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Abstract

Behavioral dysfunctions in dogs represent one of the main social concerns, since they can

endanger animals and human-dog relationship. Together with the trigger stimulus (human,

animal, place, scent, auditory stimuli, objects), dogs can experience stressful conditions,

either in multiple settings or unique situations, more often turning into generalized fear.

Such a dysfunctional behavior can be associated with genetic susceptibility, environmental

factors, traumatic experiences, and medical conditions. The available therapy, based on

behavior approaches, environmental management, and neurochemical manipulation,

through nutrition, supplements, medicines, and pheromones, represent the mainstays of

the treatments currently accessible. Growing evidence in humans and animals highlight the

importance of the gut-brain axis in the modulation of the brain physiology and behavior as

well. Here, taking advantage of the next generation sequencing approach, we sought to

investigate the potential connection between gut microbiota and microbiome in dogs suffer-

ing from generalized fear (n = 8), when compared to healthy subjects (n = 8), who all lived in

different families. Faecal microbiota evaluation showed a differential abundance of taxa

related to Proteobacteria and Firmicutes Phyla, between case and control dogs. Moreover,

serum metabolomics documented significant alterations of molecules associated to GABA

and glutamate neurotransmission in the patients, as well as bile acids metabolism. Overall,

our preliminary and integrated investigations highlighted an intriguing role for the micro-

biome-metabolome network, allowing to further unveil the potential pathophysiology of rela-

tional issues in companion animals and paving the way for more effective therapeutical

approaches.

Introduction

In mammals, the gastrointestinal (GI) tract is populated by a huge variety of symbiotic micro-

organisms, acquired from maternal microbiota during pregnancy, and influenced by mothers’
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diet and delivery methods [1]. Accordingly, studies in 91 pregnant women showed a signifi-

cant increase of Enterococcus, alongside with lower levels of both Enterobacter and Streptococ-
cus during the early phases of gestation [2]. Moreover, bacteria belonging to Bacteroidetes and

Actinobacteria phyla are precociously transmitted to infants through the natural childbirth.

On the other hand, caesarean section or antibiotic exposure around birth were found to be

causative of a higher incidence in pathogen colonisation and immune-related disorders in

children [3]. In general, healthy dogs’ microbiomes show more similarities to humans than

cats [4], likely due to a shared environment and a relevant starch-enriched diet [5–9]. Firmi-

cutes, Bacteroidetes, Proteobacteria, Fusobacteria, and Actinobacteria phyla build up more

than 99% of all intestinal bacteria in dogs [9, 10], while at the genus level, the GI microbiota

has been considered dominated by Fusobacterium, Bacteroides, and Prevotella [4, 7, 11]. Stud-

ies about GI microbiota and its biogeography in mouse models documented the spatial distri-

bution of specific phyla, which are differentially localized between fore and hindgut,

depending on chemical gradients, nutrition availability and intestine immunity [12]. In keep-

ing with that, the stomach harbours an acid resistant flora of aerobic and anaerobic bacteria,

populated byHelicobacter, Lactobacillus, Streptococcus and Clostridium [13]. On the other

hand, facultative aerobic or anaerobic microorganisms, including Clostridia, Lactobacillus and

Proteobacteria inhabit small intestine, whereas the large intestine of both cats and dogs host

anaerobic bacteria, such as Clostridiales, Bacteroides, Prevotella and Fusobacteria [10, 14, 15].

Research studies about GI microbiota in both humans and animals often do not account for

the microbiota diversity within specific sections of the gut, thus representing a generalized pro-

filing of the whole GI tract. In this framework, canine faecal samples could nevertheless pro-

vide a proper snapshot of the most relevant gut microbiota taxa composition compared to

humans, since they have a more rapid transit time, with a shorter stay within mucosa mem-

branes [16, 17]. In mammals, GI microbiota profiling can be modulated by several factors,

such as sex, age, breed, diet, gastrointestinal disease, body condition score (BCS), reproductive

status and environment, according to different species [11, 14, 16, 18–24]. Moreover, several

pharmacological treatments with pump inhibitors, antidepressants, glucocorticoids, or antibi-

otics can even have detrimental impact upon mammalian GI microbiota [25–30]. Besides its

crucial role in digestion, several reports highlighted the importance of the GI microbiota in

integrating endocrine, immune, and neural pathways. In this respect, the bidirectional activity

of the gut-brain-immune axis allows the brain to modulate the GI activity, whereas GI tract

itself can shape CNS functioning. According to human and veterinary medicine studies, dis-

ruption of the gut-brain- axis homeostasis can be associated with the onset and severity of

behavioral disorders [31–35]. Such a mutual communication system is exploited by the ability

of the microbiota to synthetise specific metabolites and neurotransmitters, which might influ-

ence mood-related behaviors, alongside with emotion, motivation, reward and cognition [36–

