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Abstract

RNA-modifying enzymes have recently garnered considerable attention due to their rele-
vance in cancer biology, identifying them as potential targets for novel therapeutic interven-
tion. THUMPD3 was recently identified as an RNA methyltransferase catalysing N2-
methylguanosine (m?G) within certain tRNAs. In this study, we unveil a novel role for
THUMPD3 in lung cancer cells. Depletion of the enzyme from lung cancer cells significantly
impairs their fitness, negatively impacting key cellular processes such as proliferation and
migration. Notably, exogenous expression of THUMPD3 in normal lung fibroblasts stimu-
lates their proliferation rate. Additionally, transcriptome-wide analyses reveal that depletion
of THUMPD3 from lung cancer cells induces substantial changes in the expression of cell
surface proteins, including those comprising the extracellular matrix (ECM). We further
demonstrate that THUMPD3 maintains expression of an extra-domain B (EDB) containing
pro-tumour isoform of Fibronectin-1 mRNA, encoding FN1, an important ECM protein. Cru-
cially, depletion of THUMPD3 promotes an alternative splicing event that removes the EDB-
encoding exon from Fibronectin-1. This is consistent with THUMPDS3 depletion reducing cel-
lular proliferation and migration. Moreover, depletion of THUMPD3 selectively and preferen-
tially affects the alternative splicing of ECM and cell adhesion molecule encoding
transcripts, as well as those encoding neurodevelopmental proteins. Overall, these findings
highlight THUMPDS3 as an important player in regulating cancer-relevant alternative splicing
and they provide a rationale for further investigations into THUMPD3 as a candidate target
in anti-cancer therapy.

Introduction

Lung cancer stands as the foremost contributor to global cancer-related mortality [1]. Non-
small cell lung cancer (NSCLC), comprising adenocarcinoma, squamous cell carcinoma, and
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large cell carcinoma, constitutes over 80% of diagnosed lung cancer cases [2]. The challenge in
effectively addressing NSCLC lies in its often-advanced stage at diagnosis, with metastatic
lesions commonly established by the time of presentation [3]. Moreover, resistance to drugs
represents a significant factor contributing to the ineffectiveness of therapies in NSCLC, result-
ing in tumour recurrence and progression of the disease [4]. These inherent characteristics
underscore the urgency for innovative approaches in the development of effective therapies
for NSCLC.

The extracellular matrix (ECM) plays a pivotal role in regulating cell behaviour [5, 6], and
its involvement in orchestrating tumour progression is increasingly being recognised across
various cancer types [7]. Within lung cancer, the ECM encompasses a diverse array of proteins
forming a dynamic network with structural and signalling roles, subject to continual remodel-
ling [8]. Notably, in NSCLC, correlations between ECM composition and prognosis have been
identified [9]. Indeed, certain ECM proteins, such as Tenascin C, are used as prognostic mark-
ers specifically in adenocarcinoma-type NSCLC [10, 11]. These findings underscore the signif-
icance of ECM dynamics in influencing the course of lung cancer.

Chemical modification to biological macromolecules—DNA, RNA, and proteins—play
crucial roles in governing diverse cellular processes. While DNA and protein modifications
have long been the focus of extensive research, RNA modifications, originally constrained by
detection limitations, have only recently gained prominence with the advent of more sensitive
techniques [12]. To date, over 150 RNA modifications have been identified across all domains
of life [13, 14].

Three classes of proteins govern the intricate landscape of RNA modifications: ‘writers’
introduce modifications, ‘readers’ recognise these modifications, and ‘erasers’ remove them
from RNA. This orchestrated interplay holds pivotal significance in numerous cellular pro-
cesses [15]. Remarkably, many RNA-modifying enzymes are implicated in cancer, where they
influence processes such as cell proliferation, invasion, migration, and contribute to cellular
metabolism and drug resistance [16]. The significant linkage of RNA enzymes to various can-
cers has spurred focused efforts in developing inhibitors of the relevant enzymes. Notably, the
development of an inhibitor for m°A methyltransferase, METTL3, has progressed to Phase 1
clinical trials for advanced malignancies (NCT05584111).

N?-methylguanosine (m*G), identified in tRNAs and rRNAs across species, plays crucial
roles in maintaining structural integrity. In tRNAs, m*G is vital for structural fidelity, prevent-
ing aberrant conformations [17]. In rRNAs, m°G contributes to structural stabilisation, partic-
ularly at functionally significant sites [18]. Nevertheless, despite these insights, the role of m°G
in broader RNA biology remains largely unexplored. Until recently, the enzymes catalysing
m®G in higher eukaryotes were unknown. However, during the course of our study, three
human proteins—THUMPD2, THUMPD3, and TRMT11—were identified as m*G RNA
methyltransferases [19-21]. Initially, THUMPD3, together with the activator protein
TRMT112, was found to deposit m*G at position 6 of specific human cytoplasmic tRNAs, both
in vitro and in vivo [19]. Subsequently, it was demonstrated that THUMPD2 and TRMT11,
each in a complex with TRMT112, also function as m*G methyltransferases [20].
TRMT11-TRMT112 specifically catalyses the formation of m*G at position 10 of certain
tRNAs. Interestingly, while the THUMPD2-TRMT112 does not exhibit significant methyla-
tion activity towards tRNAs in vitro, it interacts with U6 snRNA and is responsible for the
methylation of the G72 nucleoside in U6 snRNA [20, 21].

In this study, we have employed a range of cellular assays to explore the role of THUMPD3,
a human m”G methyltransferase, in lung cancer cell biology, specifically NSCLC. We show
that THUMPD?3 regulates crucial aspects of lung cancer pathogenesis, including cell prolifera-
tion and migration. Moreover, whole-transcriptome analysis underlines the extensive impact
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of THUMPD3 depletion, showcasing its role in the dysregulation of multiple pathways in lung
cancer cells. Notably, THUMPD?3 depletion leads to significant effects on the levels of ECM
transcripts and their encoded proteins. Collectively, our findings highlight that THUMPD3
plays a pivotal role in lung cancer maintenance by influencing ECM expression. We provide
evidence for a novel mechanism in which THUMPD?3 affects the alternative splicing of cancer
relevant and ECM enriched mRNAs, such as Fibronectin-1 mRNA, thereby promoting a
molecular environment permissive to lung cancer progression. Overall, our work highlights
THUMPD3 as a potential therapeutic target and it begins to unravel its intricate involvement
in lung cancer biology.

