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Abstract

The dry bulk shipping market plays a crucial role in global trade. To examine the volatility,
correlation, and risk spillover between freight rates in the BCl and BPI markets, this paper
employs the GARCH-Copula-CoVaR model. We analyze the dynamic behavior of the sec-
ondary market freight index for dry bulk cargo, highlighting its performance in a complex
financial environment and offering empirical support for the shipping industry and financial
markets. The findings reveal that: (1) There are significant differences in correlation across
various routes, with the correlation between BCI and BPI routes fluctuating over time.
Among all route combinations, C5 and P3A_03 exhibit the highest positive correlation. (2) A
one-way risk spillover exists between P1A_03 an C5, while two-way positive risk spillover is
observed between other routes. This suggests that when a risk materializes on a specific
route, other routes are also exposed to potential risks, with varying intensities of spillover.
(3) The distance and geographical location of routes may be key factors influencing the dif-
fering intensities of risk spillover. This highlights the need to consider the geographical char-
acteristics of routes in understanding risk transmission. This paper aims to provide risk
management strategies based on these empirical findings, assisting shipping companies
and investors in developing more effective responses to market volatility.

Section 1: Introduction

The influence of the shipping market on the world economy and international trade is increas-
ingly significant. Over 80% of global trade is now transported by shipping [1]. The interna-
tional dry bulk shipping market is a crucial component of the broader shipping industry,
characterized by a high degree of maturity and route segmentation. This market is divided
into four sub-markets based on ship tonnage, with each sub-market comprising multiple
routes, each having its own freight rate.

The Baltic Exchange Dry Index (BDI) aggregates the freight rate indices of various ship
types, reflecting the level of activity in shipping and trade. It effectively captures the current
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state of the global shipping market and the dynamics of international trade. Often regarded as
a leading indicator of future economic growth or contraction, the BDI is frequently referred to
as a “barometer” of the global economy.

With the advent of global economic flows and the high-speed information age, dry bulk
freight rates have experienced significant fluctuations over the years due to various external
factors. These include changes in the world economy, geopolitical events, fluctuations in raw
material prices, and extreme occurrences. As shown in Fig 1, the BDI exhibits clear time-vary-
ing characteristics. The average BDI was 1,338.05 points in 1999, compared to 1,250.69 points
in 2023. Following sharp fluctuations during the 2008 financial crisis, the BDI market experi-
enced a substantial decline. Prior to 2008, the average freight rate was consistently higher than
in the subsequent decade, and post-2008, rates have continued to fluctuate. Additionally, the
global COVID-19 pandemic in 2020 and the Russia-Ukraine conflict in 2022 have led to signif-
icant changes in the BDI market.

The BDI is a weighted composite index comprising the Baltic Capesize Index (BCI), Baltic
Panamax Index (BPI), and Baltic Supramax Index (BSI). These three indices represent the
freight rates for different classes of dry bulk carriers. As illustrated in Fig 2, the trends in BCI,
BPI, and BSI over the years are generally aligned. Significant events such as the financial crisis,
the global COVID-19 pandemic, and various international conflicts—including the China-US
trade war and the Russia-Ukraine war—have caused substantial turbulence in the dry bulk
market.

The BCI and BPI markets are widely regarded as leading indicators of global economic
activity. Its fluctuations not only reflect supply and demand in the shipping market, but also
indicate the impact of economic growth, trade policy and geopolitics. For shipping companies,
shippers and investors, understanding changes in BCI and BPI is essential to optimize resource
allocation, develop transportation strategies and assess investment risk. Effectively grasping
the dynamic changes of these indicators can help enterprises gain advantages in the
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Fig 1. Trend plots of BDI diurnal data from 1999 to 2023.
https://doi.org/10.1371/journal.pone.0315167.9001
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Fig 2. Trend plots of three dry bulk freight rates.
https://doi.org/10.1371/journal.pone.0315167.9002

competitive market. As the complexity of global trade increases, the shipping market faces
multiple risks such as price volatility, policy changes and environmental regulations. An in-
depth study of BCI and BPI can provide industry players with data-driven risk management
tools and investment decision support.

In this paper, we establish a comprehensive methodological framework that integrates the
GARCH model, Copula function, and CoVaR model, which not only accounts for the volatility
of time series but also captures the non-linear dependencies between routes, enabling a more
accurate assessment of risk spillovers. The main contributions of this paper are as follows: (1)
We effectively capture the volatility characteristics of freight rates for each route within the
BCI and BPI markets by utilizing the time-varying coefficient features of the GARCH model.
(2) The Copula method allows for a flexible capture of the dynamic dependency structure
between the BCI and BPI markets, providing a more precise reflection of their nonlinear and
heteroscedastic relationships compared to traditional linear correlation analyses. (3) We quan-
tify the risk associated with individual routes and, in extreme cases, analyze the risk impact of
one route on another using the CoVaR model. This two-way risk spillover analysis reveals the
interdependence between markets, aiding shipping companies and investors in understanding
the risk transmission mechanisms during market fluctuations or crises. It offers essential risk
management insights and helps formulate more effective strategies in response to market
volatility.

This paper is carried out under the following hypothesis:

Hypothesis 1: Dry bulk freight index has significant volatility, and its volatility is affected by
economic and market factors.
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Hypothesis 2: There is significant risk spillover effect between the dry bulk freight index.

Hypothesis 3: The GARCH-Copula-CoVaR model can effectively capture the volatility charac-
teristics and risk spillover relationship of dry bulk freight index, which is better than the tra-
ditional model.

The remainder of this paper is organized as follows. The literature review is given in Section
2. The hybrid GARCH-Copula-CoVaR model are shown in Section 3. We describe the data in
Section 4. Section 5 demonstrate the empirical results. In Section 6, we further discuss the risk
spillover between route rates. In addition, Section 7 gives the concluding comments and some
suggestions.

Section 2: Literature review
Research on volatility and correlation of dry bulk market

Studies examining the fluctuations in dry bulk markets often fall into two distinct categories.
The first focuses on the volatility and correlation between the dry bulk market and other mar-
kets, while the second investigates the volatility and correlation within the dry bulk market
itself. For instance, [2] utilized non-parametric causal quantiles to analyze the asymmetric rela-
tionship between the BDI and the spot prices of bulk commodities, finding that fluctuations in
commodity prices can lead to spillovers in BDI volatility. However, the impact of the BDI on
commodity prices varies significantly depending on the type of commodity and prevailing
market conditions. For example, [3] identified a notable correlation between the BDI and
crude oil prices, observing that this relationship is strong in the short term but weakens over
the long term. Similarly, [4] employed Granger causality tests and co-integration analysis to
explore the leading-lag relationships among the BD]I, the Shanghai Container Freight Index
(SCFI), and the Baltic Dirty Tanker Index (BDTI). They also applied multivariate impulse
response functions and variance decomposition to assess how the freight market reacts to
shocks in other freight markets. Their findings indicate that the dry bulk market is influenced
by fluctuations in both the container and tanker shipping markets, with mutual volatility con-
duction observed specifically between the dry bulk and container shipping markets.

There is a substantial body of literature examining the volatility correlations within the pri-
mary dry bulk market. For example, [5] employed a hybrid model combining wavelet analysis
and neural networks to investigate the fluctuations of freight indices for the 2A and 3A routes
in the BPI market. Their time-series wavelet multi-scale decomposition highlighted the dynam-
ics of fluctuations across different time frequencies. Similarly, [6] utilized the multifractal
detrending volatility analysis (MD-DFA) technique to analyze market trends in the dry bulk
freight indices of Capesize and Panamax vessels. Furthermore, [7] demonstrated that the contri-
bution of the BPI market to the BDI has gradually increased, underscoring the significance of
the Panamax bulk carrier market and its considerable influence on the development of the BDI.
In another study, [8] applied Rescaled Range Analysis (R/S) and an enhanced R/S analysis
method to examine the long-term memory of two shipping submarkets based on the freight
indices of Panamax and Handysize vessels. While there have been numerous achievements
regarding the fluctuation correlations between dry bulk markets and external factors, as well as
within the internal primary market, there remains a notable gap in research focusing on the vol-
atility and correlation of freight rates across various routes within the internal dry bulk markets.

Research on risk spillovers of international dry bulk market

The sub-segments of the dry bulk shipping market are interconnected, and previous studies
have highlighted the spillover effects among these sub-segments. There are differences in the
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response of dry bulk shipping market sub-segments to shocks [9]. There are some studies on
risk spillovers between dry bulk market segments or with other markets. For instance, [10] was
the first to combine long memory processes with Value at Risk (VaR) to examine risk spillover
within the international dry bulk shipping market. Additionally, [11] utilized a three-variable
VAR-BEKK-GARCH-X model to analyze the spillover effects between the BDI and the finan-
cial markets, and find that these spillover effects are time-varying and become more pro-
nounced during the 2008-2009 global financial crisis. Furthermore, [12] employed a
GARCH-Copula-CoVaR approach to investigate the extreme risk spillovers from the com-
modity market to the maritime sector, taking into account the interactions among different
sub-sectors of the maritime market. Meanwhile, [13] explored risk measures, risk attitudes,
and variable control related to the freight rate cycle in the dry bulk shipping market across var-
ious scenarios, concluding that there is a negative correlation between risk and return in long-
term contracts. In addition, The dry bulk industry and the oil market often study their risk
spillovers together. Compared with the dry bulk market, the oil tanker market has a higher
integration degree, the high spillover period lasts longer, and the oil price fluctuation contrib-
utes more to the spillover effect of the oil tanker market [14]. Despite these contributions,
there is a notable gap in the literature regarding risk spillover between routes within the dry
bulk shipping market. Therefore, this paper aims to address this gap, providing valuable data
support for the market planning of relevant shipping enterprises.