42]. Metabolome is defined as the complete set of low-molecular weight molecules occurring

in a peculiar biological system, thus allowing to draw a metabolic fingerprinting that may

reflect systemic changes [43, 44]. Hence, the intricate metabolic interactions taking place

between gut microorganisms and their hosts might be addressed through the investigation of a

metabolome profiling [45]. Indeed, the communication between brain, microbe communities

and gut have already been widely assessed as continuous and bidirectional [46]. It is not sur-

prising that irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD) were linked

to changes in the microbiota-gut-brain axis [47, 48]. Additionally, these intestinal disorders

appeared to be associated with mood impairments, such as anxiety, depression [49]. Therefore,

questioning whether the microbiota modulates dog’s behavior and vice versa will be helpful.

Kirchoff and colleagues (2019) found a clustering of faecal taxa in 21 dogs with aggressive con-

specific behavior, thus assuming that gut microbiome profiling might be considered a useful
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tool for a diagnostic assessment of aggressive behaviors [50]. Further investigation in a small

sample of phobic, aggressive, and anxious dogs showed a different structure and composition

of the gut microbiota in dogs with behavioral issues, when compared to healthy controls

[51, 52]. Therefore, in the present work we sought to examine the potential impact of GI

microbiota, together with a serum metabolomic profiling, in fearful family dogs.

Methods

Ethics statement

All experimental protocols were approved by the Scientific Ethic Committee for Animal

Experimentation (Reference number: PG/2023/0011527), in accordance with the Italian legis-

lative Decree (N. 26/ 2014). The blood samples were taken during routine visits, as a part of

screening for health problems. Written informed consent was obtained from each owner for

the publication.

Animals and sample collection

Fearful (case) dogs and healthy (control) subjects (n = 8) were between one and eight years

old, clustered for breed, sex, age, and weight (Table 1). Both patients and controls were owned

dogs, fed with dry commercial diet containing crude protein (24–28% of total content), fat

(11–18%), fiber (2,2–14%), ash (5,8–11%), and moisture (8–9%). All the enrolled subjects lived

in different Italian cities, namely Caserta, Naples, Salerno (Campania Region) and Formia

(Lazio Region), and did not receive antibiotics four weeks before stool and blood sampling.

Neither glucocorticoid, proton pump inhibitors and/or probiotics, herbal remedies and nutra-

ceuticals were provided. One of the behaviorist veterinarians carried out clinical and behav-

ioral examination for each animal, who then categorized according to their behavioral

phenotype (fearful vs control group). Diagnostic clues of fear were hypervigilance, scanning,

changes in social soliciting behavior (hiding, escape attempts), displacement behaviors, out-of-

context grooming and scratching, yawning, lip licking, whining; physiologic signs (trembling,

dilated pupils, hypersalivation, tachypnoea, tachycardia). The behavioural history included

Table 1. Demographics of the dogs enrolled in the study.

Subject/Breed Group Sex Age (years) Reproductive status Weight (Kg) BCS (1–9 scale) City (Region)

Monky/Mongrel Case Male 2 Neutered 18 4 Caserta (Campania)

Mira/Pinscher mix-breed Control Female 3 Spayed 5 5 Caserta (Campania)

Cam/Weimaraner Control Male 4 Intact 38 5 Salerno (Campania)

Macchia/Mongrel Case Female 2 Spayed 14 4 Salerno (Campania)

Ciammarica/Mongrel Case Female 5 Spayed 6 4 Salerno (Campania)

Otto/Rottweiler Control Male 2.5 Intact 50 5 Salerno (Campania)

Rena/Mongrel Case Female 1.5 Spayed 30 4 Formia (Lazio)

Charlotte/Mongrel Case Female 7 Spayed 7 5 Formia (Lazio)

Maya/Mongrel Case Female 2 Spayed 20 5 Formia (Lazio)

Rosina Mongrel Case Female 3 Spayed 15 4 Salerno (Campania)

Celia/Weimaraner Control Female 7 Spayed 30 5 Salerno (Campania)

Muffin/Mongrel Case Female 4 Spayed 19 4 Salerno (Campania)

Boris/Shepard mix-breed Control Male 7 Intact 37 5 Napoli (Campania)

Liam/Hunting mix-breed Control Male 5 Neutered 28 4 Napoli (Campania)

Buddy/Mongrel Control Male 6 Intact 22 4 Napoli (Campania)

Heidi/Bobtail Control Male 7 Neutered 50 5 Napoli (Campania)

https://doi.org/10.1371/journal.pone.0315374.t001
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inadequate early environmental experiences and/or inadequate socialisation. All dogs were

subjected to physical examinations by a licensed veterinarian, including recording their body

weight and body condition score (using a 9-point scale: underweight (1–3), ideal (4–5), and

overweight (6–9)).