Results
THUMPD?3 regulates m”G in lung cancer cells

At the outset of this work, no human m°G RNA methyltransferases had been identified. There-
fore, to expand the repertoire of human RNA methyltransferases and to explore the roles of
the enzymes and the relevant modification in human cells, we sought to identify human m*G
RNA methyltransferases.

To this end, we performed homology comparisons to known m*G RNA methyltransferases
of other species, and we identified human THUMPD2, THUMPD3 and TRMT11 as potential
m’G RNA methyltransferases (Fig 1A and 1B). This highlighted TRMT11, THUMPD2 and
THUMPD3 as prime candidates for being human m°G RNA methyltransferase. Indeed, dur-
ing the course of our study, all three human proteins were confirmed as m*G RNA methyl-
transferases [19-21]. Of these, we also identified that THUMPD3 is more highly expressed
(more than 2-fold) in lung adenocarcinoma (A549 and H1975) cells than in normal IMR-90
lung fibroblasts (Fig 1C). Given this elevated expression, we decided to further explore
THUMPD3 in lung tumourigenesis.

In initial analyses, siRNA and shRNA approaches were employed to deplete THUMPD3
from human lung adenocarcinoma cells (A549). The use of two distinct methods to target
THUMPD3 minimised the risk of following off-target effects. As previous studies had impli-
cated THUMPD?3 in the methylation of tRNA species [19, 20], we first confirmed that the
depletion of THUMPD?3 from A549 cells reduced m*G in tRNAs. We therefore performed
RNA MS analysis on tRNA isolated from control and THUMPD?3 depleted A549 cells. As
expected, the results confirmed a significant decrease of m?G in the small (<200 nucleotides)
RNA fraction following either siRNA or shRNA mediated THUMPD3 depletion (Fig 1D and
1E). Collectively, these findings indicate that THUMPD?3 expression is elevated in lung cancer
cells where it functions as an m>G tRNA methyltransferase.

THUMPD3 impairs cell proliferation and migration of lung cancer cells

To determine whether THUMPD?3 is required for lung cancer cell growth, we adopted an
siRNA approach to deplete the protein from two NSCLC cell lines, A549 and H1975. Live-cell
imagining confirmed that depletion of the enzyme from either lung adenocarcinoma cell line
hindered their proliferation (Fig 2A and 2B). In addition, THUMPD3 depletion from A549
cells via an independent shRNA approach also had a negative effect on cell proliferation (SIA-
S1C Fig). Crucially, the growth defect was completely rescued by exogenous expression of
non-targetable THUMPD3 (Fig 2C). Importantly though, depletion of THUMPD?3 from nor-
mal, non-transformed lung fibroblasts did not significantly influence their proliferation rate
(S1D Fig), suggesting a cancer cell specific dependence of THUMPD3.

To further investigate the role of THUMPD?3 in lung cancer, the colony formation capacity
of A549 and H1975 cells was assessed. THUMPD3 depletion from either lung cancer cell line
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Fig 1. THUMPD3 is an m°G methyltransferase with a potential role in lung cancer. (A) Alignment of THUMPD2, THUMPD3, and TRMT11 to the
known m*G methyltransferases like yeast Trm11p and bacterial TrmN. The predicted m*G active site and the SAM binding site are highlighted. The
red colour signifies the conservation of specific amino acids across all species. (B) Diagram illustrating the percentage sequence similarity between the
five m°G methyltransferases, as indicated. (C) Western blotting analysis of THUMPD3 levels in IMR-90 (normal lung fibroblasts), H1975 and A549
cells (lung adenocarcinoma) (top panel; left). The membrane was re-probed with an anti-GAPDH antibody as a loading control (bottom panel; left).
The asterisk indicates a cross-reaction band. Quantification of THUMPD?3 signal intensities normalised to GAPDH (graph; right). (D) MS analysis of
RNA modifications in A549 cells following siRNA and shRNA mediated THUMPD?3 depletion. For siRNA (left panel), cells were collected 5 days post
transfection. For shRNA (right graph), cells were collected 8 days post induction of the shRNA. m*G abundance was measured using RNA MS. Each
modification is presented as a percentage of ACGU. Statistical analysis was performed using One-Way ANOVA corrected for multiple comparisons
using the Bonferroni method (Alpha: 0.05); ns—P > 0.05, *—P < 0.05, **—P < 0.01, ***—P < 0.001, ****—P < 0.0001. Error bars represent the

mean * standard deviation (SD) of 6 independent replicates. (E) Western blotting analysis upon THUMPD3 knockdown described in D. Anti-GAPDH
antibody was used as a loading control.

https://doi.org/10.1371/journal.pone.0314655.9001
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Fig 2. THUMPD3 depletion has negative impacts on lung cancer progression. (A, B) Live-cell imaging analysis of cell proliferation in A549 and
H1975 cells upon THUMPD3 depletion via two independent siRNAs, as indicated. Data are represented as the mean of duplicates + SD. Western
blotting was performed upon completion of live-cell imaging and confirmed THUMPD?3 depletion upon siRNA treatment (inset in graph). GAPDH or
vinculin were used as a loading control, as indicated. (C) Rescue of proliferation defect in H1975 cells induced by THUMPD?3 depletion by expression
of exogenous THUMPD?3 (pD3.3) but not by the empty vector control (pEV). Data are represented as the mean of duplicates + SD. Western blotting
(inset in graph) shows THUMPD3 levels following live-cell imaging. GAPDH was used as a loading control; endogTHUMPD3 and exog THUMPD3—
endogenous and exogenous THUMPD?3, respectively. (D) Colony formation assay in A549 and H1975 cells upon THUMPD3 depletion using indicated
siRNAs. Crystal violet staining was performed 2 weeks after colony formation. (E, F) Wound healing assay in A549 and H1975 cells upon THUMPD3
depletion with siRNAs as indicated. Wound closure (as a percentage of cell-free area) was determined; this reflects the width of the wound region
(scratch) at a given time relative to the width at time zero when the scratch was created. (G) Transwell assay in A549 and H1975 cells upon THUMPD3
depletion using the indicated siRNAs.

https://doi.org/10.1371/journal.pone.0314655.9002
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impaired their colony formation (Fig 2D and S1E Fig). In addition, we discovered that overex-
pression of THUMPD3 not only enhanced lung cancer cell proliferation, but it also stimulated
the proliferation rate of normal lung fibroblasts (S1F and S1G Fig). This highlights a potential
oncogenic role for THUMPD3 in human lung cells.