Research on empirical methodology

Compared to the ARCH model, the GARCH model offers a linear extension of variance repre-
sentation, effectively addressing the computational inefficiencies and accuracy limitations
associated with high-order ARCH models. Given the GARCH family’s capacity to fit marginal
distributions, it is particularly suitable for analyzing the volatility of freight rates in the dry
bulk market [15]. [16] introduced the Copula function, which posits that the joint distribution
of multivariate variables can be expressed as a function that combines the marginal probability
distributions of each variable with a description of the correlation structure among them. The
Copula function has found widespread application across various fields ([16, 17]). VaR is the
most commonly used method for measuring the risk of individual institutions. However, it
may not adequately reflect systemic risk, especially during periods of market instability. To
address this gap, [18] introduced tail correlation analysis and proposed the Conditional Value
at Risk (CoVaR) method. The Copula function is employed to calculate CoVaR ([19-21]).

The hybrid GARCH-Copula-CoVaR method has gained significant traction in modeling
volatility correlations and risk spillovers across financial markets. For instance, [22] employed
various GARCH-Copula models to analyze the tail dependencies among oil prices, investor
expectations, and stock returns. Similarly, [23] introduced a GARCH-Copula deformation
model to assess whether gold, the US dollar, and Bitcoin serve as hedging or safe-haven assets
for stocks, and their potential in diversifying downside risks in international stock markets.
Recently, this model has been extended to other fields, such as energy; [24] utilized the Copula
framework to uncover the nonlinear tail-dependent structures between carbon and energy
markets, calculating CoVaR to quantify extreme risk spillover effects. Findings reveal that dur-
ing extreme events, risk spillovers from both traditional and renewable energy markets to car-
bon markets significantly increase. The GARCH-copula regression model is also used to
analyze the heterogeneity of dynamic risk spillovers between logistics market and e-commerce
market [25]. In the maritime sector, the GARCH-Copula-CoVaR approach offered new
insights into risk transmission from oil and energy markets to maritime markets, highlighting
interactions among various subsectors within the maritime industry [26].
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Unlike [26], which focused on the risk spillover effects between oil, the ex-energy sector,
and the BDI market, this paper investigates the volatility, correlation, and risk spillover effects
among the main routes of the dry bulk shipping sub-market. Specifically, when the freight rate
for a particular route experiences a sharp rise or fall, the tail dependence structure between
that route and others is non-linear. To explore this phenomenon, we calculate the CoVaR
using a static GARCH-Copula approach to examine risk spillover between routes. Addition-
ally, we employ time-varying copula functions to assess the dynamic and tail correlations
between the BCI and the BPI markets. Given that declines in freight rates typically result in
greater losses, this paper primarily focuses on risk spillover during periods of market decline.

Section 3: Methodology

Marginal distribution model

The GARCH model effectively captures the time-varying volatility of financial time series,
reflecting market volatility characteristics across different periods, which is essential for under-
standing and predicting financial risk. To account for the effects of autocorrelation and posi-
tive and negative shocks on conditional fluctuations, researchers often integrate an ARMA(x,s)
model with the GARCH(p,q) framework. In this paper, we utilize the ARMA(r,s)-GARCH(p,
q) model to analyze the time series of freight rates and derive the edge distribution.

= u+ Z::l o1t Z;:1 Gjat—j +a,
a,= o0k, (1)

o= o+ 08+ 27:1 jo-t2—j
The first line of Eq (1) represents the mean value equation of the ARMA(r,s) model, while the
third line denotes the conditional variance equation. Here, ¥ is the maximum lag order of the
autoregressive term, which influences the complexity of the autoregressive component, and s
is the maximum lag order of the moving average, determining its impact on the model. 4 is the
constant term, ¢; is the coefficient of AR(r), 6; is the coefficient of MA(s), and w is the mean of
conditional variance regression term. a, is the residual term. Since the freight rates collected in
this paper has a heavier tail, ARMA(r,s)-GARCH(p,q) under the skew-t distribution is
selected. o; denotes the conditional standard deviation, which measures return volatility, while
o7 indicates the conditional variance, capturing the squared effects of these fluctuations. The
perturbation term {e} is typically assumed to be an independent and identically distributed
sequence of random variables with a mean of 0 and a variance of 1.

Static and dynamic Copula functions

The Copula method is able to model dependencies between multiple variables, especially in
cases where the data does not conform to a normal distribution. It captures tail dependencies
between financial assets, which is particularly important during periods of market turmoil.
When the random variables with different edge distributions are not independent, the tradi-
tional joint distribution fitting method is inadequate. To solve this puzzle, the Copula function
can be used to fit the joint distribution accurately and flexibly for random variables with multi-
ple edge distributions.

Binary Sklar’s theorem: Let H(:, -) be a joint distribution function with edge distributions
F(-) and G(-), then there is a function C(:, -) such that:

H(xvy) = C(F(x>7 G()’))? (2)
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Table 1. Static and dynamic Copula functions.

Copula Formula Parameter
Staticcélsli)lzmal f‘l’ f exp( r2+s —2pr5) )drds pe(-11)
t Copula Clu, vi py ) = fzm fi(v) Zn\/lm [1 T (ri;i—;;c)] %dsdt pe(-11)
Gumbel Copula Colu,v;a) = exp(— {(—lnu)% i (—lnv)ﬂ “) a€(0,1]
Clayton Copula Coy(u,vin) = (U + v — 1)*.‘77 n € (0, o)
Frank Copula Colu, v;h) = —Ln (1 + (f‘““;ll(:th)) L#0
SJC Copula Cyelt,v;0,0) = 1 — {1 — exp(,[m(u) + m(v)]%) ¥ 6>1,5>0
DYnarCn;;/uI;I;)rmal Clu,v) = [ () [ e Xp( * (+1e ”mes ) drds pr€(-1,1)
SJC Copula Cyelu,vz¥,7") =1 (C,C (u, |y, TL> +Cy (1 —u, 1 — Y, TL> +utv— 1) 7, Ti)e o,
Ko™l Cugluvipy) = exp{ = { = kP + kw7 bt +106) - | 0009

Note: ®(-) is normal distribution function. T,(-) is t distribution function with degree of freedom .
Cyc is the distribution function of the time-varying Joe-Copula function. A = (1 — e ) /(1 + ¢ ™),
m(u) = (-In(1 - (1 - w)?)?, m(v) = (<In(1 - (1 = )%)°, k(w) = In(1 - u), k(v) = In(1 - v),
Iw)=1-uwandi(v)=(1-»7"

https://doi.org/10.1371/journal.pone.0315167.t001

where C(:, -) is corresponding Copula function. The original function H(x, y) can be written as
a function C(., -) related on u and v, then the function C(-, -) is the Copula function, that is,

Clu,v) = H(F(u), G (v)). (3)

To characterize the properties of freight rates exhibiting peak and thick tails, we introduce
six static copula functions to describe the nonlinear relationships and tail correlations. Addi-
tionally, we incorporate three time-varying copula functions to capture the dynamic changes
in correlation between the freight rates in the BCI and BPI markets. The formulas for these
copula functions are presented in Table 1.

CoVaR methodology

1. CoVaR. VaR is primarily used to assess the risk associated with a specific asset, but it fails to
capture systemic risk within a market. Additionally, VaR is limited in its ability to measure
risks that arise under extreme conditions. Therefore, this paper considers the CoVaR
approach, which builds on the foundation of VaR. The CoVaR model measures the poten-
tial losses of one route when a risk materializes in another route, making it particularly
valuable for analyzing financial system stability and assessing systemic risk. For example,

the extreme loss CoVaR’" s, of the freight return Y, , occurs under the condition that the loss
VaR’ , is defined as follows:

P(Y < CoVaR™®, |Y,, = VaRZ£t> - p. (4)

CoVaR can be divided into ascending CoVaR and descending CoVaR according to differ-

s|i.D

ent confidence levels. Co VaR’; e above is the descending condition at risk value of Y,

PLOS ONE | https://doi.org/10.1371/journal.pone.0315167  January 16, 2025 7/31


https://doi.org/10.1371/journal.pone.0315167.t001
https://doi.org/10.1371/journal.pone.0315167

PLOS ONE GARCH-Copula-CoVaR model

when Y;, is under the condition of descending risk. The corresponding ascending CoVaR
expression is as follows:

P(Y., = CovaR}if. |Y,, = VarlY,) = §, (5)

where %+ =1, *=0.05 and % = 0.95.

2. ACoVaR. Whether CoVaR":", or CoVaR':",  they still included in the calculation of VaR,

ad pa ¢ at fuot
can not measure spillover effect between the two routes. Therefore, ACoVaR is usually used
to measure the risk spillover effect between different freight rates of various routes. For
example, the downside risk spillover of the freight return for s route under the freight return
of i route is expressed as follows:
sliD sli,D .D

ACoVaRad‘ﬂdj = CoVaR i — VaR’;.. (6)
Correspondingly, the downside risk spillover of the freight rate for i route under the freight
rate return of s route is as follows:

ACoVaRl;", = CoVaR';?, — VaR.;. (7)

3. %CoVaR. Although ACoVaR has been calculated to measure the risk spillover effect, the
%CoVaR is continued to be considered to remove the dimensional effect. For example, the
%CoVaR of the freight rate return for s route to the freight rate return of i route is as fol-
lows:

Co VaRi‘;‘I;d .
%CoVaR = W x 100%. (8)
a adﬁt

%CoVaR represents a relative change, and the %CoVaR rank is used to compare the risk
spillover degree between different routes. Since the extreme loss mainly occurs in the period
of economic downturn, we mainly studies the risk spillover effect in the downward state,
and so ACoVaR and %CoVaR are.

GARCH-Copula-CoVaR model

The hybrid Garch-Copula-CoVaR model used the GARCH model to describe the marginal

distribution of the freight return of each route. Set the marginal distribution of the freight

return for the routes as G(t) and the edge density function as g(#). c(:, -) is obtained from the
__ 0C(uv

first derivative of the optimal Copula, that is, c(u, v) = va) The specific steps are as follows.

