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Abstract

Phosphorus (P) is an essential elemental nutrient required in high abundance for robust soy-
bean growth and development. Low P stress negatively impacts plant physiological and bio-
chemical processes, such as photosynthesis, respiration, and energy transfer. Soybean
roots play key roles in plant adaptive responses to P stress and other soil-related environ-
mental stressors. Study the changes in soybean root exudates and differences in related
metabolic pathways under low phosphorus stress, analyzing the response mechanism of
soybean roots to phosphorus stress from the perspective of root exudates, which provide a
theoretical basis for further analyzing the physiological mechanism of phosphorus stress on
soybean. In this study, soybean roots were exposed to three phosphate levels: 1 mg/L (P
stress), 11 mg/L (P stress) and 31 mg/L (Normal P) for 10 days and 20 days, then root exu-
dates were analyzed via ultra-high-performance liquid chromatography-mass spectrometry
to identify effects of P stress on root metabolite profiles and associated metabolic pathways.
Our results revealed that with increasing P stress severity and/or duration, soybean roots
produced altered types, quantities, and increased numbers of exudate metabolites (DMs in
the P1 group were primarily upregulated, whereas those in the P11 group were predomi-
nately downregulated) caused by changes in regulation of activities of numerous metabolic
pathways. These pathways had functions related to environmental adaptation, energy
metabolism, and scavenging of reactive oxygen species and primarily included amino acid,
flavonoid, and nicotinate and nicotinamide metabolic pathways and pathways related to iso-
quinoline alkaloid biosynthesis, sugar catabolism, and phospholipid metabolism. These
metabolites and metabolic pathways lay a foundation to support further investigations of
physiological mechanisms underlying the soybean root response to P deficiency.

Introduction

Phosphorus (P), an essential nutrient for plant growth and development, plays a central role in
energy metabolism, information transfer, and synthesis of nucleic acids and membranes [1-3].
Plants grown in P-deficient soil often struggle to thrive due to adverse effects of P stress on var-
ious life processes, resulting in growth retardation, weakened structural features, and
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premature reproductive organ development that ultimately lead to reduced crop yields [1].
Consequently, there is an urgent need for research to deepen our understanding of physiologi-
cal and molecular mechanisms underlying plant adaptive responses to P stress toward achiev-
ing sustainable agricultural development [4].

Plant roots continuously adjust their physiological and structural characteristics in response
to nutrient-deficient soil conditions, as the root system is typically the first plant organ affected
by changes in soil nutrient content [5-7]. Given that P is crucial for plant growth, plants have
evolved strategies to enhance soil P availability and accessibility that involve intensive root for-
mation, turnover, and/or morphological changes induced by exposure to P-deficient soil [8,
9]. Under the low phosphorus stress, the soybean genotype with high phosphorus efficiency
increased the total root length by increasing the length of the lateral root, which improved
plant growth, phosphorus efficiency, and enhanced the ability to resist the low phosphorus
stress [10]. Additionally, plants respond to shifts in soil nutrient levels by releasing root exu-
dates containing various organic compounds that increase nutrient availability and uptake by
roots [11, 12]. Therefore, monitoring of indicators related to root system growth and develop-
ment and root exudate composition can provide valuable insights into nutrient acquisition
mechanisms of plant.

Root exudates play pivotal roles in mediating the movement of nutrients and other sub-
stances into and out of roots, all while regulating these processes and nurturing the vitality of
rhizosphere ecosystems [13]. Importantly, root exudates released by plants grown in P-defi-
cient soil contain substances that can substantially enhance crop growth. These substances
achieve this beneficial effect by increasing soil P availability and subsequent utilization by
plants through their effects on rhizosphere physical, chemical, and biological properties [14].
Moreover, studies have demonstrated that compositions of plant root exudates change in
response to shifts in soil nutrient composition [15]. Alfalfa root exudates enhance the availabil-
ity of soil P, increase the content of Olsen-P, and have a certain activation effect on Ca,-P,
Cag-P, Al-P, and Fe-P [16].

Alternatively, some plants respond to low P stress by secreting increased amounts of sugars
and amino acids into the rhizosphere to improve P absorption [17]. For example, Koeppe et al.
reported that sunflower roots subjected to low P stress secreted significantly increased quanti-
ties of a phenolic substance that promotes P nutrient uptake [18]. In a separate study of mung
bean and maize root exudates, Al-Deliamy and Ameer observed significantly lower concentra-
tions of most components in exudates of plants grown in soil containing several distinct types
of fertilizers as compared to concentrations in exudates of unfertilized plants [19].

Notably, roots of soybean plants grown in P-deficient soil are known to secrete significant
quantities of protons and organic acids into the external environment [20]. Root exudates play
crucial roles in facilitating the exchange of energy, matter, and information between plants
and soil, serving as a fundamental adaptive response to environmental stress. Therefore, using
metabolomics techniques to analyze the changes in the types and quantities of soybean root
exudates under low P stress, as well as the differences in metabolic pathways involved, and to
analyze the response of soybean to low P stress from the perspective of root exudates. Enrich-
ing the theoretical research on the impact of phosphorus stress on soybeans.