We next investigated whether depletion of THUMPD3 impacts the metastatic potential of
lung adenocarcinoma cells, a crucial hallmark of cancer [22]. For these and the following
experiments we predominantly used an siRNA approach to streamline experiment numbers,
but importantly all of our previous analyses indicated no obvious differences between siRNA
or shRNA mediated THUMPD?3 depletion. The effects of THUMPD3 depletion on cell migra-
tion were firstly evaluated using wound healing (scratch) assays. Wound healing was moni-
tored for 24 hours, using light microscopy, after a scratch was introduced. Notably, decreased
wound healing capacity was evident in THUMPD?3 depleted cells compared to control cells, as
early as 8 hours after scratch initiation (Fig 2E and 2F). This effect was recapitulated in cells
where shRNA targeting of THUMPD3 was used (S1H Fig). To further investigate the effect of
THUMPD?3 depletion upon cell migration, a standard Transwell assay was conducted. Cells
with siRNA mediated depletion of THUMPD3 displayed reduced migration compared to cells
transfected with control siRNA (Fig 2G). Overall, these data support a role for THUMPD3 in
lung cancer cell migration.

To further investigate whether the cell proliferation defect following THUMPD3 depletion
is associated with apoptosis, we examined apoptotic cell death mediated by caspases. Caspases
execute apoptosis by cleaving several essential proteins crucial for cellular function and sur-
vival, with PARP-1 being one of the most well-known caspase substrates. Caspase-mediated
cleavage of PARP-1 is widely recognized as a hallmark of apoptosis [23]. To assess apoptosis
following THUMPD3 depletion, we utilised an antibody that specifically detects the 24 kDa
fragment of cleaved PARP-1. This indicated elevated levels of cleaved PARP-1 72 hours post-
knockdown of THUMPD3, suggesting that THUMPD3 depletion induces apoptosis in (S11I

Fig).

THUMPD3 depletion induces significant transcriptome-wide changes in
A549 cells

The above experiments demonstrate that depletion of THUMPD3 hampers the proliferation
and migration of lung adenocarcinoma cells. However, the underlining mechanisms of these
changes remain unknown. To gain deeper insights into pathways responsible for these
observed phenotypes, we conducted a whole-transcriptome analysis on A549 cells using RNA-
sequencing (RNA-seq) technology. THUMPD3 was depleted using two different approaches:
siRNA and shRNA, with cells harvested 5- and 6-days post treatment initiation, respectively.

PCA analysis of RNA-seq data indicated strong sample and data quality, as evidenced by
the clear distinction between untreated and treated samples, while untreated samples them-
selves showed no significant variation (S2A Fig). Additionally, replicates of the same experi-
mental condition clustered closely together, further confirming the consistency and reliability
of the data.

Differential expression analysis identified a total of 284 transcripts that exhibited significant
upregulation in both targeting approaches, while 189 gene transcripts were significantly down-
regulated in both approaches (Fig 3A, S2E-S2G Fig and S1 Table). Reassuringly, THUMPD3
was one of the most downregulated transcripts, confirming efficient mRNA targeting and
depletion.

We then conducted Reactome enrichment analysis to gain insights into biological processes
influenced by THUMPD3 depletion (Fig 3B, S2B and S2C Fig). One of the most upregulated
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from red (significant) to blue (less significant). Virus infection related pathways were removed for the simplification. (C) Validation of changes in
abundance of specific upregulated transcripts in A549 cells upon THUMPD3 depletion induced by siRNAs, as indicated. Cells were collected 5 days
post transfection. Transcript levels were measured and validated by qPCR analysis. The graph depicts relative enrichment normalised to GAPDH levels
of upregulated transcripts, as indicated. Statistical analysis was performed using One-Way ANOVA corrected for multiple comparisons using the
Bonferroni method (Alpha: 0.05); ns—P > 0.05, *—P < 0.05, **—P < 0.01, ***—P < 0.001, ****—P < 0.0001. Error bars represent the mean + SD of 3
independent replicates. (D) Western blotting depicts reduced ECM protein levels induced by siRNA mediated THUMPD?3 depletion (5 days post
siRNA transfection). Anti-Fibronectin-1 and anti-Tenascin C antibodies were used, as indicated. Membranes were re-probed with anti-THUMPD3
antibodies. GAPDH and vinculin levels were used as loading controls, as indicated. The asterisk indicates a cross-reaction band.

https://doi.org/10.1371/journal.pone.0314655.9g003
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pathways was associated with extracellular matrix (ECM) organisation. Amongst downregu-
lated pathways, key processes such as cell cycle regulation were identified. Overall, these find-
ings establish an important role for THUMPD3 in various biological pathways likely critical
for the efficient propagation and survival of lung cancer cells.

Real-time quantitative polymerase chain reaction (QPCR) validation of four transcripts
encoding ECM proteins (Fibrillin-1, Fibronectin-1, Tenascin C and Laminin B3) confirmed
they were significantly upregulated upon depletion of THUMPD3 (Fig 3C). Surprisingly
though, when we assessed the levels of the 3 ECM proteins encoded by the upregulated tran-
scripts, we found that they were significantly reduced following THUMPD3 depletion (Fig 3D
and S2D Fig). This suggests that despite elevated ECM transcript levels in THUMPD3 depleted
lung cancer cells, either their translation or the stability of the relevant encoded proteins was
impaired. Additionally, it is well established that cells tend to downregulate their ECM pro-
teins upon loosing cancerous properties [24], as they do with THUMPD3. An intriguing ques-
tion remains as to whether the observed reduction in ECM protein levels is a direct or indirect
consequence of THUMPD?3 depletion. Ultimately though, the changes we see in ECM proteins
following THUMPD?3 depletion likely underpin, at least in part, the impaired cellular migra-
tion phenotype in THUMPD?3 depleted lung cancer cells.