The animals underwent a complete blood test, which also included the evaluation of thyroid

function, and protein electrophoresis, to rule out any co-morbidities, potentially related to

behavioral issues [53, 54]. A small patch of hair was shaved from the dog’s neck and topical

anaesthesia (Eutectic Mixture of Local Anaesthetics (EMLA™) cream) applied to the area

before collection of a 5 ml blood sample from the jugular vein. Blood and stool samples were

collected from each animal between 7:00 and 10:00 am, immediately frozen on dry ice, and

stored at -80˚C until their further processing. A part of stool samples was sent to a laboratory

for a coprological examination, aiming at identifying the presence of intestinal parasites, to

avoid any potential interference with the gut microbiota. The laboratory parameters assessed

in the dogs were all in the ranges. The blood sample was collected during routine veterinary

examinations, and as part of canine health screening; therefore, this research was performed

without any further suffering or discomfort to the animals. All methods are reported in accor-

dance with Animal Research: Reporting of In Vivo Experiments (ARRIVE) guidelines [55].

Faecal bacterial community profiling

Genomic DNA was extracted from each collected faecal sample by using the RSC Blood DNA

kit and was purified using the Maxwell RSC instrument (both from Promega, Madison, WI,

USA). In detail, 100 mg of each sample were treated with 400 μL of lysis buffer and vortexed in

order to completely homogenize it. After an incubation at 95˚C in a thermomixer for 5 min at

800 rpm and a centrifugation step at 13,000 rpm for 5 min, 300 μL of supernatant were trans-

ferred into a new tube. Subsequentially, 30 μL of proteinase K were added, the samples were

vortexed and incubated at 56˚C in thermomixer for 20 min at 500 rpm. Then, the samples are

loaded to the RSC cartridge to complete the extraction and eluted in 100 μL of elution buffer.

Genomic DNAs concentration and quality were analyzed using a Nanodrop spectrophotome-

ter (Thermo Fisher Scientific, Waltham, MA, USA). Starting from the DNA extraction, two

blank/ negative samples were also included as controls and processed together with the dog’s

samples during each analytical step to check for any potential environmental contamination.

Illumina amplicon sequencing and bioinformatic analysis

For the microbiome composition analysis, 16S rRNA custom primers able to selectively

amplify the V4-V6 hypervariable regions were used. To this end, a first-round PCR was carried

out paying attention to optimize PCR mix and amplification conditions in order to avoid non-

specific products and/or primer-dimer formation [56, 57]. AmpliTaq Gold polymerase, GC

enhancer (both from Thermo Fisher Scientific, Waltham, MA, USA) and 20 μM of forward

and reverse custom primers were used. Then, all PCR products were quality analysed through

a 2% agarose gel and purified by using AMPure XP beads (Beckman Coulter, Brea, CA, USA).

After a quality-check analysis on the Tape Station System with the D1000 ScreenTapes (both

from Agilent Technologies, Santa Clara, CA, USA), the purified amplicons were quantified

with Qubit HS (Qubit, dsDNA HS Assay, Life Technologies, Carlsbad, CA, USA) and diluted

to 2 ng/μL to be further processed for the second-round PCR. During this step, Nextera DNA

CD Indexes (Illumina, San Diego, CA, USA) were used to specifically tag each sample, and

also to add the universal adapters for the following NGS reactions. Next, further AMpure XP

beads-based purification and Tape Station qualitative analysis were carried out. Finally, each

sample, together with the six negative controls, were quantified with the Qubit fluorometer
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(Life Technologies) and diluted at 4 nM. Five μL of each diluted library and 5 μL of each nega-

tive control were pooled at equimolar concentrations. MiSeq reagent Kit V2.5 500 cycles

(250X2) on the MiSeq instrument (Illumina, San Diego, CA, USA) was used for the sequenc-

ing reaction. The library’s pool was loaded at a final concentration of 9 pM with a 30% PhiX.

The FASTQ files produced by the sequencing run were subsequently analyzed by the

CEINGE—Biotecnologie Avanzate Franco Salvatore Bioinformatic Facility (Naples, Italy). A

first quality check analysis was conducted by using FastQC software. Next, the alignment

against the reference database SILVA NR 99 v.138 enabled to the correct assignment of the

OTUs (Operational Taxonomic Units). The obtained OTU and taxonomy tables were used as

input files for the web-based tool Microbiome Analyst (version 2.0, last accession September

2023), that allowed for the deeper analysis of the bacterial community composition [58]. In

particular, α diversity was evaluated applying different metrics to assess both richness and

evenness; the ANOVA test was applied to verify statistically significant differences.