Materials and methods
Plant materials and sampling

This experiment was carried out in the experimental base of Heilongjiang academy of agricul-
tural sciences, Harbin city, Heilongjiang Province, China (126°63’ E, 45°69’ N). Soybean (Sui-
nong 14, SN14) plants were grown in sand medium in pots. The nutrient composition and
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concentration (mg/L) of the nutrient solution were as follows: (NH,4),SO,, 235.80; MgSO,,
240.00; CaCl,, 220.00; Na,MoO,-H,0, 0.03; CuSO,-5H,0, 0.08; ZnSO,-7H,0, 0.22;
MnCl,-4H,0, 4.90; H;BO3, 2.86; FeSO4-7H,0, 5.57; and Na,EDTA, 7.45; P levels: P1 (P
stress), KH,PO,, 4.39, K,SO,, 42.00, KCI, 36.00; P11 (P stress), KH,PO,, 48.26, K,SO,, 28.00,
KCl, 24.00; P31 (normal P), KH,PO,, 136.00.

Different P levels treated 10 days and 20 days, the root exudate solution were sampled.
Before the vegetative cotyledon stage (VC, unfolded cotyledons), only 500 mL distilled water
was supplied to plants once per day. From VC to V; (third trifoliate leafs) stage, P31 nutrient
solution was supplied, fromV different P treatments were started, and 500 mL nutrient solu-
tion was supplied once a day before R, (flowering stage), 500 mL nutrient solution was sup-
plied two times a day from R;.

Rhizobium inoculation was performed when opposite true leaves completely opened as fol-
lows: field soybean nodules from plants grown in Harbin Heilongjiang province were collected
during the previous year and stored in a refrigerator. They were ground and added to the
nutrient solution, at a rate of approximately 5 g of nodules per liter. Inoculation of soybean
plants performed on five consecutive days to assure that each plant well inoculated.

The root of the whole plant was taken and quickly washed with flowing deionized water to
remove sand and nutrient solution. Immerse the washed root into a glass container with 250
mL deionized water. The root in water for 10 h under the same climatic conditions as the plant
growth, and collected the root exudate solution (6 replicate samples for each treatment) and
frozen immediately in liquid nitrogen and stored at —80°C, and then used for metabolomics
analysis.

Metabolites extraction

The samples were thawed on ice. After 30 s vortex, 4000 uL aliquot of individual samples were
transferred to an eppendorf tube and freeze-dried. 200 pL of extract solution (methanol/
water = 3:1, precooled at -40°C, containing internal standard) were added to the samples.
After 30 s vortex, the samples were sonicated for 10 min in ice-water bath. Then the samples
were centrifuged at 12000 rpm (RCF = 13800 (xg), R = 8.6 cm) for 15 min at 4°C. The super-
natant was carefully filtered through a 0.22 um microporous membrane, and take 20 pL from
each sample and pooling as QC samples. Stored at -80°C until the UHPLC-MS (Ultra high
performance liquid chromatog-mass spectrometry) analysis.

UHPLC- MS analysis

The UHPLC separation was carried out using an EXIONLC System (Sciex). Perform chro-
matographic separation of the target compound using Waters UPLC liquid chromatography
column (Water Acquity UPLC HSS T3 1.8um 2.1x100 mm). The mobile phase A was 0.1%
formic acid in water, and the mobile phase B was acetonitrile. The column temperature was set
at 40°C. The auto-sampler temperature was set at 4°C and the injection volume was 2 pL.

A Sciex QTrap 6500+ (Sciex Technologies), was applied for assay development. Typical ion
source parameters were: IonSpray Voltage: +5500/-4500 V, Curtain Gas: 35 psi, Temperature:
400°C, Ion Source Gas 1:60 psi, Ion Source Gas 2: 60 psi, DP: + 100 V.

Data analysis

SCIEX analyst work station software (Version 1.6.3) was employed for MRM data acquisition
and processing. MS raw data (.wiff) files were converted to the TXT format using MSconven-
ter. In-house R program and database were applied to peak detection and annotation [21-23].
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Real-time quantitative PCR analysis

The RNA extracts of roots were used to synthesize cDNA, 20 pL reaction volume containing

1 ug of RNA template. Real-Time PCR was performed according to the instructions provided
with the TB Green®) Premix Ex Taq™ II kit (Tli RNase H Plus) (TaKaRa) in a 20 L PCR reac-
tion volum. Three technical replicates and three biological replicates were performed in the
experiments. Using GmActin as the internal control. According to the Ct values, the relative
expression levels were calculated using the 27**“* method.