THUMPD3 depletion affects alternative splicing

Given the recently identified link between THUMPD2 and RNA splicing [20, 21], we explored
whether THUMPD?3 was also involved in this process. While RNA-seq can be used to evaluate
overall steady-state transcript levels, the resulting data can also be interrogated for changes in
the relative abundance of gene isoforms, with alternative splicing (AS) being one main cause.
Using stringent criteria, we evaluated our dataset for potential AS events induced by
THUMPD3 depletion. In total, we identified 137 alternatively spliced events (S2 Table). In
terms of AS event classification, intron retention emerged as the most prevalent (40%), fol-
lowed by alternative exon usage (25%; Fig 4A). We generated volcano plots for the primary AS
event types: alternative exon usage, intron retention, alternative 3’ and 5’ splice sites (Fig 4B
and S3A-S3C Fig). Despite intron retention being the predominant alternative splicing event
type detected, a review of the literature revealed no clear connection between the identified tar-
gets and THUMPD3. Additionally, we found no obvious links between these transcripts and
the phenotypic changes observed in lung cancer cells following THUMPD3 depletion. In con-
trast, however, transcripts exhibiting alternative exon usage events were enriched in mRNAs
associated with ECM and cell adhesion molecules (CAMs; S3D Fig, Table 1). In addition, sub-
stantial number of identified targets had some links to neurodevelopment (Table 2).

Interestingly, one of the most statistically significant alternative exon usage events upon
THUMPD3 depletion occurred within FNI mRNA (encoding Fibronectin-1), one of the upre-
gulated ECM-related transcripts (Fig 4A and S1 Table). THUMPD?3 depletion induced a
highly selective decrease in usage of exon 25 within FN1I (Fig 4C). Strikingly, exon 25 encodes
a unique domain known as extra domain B (Fig 4D), which is associated with cancer-related
functions [25, 26]. Importantly, qPCR analysis confirmed that THUMPD3 depletion results in
exon 25 loss (Fig 4E).

Discussion

Employing a diverse and orthogonal set of techniques, we show that targeted depletion of
THUMPD?3 from lung cancer cells impairs their growth. Depletion of the RNA methyltrans-
ferase affects expression of ECM proteins and critical cellular processes, including cell cycle
regulation. Notably, we discovered that the expression and alternative splicing of one specific
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Fig 4. THUMPD3 depletion results in changes in alternative splicing of Fibronectin-1 transcript. (A) Overview of differential splicing analysis. In
total 137 (102 unique) transcripts were identified. The bar chart represents the distribution of main AS events with an increased probability threshold of
0.95; Alt—alternative. (B) Volcano plot of differential splicing events: Alternative exon usage. The fold change of dPSI is plotted on the x-axis against
-log10 of non-changing probability plotted on the y-axis. Each point represents a single transcript. (C) UCSC genome browser snapshot highlighting a
reduction in usage of exon 25 (red box) in FNI (Fibronectin-1) upon THUMPD3 depletion in comparison to control cell RNA. (D) A cartoon structure
of FNI gene and Fibronectin-1 protein (created in Biorender). (E) qPCR validation of exon 25 exclusion upon THUMPD3 depletion. For siRNA, cells
were collected 5 days post transfection. For shRNA, cells were collected 8 days post doxycycline induction. Transcripts changes were measured by qPCR
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analysis. The graph depicts relative enrichment normalised to GAPDH levels and overall levels of FNI (primers designed to region outside of exon 25).
Statistical analysis was performed using unpaired multiple t test corrected for the comparisons using the Bonferroni-Dunn method (Alpha: 0.05); ns—
P > 0.05, *—P < 0.05, **—P < 0.01, ***—P < 0.001, ****—P < 0.0001. Error bars represent the mean + SD of 3 independent replicates. A schematic
illustrates annealing sites of primers with respect to exon 25 (bottom).

https://doi.org/10.1371/journal.pone.0314655.9004

RNA encoding Fibronectin-1, an ECM protein, was significantly affected, and this correlated
with changes in levels of Fibronectin-1.

Alternative splicing serves as a highly effective mechanism for regulating genomic diversity.
It is also one of the most dysregulated pathways in cancer [49]. Notably, AS of ECM proteins
plays a crucial role in stromal activation and disease progression [50]. Our findings identify a
shift in FN1 isoform expression upon THUMPD?3 depletion that favours production of an FNI
variant lacking the pro-angiogenic Extra Domain B (EDB), which has been previously associ-
ated with cancer progression [24, 25, 51]. This is an intriguing finding, and suggests that
THUMPD?3 contributes to cancer progression, at least in part, by maintaining inclusion of a
cancer promoting exon in FNI.

The ability of tumour cells to metastasise is one of the hallmarks of cancer [22]. THUMPD3
depletion from lung cancer cells significantly impaired their migration capabilities. The ECM
plays a pivotal role in regulation of this process [52], therefore changes such as the one we
identified in FNI AS may help explain THUMPD3’s involvement. Furthermore, our finding
that a third of transcripts identified as being subject to alternative exon usage following
THUMPD?3 depletion are strongly associated with ECM or CAMs, suggests a specific and pref-
erential involvement of THUMPD3 in regulating the AS of critical migration associated pro-
teins. Interestingly, a significant and overlapping proportion of transcripts with alternatively
spliced exons also show links to neurodevelopment. Previous research has indicated that the
THUMPD3 gene is located in the 3p25.3 region, and interstitial deletions in this region lead to
the 3p-syndrome, causing intellectual disability in patients [53]. However, more work is
needed here to further explore these intriguing connections.

Notably, numerous mRNAs encoding ECM proteins, including Fibronectin-1, are signifi-
cantly upregulated by depletion of THUMPD3. However, there is a dichotomy between
changes in mRNA levels versus changes in protein levels; for all ECM factors analysed, their

Table 1. THUMPD3 regulates alternative splicing of ECM and CAM:s transcripts.

Gene ID Name Functional group Citations®
FNI* Fibronectin-1 ECM and CAMs [27, 28]
VCAN Versican ECM and CAMs [29]
CDH24* Cadherin-24 ECM and CAMs [30, 31]
ITGA6 Integrin alpha-6 ECM and CAMs [32]
AFDN Afadin ECM and CAMs [33]
LINC00265 LINC00265 Regulators of ECM and CAMs [34]
LINC00963 LINC00963 Regulators of ECM and CAMs [35]
MYOI8A Myosin XVIIIA Regulators of ECM and CAMs [36]
PHACTR4* Phosphatase and actin regulator 4 Regulators of ECM and CAMs [37]
FNIP1 Folliculin-interacting protein 1 Potential links to ECM and CAMs [38]
IKBKG Inhibitor of nuclear factor kappa-B kinase subunit gamma Potential links to ECM and CAMs [39]

ECM, extra cellular matrix; CAM, cell adhesion molecule.
*Also exhibit links to neurodevelopment.

