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Abstract

Class | major histocompatibility complexes (MHC-I), encoded by the highly polymor-
phic HLA-A, HLA-B, and HLA-C genes in humans, are expressed on all nucleated
cells. Both self and foreign proteins are processed to peptides of 8—10 amino acids,
loaded into MHC-I, within the endoplasmic reticulum and then presented on the cell
surface. Foreign peptides presented in this fashion activate CD8+ T cells and their
immunogenicity correlates with their affinity for the MHC-I binding groove. Thus, pre-
dicting antigen binding affinity for MHC-I is a valuable tool for identifying potentially
immunogenic antigens. While quite a few predictors for MHC-I binding exist, there
are no currently available tools that can predict antigen/MHC-I binding affinity for anti-
gens with explicitly labeled post-translational modifications or unusual/non-canonical
amino acids (NCAAs). However, such modifications are increasingly recognized as
critical mediators of peptide immunogenicity. In this work, we propose a machine
learning application that quantifies the binding affinity of epitopes containing NCAAs
to MHC-I and compares its performance with other commonly used regressors. Our
model demonstrates robust performance, with 5-fold cross-validation yielding an R?
value of 0.477 and a root-mean-square error (RMSE) of 0.735, indicating strong pre-
dictive capability for peptides with NCAAs. This work provides a valuable tool for the
computational design and optimization of peptides incorporating NCAAs, potentially
accelerating the development of novel peptide-based therapeutics with enhanced
properties and efficacy.
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Introduction

The class | major histocompatibility complex (MHC-I) enables the adaptive immune
response by presenting antigens to patrolling cytotoxic T cells [1,2]. Peptides pre-
sented by MHC-I originate in the cytoplasm and are usually length limited, having
only 8-10 amino acids. This system has evolved principally to enable rapid identifi-
cation and elimination of viral infected or malignant cells while minimizing the risk of
aberrant recognition of self-peptides and consequential autoimmunity [2]. The MHC-I
protein products are themselves encoded by the Human Leukocyte Antigen (HLA)
genes in humans; both the co-dominantly expressed subtypes (A, B, and C) and the
high degree of polymorphism observed in the peptide-binding domain of these genes
enable MHC-I to complex with a large repertoire of peptides [2,3]. Post-translational
modification of proteins and peptides (resulting in the incorporation of NCAAs)

can further broaden the immunogenic landscape of peptides presented by MHC-I.
Peptides containing various NCAAs are implicated as immunogens in a variety of
diseases [4] including rheumatoid arthritis [5], hypertension and cardiometabolic
inflammation [6], and cancer [7].

Recent advances in immunotherapy targeting cancer and autoimmune diseases,
coupled with advances in data science have incentivized the creation of com-
putational tools that predict peptides likely to bind to MHC-I and induce immune
responses [8,9]. These tools encompass a wide range of methodologies to analyze
peptide-MHC interactions. Among these are sequence-based approaches like Net-
MHCPan [10-12] and MHCflurry [13] that utilize amino acid sequences to forecast
binding affinities. Additionally, structure-based approaches such as Rosetta FlexPep-
Dock [14—16] employ three-dimensional structural data to provide a detailed under-
standing of peptide-MHC binding dynamics and conformational stability. The most
advanced and effective of these tools leverage machine learning techniques to con-
struct predictive models. These models are trained on extensive datasets comprising
antigen-MHC-I pairs and their corresponding binding affinity data. A significant portion
of these data are derived from the Immune Epitope Database (IEDB) [17], which
provides a comprehensive repository of experimentally validated immune epitopes.
These methods are thoroughly benchmarked and reviewed by Zhao et al [8].

Despite notable advances in both sequence- and structure-based epitope binding
predictors, there are currently no tools capable of rapidly predicting antigen/ MHC-I
binding affinity for antigens with post-translational modifications or NCAAs. These
modifications are increasingly recognized as critical mediators of peptide immunoge-
nicity. The main scope of this research is to develop a new model that would be able
to predict the binding affinity of epitopes containing NCAAs to MHC-I.

Machine learning models have demonstrated superior performance in predicting
binding affinity due to their ability to capture complex patterns and interactions within
the data. The development and refinement of these models involve rigorous pro-
cesses including feature generation, model training, and validation. Several popular
algorithms are widely used for property prediction in the fields of chemistry and biol-
ogy, including support vector machines (SVM), artificial neural networks (ANNSs), prin-
cipal component analysis (PCA), and partial least squares (PLS) regression [18,19].
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In this work, we develop a simple encoder capable of creating feature vectors from peptides based on chemical struc-
ture. We then systematically benchmark several different supervised machine learning models on a filtered, publicly avail-
able dataset containing peptides with NCAAs and experimentally determined binding affinities.