Results
Differential metabolites (DMs) in root exudates under P stress

Comparisons of metabolite profiles of root exudates secreted by soybean plants under P stress
vs those secreted by unstressed plants (grown in soil containing 31 mg/L P) yielded a total of
1450 metabolites that included alkaloids, flavonoids, terpenoids, phenols, amino acids and
derivatives, phenylpropanoids, organooxygen compounds, steroids and steroid derivatives,
and others (listed in S1 Table). Of these DMs, 71 (57 upregulated, 14 downregulated), 64 (8
upregulated, 56 downregulated), 110 (84 upregulated, 26 downregulated), and 28 (6 upregu-
lated, 22 downregulated) were detected in pairwise comparisons 10_P1 vs 10_P31, 10_P11 vs
10_P31,20_P1 vs 20_P31, and 20_P11 vs 20_P31, respectively, as based on screening threshold
cutoffs of variable importance in projection (VIP) > 1.0 and P-value < 0.05 (Fig 1 and

S2 Table).

DMs meeting criteria of VIP > 1.0, P-value < 0.05, and a fold-change >2 or <0.5 were
selected for further analysis. Based on these criteria, we identified 28 DMs in the pairwise com-
parisons of the 10_P1 vs 10_P31 groups (21 increased, 7 decreased), 40 DMs for the 10_P11 vs
10_P31 groups (5 increased, 35 decreased), 54 DMs for the 20_P1 vs 20_P31 groups
(42increased, 12 decreased), and 10 DMs for the 20_P11 vs 20_P31 groups (2 increased, 8
decreased). These DMs are potentially involved in the soybean root response to P stress and
thus analyzed further.

Analysis of DMs

Pairwise comparisons between P1 and P11 (10 days and 20 days) with P31, revealed differences
in DMs chemical and regulatory features of soybean root exudates (S3 Table). For the 10_P1
vs 10_P31 comparison, 28 DMs were identified that belonged to 15 chemical categories, which
mainly included flavonoids (21.43%), alkaloids (14.29%), terpenoids (10.71%), phenols
(7.14%), nucleotides and their derivatives (7.14%), and lignans (7.14%). Regarding abundance
of specific metabolites within each of these categories, 83.33% were increased, 75.00% were
increased, 100.00% were increased, 100.00% were decreased, 100.00% were increased, and
100% were increased, respectively.

For the 10_P11 vs 10_P31 comparison, 40 DMs were identified that belonged to 18 chemi-
cal categories that mainly included terpenoids (20.00%), flavonoids (15.00%), phenols
(12.50%), phenylpropanoids (7.50%), lignans (7.50%), organooxygen compounds (5.00%), and
steroids and steroid derivatives (5.00%). Again, regarding abundance of metabolites within
these categories, 75.00%, 100.00%, 60.00%, 100.00%, 66.67%, 100.00%, and 100.00% decreased,
respectively.

For the 20_P1 vs 20_P31 comparison, 54 DMs were identified that belonged to 18 chemical
categories that mainly included flavonoids (22.22%), terpenoids (16.67%), alkaloids (14.81%),
phenols (7.41%), organic acids and derivatives (5.56%), and fatty acyls (5.56%). With respect
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Fig 1. Analysis of different metabolites. (A) Number of different metabolites, up-regulated and down-regulated expression between
10_P1vs 10_P31, 10_P11 vs 10_P31, 20_P1 vs 20_P31 and 20_P11 vs 20_P31; (B) Venn analysis of different metabolites. The yellow
column represents the number of different metabolites in the comparison group, the black histogram represents the number of
metabolites corresponding to the intersection difference set of Venn analysis, and the black dot represents the comparison group
corresponding to the intersection difference set.

https://doi.org/10.1371/journal.pone.0314256.g001

to abundance of metabolites in these categories, 66.67%, 88.89%, 75.00%, 75.00%, 100.00% and
100.00% increased, respectively.

For the 20_P11 vs 20_P31 comparison, 10 DMs were identified that belonged to 7 chemical
categories that mainly included alkaloids (30.00%), phenols (20.00%), benzene and substituted
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derivatives (10.00%), nucleotide and its derivates (10.00%), flavonoids (10.00%), terpenoids
(10.00%), and organic acids and derivatives (10.00%). Regarding abundance of metabolites
within these categories, 100.00% decreased, 50.00% and 100.00% increased, 100.00%, 100.00%,
100.00% and 100.00% decreased, respectively. Taken together, the results obtained from the
abovementioned four comparisons revealed the identities of soybean root exudates DMs as
influenced by P stress of variable severity and duration.

For each pairwise comparison group, corresponding ratios of quantitative values of corre-
sponding DMs were calculated then DMs undergoing significant changes analyzed further.
The results of this analysis were visualized as matchstick diagrams displaying the top-ranked
15 metabolites with most markedly increased or decreased abundances (relative to P31)

(S1 Fig). For each top-ranked DM, values of correlation coefficients were calculated using the
Pearson method and presented as a heat map (S2 Fig). For each pairwise comparison group,
chemical classification and source of DMs were performed, then Chord visualization of DMs
was performed using the Spearman method (S3 Fig).