* Citations are illustrative and not exhaustive.

https://doi.org/10.1371/journal.pone.0314655.t001
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Table 2. THUMPD?3 regulates alternative splicing of neurodevelopmental transcripts.

Gene ID Name Citations®
ANKSIA Ankyrin repeat and sterile alpha motif domain containing 1A [40]
ANKRD36 | Ankyrin Repeat Domain 3 [41]
CIT Citron Rho-interacting kinase [42]
NBEA Neurobeachin [43]
SMN2 Survival motor neuron 1 [44]
SNX14 Sorting Nexin 14 [45]
TANGO2 Transport and Golgi organisation 2 [46]
TUSC3 Tumour suppressor candidate 3 [47]

YWHAZ Tyrosine 3-Monooxygenase/ Tryptophan 5-Monooxygenase Activation Protein Zeta [48]

List of genes that have demonstrated links to neurodevelopment.

? Citations are illustrative and not exhaustive.

https://doi.org/10.1371/journal.pone.0314655.t002

mRNAs increased in abundance whereas their protein levels decreased. One possible explana-
tion for the observed reduction in protein levels following THUMPD?3 depletion is that loss of
the tRNA methyltransferase leads to the inhibition of global translation. However, previous
reports present conflicting findings in this area. For instance, Yang et al. reported that while
THUMPD3 depletion did affect polysome numbers, the impact was quite subtle [19]. Addi-
tionally, Wang et al. did not observe a significant reduction in polysome formation [20]. Nev-
ertheless, they did find that THUMPD?3 depletion led to an accumulation of monosomes and
slight reduction in protein synthesis [20]. Clearly, further research is required to fully under-
stand the role of THUMPD?3 in the suppression of global translation. In any case, our loading
controls will have controlled for a global downregulation of translation. The fact that we see
significant downregulation of ECM proteins even after loading control correction, signifies a
robust downregulation of their protein levels beyond the reduced levels expected from just
suppression of global translation. Thus, the elevated levels of ECM and CAMs transcripts pos-
sibly stem from compensatory mechanisms attempting to overcome the reduced global
translation.

The effects described above result from depletion of THUMPD?3 from cells. This conse-
quently leads to a marked reduction of m*G in RNA. However, it remains uncertain whether
the effects we observed are solely attributable to THUMPD3’s role as an m°G methyltransfer-
ase or whether THUMPD3 possesses additional functions beyond its methyltransferase activ-
ity. This will be important to address in the future. Moreover, our findings raise a significant
question concerning how THUMPD3 promotes one specific RNA splicing isoform over
another. It is known that the related RNA methyltransferase THUMPD2 methylates U-
snRNAs [20, 21], which are involved in splicing [54]. It is possible that THUMPD3 somehow
interacts with the THUMPD?2 enzyme to modulate this process. Alternatively, but not mutu-
ally exclusively, THUMPD3 might directly methylate one or more U-snRNAs, thereby regulat-
ing their function, or it could potentially methylate mRNAs themselves, influencing splicing.
In addition, our RNA-seq data indicate that some U-snRNAs are downregulated following
THUMPD3 depletion. However, the exact mechanism by which THUMPD?3 could be
involved in alternative splicing remains unclear. Regardless of which scenario is at play in lung
cancer cells, gaining a detailed mechanistic understanding will necessitate the development of
more sensitive technologies to detect m°G in RNAs than those currently available.

An additional aspect worth considering is a potential role played by THUMPD3-AS1, a
long IncRNA that partially overlaps with the THUMPD3 gene. Intriguingly, previous research
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highlighted the involvement of THUMPD3-AS1 in lung cancer cell proliferation [55]. Investi-
gating the potential interplay between THUMPD3 and THUMPD3-AS1 could yield significant
insights. Notably, existing studies characterising the role of THUMPD3-ASI in cancer have
not examined the consequential effects (if any) on THUMPD3 levels following THUMP-
D3-AS1 depletion. It is conceivable that the observed impairment in proliferation upon
THUMPD3-AS]1 depletion could be attributable to alterations in THUMPD3 protein levels or
vice versa. Additionally, the possibility of further interactions, such as THUMPD3-dependent
methylation of THUMPD3-AS1, could be investigated.

Here, we have uncovered a pivotal role for THUMPD?3 in promoting lung cancer cell prolif-
eration and migration. We find that the enzyme plays a crucial role in the regulation of the
ECM, including the AS of Fibronectin-1, favouring a pro-metastatic isoform. We posit that
THUMPD3 contributes, at least in part, to the maintenance of lung cancer via these mecha-
nisms. Furthermore, our experiments also revealed that overexpression of THUMPD3
increases proliferation of both lung cancer cells and normal lung fibroblasts. These findings
indicate that THUMPD3 may function as a novel oncogene contributing to the development
of lung cancer. This observation is consistent with the activity of other RNA methyltrans-
ferases, such as METTL3, which promotes various cancer types, including AML, glioblastoma,
and colorectal cancer [56]. Importantly, we also found that depletion of THUMPD3 from nor-
mal, non-transformed human lung fibroblasts did not significantly influence their prolifera-
tion rate. This highlights a specific and significant role for THUMPD3 in the context of lung
cancer cell growth and provides support and rationale for the initiation of a THUMPD3 drug
discovery programme.

Materials and methods
Cell culture

Cell culture was carried out under sterile conditions in a standard laminar flow hood. Human
cell lines were maintained in filter top flasks or culture dishes and cultured in respective
growth media. 293T, A549 and IMR-90 cell lines were grown in DMEM supplemented with 1
x penicillin-streptomycin (pen-strep) antibiotics and 10% [v/v] foetal bovine serum (FBS).
H1975 cells were grown in RPMI media supplemented with 1x pen-strep antibiotics and 10%
[v/v] EBS. Cells were grown at 37°C, 5% [v/v] CO, and were maintained at ~ 80% viability.
Cells were passaged every 3-5 days and seeded at 1 x 10” live cells per ml. Cells were passaged
using conventional cell culture techniques. The maximum number of passages was 20 before a
new vial of cells was revived. Tests for mycoplasma contamination were carried out every
month or when a new vial of cells was revived.

