may be an economical and useful method for identifying novel drug candidates.

Results and discussion

The purpose of this study was to investigate the extent to which members of neuroactive drug
classes can be identified and distinguished using computational classification using either che-
minformatics or in vivo behavioral phenotyping in planarians. To do this, we used a set of 19
neuroactive drugs that were functionally defined by the supplier as one of three categories:
antidepressants (7), antipsychotics (7), or anxiolytics (5), (Table 1, Fig 1).

We assigned each chemical a barcode consisting of a numerical string based on either their
computed physicochemical properties or responses observed in planarian phenotypic screen-
ing. We then used the same computational pipeline to study how well these compounds could
be accurately classified based on either in silico cheminformatics or in vivo planarian behav-
ioral phenotyping. We compared the results obtained from four different computational

PLOS ONE | https://doi.org/10.1371/journal.pone.0315394  January 30, 2025 3/38


https://doi.org/10.1371/journal.pone.0315394

PLOS ONE

Neuroactive drug profiling via cheminformatics and planarian behavior

Table 1. Study compounds.

CAS # ID |Common Name® Class® | Source® | Purity Solvent® |Study Tested Concentrations (units)
(Method) Type'
129722-12- | ARI | Aripiprazole-HCl 2 A >98% DMSO | EC 1, 3.16, 10, 31.6, 100 (uM)
9 (HPLC)
10457-90-6 | BRO | Bromperidol 2 A 100% DMSO | EC 0.316, 1, 3.16, 10, 31.6, 100 (uM)
(EP reference standard)
437723-96- | BUA | (R)-isomer of BUP 1 NA NA NA C NA
1
324548-43- | BUB | (S)-isomer of BUP 1 NA NA NA C NA
8
31677-93-7 | BUP | Bupropion-HCl 1 A >98% water E 10, 31.6, 100, 316, 1000 (uM)
Racemic mixture (HPLC)
33386-08-2 | BUS | Buspirone-HCl 3 A >99% water E,C 0.316, 1, 3.16, 10, 31.6, 100 (uM)
(TLC)
59729-32-7 | CIT | Citalopram-HBr 1 A quality level 300; certified DMSO |E 1, 3.16, 10, 31.6, 100, 316, 1000 (uM)
Racemic mixture reference material
(HPLC)
128196-02- | CIR | (R)-isomer of CIT 1 NA NA NA C NA
1
5786-21-0 | CLO | Clozapine 2 B >99% DMSO |E.C 0.1,0.316, 1, 3.16, 10, 31.6, 100 (uM)
(HPLC)
439-14-5 DIA | Diazepam 3 C 99.3% DMSO |EC 1, 3.16, 10, 31.6, 100 (uM)
(GO
548-73-2 DRO | Droperidol 2 A >98% DMSO |E.C 0.1,0.316, 1, 3.16, 10, 31.6, 100 (uM)
(TLC)
136434-34- | DUL | Duloxetine-HCI 1 A >98% DMSO | EC 1, 3.16, 10, 31.6, 100 (uM)
9 (S)-isomer (HPLC)
219861-08- | ESC | Escitalopram-oxalate | 1 A >98% DMSO |EC 1, 3.16, 10, 31.6, 100, 316, 1000 (uM)
2 (8)-isomer of CIT (HPLC)
57653-26-6 | FEN | Fenobam 3 A >98% DMSO | EC 56.2, 100, 178, 316, 562 (uM)
(HPLC)
100568-03- | FLR | (R)-isomer of FLU 1 NA NA NA C NA
4
100568-02- | FLS | (S)-isomer of FLU 1 NA NA NA C NA
3
56296-78-7 | FLU | Fluoxetine-HCl 1 A >98% DMSO |E.C 1, 3.16, 10, 31.6, 100 (uM)
Racemic mixture (TLC)
52-86-8 HAL | Haloperidol 2 A >98% DMSO | EC 1, 3.16, 10, 31.6, 100 (uM)
(TLC)
113-52-0 IMI | Imipramine-HCl 1 A >99% DMSO | EC 0.316, 1, 3.16, 10, 31.6 (uM)
(TLC)
110-16-7 MAL | Maleic acid A >99% (HPLC) DMSO | E,C 200 (uM)
59467-70-8 | MID | Midazolam 3 A 100% DMSO | EC 10, 17.8, 31.6, 56.2, 100 (uM)
(USP reference standard)
132539-06- | OLA | Olanzapine 2 A >98% DMSO |E.C 0.001, 0.00316, 0.01, 0.0316. 0.1, 0.316, 1, 3.16,
1 (HPLC) 10, 31.6, 100, 316 (uM)
144-62-7 OXA | Oxalic acid 4 A Analytical standard DMSO | E.C 100, 316, 1000 (uM)
(redox titration)
84-02-6 PRO | Prochlorperazine- 2 A >98% DMSO |E.C 0.316, 1, 3.16, 10, 31.6, 100 (uM)
dimaleate (TLC)
(Continued)
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Table 1. (Continued)

CAS # ID Common Name® Class® | Source® | Purity Solvent® | Study Tested Concentrations (units)
(Method)¢ Type'

79559-97-0 | SER | Sertraline-HCl 1 A >98% DMSO |EC 1, 3.16, 10, 31.6, 100 (uM)

cis-(18,4S)-isomer (HPLC)

7647-15-6 | SOB | Sodium bromide 4 A >99.9% DMSO |E 100, 316, 1000 (uM)
(trace metal analysis)

7647-14-5 | SOC | Sodium chloride 4 A >99.0% water E 3.47 (mM)
(titration with AgNO3)

1135210- TRA | Tracazolate-HCl 3 B >99.0% DMSO | E.C 1, 3.16, 10, 31.6, 100 (uM)

68-2 (HPLC)

“ All common names are those provided in the National Institutes of Health Global Substance Registration System. Except for maleic acid, oxalic acid, sodium bromide

and D-sorbitol, all names also represent the recommended International Non-Proprietary Name.

b Primary functional pharmacological class as indicated by the manufacturer and literature: 1 = antidepressant; 2 = antipsychotic; 3 = anxiolytic; 4 = counterion control.

¢ Source of chemicals used in experimental determinations: A = Sigma-Aldrich; B = Tocris; C = Spectrum Chemicals; NA = not applicable (molecular structures used

only for in silico determinations).

4 Method used by the supplier to assess purity. HPLC: High-performance liquid chromatography; EP: European Pharmacopeia; GC: Gas chromatography; TLC: Thin

layer chromatography; USP: US Pharmacopeia.

¢ Solvent used for stock solutions.

f Study type: E = experimental; C = computational. For computational studies, counterions were not present.

https://doi.org/10.1371/journal.pone.0315394.t001

methods, including PCoA followed by LDA (PCoA-LDA), UMAP followed by LDA
(UMAP-LDA), and two machine-learning approaches (ANNE and SVMs) (Fig 2), to investi-
gate whether a specific method would work best on either or both types of data. In the Meth-
ods section, we provide background on each method and explain why we chose to apply it to
our data.

Classification based on physicochemical properties

The neuroactive drugs studied here represent a diverse range of chemical structures, as shown
by their differing Tanimoto similarity coefficients, compared to ARI as a reference compound
(Fig 3). While some clustering by functional pharmacological class is visible, several com-
pounds (e.g., the antipsychotics OLA and CLO and most anxiolytics) are structurally distinct
from the other members of their class. This structural diversity reflects the purpose of this
library-to serve as a pilot to determine the extent to which our models could assign the com-
pounds to their functional pharmacological classes despite structural dissimilarities within
each class.

As shown in Table 1, some drugs (BUP, CIT, FLU) are mixtures of stereoisomers. Thus, we
had to consider whether to treat these chemicals as 2D structures, without considering stereo-
chemistry, or as 3D structures, considering each stereoisomer separately thereby increasing
the number of entities considered. Because the number of compounds affects the classification
and we wanted to keep the data size comparable to the planarian data, which considers each
tested compound as a single entity, we present the classifications based on 2D structural fea-
tures here without consideration of stereochemistry (Figs 4-6). Results from using 3D chemi-
cal features, considering each stereoisomer separately, are shown in S1-S3 Figs. The 3D
models show similar, though slightly better, classification accuracies than the models using
only 2D features, which may be due to the increased information per compound and/or the
increase in the number of compounds (18 versus 21) compared to 2D. Of note, when
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Fig 1. Chemical structures. Molecular structures depicted as 2D with stereochemistry indicated by wedged bonds are provided for
the different chemical classes: A) Antidepressants, B) Antipsychotics, C) Anxiolytics, and D) Counterions. Counterions are not
shown with their respective drug because they were not included in the computational studies. Table 1 lists the experimental
compounds, including counterions, that were tested in planarians. Protonation states were based on the dominant form at pH 7.4 as
determined by the protonation module in the ChemAxon Marvin suite (https://www.chemaxon.com).

https://doi.org/10.1371/journal.pone.0315394.9001
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o

Fig 2. Study overview. Chemical and behavioral profiles were determined for 19 neuroactive drugs, consisting of 7
antidepressants, 7 antipsychotics, and 5 anxiolytics. Using quantitative analyses, we then determined molecular and
phenotypic barcodes for each compound. These barcodes were used in the same computational models to determine
how well each method performed at classifying the 3 neuroactive drug classes. Created with BioRender.com.

https://doi.org/10.1371/journal.pone.0315394.9002

considering 2D structures, CIR and ESC were treated as one structure, which we labeled CIT,
leading to only 18 drugs in these models.