KEGG annotation and metabolic pathway analysis of DMs

37,39, 49 and 23 KEGG pathways were associated with DMs identified from the pairwise com-
parisons 10_P1 vs 10_P31, 10_P11 vs 10_P31, 20_P1 vs 20_P31 and 20_P11 vs 20_P31, which
included 30, 28, 56 and 10 compounds, respectively (Table 1). Total numbers of DMs obtained
for each comparison, the enriched KEGG metabolic pathway ID number for each DM, and
the percentage of the total annotated DMs belonging to a given metabolic pathway are pre-
sented in S4 Fig.

KEGG metabolic pathways associated with the highest numbers of DMs included biosyn-
thesis of secondary metabolites (gmx01110), metabolic pathways (gmx01100), isoflavonoid
biosynthesis (gmx00943), biosynthesis of various plant secondary metabolites (gmx00999), fla-
vonoid biosynthesis (gmx00941), ABC transporters (gmx02010), 2-Oxocarboxylic acid metab-
olism (gmx01210), biosynthesis of amino acids (gmx01230), pyrimidine metabolism
(gmx00240), tropane, and piperidine and pyridine alkaloid biosynthesis (gmx00960). The
numbers of DMs differing among the four comparisons were provided (S4 Table). Root exu-
dates respond through the above metabolic pathways, when the soybean subjected to P stress.
Notably, abundances of root DMs belonging to these metabolic pathways were mainly upregu-
lated in the P1 (10 d and 20 d) group and downregulated in the P11 (10 d and 20 d) group.

Results of pathway enrichment and topological analyses of these pathways revealed 10, 11,
21, and 7 key pathways associated with soybean root system responses to P stress that were
identified based on DM profiles of comparisons 10_P1 vs 10_P31, 10_P11 vs 10_P31,20_P1 vs
20_P31, and 20_P11 vs 20_P31, respectively (Fig 2). For 10_P1 vs 10_P31, key pathways
included isoquinoline alkaloid biosynthesis, pyrimidine metabolism, nicotinate and nicotin-
amide metabolism, tyrosine metabolism, alpha-linolenic acid metabolism, valine, leucine and
isoleucine biosynthesis, and cysteine and methionine metabolism. For 10_P11 vs 10_P31, key
pathways included pentose phosphate pathway, nicotinate and nicotinamide metabolism,

Table 1. Pairwise comparison of KEGG pathways and compound differences.

10_P1 vs 10_P31
10_P11 vs 10_P31
20_P1vs 20_P31

Numbers KEEG pathways Compounds Up-regulated Down-regulated
37 30 25 5
39 28 1 27
49 56 41 15
23 10 1 9

20_P11 vs 20_P31
https://doi.org/10.1371/journal.pone.0314256.t001

PLOS ONE | https://doi.org/10.1371/journal.pone.0314256  December 5, 2024 6/18


https://doi.org/10.1371/journal.pone.0314256.t001
https://doi.org/10.1371/journal.pone.0314256

PLOS ONE Response of soybean root exudates and related metabolic pathways to low phosphorus stress

Alanine, aspartate and glutamate metabolism

Isoquinoline alkaloid biosynthesis

Cysteine and
methionine metabolism

Tyrosine metabolism

Pentose phosphate pathway

alpha-Linolenic acid metabolism

Valine, leucine and
isoleucine biosynthesis

 — — — ]  — — —
00 05 10 15 20 25 30 00 05 10 15 20 25 30
—In P-value —In P-value

Cysteine and

Sphingalipidimetabolsm methionine metabolism

Sphingolipid metabolism

Glutathione Pyrimidine
metabolism metabolism

Monoterpenoid biosynthesis Purine Citrate cycle

metabolism (TCA cycle)

Phenylalanine metabolism

Glyoxylate and
dicarboxylate

metabolism

metabolism
Tyrosine
Flavon i
metabolism lavonoid biosynthesis
 —— ——
00 05 10 15 20 25 30 00 05 10 15 20 25 30

Fig 2. Pathway analysis results. A 10_P1 vs 10_P31; B 10_P11 vs 10_P31; C 20_P1 vs 20_P31; D 20_P11 vs 20_P31.
https:/doi.org/10.1371/journal.pone.0314256.9002

flavonoid biosynthesis, alanine, aspartate and glutamate metabolism. For 20_P1 vs 20_P31,
key pathways included monoterpenoid biosynthesis, isoquinoline alkaloid biosynthesis, flavo-
noid biosynthesis, valine, leucine and isoleucine biosynthesis, sphingolipid metabolism, argi-
nine and proline metabolism, glyoxylate and dicarboxylate metabolism, tyrosine metabolism,
tricarboxylic acid cycle (TCA cycle), glycerophospholipid metabolism, and glutathione metab-
olism. For 20_P11 vs 20_P31, key pathways included phenylalanine metabolism, sphingolipid