Transient transfection with siRNA

ON-TARGETplus (Dharmacon) or FlexiTube (Qiagen) siRNAs were used for the knockdown
experiments according to the manufacturer’s instructions. 0.5-3 x 10° cells per well were used
for transfections in 6-well plates. siRNA sequences are listed in S3 Table.

Transfection with plasmids for protein overexpression

1 x 10° cells per well were plated into 6-well plates. Cells were allowed to settle and attach over-
night. Next morning, transfection was carried out using Lipofectamine™ 3000 Transfection
Reagent (Thermo Fisher, L3000001) according to the manufacturer’s instructions.
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Lentiviral production and infection

The ‘all-in-one’ pLKO-Tet-On system was used to generate inducible siRNA mediated
THUMPD3 knockdowns [57, 58]. 293T cells were seeded onto L-polylysine (1 pug/ml) coated
10 cm dishes 24 hours prior to transfection in antibiotic-free DMEM media with 10% [v/v]
FBS. Cells were 80% confluent on the day of transfection. To produce lentiviral particles, cells
were transfected using 42 ul FuGENE® 4K Transfection Reagent (Promega, E5911) with 6 ug
of | pLKO-Tet-On constructs together with 3.5 ug psPAX2 (Addgene, 12260) and 4 ug
pCMV-VSV-G (Addgene, 8454). 16 hours later, the media was exchanged for fresh media. 48
hours post-infection, virus particles were harvested and sterile filtered using 0.45 ym syringe
filters (Millipore). Aliquots of lentiviral supernatants were stored at -70°C. Target cells (A549)
were then transduced with the virus with polybrene (8 yg/ml) to increase the efficiency of
transduction. 48 hours after infection transduced cells were selected for by treatment with
puromycin (1 yg/ml). To induce expression of shRNAs, 10-100 ng/ml doxycycline was added
to the media and the cells were incubated for 4-8 days to allow adequate expression of the
shRNA. Target sequences of sStRNA are listed in S3 Table.

Cell proliferation assays using Incucyte®™ $3 live-cell imaging

0.5-2 x 10° cells per well (A549, H1975 or IMR-90) were seeded in 6-well dishes and reverse
transfected with 2.5 nM of control (siscr) and THUMPD3 (siD3 #3, 9) siRNAs. Next day the
media was changed, and plates were placed into an Incucyte™ machine for live-cell imaging.
The confluence of cells at time point zero was maintained at ~ 20% to allow a proper curve to
be formed. The algorithm is based on measuring cell proliferation using live-cell time-lapse
imaging without labels using Classic Confluence Analysis.

Development of stable cell lines

Stable cell lines were developed as described by Ebrahimi et al., 2015 [59]. Essentially, the
pCMV6-Entry (pEV) and pCMV6-THUMPD3 (pD3.3) (S3 Table) were linearised using BglII
enzyme (NEB, R0144S) according to the manufacturer’s instructions. Following electrophore-
sis of the resulting digestion product in a 1% [w/v] agarose gel, the linear plasmid was purified
using standard QIAquick Gel Extraction Kit (Qiagen, 28706X4). H1975 cells were transfected
with 1 pg of the purified linearised vector as described above. Next day culture medium was
refreshed. 48 hours post transfection, the cells were treated with 400 pg/ml of G418 antibiotic
to select for transfected cells. Once control cells without plasmid died, the concentration of
G418 was reduced to 175 pg/ml. Successful overexpression of THUMPD3 in the relevant stable
cell lines was confirmed by Western blotting with anti-THUMPD3 antibody. Cell lines with
equivalent expression of endogenous and exogenous THUMPD?3 were selected for further
analyses, such as rescue experiments.

THUMPD3 rescue experiment

H1975 cells stably harbouring control (pEV) or THUMPD?3 (pD3.3) expression vectors were
used. 3 x 10* cells per well were seeded into a 12-well plate and reverse transfected with 2.5 nM
of control (siscr) and THUMPD?3 (siD3 #9) siRNAs. 24 hours later the media was exchanged,
and the plate was placed into the Incucyte™ instrument to follow cell growth.

Crystal violet staining

0.5 ml/well for 12-well or 1 ml/well for 6-well dish of Crystal violet (CV) solution (0.05% [w/v]
Crystal violet, 20% [v/v] ethanol) were added to fix and stain cells. Cells were incubated in the
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solution for 5 minutes on a shaker (slow shake). Plates were washed by submerging in a 1 litre
beaker with H,O, allowed to dry overnight and imaged on an Epson Perfection V800 Photo
scanner.

Colony formation assay

A549 (1000 cells/well) and H1975 (2000 cells/well) were seeded into 6-well plates in a total vol-
ume of 2 ml per well. Colonies were allowed to form over 10-14 days. Colonies were then
fixed and stained with CV and imaged using an Epson Perfection V800 Photo scanner.

Wound healing assay

A549 or H1975 cells were reverse transfected with 2.5 nM of control (siscr) and THUMPD3
(siD3 #3, 9) siRNAs. 72 hour later 2 x 10* cells were seeded into ibidi chambers (Culture-
Inserts, 2 wells/chambers; ibiTreat, 80206) and allowed to form a monolayer. 24 hours later
the Culture-Inserts were removed (’scratch’ was introduced). The chamber was filled with 1 ml
of medium. To ensure that images were taken at the same field, a line was drawn perpendicular
to the scratch at the bottom of the imaged field. Each image was then taken at the same spot.
Pictures were taken at 0-24 hours post scratch using a Leica EC3 digital camera. Images were
analysed using Image J software. The area of the wound was measured using the Image ]
plugin—MRI wound healing [60].