Methods and results

This section details the study results from three perspectives, data preparation, feature generation and model testing
and validation. The data preparation subsection will explain the source and structure of the data used, focusing on data
exploration and filtration. The feature generation subsection, the key part of this section, will introduce how peptides with
NCAAs are encoded. The model testing and validation subsection will evaluate and compare performance metrics such
as R? and RMSE across different datasets with five-fold cross-validation using various algorithms.

Data preparation

The initial dataset, a table with 100,141 rows and 29 columns, was exported from the publicly available Immune Epitope Data-

” o« ” o«

base (IEDB). Among the 29 columns, five are of particular interest for this study: “Name”, “Qualitative Measurement”, “Quanti-
tative Measurement”, “Response Measured”, and “HLA”. Table 1 lists possible or example values for these five columns. The
“Name” column shows the peptide sequence within the binding complex of interest; in the given “Name” column example in
the table, GILGFVFTV+QOTH(V9), the text between the “+” sign and parentheses indicates the modification method applied to
the peptide, and the text within the parentheses lists the amino acids modified by this method. The “HLA” column shows the
HLA gene responsible for encoding the MHC binding to the peptide. The “Qualitative Measurement” column has values rang-
ing from strong to weak, representing binding strength. The “Quantitative Measurement” column provides a numerical value
obtained from experiments, with the type of measurement explained in the “Response Measured” column.

Fig 1 demonstrates the data preparation process. Starting with the original dataset of 100,141 rows, it was confirmed
that each peptide contains at least one NCAA. Since the objective of our research is to predict quantitative binding affinity,
each row needed a non-NA value in the “Quantitative Measurement” column. Additionally, to ensure consistency of “HLA”
and “Response Measured” across the training and test datasets, the most populated “HLA” and “Response Measured”
values, which were HLA-A*02:01 and IC50 with a unit of nanomolar(nM) were selected. Finally, a dataset of 166 rows was
prepared for further analysis.

Feature generation

With the sequences of peptides and their quantitative binding values prepared, the next step was to determine how to
encode them for machine learning model building. Protein/amino acid encoding involves representing a protein or amino
acid with an n-dimensional numerical vector. According to published studies, there are multiple encoding methods, which
can be either whole sequence-based or amino acid-based [20]. In the latter approach, each amino acid is first encoded
individually, and then the combination of feature vectors from all amino acids in the protein sequence constitutes the
encoding of the entire peptide sequence.

Table 1. Table listing the five columns of most interests, example values, and the number of unique values.

Column Name Example Values Number of Unique Values
Name GILGFVFTV+0OTH(V9) 61813

Qualitative Measurement positive, negative 5

Quantitative Measurement 0.1-65,000 223

HLA HLA-A*02:01 122

Response Measured half maximal inhibitory concentration (IC50) 8

https://doi.org/10.1371/journal.pone.0314833.t001
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Fig 1. Dataset generation for model training and validation. Epitopes with experimentally determined IC50(nM) values were extracted from the IEDB
and filtered as shown to generate the dataset used to generate the model.

https://doi.org/10.1371/journal.pone.0314833.9001

Since all HLA species across the dataset used for this study are the same, only the peptides of the binding complex
need to be considered for generating the input vector for the next step’s model building. This simplifies the process and
makes it more time efficient. Given that the target peptides in this study contain at least one NCAA, which implies potential
chemical modifications at the same amino acid position, it is intuitive to use chemistry or structural encoding rather than
sequence encoding to retain residue-specific information.

The feature generation process includes four main steps, as illustrated in Fig 2. First, each peptide sequence is toke-
nized into amino acid tokens. According to summary after step 1, for all 166 rows of data, totally 20 canonical and 28
non-canonical tokens were generated. Fig 3 shows the count of unique tokens across the entire dataset, while Fig 4
illustrates the distribution of tokens at each amino acid position. Tokens with names longer than one character indicate
NCAAs. There are two types of NCAA tokens: those containing an underscore (“_") were defined by the authors of this
paper during tokenization step, while the others were derived by their resources and named uniquely, for example, “Phg”
refers to a racemic mixture of DL-phenylglycine, as described in the referenced literature [21]. The structure of each
amino acid token, particularly the NCAAs, was verified using referenced literature searched from IEDB by “Epitope IRI”,
and chemical structures were converted to SMILES [22] strings. Third, feature vectors for each token were generated
using RDKit [23] from the SMILES strings obtained in the previous step. According to RDKit, these vectors describe var-
ious physicochemical properties such as molecular weight, partial charge, and the number of specific functional groups,
resulting in a total of 208 features. Given the size of the prepared dataset, the feature vector dimension is large, and many
features are highly correlated, so principal component analysis (PCA) was applied to reduce the dimensionality from 208
to 10. The choice of 10 components was made because they cover 99.75% of the variance of the original feature vector.