Step 1: (X, Y) are defined as two-dimensional continuous random variables. f(x) represents the
edge distribution density function of X. g(y) represents the edge distribution density func-
tion of Y. h(X, Y) is defined as the joint density function of (X, Y). Then we have

h(x,t)
f)

Y
P(Y <y X=x)=Im, P(Y<yx<X<x+h)= / dt. 9)
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From binary Sklar’s theorem, we can get

Dht) [ F@), GO @R [
Lo f(x) dt*/,m f() dt = / (F(x), G(1))g(t)dr. (10)

Step 2: Substitute (10) into (4), then one can obatin
s|i.D

. ) Ys_,SCoVuRad. a, )
P(Ys.tSCoVaR;‘;’;’dIIK.F VaR;'d‘it) = / " ((B(VaR™ ), G(1)g(r)de.  (11)

Step 3: Then we achieve

sli.D
Yoy SCoVuRnd

c(a, G(t)g(t)dt = p*.  (12)

ad pd.

P(Yt < CoVaR"™", |Y,, = VaRi’f) = /
S, tl 1 a%.t

oo

s|i,D

s and

Hence, Co VaRjj’I;d_t can be calculated by inverse solution method. the ACoVaR
%CoVaRs‘i’Dd‘r can be get by (7) and (8), respectively.

ad, 3

Section 4: Data
Data source

We selected the daily freight rates for the main routes in the BCI and BDI markets, which are
widely utilized in maritime economics research. The BCI serves as an index for the Capesize
dry bulk market and is constructed based on the spot freight rates of Capesize dry bulk carri-
ers, known for their substantial capacity in the dry bulk shipping sector. In the transportation
of dry bulk cargo, iron ore represents the largest share of total sea freight. The C2, C3 and C5
routes are the three most significant pathways for iron ore transport, making them ideal repre-
sentatives of the BCI market.

The BPI is an index that represents the Panamax dry bulk market, based on the spot freight
rates of Panamax dry bulk carriers. These vessels play a crucial role in the dry bulk shipping
sector due to their significant capacity. The P1A route connects the Americas to Western
Europe, P2A links the Far East with the Atlantic Ocean, and P3A connects the Americas to the
Far East. These routes are among the busiest in the world. Given that P1A_03, P2A_03 and
P3A_03 are more established than other routes, they have been selected to represent the BPI
market.

This paper collects daily freight rates for six routes from January 4, 2016 to December 22,
2023. The Baltic Sea Exchange did not record transactions on non-working days, resulting in a
total of 1,995 days and generating a dataset of 1, 995"6 = 11, 970 observations. The data were
sourced from the Clarkson website (https://sin.clarksons.net/). The analysis was conducted
using Eviews, R, and MATLAB. The current routes for Capesize and Panamax dry bulk carri-
ers are presented in Table 2, while the time series plots of freight rates for the main routes in
the BCI and BPI markets are illustrated in Figs 3 and 4.

Data preprocessing

As shown in Figs 3 and 4, among the Capesize routes, the freight rate for the C3 route consis-
tently exceeds that of the other two routes at various times, exhibiting similar fluctuation
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Table 2. Capesize dry bulk carrier routes.

Sector Short Description Size(MT) Price quotation Time intervals
C2 Tubarao to Rotterdam 160000 USD/Tonne 4/1/2016 to 22/12/2023
C3 Tubarao to Qingdao 160000 /170000 USD/Tonne 4/1/2016 to 22/12/2023
C5 West Australia to Qingdao 160000 USD/Tonne 4/1/2016 to 22/12/2023
P1 Skaw-Gib transatlantic round voyage 74000 USD/Day 4/1/2016 to 22/12/2023
P2 Skaw-Gib trip HK-S Korea incl Taiwan 74000 USD/Day 4/1/2016 to 22/12/2023
P3 HK-S Korea incl Taiwan, one Pacific RV 74000 USD/Day 4/1/2016 to 22/12/2023

Note: P1, P2 and P3 represent P1A_03, P2A_03 and P3A_03, respectively.

https://doi.org/10.1371/journal.pone.0315167.t002

trends, particularly with significant volatility during the period from 2020 to 2022. For the
Panamax routes, the freight rate for the P2 route is slightly higher than those of the other two
routes, also demonstrating notable fluctuations during 2020 to 2022. Overall, the freight
returns for all six routes display considerable instability. To assess the stationarity of the series,
we calculate the returns using the logarithmic first-order difference as follows:

Y, = (InP, — InP,_,) x 100, (13)

where Y, represents the logarithmic return of route, and P, represents the freight rate at time t.
In order to increase the stability of the data, the unified magnification is 100 times. Denote
C2%, C3%, C5%, P1%, P2*%, P3* represent the logarithmic return of freight rate for C2, C3, C5, P1,
P2 and P3 routes, respectively.

Fig 5 displays the time series of logarithmic returns obtained by calculating the first-order
difference of the freight rates. It is evident that the logarithmic returns for each route fluctuate

60

2016 2017 2018 2019 2020 2021 2022 2023

Cc2 C3 (65}

Fig 3. Trend plots of freight rates for C2, C3 and C5 routes.
https://doi.org/10.1371/journal.pone.0315167.g003
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Fig 4. Trend plots of freight rates for P1, P2 and P3 routes.

https://doi.org/10.1371/journal.pone.0315167.g004

around zero, showing similar patterns of volatility clustering coinciding with significant events
such as the US-China trade disputes, the COVID-19 pandemic, and the Russia-Ukraine con-
flict. However, the responses of different routes to these extreme shocks have varied over time.
These characteristics present an opportunity to explore risk spillovers between the freight rates
in the BCI and BPI markets.

Nonlinear analysis of returns series for each route

Fig 6 presents scatter plots and histograms of the logarithmic returns for the various routes.
The figure reveals a significant nonlinear correlation between the logarithmic returns of each
route. As a result, traditional linear methods may not adequately capture the relationships
between the routes. It is essential to employ a method that is suitable for nonlinear relation-
ships in modeling. The Copula function effectively addresses linear constraints, facilitating
research into nonlinear correlations.

Descriptive statistics of returns series for each route

In Table 3, the mean logarithmic return for each route ranges from approximately 0.06 to 0.08,
with a maximum value of 41.428 for C2* and a minimum value of -24.016 for C5*. The stan-
dard deviation for P1* is the highest, indicating significant fluctuations, while P2* has the low-
est standard deviation, suggesting relatively stable fluctuations. The skewness values for all
logarithmic returns are greater than zero, indicating that the distributions are not symmetrical
and are skewed to the right. Additionally, the kurtosis values for all logarithmic returns exceed
3, signifying that these returns have higher peaks and thicker tails. The Jarque-Bera (J-B) test
statistics are relatively large, and the corresponding p-values are less than 0.01, indicating that
the logarithmic returns do not follow a normal distribution. The Augmented Dickey-Fuller
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Fig 5. Trend plots of freight rate returns for each route in BCI and BPI markets.
https://doi.org/10.1371/journal.pone.0315167.9g005

(ADF) test results suggest that the sequences are stationary. Furthermore, the Q(12) test indi-
cates no autocorrelation among the various return sequences at a significance level of 1% with
alag of 12 orders.

Endogeneity and heteroskedasticity tests

The Granger causality test helps identify the causal relationships between variables and assess
endogeneity. As shown in Table 4, there is a one-way Granger causality from C2 to P2, C2 to
P3, C3 to P2, C3 to P3, and C5 to P3 at a significance level of 10%. The remaining relationships
exhibit two-way Granger causality. This indicates that the lagged values not only influence
their own future outcomes but also provide statistically significant information to predict the
outcomes of other markets, demonstrating a causal effect on other market sequences. These
findings offer a crucial basis for understanding the linkages between freight rates across vari-
ous routes.

The ARCH effect test is a crucial step in evaluating the heteroscedasticity of residuals after
modeling high-frequency time series data. In this paper, we employ the LM test statistic to
assess the ARCH effect. The results of the ARCH effect test for the residual variances of each
sequence are presented in Table 5. As indicated by the p-values in the table, we reject the null
hypothesis at a significance level of 0.05, confirming the presence of an ARCH effect in the log-
arithmic returns of each series. Each logarithmic return series exhibits characteristics such as
sharp peaks, thick tails, non-normality, and conditional heteroscedasticity.
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Fig 6. Scatter plots and sequence histogram of freight rate returns for each route.

https://doi.org/10.1371/journal.pone.0315167.9g006

Section 5: Empirical analysis
Edge distribution estimation

The primary purpose of using the GARCH model is to effectively capture the heteroscedasti-
city present in the logarithmic return series of freight rates across various routes, specifically
the characteristics of volatility changes over time. When establishing a GARCH model, it is
essential to make reasonable assumptions regarding the distribution of the residual perturba-
tion terms in the series. Typically, residuals can be assumed to follow various distribution
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Table 3. Descriptive statistics of freight rate returns for each route (p-value).

Statistics C2* C3* C5* P1* P2* P3*

mean 0.065 0.067 0.063 0.086 0.062 0.068
median -0.177 -0.105 -0.163 -0.142 -0.037 0.065
max 41.428 18.243 22.612 38.094 18.055 25.063
min -17.584 -11.741 -24.015 -21.392 -11.433 -17.731
std 3.139 2.825 4.318 4.847 2.268 3.196
skew 1.503 0.558 0.148 0.894 0.599 0.350
kurtosis 21.233 6.330 5.146 8.749 7.203 7.732
J-B 28369.600 1024.876 389.746 3011.717 1587.041 1901.401
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

ADF -22.656 -24.818 -31.073 -13.451 -17.144 -15.774
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Q(12) 1217.705 666.603 260.680 2799.011 2403.303 2721.511
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Note: J-B stands for Jarque-Bera test statistic and is used to check whether the freight rate return follows a normal distribution.

https://doi.org/10.1371/journal.pone.0315167.t003

types, including the normal distribution, t-distribution, and skewed t-distribution. Therefore,
we will examine the GARCH-normal model, GARCH-t model, and GARCH-skewed t model
separately. We select the GARCH (p,q) order and residual distribution based on the AIC and
Log Likelihood function (LLF), while passing the significance test of the parameters and con-

sidering the simplicity of the model.