Unweighted and weighted UniFrac distance measures were also analyzed by using the PER-

MANOVA test to highlight significant differences in the β diversity. Differential abundance

analysis was performed using a univariate statistical test based on the EdgeR algorithm; p-val-

ues were adjusted using the FDR method [58].

Raw 16S rRNA sequence data were submitted to Sequence Read Archive (SRA) under Bio-

Project accession number ID #PRJNA1181839.

Serum metabolome analysis

Metabolites were identified and quantified from collected dogs’ blood serum by liquid chro-

matography-tandem mass spectrometry (LC-MS/MS), using a targeted metabolomics

approach [59]. In detail, 10 μL of serum were transferred onto a 96-well plate containing the

positions for blanks, phosphate buffer saline (PBS), calibrants, and quality controls (QC)

according to the protocols of MxP1Quant 500 kit (Biocrates Life Sciences AG, Innsbruck,

Austria) [60]. The mixtures were dried under N2, incubated for 1 h in 5% phenyl isothiocya-

nate (PITC) and then added with 5 mM ammonium acetate in methanol to finally extract

metabolites by plate centrifugation. LC-MS/MS analysis of metabolomes was carried out in

multiple reaction monitoring (MRM) mode using a Triple Quad 5500+ QTRAP1 Ready (AB

Sciex, Framingham, MA, USA) coupled to a 1260 Infinity II HPLC (Agilent, Santa Clara, CA,

USA). Each sample was run by LC-MS/MS-MRM three times as technical replicates. Raw MS

data were processed with the Analyst software v.1.7.1 (AB Sciex) and the MetIDQTM Oxygen

software (Biocrates Life Sciences AG) to integrate targeted metabolite peaks for accurate quan-

tification with respect to labelled internal standards, and finally expressed as μM. The metabo-

lomic analysis allowed to target 106 small molecules, including amino acids (AA) and related

AA, bile acids, fatty acids, biogenic amines, carboxylic acids, hormones, indoles derivatives,

alkaloids, amine oxides, cresols, vitamins, and cofactors.

The metabolomic dataset was first processed using the MetaboAnalyst 5.0 tool for chemo-

metrics and statistical analyses [61, 62]. The features with more than 50% of missing values

were removed, and missing values were imputed using 1/5 of minimum positive values of

their corresponding variables. The dataset was normalized, log10-transformed and auto-

scaled. Partial Least Squares-Discriminant Analysis (PLS-DA) was performed to find the vari-

ance between the (case and control) groups and predict the class of relevant features according

to the VIP (Variable Importance in Projection) score. Metabolites with VIP score>1.5 were

selected as predictive of the phenotypes analyzed. Hierarchical clustering analysis and heatmap

visualization were performed to check intra- and inter-group biological variability according

to the relative abundance of their metabolite features. The technical triplicates of each sample
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were kept as individual features (not averaged) for PLS-DA and heatmap clustering also to

assess the reproducibility of metabolomics data. MetaboAnalyst was also used for pathway

analysis and Metabolite Set Enrichment Analysis (MSEA) through the Over Representation

Analysis (ORA) function [63]. For pathway enrichment analysis, the Homo sapiens KEGG

was chosen as pathway library in absence of a proper database relative to dog species; matched

pathways were selected according to the p-values from the pathway enrichment analysis and

pathway impact values from the pathway topology analysis (i.e. the selected pathway showed

concurrently -log(p)>1.3 and pathway impact>0.1). For the enrichment of ORA terms, signif-

icant terms were selected for values of p<0.05.

Metabolome data

The normalized dataset was exported from MetaboAnalyst to execute univariate statistical

analysis within GraphPad Prism 9.0 software [64]. In particular, volcano plot analysis was car-

ried out to select metabolites with significantly changing abundance. Individual log2 abun-

dance values were averaged within each group, and the fold change was calculated as

difference of the metabolite levels in fearful and control dogs.

The significance threshold was set at p<0.01. On the other hand, the significant differences

for binary comparisons (between cases and controls) were evaluated for the single molecules,

i.e. those significant from volcano plot analysis, using the non-normalized concentration (μM)

dataset obtained by LC-MS/MS. Parametric Welch’s t-test or non-parametric Mann-Whitney

t-test were used as statistical tests according to the normality of the distributions, assessed by

D’Agostino & Pearson test. Finally, correlation analysis between significant microbiota species

and metabolites was performed computing Spearman correlation and simple linear regression.