PLOS ONE | https://doi.org/10.1371/journal.pone.0314256  December 5, 2024 7/18


https://doi.org/10.1371/journal.pone.0314256.g002
https://doi.org/10.1371/journal.pone.0314256

PLOS ONE

Response of soybean root exudates and related metabolic pathways to low phosphorus stress

metabolism, phenylalanine, tyrosine and tryptophan biosynthes, glycerophospholipid metabo-
lism, and flavonoid biosynthesis. Taken together, these metabolic pathways may offer valuable
insights into the mechanisms by which soybean plants adapt to P stress. The pathway identi-
fied for each pairwise comparison, associated metabolite compounds and their relative abun-
dance changes (increased or decreased) were different and shown in S5 Table.

Each rectangle in the rectangular tree represents a metabolic pathway. The size of the block
represents the size of the influence factor of the pathway in topology analysis. The larger the
size, the greater the influence factor; the color of the block represents the P-value of enrich-
ment analysis (take the negative natural logarithm, namely—In (p)). The darker the color, the
smaller the P value, and the more significant the enrichment degree.

Discussion

The term “root exudate” used to describe organic compounds released by plant roots into the
surrounding medium during plant growth and development. Notably, root exudates typically
sequester over 10% of photosynthesis captured carbon as organic compounds that include sug-
ars, organic acids, fatty acids, amino acids, and others [24-27]. Consequently, root exudates
play key roles in regulating rhizosphere micro ecological functions and provide the main
medium for communication between plants and soil. Moreover, they play important roles in
rhizosphere element-cycle, plant nutrient-absorption, and rhizosphere microbial community-
shaping processes [28]. Furthermore, plants adapt to P stress and other environmental stresses
by releasing root exudates containing different quantities and types of organic and inorganic
compounds and other substances [29-35].

Changes in root exudate compositions associated with soybean exposure to
P stress of varying severity and duration

P plays a vital role in the normal physiological and biochemical functions of plants [36]. Con-
sequently, when plants grown in P-deficient soil, adaptive responses are triggered to help them
cope with P stress. These responses often involve root system adaptations involving root exu-
date compositional changes [37-44]. For example, studies of Arabidopsis and white lupine
plants under P stress have revealed significant changes in root exudate levels of various phos-
phorylated carbohydrate compounds [42, 45]. Moreover, a study conducted by Mo demon-
strated the detection of 155 DMs in soybean roots under P stress as based on comparisons
with the metabolite profile of unstressed roots, including 36 lipids, 26 flavonoids, 18 amino
acids and their derivatives, and 17 nucleic acids and their derivatives [46]. Meanwhile, root
systems have also been shown to adapt to P stress by secreting organic acids and acid phospha-
tases [47, 48], with results of one such study demonstrating that the secretion of malic acid and
citric acid were promoted by root systems of kidney bean, white lupine, and soybean plants
under P stress [29, 33, 34]. The concentrations of amino acids and organic acids in root exu-
dates were higher at PO, which suggested that soybean roots actively release metabolites in
response to P deficiency [49]. In this study, we found that P stress severity (P1 and P11) and
duration (10 and 20 days) significantly impacted the types and quantities of root exudate com-
pounds, which were the same as Tawaraya’s opinions. The responses of soybean root exuda-
tion to P deficiency were different among growth periods and metabolites, whereby greater
DM numbers were found in P1 than in P11 root exudates. Interestingly, as the duration of P
stress increased, the numbers of DMs in P1 exudates showed an upward trend, while those of
P11 exudates declined (Fig 1A and S2 Table). These findings collectively suggest that as the
severity or duration of P stress increases, changes in soybean root exudates reflect altered activ-
ities of increasing numbers of metabolic pathways, resulting in the generation of a greater
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variety of distinct types of DMs as an adaptive response to P stress. And some DMs, such as
alkaloids, flavonoids, amino acids and derivatives, are the same with that in nodules under P
stress [50], which indicate the presence of an outward transport system of these metabolites in
soybean roots [49].

We also observed an interesting trend in that DM profiles of root exudates differed depend-
ing on whether plants were exposed to P stress for either 10 or 20 days. Ultimately, we identi-
fied 3, 5, 7, and 2 identical DMs from the following pairwise comparisons: 10_P1 vs 10_P31
and 10_P11 vs 10_P31;20_P1 vs 20_P31 and 20_P11 vs 20_P31; 10_P1 vs 10_P31 and 20_P1
vs 20_P31; and 10_P11 vs 10_P31 and 20_P11 vs 20_P31, respectively (Fig 1B). Interestingly, it
was observed that DMs in the P1 group were primarily upregulated, whereas those in the P11
group were predominately downregulated. This divergence in root exudate responses suggests
that soybean roots employ different mechanisms and pathways to adapt to varying degrees of
P stress.