Table 6 presents the GARCH(p,q) results for each sequence with various residual distribu-
tions, with the GARCH(1,1)-skew-t model ultimately selected to estimate the edge distribu-
tion. To mitigate the impact of a high-order mean model on subsequent modeling, ARMA

Table 4. Results of Granger causality test.

Null hypothesis F-statistics p-value conclusion
C2 is not the Granger cause of P1 2.306 0.0561 reject
P1 is not the Granger cause of C2 6.285 5.E-05 reject
C2 is not the Granger cause of P2 1.982 0.1592 no reject
P2 is not the Granger cause of C2 8.059 0.0046 reject
C2 is not the Granger cause of P3 0.741 0.4763 no reject
P3 is not the Granger cause of C2 2.659 0.0702 reject
C3 is not the Granger cause of P1 5.392 0.0003 reject
P1 is not the Granger cause of C3 2.353 0.0519 reject
C3 is not the Granger cause of P2 10.889 2.E-05 reject
P2 is not the Granger cause of C3 2.048 0.1292 no reject
C3 is not the Granger cause of P3 7.383 6.E-05 reject
P3 is not the Granger cause of C3 0.937 0.4219 no reject
C5 is not the Granger cause of P1 2.937 0.0532 reject
P1 is not the Granger cause of C5 5.569 0.0039 reject
C5 is not the Granger cause of P2 7.5412 0.0005 reject
P2 is not the Granger cause of C5 2.878 0.0565 reject
C5 is not the Granger cause of P3 6.869 0.0001 reject
P3 is not the Granger cause of C5 0.822 0.4814 norejet
https://doi.org/10.1371/journal.pone.0315167.t1004
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Table 5. Results of ARCH effect test.

Routes LM test Rank-based Test
test statistics p-value test statistics p-value
C2* 374.328 0.000 63.178 0.000
C3* 69.502 0.000 154.954 0.000
C5* 107.118 0.000 73.861 0.000
P1* 211.283 0.000 228.929 0.000
p2* 445.453 0.000 175.134 0.000
p3* 462.863 0.000 153.479 0.000

https://doi.org/10.1371/journal.pone.0315167.t1005

(1,1) is consistently chosen under the constraint of sequence autocorrelation. Consequently,
all sequences utilize the ARMA(1,1)-GARCH(1,1)-skew-t framework to characterize volatility.

In Table 7, all values of a; + 8; are less than 1, which ensures the effectiveness of the
GARCH model in fitting the fluctuations of freight rates for the internal routes in BCI and BPI
markets. Except for C2* series, all other f, is greater than the corresponding a;, which indi-
cates that they all have strong and sustained fluctuations during the sample period. The values
of a; + B for C3* series and P1* series are very close to 1, which indicates that these two

Table 6. GARCH modeling and evaluation of freight rate returns for each route.

Distributions C2* C3* C5*
AIC LLF AIC LLF AIC LLF
GARCH(1,1)-t 4.284 -4266.247 4.252 -4234.021 5.4726 -5451.915
GARCH(1,1)-skew-t 4.279 -4261.042 4.248 -4228.982 5.4723 -5450.594
GARCH(1,1)-normal 4.511 -4493.621 4.446 -4427.454 5.5357 -5515.889
GARCH(2,1)-t 4.2849 -4266.201 4.253 -4233.963 5.4736 -5451.908
GARCH(2,1)-skew-t 4.281 -4260.976 4.249 -4228.905 5.4733 -5450.579
GARCH(2,1)-normal 4.512 -4493.423 4.445 -4427.334 5.5368 -5515.955
GARCH(1,2)-t 4.285 -4266.178 4.246 -4227.452 5.4713 -5449.653
GARCH(1,2)-skew-t 4.281 -4260.912 4.242 -4221.981 5.4710 -5448.276
GARCH(1,2)-normal 4.511 -4492.907 4.443 -4425.312 5.5349 -5514.054
GARCH(2,2)-t 4.285 -4266.178 4.247 -4227.452 5.4723 -5449.653
GARCH(2,2)-skew-t 4.282 -4260.912 4.243 -4221.981 5.4720 -5448.276
GARCH(2,2)-normal 4.512 -4492.907 4.444 -4425.312 5.5359 -5514.054
Distributions P1* p2* p3*
AIC LLF AIC LLF AIC LLF
GARCH(1,1)-t 4.333 -4314.974 2.922 -2907.477 3.434 -3418.228
GARCH(1,1)-skew-t 4.332 -4313.248 2915 -2899.983 3.425 -3407.889
GARCH(1,1)-normal 4.545 -4527.205 3.092 -3077.744 3.587 -3572.459
GARCH(2,1)-t 4.334 -4315.142 2.923 -2907.144 3.435 -3418.452
GARCH(2,1)-skew-t 4.333 -4313.394 2916 -2899.614 3.426 -3408.107
GARCH(2,1)-normal 4.546 -4527.491 3.092 -3077.619 3.589 -3572.840
GARCH(1,2)-t 4.332 -4313.551 2.921 -2905.358 3.434 -3417.721
GARCH(1,2)-skew-t 4.332 -4311.924 2915 -2898.328 3.425 -3407.475
GARCH(1,2)-normal 4.536 -4517.588 3.092 -3077.255 3.586 -3569.666
GARCH(2,2)-t 4.285 -4312.074 2.922 -2905.358 3.435 -3417.721
GARCH(2,2)-skew-t 4.331 -4310.503 2.916 -2898.328 3.426 -3407.475
GARCH(2,2)-normal 4.537 -4517.437 3.093 -3077.255 3.587 -3569.666

https://doi.org/10.1371/journal.pone.0315167.t006
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Table 7. ARMA(1,1)-GARCH(1,1)-skew-t modeling parameters (p-value).

Parameters

U

P1

6,

By

skew

shape

ARCH

Cc2*
0.017
(0.886)
0.555
(0.000)
0.089
(0.009)
3.312

(0.0000)
0.428
(0.000)
0.221
(0.018)
1.104
(0.000)
2.993
(0.000)
8.795
(0.552)

C3* Cs5* P1* p2* p3*
-0.019 0.001 -0.2417 0.050 0.102
(0.830) (0.996) (0.282) (0.684) (0.583)

0.364 0.030 0.764 0.772 0.796
(0.000) (0.542) (0.000) (0.000) (0.000)

0.255 0.371 0.225 0.241 0.307
(0.000) (0.000) (0.000) (0.000) (0.000)

0.462 1.408 0.791 0.263 0.384
(0.053) (0.003) (0.000) (0.000) (0.000)

0.263 0.170 0.436 0.446 0.373
(0.000) (0.000) (0.000) (0.000) (0.000)

0.736 0.766 0.563 0.503 0.542
(0.000) (0.000) (0.000) (0.000) (0.000)

1.096 1.048 1.058 1.125 1.154
(0.000) (0.000) (0.000) (0.000) (0.000)

3.114 4.747 3.4097 3.594 4123
(0.000) (0.000) (0.000) (0.000) (0.000)
11.952 9.490 10.311 10.546 10.257
(0.288) (0.486) (0.414) (0.394) (0.418)

Note: y is a constant term of the mean. ¢, and 6, represents the coefficients of the mean equation, except for C5* series, all other returns series have passed the test. w is

the constant term of conditional variance, except for C3* series, all other returns series have passed the test. a; is the ARCH(1) coefficient, which reflects the magnitude

of the fluctuation. 3; is the GARCH(1,1) coefficient, which reflects the duration of the fluctuation. Skew is a skewness parameter. Shape is a degree of freedom

parameter.

https://doi.org/10.1371/journal.pone.0315167.t007

returns series have higher sustained volatility and long memory than other series. The values
of shape range from 2 to 5, and all p-values are very close to 0, indicating that the degree of
freedom parameter is suitable for data with significant skewness and thick tails. The p-values
of ARCH-LM test are all greater than 0.1, which indicates that the ARCH effect no longer
exists in these series. That is, the GARCH(1,1)-Skew-t model eliminates the ARCH effect in
each series (ARCH-LM test uses 10th order). Overall, the model and edge distribution selected
here are appropriate.

Nonlinear correlation analysis

Static Copula correlation analysis. After estimating the GARCH edge distribution, we
can obtain the conditional mean, conditional standard deviation, and standardized residuals
of the sequence. The correlation between paired series will be derived from the probability
integral transformation in the BCI and BPI markets using binary Copula modeling. The most
suitable Copula function is selected based on the criterion of minimizing the Akaike Informa-
tion Criterion (AIC).