At this point, a map was created with an amino acid token as the key and its corresponding feature vector of size 10 as
the value. The final step is to combine the features of all tokens obtained in the first step to generate the feature vector for
the entire peptide sequence. With each token’s vector size being 10 and the peptide length being nine or ten, the resulting
feature vector dimensions for each peptide sequence would be 90 or 100. To ensure consistency of input data for building
a machine learning model, an additional 10 zeros were appended to the feature vectors of peptides with a length of nine.

Model testing and validation

To predict binding affinity values of HLA-A0201 with peptide based on both canonical and non-canonical amino acid com-
position, a machine learning model was established. Fig 5 demonstrates the framework of the model. The model follows
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Fig 2. Process for encoding naturally occurring and non-canonical amino acids. Peptides were tokenized by individual amino acid, structures of
NCAAs manually confirmed, and SMILE strings for each structural representation generated. These SMILE strings were vectorized using RDKit followed
by feature reduction with PCA.

https://doi.org/10.1371/journal.pone.0314833.9002

a structural feature-based supervised learning architecture where each input is a feature vector with 100 dimensions rep-
resenting the structural and physicochemical properties of the peptide, and the output is the logarithm-transformed 1C50
(nM) binding affinity.

During model building, a five-fold cross-validation was applied to the dataset. Root mean square error (RMSE) and
R-square (R?) were used as evaluation metrics. To compare the training results of Partial Least Squares (PLS) with other
commonly used algorithms, an open-source tool named Lazy Predict was applied to the same dataset.

Three components were selected for building the Partial Least Squares (PLS) model because, among the range of
2—-10 components tested, using 3 components yielded the best performance in terms of cross-validated R-squared (R?)
and root mean square error (RMSE) using five-folds. The detailed results of this comparison are listed in Table 2. Fig 6
illustrates the correlation between the original binding affinity and the predicted binding affinity for both the training set and
the test set, using PLS from each individual cycle of five-fold cross-validation. The scatter plots reveal a clear correlation
between the actual and predicted values, demonstrating the model’s effectiveness despite the relatively small dataset.
This strong correlation in both training and test datasets indicates that the model generalizes well and is not overfitted.

To provide a comprehensive comparison, the same 5-fold cross validation was performed using various regressors
employed by the Lazy Predict(version 0.2.11) [24]. A total of 36 different regressors were included. Fig 7 displays the test
set R-squared from the first validation cycle for all the regressors, with algorithm names labeled for reference. Additional
figures displaying RMSE and R? across all regressors for each validation cycle are available in the GitHub repository for
further reference, the link to which is provided in the code and data section.

The test set R and RMSE results for the top three performing algorithms among these 36, along with those from PLS,
are summarized in Table 3. Performance varied by data split; the best-performing algorithm differed between validation
cycles. However, certain algorithms appeared more frequently in the top ranks. Among the 15 entries in Table 3, the
most frequent high-performing models were ExtraTrees(3 appearance), GradientBoosting (2 appearances), and
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Fig 3. Distribution of canonical and NCAA tokens for every epitope in the dataset.

https://doi.org/10.1371/journal.pone.0314833.9003

Tweedie(2 appearances). Detailed R? and RMSE values of test set for these three algorithms along with PLS across all
five validations are summarized in Table 4.

For all algorithms, model performance varied by fold — suggesting sensitivity to the specific data splits. This variabil-
ity may be caused by the relatively small size of the test sets, which can result in low variance in the target variable
(y-values). Such low variance can, in turn, lead to cases where certain validation cycles exhibit lower R? values despite
achieving lower RMSE. Additionally, with smaller datasets, R? is more susceptible to the influence of outliers, further com-
plicating the interpretation of model performance.

Discussion

Compared with other sequence-based prediction tools such as NetMHCPan [10,11], the most important improvement our
model achieves is its ability to significantly expand the coverage of amino acid species in the involved peptides. Not only
does it include the 20 canonical amino acids, but it also takes NCAAs into account without compromising structural accu-
racy. As long as the structure of an NCAA is known, applying this protocol to predict affinity is straightforward. Additionally,
to make the model even more user-friendly, we have eliminated the need for MHC involvement in the model-building
process. This means that, when compared with structure- or model-docking based approaches such as Rosetta FlexPep-
Dock [15], our model provides results much faster with minimal human intervention. This is because our method does not
require the provision and fine-tuning of large and complex protein structures, thereby accelerating the prediction process
and reducing the potential for user error.
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Fig 5. Overview of the predictive model framework.

https://doi.org/10.1371/journal.pone.0314833.g005

Despite these promising results, it is important to acknowledge that the current size of the training and test datasets
is relatively small, which may limit the model’s performance. Although the Immune Epitope Database (IEDB) contains a
substantial amount of data regarding peptide-MHC binding affinities, only a small percentage of these data includes quan-
titative binding values, and an even smaller portion pertains to peptides containing NCAAs. Collecting more data would
enhance the model’s ability to capture a broader range of patterns and interactions, thereby improving its robustness and
reliability.