With regard to the above mentioned DMs, in 10_P1 vs 10_P31, malic acid level was posi-
tively correlated with sesartemin level; in 10_P11 vs 10_P31, beta-asarone level was positively
correlated with alpha-hexylcinnamaldehyde and soyasapogenol C levels, D-ribose level was
positively correlated with D-arabinose level, and actinidic acid level was negatively correlated
with 2-ketobutyric acid level; in 20_P1 vs 20_P31, formononetin level was positively correlated
with medicarpin and ononin levels; in 20_P11 vs 20_P31, tectorigenin level was positively cor-
related with 1’-acetoxychavicol acetate and myo-inositol levels, myo-inositol level was posi-
tively correlated with liriodenine level, 4-O-methylirenolone level was positively correlated
with corynanthine level, and trimethoprim level was negatively correlated with O-phosphory-
lethanolamine level (S3 Fig). These differential metabolites respond to phosphorus stress in a
synergistic manner.

P stress-induced changes in soybean root exudate flavonoid composition

Flavonoids, a prominent category of polyphenolic compounds, rank among the most prevalent
secondary metabolites encountered in living organisms. This diverse class encompasses antho-
cyanins, flavanols, flavonoids, isoflavones, and flavanones, each with vital roles in plant
growth, development, and plant responses to both biotic and abiotic stressors [51].

The research conducted by Mo demonstrated that exposure of soybean plants to P stress
led to the accumulation of 26 distinct classes of flavonoid metabolites in roots [46]. Particularly
striking was the significant divergence in response profiles of individual metabolites within the
same flavonoid class in roots of plants exposed to P stress. These results indicate that P stress
strongly affects activities of pathways related to soybean flavonoid metabolic processes. P limi-
tation leads to upregulated expression of genes and accumulation of secondary metabolites
phenylpropanoids, flavonoid and their glycosides, and anthocyanin [45]. In the symbiotic pro-
cess between rhizo bia and legumes, flavonoids promote recognition and infection between
rhizobia and roots to achieve nodulation and nitrogen fixation. Metabolomics studies demon-
strated that more favonoids were involved in metabolic processes in soybean nodules under P
stress [50]. Results obtained herein revealed that P stress exerted significant effects on root exu-
date flavonoid composition and quantity. Importantly, root exudates of plants subjected to P
stress of different severities and durations exhibited differences in DM levels and numbers, as
well as increasing numbers of distinct flavonoid DMs with increasing P stress severity and/or
duration. The flavonoids DMs were mainly upregulation in P1, while downregulation in P11
(Table 2). 108 types of flavonoids and related metabolites were detected under P stress, includ-
ing anthocyanins, flavones, flavonols, flavanones, isoflavones and derivatives of flavonoids
[46]. We found that there was one flavanone (Xanthohumol) upregulation in 10_P11 vs

PLOS ONE | https://doi.org/10.1371/journal.pone.0314256  December 5, 2024 9/18


https://doi.org/10.1371/journal.pone.0314256

PLOS ONE

Response of soybean root exudates and related metabolic pathways to low phosphorus stress

Table 2. Differences in the quantity of flavonoids among comparisons.

Treatments
10_P1 vs 10_P31
20_P1vs 20_P31

10_P11vs 10_P31
20_P11 vs 20_P31

https://doi.org/10.1371/journal.pone.0314256.t002

Numbers Up-regulated Down-regulated
14 12 2
18 12 6
9 1 8
3 1 2

10_P31 and flavanoid DMs kaempferol-3-O-rutinoside and pinocembrin were downregulated
in 10_P11 vs 10_P31 and 20_P1 vs 20_P31, respectively, as consistent with results reported by
Mo [46].

Roots of leguminous host crops release flavonoids into the rhizosphere environment, which
can induce recognition of nodulation factors in rhizobia [52]. The fertilizer nitrogen influ-
enced nodulation factor recognition (GmNFR1A, GmN1NIa and GmN1N2a) in the roots at
V, stage [53]. Cabeza et al. found that P deficiency reduced the expression of flavonoid synthe-
sis related genes in alfalfa roots [54]. He et al. found that GmSK2-8 is strongly induced in soy-
bean under high-salt conditions, while GmSK2-8 could interact with GmNSP1a and
GmNSP1b; these key transcription factors are essential for rhizobial infection, nodule initia-
tion, and symbiotic gene expression in soybean, providing novel targets for improving symbi-
otic nitrogen fixation under environmental stress conditions in soybean and possibly other
legumes [55]. In order to analyze changes of GmSK2-8 under P stress, we employed real-time
quantitative PCR analysis to examine RNA-level expression of the GmSK2-8-encoding gene in
soybean roots following 10 days of P stress exposure. Our results revealed the relative expres-
sion level of GmSK2-8 significantly increased in P1 treatment (Fig 3). Nevertheless, further
research is warranted to establish a more comprehensive understanding of the relationship
between changes in flavonoid levels in soybean roots and the expression of the GmSK2-
8-encoding gene under conditions of P stress.