In Table 8, all pairs, except for C2*-P2*, C3*-P2*, and C5*-P1*, utilize the t Copula as the
optimal function, indicating a degree of homogeneity among these routes. The correlations for
C2*-P1* and C3*-P1* are relatively low, which may be attributed to the impact of route loca-
tions on their correlation. The P1 route connects Europe and America along the west coast of
the Atlantic, while the C2 route links Brazil with Western Europe, and the C3 route connects
Brazil to China. With the exceptions of C3*-P2* and C5*-P1%, there is a symmetric positive
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Table 8. Copula functions modeling parameters.

routes Normal Copula t Copula
LLF AIC D K-t LLE AIC p K K-t UTD LTD
C2*-P1* 31.66 -61.33 0.17 0.11 37.04 -70.07 0.17 14.03 0.11 0.0053 0.0053
C2*-p2* 51.22 -100.43 0.21 0.13 50.68 -107.35 0.21 14.74 0.14 0.0057 0.0057
C2*-p3* 52.03 -102.06 0.22 0.14 54.21 -104.43 0.22 22.01 0.14 0.008 0.008
C3*-P1* 34.32 -66.64 0.17 0.11 39.03 -74.05 0.18 14.74 0.11 0.0044 0.0044
C3*-p2* 48.77 -95.54 0.21 0.13 49.50 -95.00 0.21 30 0.13 0 0
C3*-p3* 59.54 -117.09 0.23 0.15 61.61 -119.22 0.23 21.33 0.15 0.0011 0.0011
C5*-P1* 28.89 -55.78 0.16 0.1 29.7 -55.41 0.17 300.11 0 0
C5*-p2* 39.5 -76.99 0.19 0.12 40.95 -77.89 0.19 26.2 0.12 0.002 0.002
C5*-p3* 62.02 -122.05 0.24 0.16 66.01 -128.02 0.24 17.24 0.16 0.0037 0.0037
routes Frank Copula SJC Copula
LLE AIC X K-t LLE AIC il 5 K-t UTD LTD
C2*-P1* 32.93 -63.87 1.07 0.12 33.53 -63.05 1.06 0.16 0.1 0.07 0.01
C2*-p2* 46.53 -91.06 1.27 0.14 56.41 -108.81 1.07 0.22 0.13 0.09 0.04
C2*-p3* 47.53 -93.06 1.29 0.14 50.48 -96.96 1.08 0.2 0.13 0.1 0.03
C3*-P1* 33.22 -64.43 1.08 0.12 35.85 -67.7 1.07 0.15 0.1 0.09 0.01
C3*-p2* 41.7 -81.4 1.2 0.13 47.05 -90.1 1.09 0.18 0.12 0.11 0.2
C3*-p3* 51.52 -101.04 1.36 0.15 60.38 -116.77 1.1 0.2 0.14 0.13 0.03
C5*-P1* 29.49 -56.97 1.04 0.11 28.44 -52.88 1.05 0.16 0.1 0.06 0.01
C5*-p2* 38.71 -75.43 1.18 0.13 40.57 -77.15 1.05 0.2 0.12 0.07 0.03
C5*-p3* 56.11 -110.23 1.44 0.16 64.91 -125.82 1.09 0.24 0.15 0.11 0.06
routes Clayton Copula Gumbel Copula
LLE AIC ] K-t LTD LLF AIC a K-t UTD
C2*-P1* 27.54 -53.09 0.2 0.09 0.03 27.04 -52.08 1.09 0.09 0.12
C2*-p2* 46.7 -91.8 0.27 0.12 0.08 43.25 -84.49 1.12 0.11 0.14
C2*-P3* 39.36 -76.72 0.26 0.11 0.07 43.45 -84.91 1.12 0.11 0.15
C3*-P1* 26.11 -50.22 0.2 0.09 0.03 31.49 -60.99 1.1 0.09 0.12
C3*-p2* 34.93 -67.85 0.24 0.11 0.05 40.94 -79.89 1.12 0.1 0.14
C3*-p3* 42.02 -82.04 0.27 0.12 0.08 53.98 -106.0 1.13 0.12 0.16
C5*-P1* 24.02 -46.03 0.19 0.09 0.03 22.45 -42.91 1.09 0.08 0.11
C5*-p2* 35.3 -68.6 0.24 0.11 0.05 29.9 -57.81 1.1 0.09 0.13
C5*-p3* 51.98 -101.95 0.3 0.13 0.1 53.03 -104.1 1.14 0.13 0.17

Note: K-7 stands for Kendall-7 and represents the correlation of freight rate returns pairs.

https://doi.org/10.1371/journal.pone.0315167.1008

correlation in the tails of all other routes. Overall, a positive correlation exists among the vari-
ous routes.
The largest static correlation is observed in the C5*-P3* pair, while the relatively small static
correlations are found in C5*-P1%, C3*-P1*, and C2*-P1*. The linkage between the freight rate
of the BCI market and the P1 route is notably low, which may be attributed to the varying
impacts of different voyages on the correlation. The P1 route primarily serves as an Atlantic

round-trip route, originating in the United States and terminating in Western Europe. In con-
trast, the C2, C3, and C5 routes do not originate from the United States, with both the C3 and
C5 routes ultimately heading to China.

Dynamic Copula correlation analysis. To effectively illustrate the variation of the corre-
lation coefficient over time, three types of time-varying Copula functions are selected to
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Table 9. AIC values of different dynamic Copula functions.

Routs TVN Copula TVRG Copula TVSJC Copula
C2*-P1* -66.554 -72.633 -78.615
C2*-p2* -113.808 -110.498 -118.119
C2*-p3* -113.676 -102.085 -111.461
C3*-P1* -69.481 -68.219 -75.899
C3*-p2* -99.725 -88.403 -103.959
C3*-pP3* -126.169 -112.204 -131.039
C5*-P1* -58.234 -52.830 -60.904
C5*-p2* -83.211 -77.662 -88.899
C5*-pP3* -126.079 -117.039 -132.727

https://doi.org/10.1371/journal.pone.0315167.t1009

analyze the correlation between different freight rates. The parameters of these time-varying
Copula functions are dynamically adjusted. This study employs the time-varying Normal
(TVN) Copula, time-varying Rotated Gumbel (TVRG) Copula, and time-varying SJC (TVS]C)
Copula for dynamic Copula modeling.

In Table 9, the time-varying SJC Copula is the optimal choice for all pairs except for C2*-
P3*. The parameters of the time-varying SJC Copula are especially sensitive to tail data, allow-
ing it to effectively capture asymmetric correlations in both the upper and lower tails. How-
ever, since the time-varying SJC Copula primarily focuses on characterizing tail correlation
coefficients, we also employ the time-varying Normal Copula to better represent the overall
symmetric correlation between route fares.

From Table 10, it is evident that, except for C2*-P2*, C2*-P3*, and C5*-P2*, all other pairs
exhibit positive correlations. Notably, C2*-P3* shows a few negative correlations during the
early stages, which may be linked to the US interest rate hike in December 2015 and the col-
lapse of the Chinese stock market around New Year’s Day in 2016. Both C2*-P2* and C5*-P2*
display individual negative correlations in the later period, potentially due to the impacts of
COVID-19. Examining the fluctuations in dynamic correlations, the standard deviations for
C2*-P2* and C2*-P3* are relatively large, indicating frequent fluctuations. In contrast, the
standard deviation of C5*-P1* is only 0.015, suggesting a relatively stable variation throughout
the sample period.

The time series of dynamic correlation coefficients is illustrated in Fig 7. C5*-P3* demon-
strates the largest mean dynamic correlation, while C5*-P1* shows the smallest mean dynamic
correlation. This finding aligns with the conclusions drawn from the static optimal Copula

Table 10. Descriptive statistics of time-varying Copula dynamic correlation coefficients.

routes TVN Copula K-7 TVS]JC Copula upper tail K-t TVSJC Copula lower tail K-
mean max min std mean max min std mean max min std
Cc2*-p1* 0.165 0.313 0.036 0.036 0.024 0.747 0.001 0.042 0.059 0.393 0.003 0.036
C2*-p2* 0.205 0.477 -0.041 0.069 0.035 0.306 0.002 0.019 0.100 0.375 0.008 0.030
C2*-p3* 0.215 0.415 -0.052 0.062 0.050 0.823 0.001 0.051 0.084 0.344 0.026 0.026
C3*-p1* 0.173 0.233 0.112 0.019 0.029 0.061 0.010 0.006 0.051 0.226 0.009 0.028
C3*-p2* 0.206 0.318 0.108 0.029 0.051 0.112 0.011 0.034 0.048 0.473 0.001 0.060
C3*-p3* 0.232 0.425 0.083 0.055 0.059 0.260 0.014 0.031 0.088 0.634 0.006 0.056
C5*-P1* 0.164 0.214 0.110 0.015 0.014 0.016 0.013 0.004 0.049 0.826 0.007 0.059
C5*-p2* 0.191 0.318 -0.021 0.041 0.020 0.893 0.001 0.053 0.086 0.355 0.021 0.026
C5*-P3* 0.243 0.375 0.121 0.031 0.056 0.285 0.003 0.033 0.110 0.301 0.050 0.022

https://doi.org/10.1371/journal.pone.0315167.t010
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Fig 7. Trend plots of the TVN Copula dynamic correlation coefficients between the BCI and BPI markets.

https://doi.org/10.1371/journal.pone.0315167.9g007

analysis, indicating that the time-varying Normal Copula modeling performs well in capturing
these relationships.
To further analyze the dynamic correlation between the upper and lower tails of freight
rates for various routes in the BCI and BPI markets, we will employ the TVSJC Copula. As
illustrated in Figs 8-10, the dynamic correlation coefficients exhibit asymmetric dependency
structures. For all six pairs, the mean values of the lower tail correlation coefficients exceed

PLOS ONE | https://doi.org/10.1371/journal.pone.0315167  January 16, 2025

19/31


https://doi.org/10.1371/journal.pone.0315167.g007
https://doi.org/10.1371/journal.pone.0315167

PLOS ONE GARCH-Copula-CoVaR model

- S.K:oopuh lower i (2P SIC oopula- bwer il (2P’ SIC oopua- bower tal

0.8‘ 08 ‘ 08
‘ —mmng —invaing| | — invaying
0-5" - onsan l‘ 08 ) 08 oyt ||
04F 04 ‘ 04
“ S TVRRTNY R TR RPUIR
lhAs)k‘ul,u"{Uhhw'Al\\oUP;M‘)}LL Or‘ \ \NA A’%A ,"‘\; ; J‘I‘M ! 0[’ ‘( k['\l) 4}\ Ay, L‘\h) \Jl.Jl “-’;}t.‘r \‘..\l.','nl’..“
0 40 60 80 1000 100 MO0 1500 1600 0 20 40 €00 80 00 1200 &0 1600 1800 0 20 40 €00 &0 w00 1200 140 60 1800
o C2'-P1* SIC oogula - upper tal 0 C2P2* $.C copa - upper tai o C2P3* S.C copua - upper tai
’ —W")"G ‘ — mrajng| | — Smeajg
os‘ ‘ 08 e ot ‘ 05 ot |1
‘ ‘ 04 ‘ 04
\ |
02 02 02 1
| !IJ me . N ‘ !| | ' L
b LA il b sl Dt abann o SN
U 200 40 60 80 1000 120 100 1600 1600 0 20 40 €00 &0 00 1200 1400 1600 1800 0 20 40 €00 30 00 1200 1400 1600 1800
(a) C2* and P1* (b) C2* and P2* (c) C2* and P3*

Fig 8. Trend plots of TVSJC Copula dynamic correlation coefficients between the C2* and BPI markets.
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those of the upper tail correlation coefficients. This suggests that the correlations between
freight rates are stronger during market downturns or extreme crises. Additionally, there is a
higher likelihood of simultaneous price drops while experiencing different price increases
across freight routes in the BCI and BPI markets.
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Empirical analysis of risk spillover effect

Dynamic time-varying VaR results. Before calculating CoVaR, it is essential to first com-
pute VaR, as defined by the formula in (4). Fig 11 illustrates the dynamic time series of returns
for each series. Table 11 presents the descriptive statistics of the time-varying VaR for each
series.