Comparisons were made both with and without the counterions to determine how inclu-
sion of these presumedly null-effect compounds would affect neuroactive drug classification.
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Fig 3. Tanimoto similarity coefficients. Chemical similarity was quantified using the Tanimoto coefficient (Tc).
Overlaps were determined after 3D alignment of each structure with the reference compound, ARI. ARI was chosen as
the reference compound as it had the largest molecular volume as assessed by the van der Waals radii of the
constituent covalently bonded atoms (see Methods). Tc Shape refers to similarity based on overlap of molecular
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cation, hydrophobe, or ring). Tc Combined = Tc Shape + Tc Color. Range of Tc Shape and Tc Color = (0,1); range of
Tc Combined = (0,2). Chemicals are ordered by their Tc Combined scores and color-coded by functional class.

https://doi.org/10.1371/journal.pone.0315394.g003

ANNE and SVMs were each initially run across 10 different models (S1-S9 Tables) and then
the best performing model for each was chosen (see Methods) for comparison across methods.

The accuracy of these models on the small data set used here was high and comparable
between PCoA-LDA, ANNE, and SVMs (Figs 5-6). Overall, the UMAP-LDA performed
worse than the other three models on all data sets (2D, 3D +/- counterions), which could also
be seen in the high overlap between 95% confidence intervals of the chemical clusters in Fig 4.
Interestingly, when using the 2D chemical features and excluding the counterions,
UMAP-LDA misclassified most anxiolytics (Fig 6B). Only FEN was correctly classified. Gener-
ally, classification accuracies were improved by including the counterions, which may be due
to the increased number of chemicals.
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https://doi.org/10.1371/journal.pone.0315394.9004

When comparing the misclassifications from the 2D and 3D chemical descriptors, we
found that the antidepressant BUP was the most frequently misclassified drug across the differ-
ent methods when using 2D structural features (Figs 5 and 6). In contrast, the classifications
based on 3D chemical structures did not misclassify any antidepressants, including the BUP
stereoisomers (BUA and BUB), and most frequently misclassified anxiolytics (S2 and S3 Figs).
When considering 3D chemical features, the most misclassified chemical across the different
methods was the anxiolytic BUS (S2 and S3 Figs). BUS has a very different structure compared
to the other anxiolytics (Fig 1) and looks more similar to some of the antipsychotics (Fig 3),
which could explain its frequent misclassification as an antipsychotic. Moreover, while the
anxiolytic class had the fewest members (5), its members are also the most diverse as can be
seen by the greater spread in the Tanimoto similarity coefficients (Fig 3).

Planarian behavioral phenotyping

Activity and potency determined by benchmark concentration (BMC) modeling. The
chemicals were screened acutely (< 3 hour exposure) in adult planarians and assessed for 13
endpoints spanning effects on lethality, body shape, stickiness, locomotion, and reaction to
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Fig 5. Confusion matrices of the classification methods based on 2D chemical descriptors of the drugs and counterions.
Confusion matrices for the different classification methods: (A) PCoA-LDA; (B) UMAP-LDA; (C) ANNE; (D) SVMs; AD:
antidepressant, AP: antipsychotic, AX: anxiolytic; CI: counterion. In A and B, predicted accuracy was calculated following an
exhaustive jackknifing. In C and D, predicted accuracy refers to the overall accuracy of the best of 10 models of each type. *indicates
randomly chosen members of the test set. In (D) two models were tied for the best so that the test set members are marked with both
* (model 07_2i) and + (model 09_2i). See the Methods for model selection. Test set accuracies were 80.0% for ANNE (S2 Table) and
100% for SVMs (S4 Table).

https://doi.org/10.1371/journal.pone.0315394.9005
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Fig 6. Confusion matrices of the classification methods based on 2D chemical descriptors of the drugs only. Confusion matrices

for the different classification methods: (A) PCoA-LDA; (B) UMAP-LDA; (C) ANNE; (D) SVMs; AD: antidepressant, AP:

antipsychotic, AX: anxiolytic. In A and B, predicted accuracy was calculated following an exhaustive jackknifing. In C and D,
predicated accuracy refers to the overall accuracy of the best of 10 models of each type. *indicates randomly chosen members of the
test set. See the Methods for model selection. Test set accuracies were 100% for ANNE (S3 Table) and 100% for SVMs (S5 Table).

https://doi.org/10.1371/journal.pone.0315394.9006
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Fig 7. Overview of planarian screening and data analysis. A) Schematic of plate setup, including the orientations
used in the triplicate runs, and representative image of a 48-well plate containing one planarian per well. Each plate
contained a solvent control (c0) and 5 concentrations of a chemical and was tested acutely in phototaxis, stickiness,
and noxious heat assays. B-G) Examples of various planarian body shapes: B) Normal planarian with smooth gliding.
C) Contracted with shortened length and often associated with ruffling of the edges of the planarian. D) C-shape/
curled and often on its side. E) Corkscrew showing multiple twists across the body axis. F) Pharynx extrusion. Arrow
points at the unpigmented pharynx protruding from the underside of the planarian. G) Example image sequence of a
planarian undergoing scrunching in response to chemical exposure at room temperature, showing oscillations of body
length. This is one type of behavior, among others, which constitute the hyperkinesis category. Each frame is 1 sec
apart. Examples shown are exposed to 0.5% (v/v) DMSO (B), 10 uM DRO (C and D), 10 uM BRO (E), 10 uM DUL (F),
and 1 pM OLA (G). Scale bars: 2 mm. H) Representative plot of speed over time during the phototaxis assay. During a
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normal phototaxis response, planarians increase their speed during the blue light period. I) Minimum intensity
projections of the shaking portion of the stickiness assay. A “stuck” planarian adheres to the bottom of the well and is
not displaced, whereas an “unstuck” planarian dislodges and is displaced around the well. J) Length over time plots
showing normal gliding or the oscillatory scrunching gait [49] that is induced during the noxious heat assay. Given
that scrunching is the expected behavior during the noxious heat assay, we scored the number of planarians that do not
scrunch. K) Example schematic representation of the behavioral barcodes. First, a barcode is created for each chemical
concentration, consisting of a numerical vector of the compiled normalized score for each endpoint (columns). One
master barcode is made for each chemical by concatenating the barcodes for the individual concentrations. For details,
see Methods.

https://doi.org/10.1371/journal.pone.0315394.9007

Table 2. Binary endpoints.

Endpoint Description BMR*
Crawl-out % planarians that crawled out of the water 25°
Stickiness % stuck individuals 25
Shape (any) % individuals with any abnormal body shape 25°
Phototaxis % planarians that did not phototax [50] 35
Scrunching % planarians that did not scrunch in response to noxious heat 30

“BMR: benchmark response

"Variance was already minimized at all tested thresholds, thus the BMR was manually defined. See Methods.

https://doi.org/10.1371/journal.pone.0315394.t1002

light and noxious heat (Fig 7, Tables 2 and 3). None of the tested compounds caused lethality
at the tested concentrations, though a few compounds caused a substantial number of planari-
ans to crawl out of their wells and dry out (“crawl-out behavior”). The BMC was calculated for
each endpoint to determine when phenotypic responses exceeded empirically determined
noise levels, defined by the benchmark response (BMR) (Fig 8, Tables 2 and 3, S10-S11
Tables).

Except for FEN, all chemicals showed activity in at least one endpoint in at least one tested
concentration. FEN did not show any observable effects up to 562 uM (the highest tested solu-
ble concentration). Moreover, no lethality (0%, n = 32) or qualitative defects were observed in
562 uM FEN after a 12-day exposure (S5 Fig), suggesting it may not be bioavailable to planari-
ans. ESC, the (S)-stereoisomer of CIT, was only active at >316 pM. However, OXA, its coun-
terion control, also caused similar phenotypes at these concentrations (S12 Table). MAL at

Table 3. Continuous endpoints.