Metabolomics data have been deposited to the EMBL-EBI MetaboLights database (DOI: 10.

1093/nar/gkad1045, PMID:37971328) with the identifier MTBLS11669.

Results

The sequencing reaction produced a total yield of 6.9 Gb, a cluster passing filter of 93.9% and a

cluster density of 697 K/mm2. All the reads detected in at least one of the six negative controls

were filtered out and eliminated from the rest of the samples in a normalization- process. At

the end of this decontamination step, an average of 235,827 reads/sample, corresponding to a

total of 706 OTUs, was obtained and used for subsequent analyses. First, microbial communi-

ties’ diversity measures were assessed. In particular, to verify both the richness and the even-

ness, alpha diversity was evaluated within two groups, and the ANOVA test was applied to

highlight any significant difference. As shown in Fig 1, all the different metrics used (panel A:

Observed Species, panel B: Chao1, and panel C: Shannon) showed no significant differences

between groups. However, a different trend could be appreciable, richness and evenness being

both higher in the case than in the control group. In addition, beta diversity analysis was car-

ried out by using both unweighted (Fig 1D) and weighted (Fig 1E) Unifrac distance measures,

and no significant differences were found.

Although the diversity measures showed no significant differences between the two tested

conditions, it can be noticed that the case group showed a reduced heterogeneity compared to

the control, suggesting that the disease status may be related to common microbial features.

Next, taxonomy assignment allowed to identify six phyla, four of which with an abundance

>1% in at least one of the 2 compared groups (Fig 2A). Among these, we found a lower relative

abundance of Proteobacteria in the case vs control group (3.5% vs 20.9%), while Fusobacter-

iota (44.9% vs 52.7%), Firmicutes (32.9% vs 40%), and Actinobacteriota (0.8% vs 3.3%) phyla

were more abundant. Accordingly, the core microbiome analysis, considering a relative
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abundance >1% and a 20% value of sample prevalence, showed a different set of taxa charac-

terizing the case (Fig 2B) and the control group (Fig 2C). At genus level, out of nine most rep-

resented taxa, we found six bacteria highly expressed in the case vs control group, namely

Cetobacterium (10.6% vs 3.44%), Escherichia_Shigella (from 15.9% to 1.6%), Lachnoclostridium
(from 7.6% to 4%), Phascolarctobacterium (3.7% vs 2.2%), Ruminococcus_gnavus_group (4.4%

vs 2.5%), and Sutterella (4.7% vs 1.7%). On the other hand, Fusobacterium,Holdemanella and

Megamonas were found at lower levels in the case group (Fusobacterium, 34.4% vs 49.2%;Hol-
demanella, 0.4% vs 4.2%;Megamonas, 1.4% vs 4.2%) (Fig 2D).

Then, to verify if these differences are statistically significant we performed a differential

abundance analysis. In particular, EdgeR analysis allowed us to identify a lower abundance of

Gammaproteobacteria andDorea in fearful patients (Fig 3A and 3B), who also displayed higher

levels of Erysipelatoclostridiaceae and Peptostreptococcales Tissierellales (Fig 3C and 3D), when

compared to the healthy controls.

To further investigate the systemic changes affecting fearful dogs, a metabolome analysis

was performed on the blood serum samples, using a targeted LC-MS/MS approach. The quan-

titative metabolomics dataset was included in S1 File. Univariate and multivariate statistical

analyses were employed to select the most significant metabolic alterations in fearful animals.

Specifically, the variances between case compared to control group revealed a good spatial sep-

aration according to the PLS-DA, with variances of principal component 1 (PC1) and 2 (PC2)

Fig 1. Diversity measures between the fearful dogs (case) and the dogs with normal behavior (control). Alpha diversity was assessed by using Observed

species ((A), p = 0.14), Chao1 ((B), p = 0.14) and Shannon ((C), p = 0.97), indices and the ANOVA test. Β diversity was also evaluated by using the unweighted

((D, p<0.52) and weighted ((E, p<0.2) UniFrac distance measures, applying the PERMANOVA test. No significant differences were identified by all the above-

mentioned tests.

https://doi.org/10.1371/journal.pone.0315374.g001
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of 6.2% and 5.1% (Fig 4A). The Variable Importance in Projection (VIP) score was used to

identify those metabolites (VIP >1.5), taurodeoxycholic acid (TDCA) and glutamine (Gln) as

examples, whose levels can strongly discriminate fearful dogs versus controls, highlighting

metabolic abnormalities likely connected with the fearful phenotype (Fig 4B). Also, the hierar-

chical clustering of quantified metabolites reported in the heatmap displayed a distinct separa-

tion pattern between cases and controls (Fig 4C). Univariate statistics performed by volcano

plot analysis highlighted eleven metabolites with differential abundance in fearful dogs

(Fig 4D), many of which overlap with VIP metabolites.