Transwell migration assay

Transwell ™ inserts (8 um; Corning™, 354480/1) were used to assess the migration capacity of

cells upon THUMPD?3 depletion. 2 x 10° cells (A549 or H1975) were reverse transfected with
2.5 nM of control (siscr) and THUMPD?3 (siD3 #3, 9) siRNAs. After 72 hours, cells were
serum starved for 24 hours. The following day, 800 ul DMEM 10% [v/v] FBS were added to the
bottom of the empty well (12-well plate). Transwell™ chambers were then added to the wells
with sterile tweezers, ensuring no bubbles were introduced. The cells were washed, detached
with 1x trypsin-EDTA or cell dissociation buffer enzyme-free PBS-based (Gibco, 13151-014)
and neutralised in DMEM 2% [v/v] FBS. The cells were counted and prepared at a concentra-
tion of 1 x 10° cells per ml in serum-free media. 300 ml of cell suspension (3 x 10* cells) was
added to each Transwell™ chamber. The plates were then incubated overnight at 37°C. 24
hours post-seeding, the Transwells™ were removed and washed by submerging in 1x PBS. The
migrated cells were then fixed and stained using CV, and imaged on an Epson Perfection
V800 Photo scanner.

Immunoblotting

Protein samples were harvested in RIPA buffer (25 mM Tris-HCI pH 7.6, 150 mM NaCl, 1%
[v/v] NP-40, 1% [w/v] sodium deoxycholate, 0.1% [w/v] SDS) supplemented with protease
and phosphatase inhibitor tablets, followed by sonication in Bioruptor Pico, Diagenode. Lysate
was cleared by centrifugation at 12,000 x g and quantified using a DC Protein Assay Kit
(BIO-RAD). Samples were run on SurePAGE™ precast polyacrylamide gels and transferred to
nitrocellulose membrane. Membranes were blocked in 5% [w/v] BSA (or powdered milk) in
1x TBS, 0.1% [v/v] Tween20 (TBS-T) and then incubated at 4°C with primary antibodies.
Bound antibody was detected with ECL solution following the manufacturer’s instructions
(Promega, W1015). The membrane was imaged via a Chemidoc™ imaging system (BioRad).
Antibodies and reagents listed in S3 Table.
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RT-qPCR

RNeasy Mini Kit (QIAGEN, 74104) was used for RNA extraction. An additional step of DNase
digestion was incorporated after the first wash following the RNase-Free DNase Set protocol
(QIAGEN, 79254). To prepare cDNA, RNA was reverse transcribed using the SuperScript™ III
Reverse Transcriptase (Invitrogen™, 8080044). qPCR analysis was performed using a StepOne-
Plus™ Real-Time PCR System (Applied Biosystems™, Thermo Fisher, 4376357) with Power
SYBR Green Master Mix Kit (Applied Biosystems™, Thermo Fisher, A25741). Primers listed in
S3 Table.

Purification of small and large RNA fractions

RNA Clean & Concentrator kits (ZYMO RESEARCH, R1013 or R1017) were used to separate
small (< 200nt) RNA fraction, following the manufacturer’s instructions. RNA concentration
was determined using a Qubit™ RNA HS Assay Kit (Thermo Fisher, Q32855).

Mass spectrometry analysis of RNA nucleoside m’G

Nucleosides were prepared from enzyme-processed RNA by enzymatic digestion, using a
cocktail of Benzonase (Merck), Phosphodiesterase 1 (Merck), and Antarctic Phosphatase
(New England Biolabs) as described previously [61]. The reactions were filtered using an Ami-
con 30kDa MWCO spin-column (Merck) to remove protein and the filtrate was mixed with a
2 x loading buffer containing 0.1% formic acid and an internal standard (13C-labeled uridine
generated from 645672-1MG Merck KGaA, previously treated with Antarctic Phosphatase).
The samples were loaded onto an ACQUITY UPLC HSS T3 Column, 100 A, 1.8 ym, 1 mm X
100 mm (Waters Corp., Milford, MA, USA) and resolved using a gradient of 2%-10% acetoni-
trile in 0.1% formic acid over 10 min. MS analysis was performed in positive ion mode on an
Orbitrap QExactive HF (Thermo Fisher, Waltham, MA, USA) mass spectrometer. Standard
dilutions of all experimental nucleosides were prepared and analysed in parallel. There were
three technical replicates of each sample and the analytical processing was performed using
XCalibur Software (Thermo Fisher).

RNA-sequencing

Whole transcriptome analysis was performed using RNA-sequencing (RNA-seq) technology.
Total RNA, depleted of rRNA, was used as an input material for RNA-seq. rRNA was removed
using Ribo-Zero™ rRNA Removal Kit (Illumina) following the reference guide. RNA Clean &
Concentrator-5 kit (ZYMO RESEARCH, R1013) was used to clean up the rRNA depleted
RNA sample. RNA was eluted in 15 pl nuclease-free water. The efficiency of rRNA removal
was assessed using an RNA Screen Tape (Agilent, 5067-5576) analysed on a 4200 TapeStation
System (Agilent, G2991BA). 13 ul of rRNA depleted RNA sample were used for the prepara-
tion of the RNA-seq library. The NEXTFLEX™ Rapid Directional RNA- Seq Kit 2.0 protocol

was followed to perform all the remaining steps for library construction steps.

RNA-seq data analysis

Reads were aligned to the human reference genome (GRCh38.p14) using STAR (v2.7.10a),
with —quantMode GeneCounts to quantify gene counts with the annotation source NCBI
RefSeq reference transcriptome GTF file [62]. Processing steps including gene filtering, nor-
malisation and subsequent differential gene expression analysis were performed using the
DESeq2 (v1.38.3) package in R (v4.2.0) [63].
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In the DESeq2 workflow, two experimental variables were considered for the experimental
design. The first variable was “Type,” representing the type of gene knockdown (shD3 #1, shD3
#4, siD3 #3). The second variable was ‘Condition,” representing untreated versus treated sam-
ples. Three biological replicates were used for each condition. Differential analyses were per-
formed on all types of knockdowns using the formula: ~ Condition + Type + Condition:
Type. Additionally, analyses were conducted on each knockdown type individually using the
formula: ~ Condition, where treated samples were compared to untreated samples (reference
level). Adjusted p-values were calculated using the Benjamini-Hochberg method as imple-
mented in DESeq2 [64]. Fold changes were shrunk using the ashr and apeglm methods as
implemented in DESeq2 [65, 66].

Functional enrichment analyses, encompassing Gene Ontology (GO), Reactome and
KEGG pathway analyses, were conducted using the clusterProfiler package (v4.7.1.3) in R [67].
The list of significantly differentially expressed genes from DESeq2 was used for these
analyses.