Endpoint Description normalization Direction® BMR®
Anxiety Fraction of time spent in outer region of well [48] (Responseéchemical/ Responseyepice) “100-100 - 30
Resting_dark Fraction of time spent resting in 2" dark cycle (Responsehemica- ReSponse,epicie) 100 + 60°
Resting_blue Fraction of time spent resting in 2" plye cycle (Response hemical-Responseyenicie) 100 + 35°¢
Speed_dark Mean speed (mm/s) in 2" dark cycle (Response hemical/ Response,enice) *100-100 - 60°
Speed_bluel Mean speed (mm/s) in 1** 30 seconds of blue cycle (Responsechemical/ Responseyenice) “100-100 - 80°
Speed_blue2 Mean speed (mm/s) in 24 30 seconds of blue cycle (Response hemical/ Responseyepice) “100-100 - 70°
Locomotor bursts (total) Sum of locomotor bursts in phototaxis assay Response hemical- ReSponseyenicle + 20°
Noxious stimuli (strength) Median displacement at end of noxious heat [47] (Response hemical/ Responseyepice) “100-100 - 55¢

* The directionality (increasing (+) or decreasing (-) compared to the median control response) of the effect.
"BMR: benchmark response

“BMR was determined based on the 5™ or 95™ percentile of the histograms of the normalized vehicle control response (54 Fig)

https://doi.org/10.1371/journal.pone.0315394.t003
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Fig 8. Activity of neuroactive drugs in planarians. Heatmap comparing the benchmark concentrations (BMCs) for
all neuroactive compounds in planarians after acute exposure. The first column shows the highest tested
concentration. As both “speed_blue” endpoints had similar BMC scores, only “speed_blue2” is shown as this was the
more sensitive of the two timepoints. AD: antidepressant, AP: antipsychotic, AX: anxiolytic, NS: noxious stimuli.

https://doi.org/10.1371/journal.pone.0315394.g008

200 uM, the counterion control for PRO, showed a significant effect on scrunching (S12
Table), but as PRO induced scrunching defects starting at much lower concentrations

(3.16 pM), this is likely not driven by the effects of the counterion. All other counterions for
the salt forms of the drugs were found to be negative. To assess whether any of the observed
effects were due to pH effects instead of compound-specific effects, the pH of the highest tested
concentration of each chemical was measured (S13 Table). For reference, we measured the pH
of Instant Ocean (IO) water as 6.72 + 0.41 and that 0f 0.5% (v/v) DMSO as 6.63 + 0.17

(mean + SD, n = 5), which is consistent with previous reports of acceptable pH ranges for pla-
narian culture conditions [51]. Acute behavioral effects were seen with acidic conditions at pH
<4 (S13 Table). Both ESC and OXA had pH values <4 at the two highest tested concentrations
(316 and 1000 pM), while at 100 pM, where no behavioral effects were observed, the pH was
>4. Together, these data suggest that the effects seen at these concentrations may be due to
low pH. Of note, 1000 uM CIT, which did cause behavioral effects, had a pH of 6.42, suggesting
that the pH effects of ESC may have been driven by the OXA counterion. All other compounds
were within acceptable pH ranges where no adverse effects were observed and thus the
observed effects are presumed to be due to the pharmacological activity of the drugs.

Even within the same class, potency differences of several orders of magnitude were seen,
which may reflect differences in uptake and metabolism or in affinity to the planarian neuro-
nal targets. Lipophilicity can affect chemical bioavailability; therefore, we plotted BMC versus
the calculated distribution coefficient, logD for each chemical. Because logD can vary depend-
ing on the pH, we plotted the range of logD values corresponding to the presumed pH range
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of the tested concentrations (ranging from the pH of the solvent as a proxy for the pH of the
lowest concentration to the measured pH of the highest tested concentration (S13 Table)). We
found no correlation between logD and BMC (S6 Fig), suggesting lipophilicity alone cannot
explain the differences in potency.

Because of the observed potency differences, we evaluated the phenotypic profiles indepen-
dent of concentration to identify any class-specific patterns (Fig 9). A significant loss of
scrunching behavior, i.e., hits in scrunching, was seen in almost all the tested compounds,
agreeing with our previous data showing that absence of heat-induced scrunching is a sensitive
readout of disturbed neuronal function across a broad range of chemical types [44, 46, 48].
Generally, the antipsychotics and anxiolytics showed a broader range of effects across multiple
endpoints than the antidepressants (Fig 9A). For example, decreased motility in the dark and
increased number of locomotor bursts were seen in >70% of the tested antipsychotics and
anxiolytics, respectively, but only 29% of antidepressants. Effects in phototaxis and anxiety
were more prominent in the antipsychotics than in the other classes. While “any abnormal
body shape” was seen with almost all the tested drugs, the specific type of body shape differed
across the drug classes (Fig 9B). For example, the antidepressants were largely characterized by
the presence of hyperactive shapes/behaviors, without the inclusion of other body shape clas-
ses. In contrast, antipsychotics and anxiolytics had more mixed phenotypes with instances of
contraction, C-shapes, and hyperactivity or C-shapes and hyperactivity, respectively.

One possible confounding factor in this hit comparison, which aggregates effects at all con-
centrations, is that some of the highest tested concentrations may reach toxic levels and thus
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Fig 9. The drug classes showed different planarian phenotypic profiles. Radar plots showing the percentage of
chemicals in each class that had a hit at any concentration in (A) any endpoint or (B) specific body shape classes. In
(A) speed and resting endpoints in each light period were combined into a “motility” readout. LB: locomotor bursts;
NS: noxious stimuli.

https://doi.org/10.1371/journal.pone.0315394.g009

PLOS ONE | https://doi.org/10.1371/journal.pone.0315394  January 30, 2025

15/38


https://doi.org/10.1371/journal.pone.0315394.g009
https://doi.org/10.1371/journal.pone.0315394

PLOS ONE

Neuroactive drug profiling via cheminformatics and planarian behavior

the observed phenotypes may be due to a mix of neuroactivity and toxicity. In fact, a common
struggle in studies on neuroactive compounds is to distinguish neuroefficacy from toxicity,
which both need to be considered during the drug discovery process. Importantly drug toxicity
is the second most common reason (after lack of clinical efficacy) for promising drugs to fail in
clinical trials [52]; thus, it is important to identify possible toxicity early in the drug discovery
pipeline. While we currently do not have sufficient understanding of the phenotypic readouts
to be able to delineate neuroactive vs adverse effects, effects at low concentrations are likely to
constitute efficacy and not toxicity. Because nominal concentrations do not necessarily reflect
tissue concentrations due to compound-specific differences in uptake and metabolism, it is
impossible to define a water concentration threshold that would separate efficacy from toxic-
ity. Future work characterizing planarian drug metabolism will be helpful to gain a better
understanding of how physicochemical properties affect chemical bioavailability. Therefore, in
the absence of this knowledge, we included all nominal test concentrations for the planarian
classifications.

Classification of neuroactive drug classes using planarian behavioral phenotyping.
Ultimately, the strength of planarian behavioral screening is in the multidimensional informa-
tion gained from looking across multiple endpoints testing various neurological functions and
not just at each endpoint in isolation. To this end, each tested concentration of a compound
was given a phenotypic barcode consisting of the compiled normalized score compared to in-
plate solvent controls (see Methods, Fig 7K). For each chemical, one master barcode was cre-
ated by concatenating the barcodes of all tested concentrations in relative order (S7 Fig). To
keep comparisons similar across different test concentrations, the relative order of the concen-
trations was considered rather than the absolute concentration. For the classification methods,
the data were truncated to only the highest 5 concentrations such that negative/missing data
were not driving the classifications. These planarian barcodes were then evaluated using the
same computational methods as for the chemical features to determine how well the neuroac-
tive drug classes could be separated (Figs 10-12). Compared to Fig 4, which uses the chemical
descriptors as input, Fig 10 shows more overlap between the clusters in the LDA-based
approaches. The anxiolytics category completely overlaps with the other categories.

As with the chemical descriptors, comparisons were made both with and without the coun-
terions. ANNE and SVMs were each initially run across 10 different models (S15-S18 Tables).
The best performing model for each was chosen (see Methods) for comparison across meth-
ods. It is important to note that the algorithm used for training the ANNE models incorpo-
rated a stopping procedure to guard against overfitting, whereas the SVM algorithm did not
provide this feature. However, while our process for selecting the best of ten models of each
type included terms to reward accuracy, it also included terms to penalize complexity accord-
ing to the number of neurons and descriptors for ANNE models or the number of descriptors
for SVM models (see Methods for details).