Fig 2. Taxonomic assignment highlighted different microbial taxa in case and control groups. A different bacterial composition (relative abundance, %)

was highlighted at the phylum level (A) and confirmed by core microbiome analysis showing a different taxa profile in Case (B) and Control (C) groups. These

differences in taxa composition were also identified at the genus level, as shown in panel (D).

https://doi.org/10.1371/journal.pone.0315374.g002
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Quantitatively altered metabolites are listed in Table 2 in the order from the least abundant

to the most abundant, along with their corresponding P-value,–log10(P-value), difference,

standard error (SE) of difference, and regulation trend.

To further validate the abundance trends in each sample group for the selected metabolites,

we analyzed them individually using raw concentrations from the LC-MS/MS dataset, con-

firming the trends of regulation and statistical significance (Fig 5A). Additionally, we per-

formed pathway analysis on significant metabolites to enrich dysregulated pathways associated

Fig 3. Significantly different taxa identified between case and control groups by EdgeR analysis (adjusted p-value<0.05). Among the significantly

different taxa we found that the Gammaproteobacteria class was less abundant in the cases respect to the controls (A). The Firmicutes-related taxa,

Erysipelatoclostridiaceae family (B) and Peptostreptococcales Tissierellales order (C) were more abundant in the cases, when compared the controls. At genus

level, the Firmicutes-belongingDorea taxon was reduced in the case group (D).

https://doi.org/10.1371/journal.pone.0315374.g003
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to the fearful phenotype. Among them, we selected those with concurrently highest impact

and lowest p-value, namely ‘glycine, serine and threonine metabolism’, ‘lysine degradation’,

‘glyoxylate and dicarboxylate metabolism’ (Fig 5B). MSEA performed through ORA analysis

revealed biologically meaningful terms associated with the differential metabolome of fearful

dogs. ORA analysis enriched as significant (p<0.05) terms: ‘glycine and serine metabolism’,

‘carnitine synthesis’, ‘urea cycle’, ‘lysine degradation’, ‘ammonia recycling’, and ‘aspartate

metabolism’ (Fig 5C).

Discussion

In the present work, we documented the differential abundance of Proteobacteria and Firmi-

cutes Phyla in fearful dogs suffering from generalized fear. Like in humans, companion ani-

mals diagnosed with such a behavioral disorder very often experience unreasonable, intense,

Fig 4. Comparative metabolome analysis of case (fearful dogs) versus controls. (A) PLS-DA analysis was performed using

normalized metabolite levels from cases (green) and controls (red); (B) The top-15 discriminant features identified with values of

VIP scores>1.5 are reported. (C) Heatmap showing metabolite concentrations in each group and replicates. The intensity of the

colored boxes represents the relative abundance of each molecule, whereas metabolite concentrations were normalized, log(10)-

transformed, and auto-scaled. (D) Volcano plot analysis of metabolites significantly different in the comparison case vs control.

The red and green dots represent the significant increased and decreased metabolites, respectively. Non-colored dots refer to all the

molecules identified in the dataset whose relative abundance is not significantly different between groups.

https://doi.org/10.1371/journal.pone.0315374.g004
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and even excessive fright towards tangible stimuli or situations. These reactions can eventually

trigger immediate responses and concomitant autonomic arousal, turning into escape, avoid-

ance, or defensiveness behaviors [65]. Despite the huge amount of driving factors, dogs can

also display fearful behaviors due to the lack of socialization during their early developmental

phase (3–12 weeks of age), aversive experiences, as well as pharmacologic treatments or genetic

susceptibility [66–70]. Furthermore, fear can lead to anxiety without the dissolution of fear

itself, so that both may coexist in the same individual [71]. Tailored therapies, which generally

rely on integrated approaches (drugs and behavioral treatment), are employed to reduce exces-

sive fear or/ and anxiety reactions, by fostering positive and emotional situations, and avoiding

punishment or correction during training activities [71, 72]. Indeed, dogs who suffer from

generalized fear and anxiety generally require to be pharmacologically treated with selective

serotonin reuptake inhibitors (SSRIs) or benzodiazepines, that allow them to cope with such a

dysfunctional situation. Unfortunately, the owners’ resistance in using medications, mostly

associated with the occurrence of their side effects, including drowsiness, paradoxical arousal,

vomiting, diarrhea, and restlessness, sometimes make pharmacological approach less feasible.