From Fig 11 and Table 11, it is evident that the VaR of each route’s freight rates exhibits
time-varying characteristics with notable fluctuations. In the BCI market, the C3 route has a
lower risk value compared to the other two routes, while the absolute VaR for the C5 route is
the highest. This difference may be attributed to the C5 route, which runs from Western Aus-
tralia to Qingdao, whereas the C3 route connects Tubarang (Brazil) to Qingdao. Australia con-
sistently ranks first in global iron ore export volume, significantly surpassing Brazil and other
regions. Consequently, trade fluctuations within the Australian domestic market and varia-
tions in iron ore exports may introduce potential risks to the freight rates of the C5 route.

In the BPI market, the P1 route exhibits the largest absolute value of average VaR, indicat-
ing that its fluctuations are the most significant. Conversely, the P2 route has the smallest abso-
lute value of average VaR, suggesting its fluctuations are the least pronounced. This disparity
may be attributed to the P2 route, which connects the Atlantic with the Far East (including
China, Japan, and East Asia). In recent years, both China and Japan have implemented ship-
ping trade policies that partially mitigate freight rate risks. Notably, the risk fluctuations for
each route significantly increased in 2020 and 2022, likely due to the impacts of the global
COVID-19 pandemic in 2020 and the Russia-Ukraine conflict in 2022. This underscores the
influence of major global events on freight rates.

Dynamic time-varying CoVaR results. CoVaR measures the magnitude of mutual risk
spillover effects between the BCI and BPI markets. Table 12 presents the descriptive statistics
for the dynamic time-varying CoVaR of the BCI market as it relates to the BPI market, while
Table 13 provides similar statistics for the BPI market in relation to the BCI market. From
Tables 12 and 13, it is evident that the risks associated with the BCI and BPI routes have experi-
enced different changes over time. Notably, the absolute value of the average VaR for the C2
route is 4.2383, as shown in Table 11, while the absolute value of the average CoVaR" % is
5.1869, the absolute value of the average CoVaR"? is 6.4045, and the absolute value of the
average CoVaR™I®? i 52595, both of which exceed the VaR of the C2 route. This suggests
that the VaR for the C2 route is likely underestimated, highlighting a limitation of relying
solely on VaR to assess the risk of return series. Consequently, CoVaR is employed to measure
the tail losses associated with VaR, providing a more comprehensive risk assessment.

To further illustrate the difference between VaR and CoVaR, we present the upward and
downward risks of two markets. Fig 12 depicts the risk spillover effect of the BCI market on
the BPI market, while Fig 13 shows the spillover effect of the BPI market on the BCI market.
From Figs 12 and 13, it is clear that the VaR values for each route, as well as the CoVaR values
for each pair, exhibit dynamic changes over time. Notably, the CoVaR from C5* to P1* largely
overlaps with the VaR of P1%, indicating a one-way risk spillover from the freight rate of the P1
route to the freight rate of the C5 route. Conversely, the freight rate of the C5 route does not
spill over risk to the freight index of the P1 route. Similarly, there is no spillover effect between
the freight rates of the C3 and P2 routes. Additionally, the absolute values of the upward and
downward CoVaRs are greater than their corresponding VaRs, which highlights the presence
of ACoVaR and confirms the existence of bidirectional risk spillover.

Dynamic time-varying ACoVaR results. This paper focuses on studying risk spillovers in
extreme loss situations, specifically exploring the dynamic time-varying ACoVaR relationship
between two markets under severe downward scenarios. The calculation formula for ACoVaR
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Fig 10. Trend plots of TVSJC Copula dynamic correlation coefficients between the C5* and BPI markets.

https://doi.org/10.1371/journal.pone.0315167.9010

is provided in (6). Table 14 presents the descriptive statistical results for the dynamic time-
varying ACoVaR from the BCI market to the BPI market, while Table 15 details the results
from the BPI market to the BCI market. To better illustrate the intensity of risk spillover
between different routes in the two markets, we include a time-varying plot of bidirectional
risk spillover ACoVaR, as shown in Fig 14. From Tables 14 and 15, along with Fig 14, we can
observe the following:

%0 500 750 1000 1250 1500 1750 B0 S0 750 1000 1250 1500 1750

— Q*VaR —— (3'VaR —— (5'VaR [— P1*VaR —— P2*VaR —— P3*VaR
(a) Time series plot of VaR for C2*, C3* and C5* (b) Time series plot of VaR for P1*, P2* and P3*

Fig 11. Trend plots of VaR for each returns pairs.
https://doi.org/10.1371/journal.pone.0315167.9011
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Table 11. Descriptive statistics of time-varying VaR for each series (& = 0.05).

Statistics Cc2*
mean -4.238
std 2.2030

https://doi.org/10.1371/journal.pone.0315167.t011

C3* C5* P1* p2* P3*
-4.132 -6.647 -4.331 -2.061 -2.561
2.087 2.425 4.2823 2.221 3.085

Table 12. Descriptive statistics of dynamic time-varying CoVaR in BCI — BPI (a = 0.05).

C2*—P1* C2*—Pp2*
mean -5.482 -3.194
std 4.594 2.663

https://doi.org/10.1371/journal.pone.0315167.t1012

C2*—Pp3* C3*—P1* C3*—Pp2* C3*—P3* C5*—P1* C5*—Pp2* C5*—P3*
-3.363 -5.548 -2.436 -3.450 -4.418 -2.671 -3.703
3.316 4.615 2.351 3.345 4.303 2.441 3.431

Table 13. Descriptive statistics of dynamic time-varying CoVaR in BPI — BCI (& = 0.05).

P1*—C2* P2*—C2*
mean -5.186 -6.404
std 2417 2.740

https://doi.org/10.1371/journal.pone.0315167.t1013

P3*—C2* P1*—C3* P2*—C3* P3*—C3* P1*—C5* P2*—C5* P3*—C5*
-5.259 -5.185 -4.692 -5.344 -7.165 -8.695 -9.512
2.435 2.378 2.237 2.424 2.534 2.873 3.062

Firstly, the ACoVaR of freight rates for each route exhibits temporal fluctuations and some
extreme values, highlighting the limitations of VaR in capturing risk spillovers. This confirms
that VaR does not fully measure the complexities of risk interconnections.

Secondly, the risk spillover from P2 to C2 is significantly greater than that from C2 to P2.
Similarly, the risk spillover from P2 to C5 exceeds that from C5 to P2, and the risk spillover
from P3 to C5 is greater than that from C5 to P3. Notably, C5 has a relatively small risk spill-
over effect on P1, indicating a one-directional spillover between P1 and C5. This finding aligns
with conclusions drawn in the previous section. With the exception of C5 and P1, all other
pairs demonstrate two-directional and asymmetric risk spillover effects.

Thirdly, the absolute mean risk spillover from C3 to P1 is the largest. This can be attributed
to the geographical proximity of the routes; both C3 and P1 are linked to the Atlantic, while
C5 traverses the Pacific. Conversely, the mean risk spillover from C5 to P1 is the smallest, likely
due to the greater distance between their respective starting points. Specifically, the distance of
the C3 route is more than twice that of the C5 route. The mean risk spillover from P2 to C2 is
the largest, while that from P1 to C5 is the smallest, further suggesting that route distances play
a significant role in determining the magnitude of risk spillovers.

Fourthly, the ACoVaR values between -12 and 0 indicate that downward risk spillovers are
consistently negative, and there is a positive correlation in the direction of risk between each
freight rate pair. This suggests that freight rates in both the BCI and the BPI tend to move
together, whether rising or falling.

Fifthly, although the time-varying ACoVaR plots differ among the routes, there is a clear
trend: the absolute values of ACoVaR significantly increased from 2020 to 2022. This increase
can be attributed to external shocks such as the COVID-19 pandemic and the Russia-Ukraine
conflict, which have notably impacted risk spillovers between routes. This observation sup-
ports the argument that extreme events can substantially alter spillover effects.

Dynamic time-varying %CoVaR results. Although ACoVaR effectively measures risk
spillover effects, it does not eliminate the influence of dimensionality. Therefore, we will pro-
ceed to calculate %CoVaR. This metric represents the relative strength of risk spillover effects
and reflects the contribution of these effects between freight indices in two markets under
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https://doi.org/10.1371/journal.pone.0315167.9012

extreme risk conditions. Table 16 presents the descriptive statistics for the downward dynamic
time-varying %CoVaR from the BCI market to the BPI market, while Table 17 provides similar
statistics for the downward dynamic time-varying %CoVaR from the BPI market to the BCI
market. Additionally, to offer a clearer understanding of the intensity of risk spillover between
each return pair, the rankings of the mean values for %CoVaR are displayed in Table 18.

From Tables 16-18, we can conclude that:
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Table 14. Descriptive statistics of dynamic time-varying ACoVaR for freight rate returns (BCI—BPI).