All four classification methods were able to distinguish the neuroactive drug classes based
on planarian phenotypic barcodes, with accuracies ranging from 59.1% to 100%. The machine
learning methods, particularly SVMs, tended to perform better than PCoA-LDA or
UMAP-LDA. Similar to the classification based on physicochemical data, UMAP-LDA per-
formed the worst of the four methods. While this difference was clear when counterions were
included (accuracy of 59% versus >72% in all other models (Fig 11)), UMAP-LDA and
PCoA-LDA had practically the same adjusted accuracy when counterions were excluded (Fig
12). In contrast to the cheminformatic classifications, inclusion of the counterions decreased
accuracy for all methods except SVMs, which had 100% accuracy in all cases. This decreased
accuracy is likely because in both PCoA-LDA and UMAP-LDA the counterion OXA was “mis-
classified” as one of the drug classes due to the observed behavioral effects from the low pH.
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Fig 10. Classification of planarian behavioral phenotyping based on LDA-based approaches. Computational methods are
arranged by rows: (A) PCoA-LDA; (B) UMAP-LDA. Counterion inclusion/exclusion is arranged by columns: (1) with
counterions; (2) without counterions. Ellipses represent 95% confidence intervals. The axes show the percentage of the total
eigenvalues.

https://doi.org/10.1371/journal.pone.0315394.g010

Because FEN was inactive in the planarian screen, it was not included in these classifica-
tions. Inclusion of FEN (S8-S10 Figs and S19-522 Tables) led to similar classification of the
remaining drugs but showed overall lower accuracy due to the misclassification of FEN, either
as a counterion or as an antidepressant. Notably, the lack of effects with FEN cannot be
explained by its size or log D (S6 Fig). FEN is an atypical non-benzodiazepine anxiolytic,
which acts as an antagonist to the metabotropic glutamate receptor 5 (mGluR5) [53]. Planari-
ans have glutamatergic neurons [54, 55] and a mGlu5 receptor homolog is present in the D.
japonica transcriptome [29], suggesting this lack of activity is likely not due to lack of the tar-
get. However, FEN has been found to vary in bioavailability in humans [56, 57] and due to var-
ious side effects observed in clinical studies [58], is not currently used as an anxiolytic. Thus,
the situation with FEN is complex and the lack of both acute and chronic effects with FEN sug-
gest that uptake in planarians may be insufficient to cause effects. Notably, due to the poor
water solubility of FEN, we could not test higher concentrations.

Many of the compounds studied here have previously been tested in a behavioral screen in
7-day old zebrafish larvae [20]. Similar to our findings for the classifications based on planar-
ian data, the authors found that they could visually distinguish the three drug classes using
multidimensional scaling, with considerable overlap of the clusters, particularly of anxiolytics
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Fig 11. Confusion matrices of the classification methods based on planarian behavioral phenotyping of the drugs and counterions.
Confusion matrices for the different classification methods: (A) PCoA-LDA; (B) UMAP-LDA; (C) ANNE; (D) SVMs. AD:
antidepressant, AP: antipsychotic, AX: anxiolytic; CI: counterion. In A and B, predicted accuracy was calculated following an exhaustive
jackknifing. In C and D, predicated accuracy refers to the overall accuracy. *indicates randomly chosen members of the test set. See the

Methods for model selection. Test set accuracies were 80.0% for ANNE (S15 Table) and 100% for SVMs (S17 Table).

https://doi.org/10.1371/journal.pone.0315394.g011
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Fig 12. Confusion matrices of the classification methods based on planarian behavioral phenotyping of the drugs only.
Confusion matrices for the different classification methods: (A) PCoA-LDA; (B) UMAP-LDA; (C) ANNE; (D) SVMs. AD:
antidepressant, AP: antipsychotic, AX: anxiolytic; CI: counterion. In A and B, predicted accuracy was calculated following
an exhaustive jackknifing. In C and D, predicated accuracy refers to the overall accuracy. *indicates randomly chosen
members of the test set. See the Methods for model selection. Test set accuracies were 100% for ANNE (S16 Table) and
100% for SVMs (S18 Table).

https://doi.org/10.1371/journal.pone.0315394.g012
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and antidepressants [20]. Given the lower complexity of planarians and their status as an
invertebrate model [14], it was encouraging to find that we were able to perform effective
behavioral classification schemes in a simple and cost-effective model.

Planarian phenotyping adds information to cheminformatics

The goal of this pilot study was to determine the extent to which planarian behavioral pheno-
typing could provide additional information for neuroactive drug classification that could not
be captured with cheminformatics alone. The value of using a combined cheminformatics and
organismal MTS approach has been demonstrated for developmental toxicity and neurotoxic-
ity studies using zebrafish larvae [59]. Here, we show that planarian phenotypic data on neuro-
active chemicals augments the cheminformatics data.

The classification of the chemicals based on the planarian behavioral phenotyping did not
use any information about the chemicals. Thus, the fact that classification accuracy
reached > 70% for all models (except for UMAP-LDA with counterions included) and >90%
for some models for the planarian data suggests that behavioral barcodes contain meaningful
information that reflects the underlying biology. Moreover, while PCoA-LDA and
UMAP-LDA classification methods had higher accuracy when using chemical descriptors
rather than planarian behavioral barcodes, the machine learning models had similarly high
accuracies (>90%) for both data streams. Thus, the choice of classification method can be
equally as impactful as the choice of input data. Taken together, our data imply that planarian
behavioral screening can identify and differentiate similarly acting compounds without knowl-
edge of the underlying biology or physicochemical properties, making it well suited for unbi-
ased, discovery-based screening of neuropsychiatric drug candidates.

When considering the primary classification indicated on the manufacturer’s website, DUL
and ARI were among the most misclassified compounds using behavioral responses across the
different methods (Figs 11 and 12). However, both compounds have known dual functions.
DUL affects both serotonin (5-hyroxytryptamine; 5HT) and noradrenaline reuptake [60], and
while it is mainly classified as an antidepressant, it has been shown to have anxiolytic effects
upon chronic exposure in mice [60, 61]. Across all classification methods except for SVMs,
DUL was often classified as an anxiolytic. Similarly, ARI was originally classified as an atypical
antipsychotic but is also used clinically to augment antidepressant efficacy [62, 63]. When
using planarian phenotyping, ARI was often classified as either an antidepressant or anxiolytic.
Thus, planarian phenotyping was able to detect known “off-label” effects of these drugs that
could not be detected by cheminformatics alone. Moreover, planarian behavioral barcoding
correctly identified BUP as an antidepressant in all models—in contrast to our findings with
the physicochemical data. BUP is an aminoketone and its mode of action as a norepinephrine
and dopamine reuptake inhibitor is distinct from that of the other antidepressants which are
all selective serotonin reuptake inhibitors [64]. This knowledge of the in vivo effects can only
be gained from an organismal systems-level approach, where the effects of these pathway inter-
actions can be observed.

Study limitations and considerations for follow-up studies

This pilot study was small in scope (19 compounds) and faced limitations that need to be con-
sidered when designing follow-up studies with larger compound libraries to support or refute
the findings reported here. First, we tested only 5 anxiolytics because most are controlled sub-
stances, and thus more expensive and difficult to obtain and use than other compounds. Fur-

thermore, given that FEN was inactive in planarians up to the solubility limit, this reduced the
anxiolytic category to only 4 active compounds for the planarian classifications compared to 7
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compounds in each of the other two categories. While the numbers of compounds were still
comparable here, class imbalance is something to consider when screening larger libraries
[65, 66].

For planarian behavioral phenotyping, we created an aggregated barcode that included
effects across all tested concentrations, thus potentially including toxic effects at higher con-
centrations for some chemicals. By looking at the whole concentration profile for a chemical,
we anticipated finding phenotypic signatures for compounds that act similarly, but it is possi-
ble that the effects were not aligned by relative concentration or that toxicity of different chem-
icals can manifest in different ways and confound the classifications. Some zebrafish studies
have overcome this issue by selecting single representative concentrations of a chemical to use
as a comparator [20]. However, it is not always straightforward to determine which concentra-
tion is truly representative and reflective of substantial neuroefficacy without the confounders
of toxicity.

We evaluated four computational models and found them to have comparable performance
on our data, which made it difficult to decide on a “best” classification method, likely due to
the small scope of this study. The machine learning models reached >90% for all cases, thus
generally performed better than the LDA methods, but they differed in misclassifications and
information content. The LDA methods provide insight into the similarity/distances between
chemicals which allows for visualization of the classification (Figs 4 and 10) and are not pro-
vided by the ANNE and SVMs, which are more enigmatic in how the models create the
classifications.

The next steps to further test these classification methods would be to screen larger libraries
of neuroactive compounds that are commercially available, as for example in [20, 22]. Having
a larger library would allow for a truly separate and larger test set of chemicals to evaluate
model performance instead of the jackknifing approach conducted here. For these initial scal-
ing-up efforts, it will be important to select chemical libraries that contain several members of
the same category while also spanning different classes and to include chemicals with both
known and unknown modes of action.