Therefore, more thoughtful research, characterized by the development of new strategies to

counteract mood-related dysfunctions is a way forward [73]. Compelling and growing evi-

dence in mammals highlighted the crucial role of the microbiota, one of the main physiologic

players within the gastrointestinal tract [74]. Previous studies found that germ-free mice exhib-

ited alterations in immune systems, hormone signalling, metabolism, neurotransmission and

synaptic plasticity, impacting upon physiologic homeostasis and development [74, 75]. More-

over, GI microbiota-depleted young mice, transplanted with the stool of the aged animals,

showed age-dependent spatial learning and memory deficits, without affecting the short-term

cognitive ability [76]. Thus, the overall intestinal microbiota has been regarded as one of the

main peripheral modulators of CNS physiology, either by synapsing with vagus nerve, or pass-

ing through the blood brain barrier (BBB). The composition and integrity of the BBB can be

affected by a dysfunctional GI microbiota, which makes it more permeable, most likely due to

the reduced expression of tight junctions [77]. This altered permeability causes toxins to enter

the brain, thus affecting the release of neurotransmitters, like serotonin, dopamine, GABA,

and eventually bringing about mood-related disorders [78–81]. Our results documented an

increase of Firmicutes-related taxa in the fearful dogs, being in line with previous findings,

about an increase of the Firmicutes-related Lactobacilli in animals with emotional discomfort

[20, 51]. Again, these aerotolerant anaerobic microbes increased in rescued dogs, who experi-

enced intraspecific aggression [50, 82]. Studies from Mondo and colleagues (2020), showed

Table 2. Significant metabolites found differentially abundant in fearful dogs versus controls.

Metabolite P-value –log10(P-value) Difference SE of difference Regulation

Glutamine (Gln) 0.000028 4.561 -1.015 0.1947 Down

Glycine (Gly) 0.00523 2.281 -0.8107 0.2628 Down

α-Aminobutyric acid (AABA) 0.006575 2.182 -0.7736 0.2589 Down

α-Aminoadipic acid (α-AAA) 0.00161 2.793 -0.8099 0.2266 Down

Lysine (Lys) 0.000123 3.91 -0.764 0.1657 Down

Methionine sulfoxide (Met-SO) 0.002083 2.681 -0.873 0.2517 Down

Threonine (Thr) 0.000327 3.486 -0.8679 0.2057 Down

Arginine (Arg) 0.000174 3.759 -0.8473 0.1895 Down

Valine (Val) 0.005669 2.247 -0.6594 0.2161 Down

Lactic acid (Lac) 0.008264 2.083 0.724 0.2505 Up

Taurodeoxycholic acid (TDCA) 0.000004 5.383 1.127 0.188 Up

https://doi.org/10.1371/journal.pone.0315374.t002
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that Lactobacilli were significantly higher in a group of German shepherds, who displayed a

similar GI microbiota to that of depressed humans [83]. Moreover, Lactobacillus Rhamnosus
was also found to reduce stress-associated corticosterone levels and anxiety-related behaviors

and affect GABA-dependent neurotransmission in mice [84]. Taken together, it is conceivable

that Bacilli could modulate several aspects of the microbiota-gut-brain axis, although care

must be taken in extrapolating data, since identifying the precise mechanism underlying the

Fig 5. Statistical analysis and bioinformatic pathway enrichment of single metabolites from the differential

metabolome. (A) The abundances of single metabolites were evaluated in case vs control by parametric or non-

parametric t-test. The plots report the analyte concentrations (means ± SEM on the bar, dots are all the measurements in

replicates). The significance of statistical analysis is referred to as: * p<0.05, ** p<0.01, **** p<0.0001). (B) Pathway

analysis plot with details of the significant pathways enriched by the analysis. (C) Overview of MSEA terms enriched with

the over representation analysis (ORA) of significant metabolites. Nonetheless, to assess whether faecal species and

circulating metabolites varied with the same trends in fearful animals, we performed a correlation analysis using both

types of features. Significant microbiota species were correlated with the global metabolome, highlighting significant

correlations (Fig 6). Interestingly, bile acids (namely TDCA, GUDCA, GLCA) were positively correlated with the

Peptostreptococcales Tissierellales (Fig 6A), whereas some amino acids (Val, Thr, Lys) were associated to theDorea (Fig

6B). Remarkably, many of these molecules were found as significant from both volcano plot and VIP analyses.

https://doi.org/10.1371/journal.pone.0315374.g005
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observed increase of Lactobacillus in fearful dogs it not always immediate. Some anaerobic

microbes belonging to Bacteroidetes and Firmicutes phyla generate butyrate, propionate and

acetate as by-products of the indigestible polysaccharides’ fermentation. These short-chain

fatty acids (SCFAs), once crossing BBB, can affect cognition and mood-related behaviors [85].