Differential splicing data analysis

Alternative splicing (AS) events between untreated and treated shD3 #1 samples, representing
conditions without and with THUMPD?3 depletion, respectively, were identified from aligned
reads using MAJIQ (Modelling Alternative Junction Inclusion Quantification) (v2.4) software
[69, 69] and its associated visualisation package VOILA (v2.4). Default parameters were used,
including -threshold 0.2 and -changing-pvalue-threshold 0.05. The AS information of Local
Splicing Variations (LSVs) was further parsed and classified into subtypes of AS events (such
as exon skipping, alternative intron, 5 alternative splice sites, 3’ alternative splice sites etc.)
using the MAJIQ Modulizer program with stringent parameters: 1) maximum dPSI

value > 0.2, 2) p value for determining whether a LSV is changing < 0.05, 3) probability that a
LSV is changing > 0.95.

Supporting information

S1 Fig. Further characterisation on THUMPD3’s role in lung cancer cells and lung fibro-
blasts. (A) Crystal violet staining of A549 cells with shRNA mediated THUMPD3 depletion (6
days post induction). (B) Effect of ssRNA mediated THUMPD3 depletion on cell proliferation
assessed by cell counting. The graph represents data from 3 replicates per condition. Statistical
analysis was performed using One-Way ANOVA corrected for the comparisons using the
Bonferroni method (Alpha: 0.05); ns—P > 0.05, *—P < 0.05, **—P < 0.01, ***—P < 0.001,
*#** P < 0.0001. Error bars represent the mean + SD of 6 independent replicates. (C) West-
ern blotting representing reduction in THUMPD3 level upon shRNA induction. GAPDH was
used as a loading control. (D) Live-cell imaging analysis of IMR-90 cell proliferation upon
THUMPD3 depletion. Data are represented as the mean of duplicates + SD. Western blotting
was performed to validate THUMPD?3 depletion upon siRNA treatment (inset in graph).
GAPDH was used as a loading control. The asterisk indicates a cross-reaction band. (E) Quan-
tification (manual) of differences in colony formation in H1975 cells upon THUMPD?3 deple-
tion. The bar chart represents percentage of formed colonies normalised to control (mean of 2
experiments + SD). (F) Live-cell imaging analysis of H1975 cells stably harbouring control
empty vector (pEV) or exogenous THUMPD3 expression vector (pD3.3) and transfected with
control siRNA (siscr). Following analysis, THUMPD?3 levels were assessed by Western blotting
(insets in graph). GAPDH was used as a loading control. (G) Live-cell imaging analysis of
IMR-90 cells expressing exogenous THUMPD?3 (pD3). Following analysis, THUMPD3 levels
were assessed by Western blotting (insets in graph). GAPDH was used as a loading control.
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(H) Wound healing assay upon shRNA mediated THUMPD?3 depletion in A549 cells. Repre-
sentative light-field images of wound healing at indicated time points. Migration fronts are
highlighted by blue lines. (I) 200,000 A549 cells were reverse transfected with 2.5 nM of con-
trol (siscr) and THUMPD?3 (siD3 #3, #9) siRNAs, as indicated. 72 hours later, cells were col-
lected for Western blotting analysis with anti-cleaved PARPI and anti-THUMPD?3 antibodies,
as indicated. GAPDH was used as a loading control.

(TIF)

S2 Fig. Gene expression changes induced by THUMPD?3 depletion. (A) PCA (principal
component analysis) based on gene expression values. Each dot in the plot represents each
sample/replicate. Principal component 1 (x-axis) explains 68% of the variance in the data and
principal component 2 (y-axis) explains 19% of the variance in the data. The dots are coloured
according to the treatment condition (red-untreated; blue-treated), and they are shaped
according to the types of knockdown (round—shD3#1, triangle—shD3#4, square—siD3#3).
(B, C) Reactome pathway analysis of A549 cells upon THUMPD?3 depletion. Reactome enrich-
ment statistics for top up- and downregulated pathways are plotted and ranked according to
adjusted p-value ranging from red (significant) to blue (less significant). (C) Western blotting
of Laminin B3 levels in A549 cells upon THUMPD?3 depletion. Cells were collected 5 days
after siRNA transfection for a Western blot analysis with anti-Laminin B3 followed by anti-
THUMPD?3 antibodies, as indicated. Vinculin levels were used as loading control, as indicated.
The asterisk indicates a cross-reaction band. (E-G) Volcano plots representing differential
gene expression changes from the comparison of shD3#1 vs wt, shD3#4 vs wt, siD3#3 vs wt.
The log2 fold change is plotted on the x-axis against -log10 of adjusted p-value plotted on the
y-axis. Each point represents a single gene. A single gene with a significant fold change or p-
value is represented in green or blue, respectively. When both parameters are significant for a
gene, the corresponding dot is displayed in red. Significance cut-off for log2 fold change is
0.585 and for adjusted p-value is 0.05.

(TIF)

$3 Fig. Changes in alternative splicing induced by THUMPD3 depletion. (A-C) Volcano
plots of differential splicing events: intron retention, alternative 3’ splice site, alternative 5’
splice site. The fold change of dPSI is plotted on the x-axis against -log10 of non-changing
probability plotted on the y-axis. Each point represents a single transcript. Significance cut-off
for p-value is 0.05. (D) Targets identified through alternative exon usage analysis were grouped
based on their relationship to ECM and CAMs (blue) or links to neurodevelopment (yellow).
Transcripts falling into both categories are represented in the green zone; ECM—extracellular
matrix, CAM—cell adhesion molecule.

(TIF)

S1 Table. RNA-seq analysis of gene expression changes in A549 cells upon THUMPD?3
depletion. List of significantly upregulated and downregulated transcripts identified through
RNA-seq analysis that change in response to THUMPD3 depletion.

(XLSX)

S2 Table. Differential splicing analysis data. List of transcripts identified as transcripts that
exhibit alternative splicing events in response to THUMPD3 depletion.
(XLSX)

S3 Table. List of reagents and resources. Includes list of QPCR primers, siRNA and shRNA
sequences.
(XLSB)
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$4 Table. Numerical values behind graphs in main and supplementary figures.
(XLSX)

S1 File. Full western blot pictures.
(PDF)
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