One consideration for testing larger libraries of 1000+ chemicals is feasibility. While small
organism MTS is substantially faster than vertebrate testing it is still an experimental method
and thus will be rate-limiting compared to a purely computational approach. To screen larger
libraries, one could select one or two concentrations based on the tests conducted in this pilot
study for an initial screen. Further screening for concentration response information could
then be performed on promising candidates from the initial screen. This approach has been
successfully used in zebrafish larvae to conduct such large library screens [20, 22]. Moreover,
the increased incorporation of robotic handling systems will expand the throughput capabili-
ties of small organismal screens. Upon generating larger datasets, the next step would be to
integrate the two data streams used here (cheminformatics and planarian phenotyping) to gen-
erate a single classification. Other available data streams, such as those generated from in vitro
HTS [67, 68] or computational modeling of drug-target interactions [69, 70], could also be
integrated, similar to the Integrated Approaches to Testing and Assessment (IATA) frame-
work used in toxicology to combine multiple data streams to assess chemical toxicity [71, 72].
Combining multiple data streams allows for a broader understanding of complex biological
processes that are not well captured by single assays [73]. Moreover, findings can be validated
across models, allowing for weight of evidence-based decision making. This implies that there
must be a degree of inter-model information redundancy while simultaneously having each
model bring in complementary information, such that the information content from the test
battery is more than the sum of its parts.
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A few recent studies have implemented such a synthesis based on different types of infor-
mation, e.g., cheminformatics, and/or HTS data, including in vitro cell painting and gene
expression profiles, e.g. [74, 75]. To the best of our knowledge, such an integrative approach
including MTS behavioral data has not yet been attempted. How heterogeneous data streams
are combined and weighed is a non-trivial decision [73] that will itself require validation with
known chemical libraries. Thus, there are multiple steps to take and decisions to make that
need to be carefully considered and scrutinized to build upon the results from this pilot study.
The important contribution of this work is that it has shown the feasibility and promise of
invertebrate behavioral MTS as a viable experimental alternative to vertebrate testing for first-
tier screening of novel drug candidates.

Materials and methods
Chemicals and chemical structures

Neuroactive compounds that have been functionally classified as antidepressants, antipsychot-
ics or anxiolytics were studied. Functional classifications were assigned based on the primary
classification indicated on the manufacturer’s website and/or previous literature [20]. Table 1
lists the chemicals studied including the chemical abstracts service (CAS) numbers and infor-
mation pertaining to the use of the compounds in the experimental studies. Some chemicals
were provided in salt form; thus, we also tested the respective counterions alone (Table 1).

For computational models based on two-dimensional (2D) chemical structures of drugs
and counterions, 2D coordinates were downloaded as structure-data format (SDF) files from
PubChem (https://pubchem.ncbi.nlm.nih.gov/) and concatenated into a single 2D SDF file
using OpenBabel 3.1.1 (https://github.com/openbabel/openbabel) [76] for Linux (Linux Mint
21.3 Xfce, https://linuxmint.com/). For computational models based on three-dimensional
(3D) chemical structures of drugs and counterions, 3D coordinates were downloaded as SDF
files from PubChem, energy-minimized in the AMBER14 force field at pH 7.40 [77, 78] using
YASARA-Structure 23.12.24 [79] for Linux and exported as a single concatenated 3D SDF file.
Version 2000 was used for both 2D and 3D SDF files. The ionization state of each compound
at pH 7.40 was confirmed using the pKa module of Marvin Sketch 23.1.0 for Linux (https://
www.chemaxon.com). Structures, names, 3-letter codes, and primary functional pharmacolog-
ical classes of the drugs and counterions used in the computational studies are shown in Fig 1.

Chemical similarity

Chemical similarity of the 3D SDF structures of drugs and counterions relative to ARI as a ref-
erence structure was assessed using vVROCS 3.6.1.3 (OpenEye, Cadence Molecular Sciences,
Santa Fe, NM, https://www.eyesopen.com; [69]) for Linux. The choice of a reference com-
pound is arbitrary. However, given that the algorithm was based on computing the volume of
overlap between each molecule and the reference compound after a 3D alignment of the two
structures, we chose to use the reference compound with the largest molecular volume as
assessed by the van der Waals radii of the constituent covalently bonded atoms. Similarity was
expressed quantitatively in terms of the Tanimoto coefficient (Tc), which is the most widely
used similarity metric in cheminformatics [80, 81]. The program calculates three Tc values: Tc
Shape, based on a 3D alignment of two molecules that maximizes the volume of overlap; Tc
Color, derived from a 3D alignment of two molecules with respect to six molecular features
(H-bond donor, H-bond acceptor, anion, cation, hydrophobe, and ring); and Tc Combined,
the sum of Tc Shape and Tc Color. The numerical values of Tc Shape or Tc Color range from
0 (no similarity) to 1 (complete similarity); therefore, Tc Combined ranges from 0 (no similar-
ity) to 2 (complete similarity). Note that two identical molecules would have Tc Shape and Tc

PLOS ONE | https://doi.org/10.1371/journal.pone.0315394  January 30, 2025 22/38


https://pubchem.ncbi.nlm.nih.gov/
https://github.com/openbabel/openbabel
https://linuxmint.com/
https://www.chemaxon.com
https://www.chemaxon.com
https://www.eyesopen.com
https://doi.org/10.1371/journal.pone.0315394

PLOS ONE

Neuroactive drug profiling via cheminformatics and planarian behavior

Color coefficients of 1. However, if two structures have Tc Shape and Tc Color coefficients of
1, this does not necessarily mean that the molecules are identical because two non-identical
compounds could have distinctive features that were not accounted for in the similarity algo-
rithms [82].

Chemical descriptors

Chemical descriptors (comprising computed chemical properties and fingerprints) were calcu-
lated for 2D and 3D structures of drugs and counterions using absorption, distribution, metab-
olism, excretion, and toxicity (ADMET) Predictor™ 11.0.3 (Simulations Plus, Lancaster, CA)
for Windows (10 Pro 22H2) (S1 and S2 Files). The fingerprint type was extended connectivity
fingerprint diameter 6 (ECFP6). Within ADMET Predictor™, fingerprints were converted to
descriptor format and combined with the other computed chemical properties descriptors for
use in the computational models. For each of the 2D structures (18 drugs and 5 counterions)
there were 908 descriptors (514 fingerprints and 394 directly calculated properties), and for
each of the 3D structures (21 drugs and 5 counterions) there were 948 descriptors (516 finger-
prints and 432 directly calculated properties). Importantly, when considering 2D structures
CIT and ESC are treated as one structure which we label as CIT, leading to only 18 drugs.
Because 3 of the 18 drugs were administered as racemic mixtures in the behavioral assays, the
separate structures of the (R) and (S) stereoisomers of these compounds were included in the
3D computational models, thereby giving rise to 21 3D drug structures (and 5 counterions).
The 2D and 3D descriptors were exported from ADMET Predictor™ as two separate data files
in CSV format for use in classification models. To keep the data size comparable to the planar-
ian data, which considers each of the 19 tested compounds as one entity, we focused on the 2D
structural features in the main text.

Classification models

Linear discriminant analysis (LDA) preceded by principal coordinate analysis
(PCoA). LDA is a supervised linear ordination and classification technique that maximizes
the discrimination between classes of labeled data [83]. LDA is a preferred classification proce-
dure when there are more than two classes, in which cases the method is also known as canoni-
cal variate analysis (CVA) or canonical discriminant analysis (CDA). When the number of
predictor variables is greater than the number of samples, LDA is preceded by a dimension
reduction technique such as principal component analysis (PCA) or PCoA [84].

We chose PCoA as the dimension reduction step because PCoA can use any desired dis-
tance or dissimilarity measure, although Gower distance tends to be preferred [85], whereas
PCA is restricted to Euclidean distance. Moreover, PCoA has been combined with LDA to
create a successful sequential method for ordination and classification of standardized data
called canonical analysis of principal coordinates (CAP) or generalized discriminant analysis
(GDA) that preserves the initially chosen distance or dissimilarity measure in the resulting
ordination [86].