According to our data, about a significant reduction ofDorea taxon in fearful dogs, lower levels

of this Firmicutes-belonging genus were also previously found in humans and animals suffer-

ing from behavioral disorders [50, 86, 87]. Together with Akkermansia and Ruminococcus,
Dorea abudance correlated with anxiety and depressive-like behavior in mice exposed to social

defeat stress protocol, suggesting a potential role for such bacteria in the gut-brain axis com-

munication [20, 88]. We found a direct correlation between gut Dorea abundance and serum

levels of valine, threonine and lysine metabolites, which might represent metabolic substrates

for SCFAs production [89].

The higher levels of the Firmicutes-related taxa found in our patients well fit with serum

levels of lactic acid in fearful dogs, since they produce lactic acid, resulting in acidification of

environment that can inhibit the growth of some pathogenic microorganisms [90]. It is well

recognized that Firmicutes are involved in the conversion process of primary to secondary bile

acids (and then deconjugating all the glyco- and tauro-conjugated forms) [91, 92], thereby hes-

itating in an antimicrobial function, which is more powerful than primary cholic acid, owing

to its ability to damage microbial membranes. Accordingly, we found that Peptostreptococcales
Tissierellales order, belonging to the Firmicutes phylum, positively correlated with TDCA,

GUDCA and GLCA metabolites. Future studies, aimed at better disclosing the role of

Fig 6. Correlation analysis of the differential microbiome with the global metabolome. Significantly correlating metabolites were reported for (A)

Peptostreptococcales T and (B)Dorea organisms. The correlation plots report the computed r coefficient and the statistical significance (p). TDCA:

Taurodeoxycholic acid, GUDCA: Glycoursodeoxycholic acid, GLCA: Glycolithocholic acid, Val: Valine, Thr: Threonine, Lys: Lysine.

https://doi.org/10.1371/journal.pone.0315374.g006
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Peptostreptococcales Tissierellales in the gut-brain axis, are required. Our metabolomic evalua-

tions reported the downregulation of glycine in the blood of fearful patients which, together

with glutamine and α-Aminobutyric acid, can modulate GABA-dependent neurotransmis-

sion, and impact several psychiatric disorders in humans [93, 94]. We also found a significant

reduction of serum α-Aminoadipic acid levels that, as an intermediary metabolite of lysine

and tryptophan, has been proven to antagonize neuroexcitatory activity modulated by the glu-

tamate N-methyl-D-aspartate receptor [95].

Dysregulation of the GI microbiota, characterized by a relative increment of Proteobacteria,

has been documented in IBS, metabolic and inflammatory disorders, so that these gram-nega-

tive microorganisms and their related taxa can be regarded as potential markers of microbiota

instability [96–98]. The differential and quantitative analysis showed a lower abundance of

Proteobacteria-related Gammaproteobacteria in the case group, allowing us to infer a putative

compensatory effect, which comes into play to avoid the worsening of behavioral symptoms.

However, more additional studies involving larger number of patients are needed to support

this hypothesis.

On the other hand, a potential gender effect underlying the reduction of Gammaproteobac-
teria population in the case group (predominantly females) should be considered, since evi-

dence in humans showed that Proteobacteria were more abundant in males than females [99].

Moreover, the higher incidence of female dogs suffering from fear and anxiety might be in

accordance with human findings, showing that women are likely to double anxiety-related dis-

order chances [100].

Even though the sample size is small, which represents one of the main concerns of the

manuscript, in the present study we involved individuals from different cities and fed with an

overlapping dry commercial diet, to reduce nutritional and environmental variability. At pres-

ent, it is hard to define whether alterations in the microbiota are the trigger or the consequence

of behavioural changes. However, it is likely that both scenarios coexist in a vicious circle, with

the initial trigger occurring both centrally and peripherally.

Conclusions

Our data emphasized for the first time how fear and anxiety might be linked to significant dys-

regulation in both GI microbiota and blood metabolic homeostasis of family dogs affected by

generalized fear. Despite recent advances in veterinary medicine, further investigation point-

ing towards multidisciplinary approaches are required, to better understand the pathophysiol-

ogy of behavioral dysfunctions, and develop new pharmacological targets for canine mood-

related disorders.

Limitations

We recognize that our study involved a small number of patients, due to the tightening factors

we have chosen as inclusion criteria in the recruitment and in the analyses performed. Future

studies are mandatory to disentangle the role of the gut-brain axis homeostasis in the modula-

tion of behavioral dysfunctions, enrolling a larger population of dogs, homogenously clustered

for environment, sex, size, lifestyles, and genetics.
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