C2*— P1* C2*—P2* C2*¥—P3* C3*—P1* C3*—P2* C3*—P3* C5*— P1* C5*—P2* C5*—P3*
mean -1.151 -1.133 -0.803 -1.218 -0.375 -0.890 -0.087 -0.610 -1.142
max -0.589 -0.646 -0.464 -0.622 -0.214 -0.514 -0.044 -0.348 -0.660
min -7.511 -10.827 -6.456 -7.944 -3.583 -7.156 -0.567 -5.824 -9.190
std 0.695 0.736 0.495 0.735 0.243 0.549 0.053 0.396 0.704
https://doi.org/10.1371/journal.pone.0315167.1014
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Table 15. Descriptive statistics of dynamic time-varying ACoVaR for freight rate returns (BPI—BCI).

P1*—C2* P2*—C2* P3*—C2* P1*—C3* P2*—C3* P3*—C3* P1*—C5* P2*—C5* P3*—C5*
mean -0.949 -2.166 -1.021 -1.054 -0.888 -1.213 -0.518 -2.048 -2.865
max -0.751 -1.716 -0.809 -0.571 -0.481 -0.651 -0.327 -1.293 -1.808
min -7.369 -16.827 -7.932 -3.658 -3.083 -4.211 -1.271 -5.024 -7.029
std 0.366 0.835 0.394 0.406 0.342 0.467 0.143 0.566 0.792

https://doi.org/10.1371/journal.pone.0315167.t015

Firstly, all %CoVaR values are positive, indicating that extreme conditions affect both mar-
kets. Furthermore, there are significant differences in the intensity of risk spillovers among
various return pairs.

Secondly, regarding the risk spillover from the BCI market to the BPI market, the freight
rate of the C5 route contributes the most to the risk of the P3 route. This is likely due to the
fact that both routes are connected to East Asia. Conversely, the C5 route has the least contri-
bution to the risk spillover of the P1 route, primarily because there is less overlap between
these two routes, which aligns with the findings of ACoVaR.

Thirdly, in the risk spillover from the BPI market to the BCI market, the freight rate of the
P2 route has the greatest impact on the risk intensity of the C2 route. This relationship may be
attributed to the distance of the routes; the P2 route is the longest among the three BPI internal
routes, and longer distances tend to increase risk spillover intensity. On the other hand, the
risk intensity of freight rates between the P1 route and the C5 route is the lowest, likely due to
alack of intersection between the two routes.

Finally, although the risk intensity from the P1 route to the C5 route is greater than that
from the C5 route to the P1 route, the overall risk spillover intensity between these two routes
is significantly lower than that of all other pairs.

Section 6: Discussion

With the continuous development of the global economy, the scale and complexity of interna-
tional trade are expanding. Freight fluctuations, as a crucial component of trade costs, signifi-
cantly impact trade flow and economic growth. Therefore, analyzing the volatility of the BCI
and BPI, along with their mutual influences, is essential for understanding the dynamics of the
shipping economy and global trade. Moreover, the interaction between the shipping market
and the financial market is growing. Freight rate fluctuations not only influence the share
prices of shipping companies but also affect the performance of other financial assets. This
study aims to uncover the risk spillover effects between the BCI and BPI, highlighting the
broader implications for the shipping industry.

In recent literature, some have focus on the risk spillover relationships among shipping
indices, futures, oil prices, and other assets [26-28], and some have investigated the risk spill-
over effects among various sub-segment maritime markets [12]. As far as we know, there is no
literature to study the risk spillover among the freight rates of various routes in the shipping
submarket. This paper deeply studies the mutual volatility and risk spillover effect of freight
rates in the BCI and BPI markets. It explores how these indices influence each other and col-
lectively reflect the health of the shipping market.

There are many innovative models that study risk spillovers in financial markets, such as
GMM, GARCH-MIDAS-GAS-copula-CoVaR model [29], GARCH copula quantile regression
model [30] and so on. However, GMM is applicable to the assumption that the data meets the
homoscedasticity or normality, but the time series data adopted in this paper are heteroscedas-
ticity and non-normality, which does not meet the assumptions of GMM. The
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Table 16. Descriptive statistics of dynamic time-varying %CoVaR for freight rate returns (BCI—BPI).

C2*—P1* C2*—Pp2* C2*¥—Pp3* C3*—P1* C3*—P2* C3*—P3* C5*—P1* C5*—P2* C5*—P3*
mean 0.149 0.314 0.348 0.157 0.104 0.386 0.011 0.169 0.496
std 4.377 11.410 7.774 4.630 3.776 8.617 0.331 6.138 11.066
https://doi.org/10.1371/journal.pone.0315167.1016
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Table 17. Descriptive statistics of dynamic time-varying %CoVaR for freight rate returns (BPI — BCI).

P1*—C2* P2*—C2* P3*—-C2* P1*—C3* P2*—-C3* P3*—-C3* P1*—C5* P2*—C5* P3*—C5*
mean 0.262 0.597 0.282 0.285 0.151 0.328 0.082 0.322 0.451
std 0.161 0.369 0.174 0.126 0.067 0.145 0.019 0.074 0.104

https://doi.org/10.1371/journal.pone.0315167.t1017

Table 18. %CoVaR mean ranking result (o = 0.05).

Rank Capesize — Panamax Panamax — Capesize
1 C5*—P3* p2*—(C2*
2 C3*—Pp3* P3*—C5*
3 C2*—P3* P3*—(C3*
4 C2*—Pp2* p2*—C5*
5 C5*—P2* P1*—(C3*
6 C3*—P1* p3*—(C2*
7 C2*—P1* P1*—C2*
8 C3*—Pp2* p2*—C3*
9 C5*—P1* P1*—C5*

https://doi.org/10.1371/journal.pone.0315167.1018

GARCH-MIDAS-GAS-Copula can process data of different frequencies, while the time series
data studied in this paper is of the same frequency. The GARCH copula quantile regression
model focuses on risk spillover in a specific market state, while this paper focuses on systemic
risk and its propagation in times of crisis. To sum up, the GARCH-Copula-CoVaR model is
more suitable for the purpose of this paper.

It is suggested that the application scope of GARCH-Copula-CoVaR model can be broad-
ened in future research to explore the differences in risk transmission in different market envi-
ronments. Further research can consider more influencing factors (such as macroeconomic
variables, geopolitical risks, etc.) to improve the accuracy of the model and the reliability of the
research results. Using a dynamic panel data approach, we study how risk transmission
changes over different time to better capture market dynamics. In addition, we can explore the
combination of machine learning technology with traditional econometric models and statisti-
cal models to further improve the accuracy and applicability of risk prediction.

Section 7: Conclusions and suggestions

The main purpose of this paper is to study the volatility, correlation and risk spillover effect
between freight rates of main routes in BCI and BPI markets. This paper focuses on historical
data to provide a clearer picture of the volatility and risk spillovers within the shipping market,
rather than linking it to external data as most people have studied. Specific conclusions are
drawn as follows: There is static and dynamic correlation between airline freight rates. In both
static Copula and dynamic Copula, there are significant differences in correlation between dif-
ferent routes. The correlation between C5-P3A_03 was significantly higher than other combi-
nations. There is significant risk spillover effect between route rates. There is a one-way risk
spillover between P1A_03 and C5, while most routes show a two-way positive risk spillover.
The distance and location of routes may be important factors that lead to the difference in risk
spillover intensity between different routes. Based on these conclusions, this paper provides
the following suggests.

(1) Suggestions to the government: 1) Strengthen oversight of the shipping market. The gov-
ernment should implement a comprehensive risk monitoring mechanism to identify and
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evaluate potential market risks promptly. Regular market reports should be issued, and
transparent market data should be made available to enhance overall market visibility. 2)
Establish a risk early warning system. An effective risk early warning system must be estab-
lished to provide timely alerts during abnormal fluctuations in freight prices. This will
enable relevant enterprises and investors to take proactive measures to mitigate risks. 3)
Promote inter-industry collaboration. The government can encourage collaboration
among shipping companies and between shipping lines and financial institutions. By foster-
ing information sharing and resource integration, the overall risk management capacity of
the industry can be significantly improved.

(2) Suggestions to shipping enterprises: 1) Implement advanced risk assessment models. Regu-

lar analysis of shipping market volatility should be conducted to identify risk spillovers
between different routes. This proactive approach will help in better understanding and
managing potential risks. 2) Provide professional training for practitioners. Focus on
enhancing the risk management skills and response capabilities of industry professionals.
This training will equip them to make swift and accurate decisions in a complex and fluctu-
ating market environment. 3) Adopt a diversified portfolio strategy. Reduce reliance on
specific routes by implementing a diversified investment strategy. This flexibility will allow
for adjustments during market downturns, helping to avoid high-risk areas and optimize
investment direction.

(3) Suggestions to investors: 1) During periods of significant freight rate fluctuations, investors

closely monitor the dynamics of the Capesize and Panamax bulk carrier markets, adjusting
their investment strategies in a timely manner to mitigate potential risks. 2) When the risk
associated with a particular route increases, investors should consider reallocating funds to
routes with lower risk spillovers, thereby reducing the overall risk exposure of their portfo-
lio. 3) In a downturn of the dry bulk market, investors should flexibly adjust their portfolios
to diversify risks. If the freight rate on a specific route drops significantly, they might con-
sider investing in routes that exhibit relatively stable performance to achieve a better bal-
ance of returns.

Supporting information

S1 Data. (https://w.afbcs.cn/TM44q3).
(XLSX)

Acknowledgments

We thank the editor, an associate editor and there reviewers for their most helpful comments.

Author Contributions
Methodology: Yuye ZOU.

Software: Jing XU.

Supervision: Yanhui CHEN.

Writing - original draft: Yuye ZOU.
Writing - review & editing: Yuye ZOU.

PLOS ONE | https://doi.org/10.1371/journal.pone.0315167  January 16, 2025 29/31


http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0315167.s001
https://w.afbcs.cn/TM44q3
https://doi.org/10.1371/journal.pone.0315167

PLOS ONE

GARCH-Copula-CoVaR model

References

1.