The procedures for PCoA-LDA were carried out as follows: Either the chemical descriptor
files or the barcode files of planarian behavioral responses were imported into the data analysis
program, PAST 4.16¢ for Windows (https://www.nhm.uio.no/english/research/resources/
past/; [87, 88]). Classifications based on 2D or 3D chemical descriptors were carried out with
or without the counterions. Classifications based on planarian responses were conducted on
data with or without FEN and with or without counterions. Columns that were deemed unin-
formative by the PAST software (non-numeric, all-zero, all-missing, singleton, and constant)
were removed, and the remaining data were standardized so that each column had mean =0
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and SD = 1. Following dimension reduction in PAST using PCoA with Gower distances
[89-91], LDA was carried out in PAST using the number of PCoA coordinates that yielded the
highest classification accuracy (expressed as the percentage of correctly classified chemicals)
after applying an exhaustive leave-one-out procedure (jackknifing) [92, 93]. Clusters identified
by LDA were displayed as 2D scatterplots with the percentage of the total eigenvalues shown
on each of the two axes and the clusters demarcated as 95% confidence ellipses. When the
number of PCoA coordinates used for LDA was greater than two, the sum of the percentages
of the total eigenvalues on the two axes was less than 100%.

LDA preceded by uniform manifold approximation and projection (UMAP). UMAP
was carried out on standardized data files based on chemical descriptors or planarian behav-
ioral responses in PAST 4.16¢ using Gower distances as described above for PCoA. The
UMAP algorithm employed by PAST was derived from the original method of [94]. UMAP is
anonlinear dimension reduction and ordination method that has capabilities for preserving
both the local and global structures of the original data, as an alternative dimension reduction
method prior to LDA. UMAP provides a complementary alternative to PCoA, which is a linear
dimension reduction and ordination technique that emphasizes preservation of the global
structure of the original data [95].

The numbers of embedded and UMAP neighbors, as well as the minimum distance
between samples, were systematically varied to achieve the maximum separation of clusters
after 100 UMAP iterations. Final UMAP coordinates were then used as input for running
LDA in PAST as described above for PCoA-LDA. The resulting LDA output included 2D scat-
terplots with 95% confidence ellipses and percent classification accuracies (unadjusted and
jackknifed).

Artificial neural network ensemble (ANNE). An artificial neural network (ANN) is a
mathematical construct that mimics a simple array of biological neurons consisting of an
input layer, a hidden layer, and an output layer [96]. Inputs with various weights are transmit-
ted to neurons in the hidden layer, where the summed weighted inputs are compared with a
threshold value generated by a sigmoid activation function. When the threshold value is
exceeded, a signal is conveyed to the output layer. ANNs have the capacity to accept nonlinear
and large numbers of inputs from which they can adapt and learn, thereby enabling them to
make predictions in the form of continuous outputs (regression models) or discrete assign-
ments to two or more categories (classification models) [97]. Multiple ANNs can be combined
into an ensemble (ANNE) so that their outputs are channeled to a voting or averaging algo-
rithm to create an ensembled output, resulting in enhanced performance of ANN-based
regression and correlation models [98].

ANNE classification was performed using the Modeler™ 11.0 module of ADMET Predic-
tor™ 11.0.3, with CLASS as the dependent variable. The classes consisted of the four primary
functional categories (antidepressants, antipsychotics, anxiolytics, and counterions). Ten
final models were created for each of the following four sets of chemical descriptors: 2D
descriptors with or without counterions; and 3D descriptors with or without counterions.
Likewise, ten final models were created for each of the following four sets of planarian behav-
ioral data: including FEN with or without counterions; and excluding FEN with or without
counterions.

Before generating the models, the program screened all the descriptors to remove those
with the following characteristics: identical or with coefficients of variation < 1%; under-rep-
resented (non-zero for 1-3 data points); or highly correlated (Pearson r > 0.98). For chemical
descriptors, the culling process reduced the number of candidate 2D descriptors from 908 to
162 and the number of candidate 3D descriptors from 948 to 192. During the running of the
ANNE and SVMs models, the algorithms selected the smallest number of descriptors that
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optimized performance; for some ANNE models, the final number of descriptors was as low as
one, and for some SVMs models, the final number of descriptors was as low as two. S1 Table is
a compilation of all of the chemical descriptors that were used in constructing the ANNE and
SVM models listed in S2-S9 Tables. For planarian behavioral descriptors, the culling process
reduced the number of candidate descriptors from 87 to 80 (FEN with counterions), 87 to 81
(FEN without counterions), 87 to 80 (without FEN with counterions), and 87 to 81 (without
FEN and without counterions).

The training:test ratios of chemicals for chemical descriptor files were as follows: 2D with
counterions, 18:5; 2D without counterions, 14:4; 3D with counterions, 21:5; and 3D without
counterions, 17:4. These ratios for planarian behavioral files were as follows: FEN with coun-
terions, 18:5; FEN without counterions, 15:4; without FEN with counterions, 17:5; without
FEN without counterions, 14:4. Test set selection was done via randomized stratified sampling
by CLASS. During each run, the members of the ensemble automatically were selected by ini-
tially assigning random weights to each submodel and partitioning the training sets into train-
ing and verification sets in an approximate 2:1 ratio. After training, scores were assigned to
each model according to the summed verification set performance and the absolute difference
between verification and training set performance using the Youden index as the criterion. To
avoid overtraining of ANN models, training was automatically halted when the verification set
score failed to improve or increased beyond a preset number of iterations.

Generation of each of the 10 final models was initiated using a unique random seed num-
ber. Final descriptor selection for each model was carried out by the software using a genetic
algorithm to explore the effectiveness of different descriptor combinations. Models were then
run using default settings for the number of generations, number of neurons, and number of
descriptors; these settings were automatically adjusted to be appropriate for the number of
chemicals in the training and test sets.

For each run, the following performance metrics generalized to k classes and expressed as
percentages were calculated: Youden index (J) [99], Matthews correlation coefficient (MCC or
Ry) [100], and Accuracy (Acc) (overall percent correctly classified) [65]. These metrics were
calculated by the Modeler™ 11 software for the training set, test set, and all chemicals. The data
summaries include the following information for each model: mean and SE (n = 10 models)
for each of the 9 performance indicators; number of neurons and descriptors; and the numbers
and identities of misclassified chemicals. The rank for each ANNE and SVMs model, respec-
tively, was determined by applying the RANK.AVG function in Microsoft Excel 365 to SUM
(training metrics + test metrics + (100XNpy;n/N) + (100XD i, /D)), where Ny, = minimum
number of neurons, N = number of neurons, D ;,, = minimum number of descriptors, and D
= number of descriptors. Thus, the ranking rewarded models that produced high performance
with the smallest numbers of neurons and/or the smallest numbers of descriptors, in keeping
with the parsimony principle [101, 102]

Support vector machines (SVMs). This is a machine-learning technique that seeks to
define hyperplanes in n-dimensional space that maximize the separation of data points into
classes [103]. The name of the method stems from the fact that the points closest to a given
hyperplane are called support vectors [104]. Although SVMs can be used for regression models
and outlier detection, they are especially well suited for classification [105]. SVMs are intrinsi-
cally a binary classifier, but they have been successfully adapted for classifications involving
multiple classes.

SVMs classification was performed using the Modeler™ 11.0 module of ADMET Predictor™
11.0.3, with CLASS as the dependent variable, as described above for ANNE classification.
Likewise, the same evaluation statistics and data summaries employed by ANNE were used by
SVMs.
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The default correlation setting for our machine-learning models was > 0.98. Highly corre-
lated variables were automatically removed for both the physicochemical descriptors (includ-
ing the molecular fingerprints) and the behavioral endpoints.

Planarian care and culture

D. japonica planarians from an established lab culture were used for all experiments and culti-
vated according to standard protocols [44, 47]. The planarians were kept in 0.5 g/L Instant
Ocean (I0) Salts (Spectrum Brands, Blacksburg, VA, USA) in BPA-free polypropylene plastic
containers (approximately 25 cm L x 14 cm L x 8 cm H), with the lid on loosely and stored at
20°C in a Panasonic refrigerated incubator in the dark when not used for experiments. The
planarians were fed 1-2x per week with 100% grass-fed beef liver (purchased from a local
farm) or USDA-certified organic chicken liver (Bell and Evans) and cleaned on the feeding
day and 2 days later. When not fed, the containers were cleaned weekly. Similarly sized intact
planarians that were fasted for 5-7 days were arbitrarily selected to be used in experiments, as
in [48].