1.6

1D

1.4

1.3

5%

Pl P11

Fig 3. Real-time quantitative PCR analysis of GmSK2-8 in soybean root.
https://doi.org/10.1371/journal.pone.0314256.9003
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Metabolic pathway analysis

Analysis of DMs identified in four pairwise comparisons, 10_P1 vs 10_P31, 10_P11 vs 10_P31,
20_P1 vs 20_P31, and 20_P11 vs 20_P31, prompted us to speculate that specific soybean root
response mechanisms and pathways triggered by P stress may depend on P stress severity.
Building upon this premise, we further analyzed soybean root P stress-induced metabolic
pathway changes. Our results indicated that P stress exerted a significant influence on the acti-
vation of various pathways, including those related to amino acid metabolism, flavonoid
metabolism, nicotinate and nicotinamide metabolism, isoquinoline alkaloid biosynthesis,
sugar catabolism, and phospholipid metabolism. Some of these metabolic pathways are the
same as those in nodules under P stress, which indicate the presence of a transport system of
metabolites between soybean roots and nodules.

Amino acids play pivotal roles as regulatory factors that control essential cellular processes,
including cell signaling, gene expression, and protein phosphorylation cascades. These regula-
tory functions extend to a wide range of biological activities, encompassing hormone metabo-
lism, energy metabolism, neurotransmission, cell growth, nucleotide synthesis, and nitrogen
metabolism. Additionally, amino acids and their derivatives serve as precursors of molecules
that participate in various plant physiological processes, including responses to drought stress,
heavy metal stress, and plant disease resistance [56—58].

The results of this study underscore the role of the amino acid metabolic pathway in regu-
lating the soybean response to P stress by highlighting its importance in the adaptation of soy-
bean roots to low P conditions. Importantly, as the severity and duration of P stress increased,
we found a corresponding increase in the production of DMs linked to a broader array of met-
abolic pathways (Table 3). Notably, when P1 stress treated for 20 days, the DM cysteinylglycine
was upregulated and involved in the glutathione metabolism pathway. Reactive oxygen species
(ROS) stress is a common cause of plant damage under abiotic stress [59], and the glutathione
metabolism pathway is an important part of the antioxidant system for ROS clearance in
plants, regulating the balance of intracellular ROS [60]. Therefore, when P1 stress applied for
20 days, ROS scavenging-related metabolites and metabolic pathways already activated in soy-
bean root exudates.

P stress affected the accumulation of multiple flavonoid metabolites and the related pro-
cesses of flavonoid metabolism in soybean roots [46]. In this study, we found that DMs partici-
pated in the flavonoid metabolism pathway in 10_P11 vs 10_P31, 20_P1 vs 20_P31 and
20_P11 vs 20_P31, but there were differences in type and quantity. Interestingly, we observed
downregulated production of flavonoids fisetin and myricetin in the 10_P11 vs 10_P31

Table 3. Amino acid metabolism pathways and differential metabolites.

Treatments
10_P1vs 10_P31

20_P1vs 20_P31

10_P11 vs 10_P31
20_P11 vs 20_P31

Phenylalanine, tyrosine and tryptophan biosynthesis

https://doi.org/10.1371/journal.pone.0314256.t003

Pathway Hits Cpd
Cysteine and methionine metabolism 5’-S-Methyl-5’-thioadenosine |
Tyrosine metabolism Dopamine |

Valine, leucine and isoleucine biosynthesis 3-Isopropylmalate T

N-Acetyl-L-glutamate 5-semialdehyde 7
S-Adenosylmethionine |
Cysteinylglycine T
Dopamine |
3-Isopropylmalate T
2-Isopropyl-3-oxosuccinate |

L-Glutamine |

Arginine and proline metabolism
Glutathione metabolism
Tyrosine metabolism
Valine, leucine and isoleucine biosynthesis

Alanine, aspartate and glutamate metabolism

Phenylalanine metabolism Phenethylamine T

Shikimic acid |
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comparison, indicating altered flavonoid metabolic pathway activities. Similarly, downregu-
lated production of naringenin, eriodictyol, and pinocembrin in 20_P1 vs 20_P31 and down-
regulated production of pinocembrin in 20_P11 vs 20_P31 indicated altered flavonoid
metabolism pathway activities in roots exposed to prolonged P stress. Importantly, all of the
abovementioned flavonoids have shown to exert antioxidant effects.