Another future effort involves expanding the scope of the model to include MHCs from other species. For this study, we
used data related solely to HLA-A0201 to ensure consistency, but extending the protocol to incorporate other MHC types
would significantly widen the prediction coverage and improve the model’s reliability. By encompassing a larger variety

PLOS One | https://doi.org/10.1371/journal.pone.0314833 June 27, 2025 77111



https://doi.org/10.1371/journal.pone.0314833.g004
https://doi.org/10.1371/journal.pone.0314833.g005

PLO\S\%- One

Table 2. Performance of PLS with different components — cross-validated R? and RMSE.

Components Cross-validated R? Cross-validated RMSE
2 0.444 0.759
3 0.477 0.735
4 0.463 0.743
5 0.451 0.750
6 0.425 0.766
7 0.395 0.786
8 0.355 0.810
9 0.325 0.827
10 0.283 0.852

https://doi.org/10.1371/journal.pone.0314833.t002
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Fig 6. PLS model performance (5-fold cross validation) shown as actual vs. predicted log, (IC50). After splitting the model into 5 equal sized
training and testing data sets, the correlation between predicted and experimentally determined IC50 values was calculated. Training dataset shown in
red, testing in blue.

https://doi.org/10.1371/journal.pone.0314833.9006

of MHC alleles, we can better understand the nuances of peptide-MHC interactions across different biological contexts,
making the model more universally applicable.

An additional consideration is the potential advantage of using ensemble regressors instead of relying on a single algo-
rithm. Given the observed variability in performance across different models and validation folds, an ensemble approach
that combines predictions from multiple algorithms may yield more reliable results. By aggregating output — such as
through voting or averaging — ensemble models can help mitigate the impact of data-specific fluctuations, potentially
improving overall prediction accuracy.
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In conclusion, our model presents a notable advancement in peptide-MHC binding affinity predictions by expanding
amino acid coverage and simplifying the prediction process. Future enhancements through increased dataset size and
broader MHC coverage will further solidify its utility and accuracy, making it a powerful tool for computational immunology
and related fields.
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Table 3. Comparison of test set Rz and RMSE for top three performing models and PLS regression for each validation.

Cross-validation 1 Cross-validation 2 Cross-validation 3

Regressor R? RMSE Regressor R? RMSE Regressor R? RMSE
DecisonTree 0.6280 0.6819 GradientBoosting 0.6947 0.6812 AdaBoost 0.6658 0.5084
GradientBoosting 0.5691 0.7339 Bagging 0.6292 0.7507 ExtraTrees 0.6063 0.5518
ExtraTrees 0.5559 0.7451 BayesianRidge 0.6248 0.7552 RandomForest 0.6028 0.5542
PLS 0.5639 0.7385 PLS 0.5780 0.8010 PLS 0.5089 0.6163
Cross-validation 4 Cross-validation 5

Regressor R? RMSE Regressor R? RMSE

ExtraTrees 0.6304 0.6615 NuSVR 0.5528 0.5358

AdaBoost 0.5931 0.8666 SVR 0.5418 0.5424

Tweedie 0.5840 0.7018 Tweedie 0.4836 0.5758

PLS 0.6761 0.6093 PLS 0.2871 0.6766

https://doi.org/10.137 1/journal.pone.0314833.t003

Table 4. Comparison of test set Rz and RMSE for PLS and the top three frequently high-performing regressors across all validation cycles.

ExtraTrees GradientBoosting Tweedie PLS

R? RMSE R? RMSE R? RMSE R? RMSE
Cross-validation 1 0.5559 0.7451 0.5691 0.7340 0.4780 0.8079 0.5639 0.7385
Cross-validation 2 0.5920 0.7875 0.6915 0.6847 0.4891 0.8812 0.5780 0.8010
Cross-validation 3 0.6063 0.5518 0.5092 0.6160 0.5890 0.5638 0.5089 0.6163
Cross-validation 4 0.6304 0.6615 0.4925 0.7752 0.5841 0.7018 0.6761 0.6093
Cross-validation 5 0.3784 0.6317 0.4106 0.6152 0.4836 0.5759 0.2871 0.6766

https://doi.org/10.1371/journal.pone.0314833.t004
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