Chemical exposure

Stock solutions were prepared at 200X of the highest test concentration in either DMSO
(Sigma-Aldrich, purity = 99.9%) or Milli-Q water, depending on solubility (Table 1). The
200X stocks were diluted to 10X stocks in IO water just prior to exposure. Planarians were
exposed to the chemicals in 48-well tissue culture-treated polystyrene plates (Genesee Scien-
tific, San Diego, CA, USA), with each well containing 1 planarian in 200 uL of chemical solu-
tion. When used as a solvent, DMSO was used at a final concentration of 0.5% (v/v) in all test
concentrations, which does not cause morphological or behavioral effects in D. japonica [43].
For most chemicals, serial half-log dilutions were used to prepare the range of concentra-
tions tested, which were initially guided by previous results in developing zebrafish [20] or our
previous studies with D. japonica [106]. For FEN and MID, serial quarter-log dilutions were
used because preliminary tests had already narrowed an appropriate concentration range to
span no effects to strong effects (or maximum solubility). All chemicals were screened over at
least 5 concentrations, with each row of the 48-well plate consisting of one concentration
(n = 8). For some compounds, additional lower concentrations were screened if the original
lowest concentration showed effects in the preliminary data analysis. Moreover, some com-
pounds were screened at additional higher concentrations if no statistically significant effects
were observed in the original range and the compound was still soluble at higher concentra-
tions. The counterions were screened at the concentration equivalent to what would be found
in the highest concentration of the respective salt form of a tested drug. The pH of the highest
test concentration for each chemical was first measured with pH strips (VWR, Radnor, PA).
As we found the measurements with the pH strips were not precise nor reliable, we remea-
sured the pH using an Apera PH60-MS pH Tester kit for small volumes (Apera Instruments,
Columbus, Ohio), taking measurements after allowing the probe to equilibrate for 20 min.
Plates were sealed with thermal film (Excel Scientific, Victorville, CA, USA) immediately
after addition of chemicals. Experiments were run on intact planarians within 15 minutes- 3
hours of chemical introduction. This time window was chosen for throughput, to allow for
multiple plates to be set up and tested in one experiment. Which plates were screened first
was arbitrarily decided, to avoid any systematic bias in the treatment. Technical triplicates
were run for all chemicals (total n = 24 per concentration), employing a rotating orientation
of the chemical concentrations in the plate rows (Fig 7A) to account for edge effects when
screening [44].
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One screening plate consisted of negative and positive assay controls, each run at a single
concentration, which were used to evaluate proper performance of the assays. Negative con-
trols consisted of D-sorbitol and L-ascorbic acid (both from Sigma-Aldrich) at 100 uM [44].
Ethanol (1% v/v, Greenfield Global, Toronto, Canada), DMSO (3% v/v), and sodium dodecyl
sulfate (SDS, 1 mg/L, Life Technologies, Carlsbad, CA) were used as positive controls at con-
centrations that induce behavioral phenotypes in the absence of lethality in D. japonica [43].
The positive controls were prepared fresh at 10x in IO water on the day of the experiment. All
assay controls performed as expected (523 Table).

Planarian screening methodology

Intact planarians were assayed for acute effects on lethality/crawl-out behavior, morphology,
stickiness, and various behaviors (locomotion, phototaxis, and noxious heat sensing) using the
screening platform and analysis methodology described in [44, 47, 48, 50]. Screening consisted
of three assays: Phototaxis, Stickiness and Scrunching (Fig 7A), which have been described in
detail in [47]. Image analysis was performed using object tracking [42] in MATLAB (Math-
Works, Natick, MA) or Python as described in [44, 47, 48, 50]. Because the liquid volume only
takes up 13% of the total well volume, planarians can crawl out of the liquid and dry out. Pla-
narians which crawled out of the water (crawl-out, also previously referred to as “suicide”

[44]) were excluded from the analysis of all subsequent endpoints. Worms were included in
the analysis for endpoints in which they were still alive and in the exposure solution.

The endpoints used are described in Tables 2 and 3 and consisted of two major classes:
unstimulated and stimulated behaviors. Unstimulated behaviors included lethality/crawl-out,
presence of abnormal body shapes/behaviors, and general locomotion (speed and resting in
the dark, locomotor bursts and anxiety). The “anxiety” endpoint [50, 106] measures the
amount of time spent in the outer portion of the well by the planarians [48] and is akin to simi-
lar measures in rodents [107] and adult zebrafish [108], wherein spatial exploration is used to
describe “anxiety-like” behaviors. It is also referred to as “wall preference” in the literature
[48, 109]. Specific distinctive body shape categories (contraction, C-shape, corkscrew, pharynx
extrusion, and hyperkinesis) were manually scored blind by a researcher (Fig 7B-7G). Con-
traction, C-shape, and corkscrew were scored as described in [106]. Hyperkinesis consisted of
an array of different types of generally hyperkinetic movements that could not be captured by
the other categories, such as muscle waves/scrunching [106], hyperextension, head flailing and
convulsive behavior, consisting of uncoordinated muscle twitching (S1 Video). A single pla-
narian could be scored as exhibiting up to three different shape categories. For benchmark
concentration (BMC) modeling, described below, the presence of any abnormal body shape
was used to determine activity, whereas for phenotypic profiling, both incidence rate of any
body shape and the incidence rates in the specific shape classes were used. Stimulated behav-
iors were measured in response to an environmental stimulus (shaking, light, or noxious heat,
Fig 7).

Benchmark concentration modeling

Benchmark concentrations (BMCs) were calculated for every chemical and endpoint to quan-
tify potency using the Rcurvep R package [110] similar to the procedure described in [48].
Briefly, the planarian responses for each endpoint were transformed as needed to allow for
determination of directional, concentration-dependent responses, as described in [48]. The
transformed data for each individual planarian is provided in S3 File. For the binary endpoints
(crawl-out, body shape, stickiness, phototaxis, scrunching), the incidence rates (number of pla-
narians affected and total number of planarians) from the combined data from all replicates
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(n = 24) was used. For all binary endpoints except crawl-out, the experimental incidence rates
for each concentration were normalized by the incidence number of the respective in-plate
vehicle controls. Any negative incidence numbers after normalization were set to 0. For con-
tinuous endpoints, the raw response of each individual planarian was normalized either by
dividing by or subtracting the median of vehicle control values for that plate (Table 3). Except
for locomotor bursts (total), the normalized outcome measures were multiplied by 100 to rep-
resent the percent change from the control populations and to provide an appropriate range to
perform the BMC analysis. The normalized data were used as input for the Rcurvep package to
calculate the benchmark response (BMR) as described in [48]. For some endpoints, the R
package could not converge to produce an accurate BMR due to high variance and/or non-
monotonic concentration responses. In these cases, the BMR was set to the 5% or 95 percen-
tile of the normalized response of the aggregated vehicle controls (S4 Fig), to set the threshold
above which effects would be seen. The determined BMR was then used to calculate the BMC,
the concentration that exceeds that BMR in the modeled concentration response curve [110],
for each endpoint, using n = 1000 bootstrapped curves. For all endpoints, we report the result-
ing median BMCs from this bootstrapped analysis. The lower and upper limits (5th and 95th
percentiles, respectively) of the BMC for each endpoint are listed in S4 File. Some endpoints
can be affected in both directions (e.g., increases or decreases in speed). For these endpoints,
BMRs and BMCs were calculated for each direction, but we found that hits were only deter-
mined in one direction and thus only report that direction (Table 3).

Phenotypic profiling

To quantitively describe the multidimensional phenotype observed for each test concentration,
a “phenotypic barcode” was created for each chemical concentration consisting of either the
incidence rate for all binary endpoints, multiplied by 100, or the median normalized response
for all continuous endpoints, as were input into the BMC analysis. Next, one master barcode
was created for each chemical by concatenating the barcodes of all tested concentrations in rel-
ative order (S5 File). To keep comparisons similar across different test concentrations, the rela-
tive order of the concentrations was considered rather than the absolute concentration.
Because different numbers of concentrations were tested across the different chemicals, we
“right-aligned” the barcodes such that the highest test concentrations were aligned across all
chemicals. For lower concentrations that were not tested in a specific chemical, the barcodes
were filled with 0s (indicative of no effects). When being input into the classification methods,
the data were truncated to only the highest 5 concentrations such that negative/missing data
were not driving the classifications (S7 Fig).

Supporting information

S1 Fig. Classification based on 3D chemical descriptors for LDA based approaches.
Computational methods are arranged by rows: (A) PCoA-LDA; (B) UMAP-LDA. Counterion
inclusion/exclusion is arranged by columns: (1) with counterions; (2) without counterions.
Misclassifications after jackknifing: (A) none; (B) PRO, BUS; (C) ARI, BUS, TRA; (D) AR,
BUS, TRA. Ellipses refer to 95% confidence intervals. The axes show the percentage of the total
eigenvalues; this does not sum to 100% in (A1) because there was a third axis that accounted
for the remaining 0.60%.