The observed downregulation of dopamine production in the P1 stress for 10 or 20 days sug-
gests the involvement of the isoquinoline alkaloid biosynthesis-related pathway in the soybean
root response to P stress. More studies have shown that dopamine can enhance tolerance to
drought, salt stress, and nutrient deficiency in plants [61-63]. Dopamine possesses a strong anti-
oxidative capacity comparable to glutathione (GSH) and certain flavonoids such as catechin and
quercetin [64], and alleviates oxidative stress caused by different abiotic stressors by strengthening
the antioxidant defense [65]. Therefore, the results of this study highlight a potential role for dopa-
mine and the alkaloid biosynthetic pathway in the soybean root response to P stress.

It is noteworthy that B-nicotinamide mononucleotide was downregulated and participated
in nicotinate and nicotinamide metabolism to adapt to the effects of P stress (P1 and P11)
when subjected for 10 days. B-nicotinamide mononucleotide is a precursor required for NAD
and NADP synthesis, which serve as key players in plant adaptations to stress by acting as
coenzymes of various enzymes involved in numerous cellular metabolic pathways. Also regu-
lating a wide range of cellular biochemical processes, including more than 300 redox reactions,
where they play pivotal roles in maintaining intracellular redox states [66]. In fact, changes in
NAD/NADP levels can alter intracellular redox states and cellular signal transduction path-
ways [67]. Additionally, NAD+ acts as an electron acceptor/donor in various energy-generat-
ing metabolic pathways, such as glycolysis, the TCA cycle, oxidative phosphorylation, and B-
oxidation, which support numerous vitally important cellular biological processes [68]. In this
study, B-nicotinamide mononucleotide was downregulated and participated in nicotinate and
nicotinamide metabolism. Importantly, the downregulation of this DM subsequently led to
reduced NAD/NADP production, resulting in altered expression of sugar-related metabolic
pathways in soybean roots. Moreover, D-ribose and 6-phosphogluconic acid were downregu-
lated and involved in the pentose phosphate pathway, in turn, influenced various cellular pro-
cesses related to energy metabolism, growth, apoptosis, and others.

The TCA cycle is a central metabolic hub of respiration, nitrogen assimilation, and photores-
piration pathways that provides energy for carbon metabolism and nitrogen metabolism [69].
Cis-aconitic acid is an intermediate involved in the conversion of citric acid to isocitric acid in
the TCA cycle [70]. A previous study conducted by Rasouli et al. demonstrated that in high
zinc-accumulating type of barley plants, enhanced zinc absorption by roots correlated with
increased root secretion of malic acid, fumaric acid, and cis-aconitic acid [71]. Here we
observed upregulated levels of cis-aconitic acid in P1 soybean roots exposed to P stress for 20
days. Due to cis-aconitic acid is a key participant in both the TCA cycle and glyoxylate and
dicarboxylate metabolic pathways, these findings suggest that metabolic pathways associate
with energy metabolism activate in soybean root exudates expose to P stress conditions, leading
to increase energy production and secretion of substances that aid P-stressed plants in adapting
to these disadvantage conditions. These results are the same as Tawaraya’s elucidated that accel-
eration of carbon flow to the TCA cycle was also performed in P-deficient soybean root [49].

Recent studies have highlighted the crucial roles of phospholipid-mediated signal transduc-
tion pathways in plant responses to various biotic and abiotic stresses [72-74]. These pathways
also played a regulatory role in response to environmental changes, material absorption and
secretion, energy conversion, and signal transduction [75, 76]. For example, phospholipid
membrane components, which are vitally important for cellular activities of most organisms,
play pivotal roles in interactions between rhizobia and leguminous plants, as well as in
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phospholipid signal transduction pathway-dependent activation of nodulation signal trans-
duction pathways [77]. Mo found that under P conditions, the content of 23 metabolites
related to lipid glycerophospholipids were significantly reduced in soybean roots, suggesting
that P stress significantly promotes the degradation process of phospholipids [46]. The results
obtained in this study indicate that P stress (P1 and P11) for 20 days, the phospholipid metabo-
lism pathway was involved in the response of soybean roots to P stress. O-Phosphorylethanola-
mine was downregulated and participated in glycerophospholipid metabolism and
sphingolipid metabolism to adapt or regulate the P stress.

Conclusions

Low P stress significantly affected the types and quantities of root exudates in soybean, P1
treatment were mainly upregulated and P11 treatment were mainly downregulated. The meta-
bolic pathways involved mainly included amino acid, flavonoid, and nicotinate and nicotin-
amide metabolic pathways and pathways related to isoquinoline alkaloid biosynthesis, sugar
catabolism, and phospholipid metabolism, analyzed the physiological mechanisms of soybean
root response to low P stress from the perspective of environmental adaptation, energy metab-
olism, and scavenging of reactive oxygen species through root exudates. These findings lay a
foundation for further analyzing the impact of low P stress on the recognition of rhizobia, as
well as the soybean nodule nitrogen fixation.
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