10.

1.

12

13.

14.

15.

16.

17.

18.

19.

20.

21.

Bai X, Lam JSL, Jakher A. Shipping sentiment and the dry bulk shipping freight market: New evidence
from newspaper coverage. Transportation Research Part E: Logistics and Transportation Review.
2021; 155:102490. https://doi.org/10.1016/j.tre.2021.102490

Bandyopadhyay A, Rajib P. The asymmetric relationship between Baltic Dry Index and commodity spot
prices: evidence from nonparametric causality-in-quantiles test. Mineral Economics. 2023; 36(2):217—
237. https://doi.org/10.1007/s13563-021-00287-y

Ruan Q, Wang Y, Lu X, Qi J. Cross-correlations between Baltic Dry Index and crude oil prices. Physica
A-Statistical Mechanics and its Applications. 2016; 453:278—289. https://doi.org/10.1016/j.physa.2016.
02.018

Karaoulanis |, Pelagidis T. Panamax markets behaviour: explaining volatility and expectations. Journal
of Shipping and Trade. 2021; 6:15. https://doi.org/10.1186/s41072-021-00096-0

Kumar A. Dynamics interrelationship in returns and volatilities among shipping freight markets. World
Maritime University Dissertations. World Maritime University. 2016;1-67.

Chang CC, Chou HC, Wu CC. Value-at-risk analysis of the asymmetric long-memory volatility process
of dry bulk freight rates. Maritime Economics & Logistics. 2014; 16(3):298-320. https://doi.org/10.1057/
mel.2014.13

Ji Q, Bouri E, Roubaud D, Shahzad SJH. Risk spillover between energy and agricultural commodity
markets: A dependence-switching CoVaR-copula model. Energy Economics. 2018; 75:14-27. https:/
doi.org/10.1016/j.eneco.2018.08.015

XuH, Tao BB, Shu 'Y, Wang Y. Long-term memory law and empirical research on dry bulks shipping
market fluctuations. Ocean & Coastal Management. 2021; 213:105838. https://doi.org/10.1016/j.
ocecoaman.2021.105838

Yang J, Ge Y, Li K. Measuring volatility spillover effects in dry bulk shipping market. Transport Policy.
2022; 125: 37—-47. https://doi.org/10.1016/j.tranpol.2022.01.018

Bollerslev T. Generalized autoregressive conditional heteroskedasticity. Journal of econometrics. 1986;
31(3):307-327. https://doi.org/10.1016/0304-4076(86)90063-1

Leonov Y, Nikolov V. A wavelet and neural network model for the prediction of dry bulk shipping indices.
Maritime Economics & Logistics. 2012; 14:319-3383. https://doi.org/10.1057/mel.2012.10

Sun XL, Liu C, Wang J, Li J. Assessing the extreme risk spillovers of international commaodities on mari-
time markets: a GARCH-Copula-CoVaR approach. International Review of Financial Analysis. 2020;
68:101453. https://doi.org/10.1016/).irfa.2020.101453

Fan YH, Xing YW, Yang HL. Prediction of Baltic Capesize Freight Index based on GARCH model.
Applied Mechanics and Materials. 2014; 488:1494-1497. https://doi.org/10.4028/www.scientific.net/
AMM.488-489.1494

Riaz A, Xingong L, Jiao Z, Shahbaz M. Dynamic volatility spillover between oil and marine shipping
industry. Energy Reports. 2023; 9:3493-3507. https://doi.org/10.1016/j.egyr.2023.02.025

Lin AJ, Chang HY, Hsiao JL. Does the Baltic Dry Index drive volatility spillovers in the commodities, cur-
rency, or stock markets? Transportation Research Part E: Logistics and Transportation Review. 2019;
127:265-2883. https://doi.org/10.1016/j.tre.2019.05.013

Schindler D, Behr HD, Jung C. On the spatiotemporal variability and potential of complementarity of
wind and solar resources. Energy Conversion and Management. 2020; 218:113016. https://doi.org/10.
1016/j.enconman.2020.113016

Chen FE, Tian K, Miao YQ, Li T, Ding X. Multifractal characteristics in maritime economics volatility.
International Journal of Transport Economics. 2017, 44(3):365-380. https://doi.org/10.19272/
201706703001

Adrian T, Brunnermeier MK. CoVaR. American Economic Review. 2016; 106(7):1705-1741. https://
doi.org/10.1257/aer.20120555

Giamouzi M, Nomikos NK. Identifying shipowners’ risk attitudes over gains and losses: Evidence from
the dry bulk freight market. Transportation Research Part E: Logistics and Transportation Review.
2021; 145:102129. https://doi.org/10.1016/j.tre.2020.102129

JiQ, Liu BY, Fan Y. Risk dependence of CoVaR and structural change between oil prices and exchange
rates: A time-varying copula model. Energy Economics. 2019; 77:80-92. https://doi.org/10.1016/j.
eneco.2018.07.012

JiQ, Liu BY, Nehler H, Uddin GS. Uncertainties and extreme risk spillover in the energy markets: A
time-varying copula-based CoVaR approach. Energy Economics. 2018; 76:115-126. https://doi.org/10.
1016/j.eneco0.2018.10.010

PLOS ONE | https://doi.org/10.1371/journal.pone.0315167  January 16, 2025 30/31


https://doi.org/10.1016/j.tre.2021.102490
https://doi.org/10.1007/s13563-021-00287-y
https://doi.org/10.1016/j.physa.2016.02.018
https://doi.org/10.1016/j.physa.2016.02.018
https://doi.org/10.1186/s41072-021-00096-0
https://doi.org/10.1057/mel.2014.13
https://doi.org/10.1057/mel.2014.13
https://doi.org/10.1016/j.eneco.2018.08.015
https://doi.org/10.1016/j.eneco.2018.08.015
https://doi.org/10.1016/j.ocecoaman.2021.105838
https://doi.org/10.1016/j.ocecoaman.2021.105838
https://doi.org/10.1016/j.tranpol.2022.01.018
https://doi.org/10.1016/0304-4076(86)90063-1
https://doi.org/10.1057/mel.2012.10
https://doi.org/10.1016/j.irfa.2020.101453
https://doi.org/10.4028/www.scientific.net/AMM.488-489.1494
https://doi.org/10.4028/www.scientific.net/AMM.488-489.1494
https://doi.org/10.1016/j.egyr.2023.02.025
https://doi.org/10.1016/j.tre.2019.05.013
https://doi.org/10.1016/j.enconman.2020.113016
https://doi.org/10.1016/j.enconman.2020.113016
https://doi.org/10.19272/201706703001
https://doi.org/10.19272/201706703001
https://doi.org/10.1257/aer.20120555
https://doi.org/10.1257/aer.20120555
https://doi.org/10.1016/j.tre.2020.102129
https://doi.org/10.1016/j.eneco.2018.07.012
https://doi.org/10.1016/j.eneco.2018.07.012
https://doi.org/10.1016/j.eneco.2018.10.010
https://doi.org/10.1016/j.eneco.2018.10.010
https://doi.org/10.1371/journal.pone.0315167

PLOS ONE

GARCH-Copula-CoVaR model

22,

23.

24,

25.

26.

27.

28.

29.

30.

Bildirici M. The chaotic behavior among the oil prices, expectation of investors and stock returns: TAR-
TR-GARCH Copula and TAR-TR-TGARCH Copula. Petroleum Science. 2019; 16(01):217-228.
https://doi.org/10.1007/s12182-018-0281-7

Sharma U, Karmakar M. Are gold, USD, and Bitcoin hedge or safe haven against stock? The implication
for risk management. Review of Financial Economics. 2023; 41(1):43-64. https://doi.org/10.1002/rfe.
1160

Wu RR, Qin ZF. Assessing the extreme risk spillovers to carbon markets from energy markets: evi-
dence from China. Environmental Science and Pollution Research. 2022; 30(13):37894-37911. https://
doi.org/10.1007/s11356-022-24610-4 PMID: 36576632

Meng L., Bin W. Risk spillovers and extreme risk between e-commerce and logistics markets in China.
AIMS Mathematics. 2024; 9(10): 29076—29106. https://doi.org/10.3934/math.20241411

Beenstock M, Vergottis A. An econometric model of the world market for dry cargo freight and shipping.
Applied Economics. 1989; 21(3):339-356. https://doi.org/10.1080/758522551

Norman VD, Wergelnd T. Nortank: a simulation model of the freight market for large tankers. Bergen:
Norwegian School of Economics and Business Administration. 1981.

Strandenes SP. Norship: a simulation model for bulk shipping markets. Bergen: Norwegian School of
Economics and Business Administration. 1986.

Yao C, Li M. GARCH-MIDAS-GAS-copula model for CoVaR and risk spillover in stock markets. The
North American Journal of Economics and Finance. 2023; 66: 101910. hitps://doi.org/10.1016/j.najef.
2023.101910

Tian M, Guo F, Niu R. Risk spillover analysis of China’s financial sectors based on a new GARCH cop-
ula quantile regression model. The North American Journal of Economics and Finance. 2022; 63,
101817. https://doi.org/10.1016/j.najef.2022.101817

PLOS ONE | https://doi.org/10.1371/journal.pone.0315167  January 16, 2025 31/31


https://doi.org/10.1007/s12182-018-0281-7
https://doi.org/10.1002/rfe.1160
https://doi.org/10.1002/rfe.1160
https://doi.org/10.1007/s11356-022-24610-4
https://doi.org/10.1007/s11356-022-24610-4
http://www.ncbi.nlm.nih.gov/pubmed/36576632
https://doi.org/10.3934/math.20241411
https://doi.org/10.1080/758522551
https://doi.org/10.1016/j.najef.2023.101910
https://doi.org/10.1016/j.najef.2023.101910
https://doi.org/10.1016/j.najef.2022.101817
https://doi.org/10.1371/journal.pone.0315167