(TIF)

$2 Fig. Confusion matrices of the classification methods based on 3D chemical descriptors
of the drugs and counterions. Confusion matrices for the different classification methods:
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(A) PCoA-LDA; (B) UMAP-LDA; (C) ANNE; (D) SVM; AD: antidepressant, AP: antipsy-
chotic, AX: anxiolytic; CL: counterion. In A and B, predicted accuracy was calculated following
an exhaustive jackknifing. In C and D, predicated accuracy refers to the overall accuracy.
*indicates randomly chosen members of the test set. In (C), model 05_1n7, marked with *, was
ranked first but did not include a member of the anxiolytic class in the test set. Thus, we also
included the second-place model (model 06_1n8), marked with +, which included at least one
member from each of the 4 classes. In (D), four models were tied for the best model but for
clarity only the first of the 4 tied models is indicated because there were no misclassifications
of any test set members. The members of the 4 test sets for the 4 tied first-place models were as
follows: 01_2i: CIR, FLR, DRO, DIA, BRD; 05_21: ESC, FLS, BRO, MID, MAL; 06_2i: BUA,
IMI, DRO, PRO, SOD; 08_21: BUA, FLS, BRO, FEN, MAL. Test set accuracies were 100% for
ANNE (S6 Table) and 100% for SVMs (S8 Table).

(TIF)

$3 Fig. Confusion matrices of classification methods based on 3D chemical descriptors
without counterions. Confusion matrices for the different classification methods: (A)
PCoA-LDA; (B) UMAP-LDA; (C) ANNE; (D) SVM; AD: antidepressant, AP: antipsychotic,
AX: anxiolytic. In A and B, predicted accuracy was calculated following an exhaustive jackknif-
ing. In C and D, predicted accuracy refers to the overall accuracy. *indicates randomly chosen
members of the test set. In (C), model 03_1n7, marked with *, was ranked first but did not
include a member of the anxiolytic class in the test set. Thus, we also included one of the sec-
ond-place models (model04_2n2), marked with +, which included at least one member from
each of the 4 classes. 04_2n2 was tied for second place with 09_2n2, which had the following
test set members: BUA, FLS, OLA, MID. For clarity, we only marked model 04_2n2 in (C). In
(D), three models were tied for the best model but for clarity only the first of the 3 tied models
is indicated because there were no misclassifications of any test set members. Test set accura-
cies were 100% for ANNE (S7 Table) and 100% for SVMs (S9 Table).

(TIF)

S4 Fig. Normalized responses of the vehicle controls in the continuous endpoints. Plots
show the distribution of normalized responses for each individual vehicle control (n = 768)
when normalized by the median of the control population of the respective plate.

(TIF)

S5 Fig. FEN does not cause chronic toxicity. Minimum intensity projections showing the
behavior of planarians exposed to either 0.5% DMSO (solvent control) or 562 uM FEN for 12
days over the course of the 5 min phototaxis assay. Images show representative worms out of a
total of n = 32 per condition. Scale bar: 4 mm.

(TIF)

S6 Fig. LogD cannot explain potency differences. The range of logD values (error bars) for a
given chemical were calculated based on the logD at the pH of the solvent and at the measured
pH of the highest tested concentration (see S12 Table) to cover the suspected pH for all test
concentrations and plotted against the log10 of the most sensitive benchmark concentration
(BMC) in uM for that chemical. Markers were added at the median of the logD range to allow
for labeling by chemical. N/A indicates that fenobam (FEN) was inactive as this did not have a
calculated BMC.

(TIF)

S7 Fig. Heatmap of planarian barcodes used as input for classification methods. Each
chemical was assigned a master barcode by concatenating the barcodes of each concentration.
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Only the 5 highest concentrations (relative concentrations 8-12) were used for the classifica-
tion methods so that the inactive/missing data would not dominate the phenotypes. Columns
are labeled as “endpoint_relative concentration”. CRO: crawl-out, STK: stickiness, SHP: body
shape, SCR: scrunching, PTX: phototaxis, ANX: anxiety, RSD: resting_dark, RSB: resting_blue,
SPD: speed_dark, SBI1: speed_bluel, SB2: speed_blue2, LBT: locomotor bursts_total; NSS: nox-
ious stimuli_strength. Chemicals are colored by class: antidepressants (red), antipsychotics
(blue), anxiolytics (magenta), and counterions (black).

(TIF)

S8 Fig. Classification of planarian data including FEN. Computational methods are
arranged by rows: (A) PCoA-LDA; (B) UMAP-LDA. Counterion inclusion/exclusion is
arranged by columns: (1) with counterions; (2) without counterions. Ellipses show 95% confi-
dence intervals. The axes show the percentage of the total eigenvalues.

(TIF)

S9 Fig. Confusion matrices of the classification methods based on planarian behavioral
phenotyping of the drugs, including FEN and counterions. Confusion matrices for the dif-
ferent classification methods: (A) PCoA-LDA; (B) UMAP-LDA; (C) ANNE; (D) SVMs. AD:
antidepressant, AP: antipsychotic, AX: anxiolytic; CI: counterion. In A and B, predicted accu-
racy was calculated following an exhaustive jackknifing. In C and D, predicated accuracy refers
to the overall accuracy. *indicates randomly chosen members of the test set. Test set accuracies
were 100% for ANNE (S19 Table) and 80% for SVMs (S21 Table).

(TIF)

$10 Fig. Confusion matrices of classification of planarian data including FEN without
counterions. Confusion matrices for the different classification methods: (A) PCoA-LDA; (B)
UMAP-LDA; (C) ANNE; (D) SVMs. AD: antidepressant, AP: antipsychotic, AX: anxiolytic. In
A and B, predicted accuracy was calculated following an exhaustive jackknifing. In C and D,
predicated accuracy refers to the overall accuracy. *indicates randomly chosen members of the
test set. Test set accuracies were 100% for ANNE (S20 Table) and 100% for SVMs (S22 Table).
(TIF)

S1 Table. Chemical descriptors used in the machine learning models (ANNE and SVMs).
(PDF)

S2 Table. ANNE classification models using 2D molecular descriptors of 18 drugs and 5
counterions.
(PDF)

§3 Table. ANNE classification models using 2D molecular descriptors of 18 drugs.
(PDF)

S4 Table. SVMs classification models using 2D molecular descriptors of 18 drugs and 5
counterions.
(PDF)

S5 Table. SVMs classification models using 2D molecular descriptors of 18 drugs.
(PDF)

S6 Table. ANNE classification models using 3D molecular descriptors of 21 drugs and 5
counterions.
(PDF)
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S7 Table. ANNE classification models using 3D molecular descriptors of 21 drugs.
(PDF)

S8 Table. SVMs classification models using 3D molecular descriptors of 21 drugs and 5
counterions.
(PDF)

S9 Table. SVMs classification models using 3D molecular descriptors of drugs only.
(PDF)

$10 Table. Calculated benchmark concentration values in logM.
(PDF)

$11 Table. Converted BMC values in pM.
(PDF)

$12 Table. Median normalized responses for each endpoint after exposure to the counter-
ions.

(PDF)

$13 Table. pH at highest tested concentration.
(PDF)

$14 Table. Median normalized responses for extreme pHs.
(PDF)

S15 Table. ANNE classification models using behavioral responses to 18 drugs (-FEN) and
4 counterions.
(PDF)

$16 Table. ANNE classification models using behavioral responses to 18 drugs (-FEN).
(PDF)

$17 Table. SVMs classification models using behavioral responses to 18 drugs (-FEN) and
4 counterions.
(PDF)

$18 Table. SVMs classification models using behavioral responses to 18 drugs (-FEN).
(PDF)

$19 Table. ANNE classification models using behavioral responses to 19 drugs (+FEN) and
4 counterions.
(PDF)

$20 Table. ANNE classification models using behavioral responses to 19 drugs (+FEN).
(PDF)

S21 Table. SVMs classification models using behavioral responses to 19 drugs (+FEN) and
4 counterions.
(PDF)

$22 Table. SVMs classification models using behavioral responses to 19 drugs (+FEN).
(PDF)

$23 Table. Compiled normalized responses for assay controls.
(PDF)
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S1 Video. Example planarian behaviors showing the normal gliding behavior compared to
two examples of hyperactive behavior.
(AVI)

S1 File. 2D chemical descriptors for drugs and counterions. Raw 2D molecular properties
exported from Simulations Plus ADMET Predictor 11 before pre-processing (see Methods).
(CSV)

S2 File. 3D chemical descriptors for drugs and counterions. Raw 3D molecular properties
exported from Simulations Plus ADMET Predictor 11 before pre-processing (see Methods).
(CSV)

S$3 File. Individual planarian behavioral responses. Responses for continuous endpoints are
normalized by the response of in plate controls.
(XLSX)

$4 File. 95th percentile confidence intervals of the benchmark concentration (in logM) for
each planarian endpoint.
(XLSX)

S5 File. Concatenated planarian behavioral barcodes. Input data for classification models.
(XLSX)
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