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Abstract 
In the north of China, Diospyros plants are vulnerable to low-temperature damage in 

winter and is considered as a major factor restricting the development of the persim-

mon industry in Northern China. Diospyros lotus L. is featured by high survival potential 

of seedlings, cold tolerance, and grafting affinity with D. kaki Thunb. D. lotus has been 

frequently used as rootstocks for Diospyros spp. ERF transcriptional factors are a sub-

family of the AP2/ERF gene family and play an important role in plant growth and stress 

tolerance. To explore the structure and function of the ERF transcription factors in D. lotus, 

we performed RT-PCR to clone DlERF10 from the leaves. The DlERF10 gene was 1104 bp 

long, encoding 367 amino acids. In order to deeply study the cold tolerance of DlERF10 

gene, the pBI121-DlERF10 overexpression vector was constructed, and agrobacterium- 

mediated transformation was carried out to transfer the gene into tobacco plants. The wild-

type and transgenic tobacco plants were subjected to low-temperature stress. The results 

showed that the transgenic plants were less severely damaged by low-temperature stress 

than the wild-type plants. Besides, the SOD, POD and CAT activities of leaves enhanced, 

and PRO contents of leaves increased, while the MDA content decreased. It was con-

cluded that the DlERF10 gene increased the activity of protective enzymes in tobacco 

plants, thereby strengthening the tolerance to low-temperature stress. The present study 

proposes a candidate gene for engineering cold stress tolerance in Diospyros spp.

Introduction
Plants are continuously challenged by several environmental stresses that impair their growth 
and production performances [1]. Abiotic stresses such as drought, cold, heat, and high salt 
greatly affect plant growth and development, yield and quality, and even limit geographical 
distribution [2]. Transcription factors (TFs) are a group of proteins specifically binding to 
the cis-acting elements in the promoter region of eukaryotic genes and regulating the expres-
sion intensity of target genes under specific circumstances. TFs are critical to the growth and 
environmental response of plants [3], regulating plant development and their responses to 
adverse environmental stresses [4–6]. Such as WRKY TFs can directly bind to the W-box 
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sequence ((T)(T) TGAC (C/T)) in the promoter region of the downstream target gene [7], and 
activate or inhibit the transcription of the target genes by interacting with the target protein 
[8]. They may up-regulate the expression of stress-related genes through integrating signal 
pathways mediated by abscisic acid (ABA), ethylene(ET), salicylate (SA), jasmonic acid (JA) 
and reactive oxygen species (ROS), thus playing a vital role in regulating plant response to 
abiotic stresses [9,10]. The study showed that WRKY TFs were widely related to plant toler-
ances to salinity [11–13], heat [14,15], cold [16] and drought stress [17]. MYB TFs contain a 
DNA-binding domain (DBD), a transcription regulation domain (TRD), an oligomerization 
site (OS), and a nuclear localization signal [18]. MYB TFs can bind to the downstream target 
gene promoter cis-acting elements MYBCORE and AC-box alone or through interaction with 
other proteins after being activated by environmental signals, and participate in regulating the 
expressions of downstream target genes, thereby regulating plant tolerances to stresses [19,20]. 
NAC is consisting of a highly conserved N-terminus and a relatively variable C-terminus. 
NACs regulate the flower organ development [21], flowering time [22], leaf senescence [23], 
fruit ripening [24], secondary cell wall formation [25], root development [26], and are also 
involved in plant responses to various biotic and abiotic stresses [27–29]. bHLH family of tran-
scription factors is the second largest family of transcription factors in plants after the MYB. 
bHLH TFs are functionally diverse and can regulate plant tolerance to abiotic stresses such as 
low temperature and drought and biotic stresses such as pests and diseases [30,31]. The most 
studied bHLH TFs in cold stress response is ICE [Inducer of CBF (C⁃repeat binding factor) 
expression], which specifically binds to the MYC cis-acting element in the promoter region of 
the CBF/DREB1 (Dehydration⁃responsive element binding 1) gene. It can specifically bind to 
the MYC cis-acting element of CBF/DREB1 (Dehydration⁃responsive element binding 1) to 
activate the CBF gene, and CBF specifically binds to the CRT/DRE element in the promoter 
region of the cold-regulated gene COR (Cold⁃regulated) to activate the expression of the COR 
gene and improve the cold tolerance of plants [32]. bZIP has a conserved domain consisting of 
about 60–80 amino acids, including a highly conserved alkaline region and a relatively variable 
leucine zipper region [33]. When plants are stimulated by stress signals, bZIP is phosphorylated 
by the upstream signal-responsive kinases [34], and its stability is enhanced through phos-
phorylation [35]. Under stresses such as drought, salt, high and low temperatures, bZIP binds 
to the promoter regions of stress-related genes and interacts with other proteins to promote or 
inhibit the expressions of these genes, thus positively or negatively regulating the responses to 
abiotic stress and biotic stress [36–39]. bZIP not only regulates plant stress response, but also in 
roots department development, leaf formation, flower development and seed germination plays 
an important role [40].The AP2/ERF(APETALA2 and ethylene responsive element binding 
proteins) transcription factor superfamily is among the transcription factor families that have 
the largest number of members in plants [41]. An AP2/ERF transcription factor contains at 
least one distinct AP2/ERF structural domain, which is composed of 50–60 amino acids and 
where the amino acid residue region is highly conservative [42]. The GBD (GCC-box binding 
domain) structure of the protein is composed of three antiparallel β-sheets and an α-helix. The 
GBD structure binds specifically to the ethylene-responsive heterologous promoter GCC-box 
[43]. Depending on the number or structure of the conserved domain in the AP2/ERF tran-
scription factor, the AP2/ERF family is divided into five subfamilies, namely, AP2, ERF, DREB, 
RVA, and Soloist [44]. Joufku [45] was the first to isolate the APETALA2 (AP2) transcription 
factor from Arabidopsis thaliana (L.) Heynh. (Fam.: Brssicaceae). Since then, AP2/ERF tran-
scription factors have been isolated and identified from 20 plant species. The largest number 
of AP2/ERF transcription factors were identified in oilseed rape [46], totaling 531, followed by 
tobacco (375) [47], maize (214) [48], rice (170) [49], A. thaliana (147) [50], tomato (134) [51], 
and pineapple (97) [52] successively.
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The EFR subfamily has the largest number of members among all subfamilies of the AP2/
ERF superfamily [53]. The EFR subfamily transcription factors usually act as signal elements 
at the terminal of the ethylene signaling pathway. They regulate the expressions of target 
genes by binding to the cis-acting elements in the promoter regions, thereby participating 
in the stress responses of plants [54]. In A. thaliana, the overexpression of the ERF family 
gene can enhance the tolerance of transgenic plants to different abiotic stresses to a greater 
or lesser extent [55,56]. Some AP2/ERF transcription factors can regulate the expressions of 
key enzymes in proline biosynthesis, thereby strengthening plants’ cold tolerance [57]. In one 
study, the TaERF1 gene was downregulated in wheat due to drought and was transferred to 
A. thaliana, resulting in higher drought tolerance and also higher tolerance to high salt and 
low temperature [58]. An overexpression of OsERF115/AP2EREBP110 was conducive to 
enhancing rice’s water retention and leaf-cooling capacity, which further improved overall 
tolerance and drought tolerance [59]. Melatonin can induce upregulation of the transcrip-
tion factor OsERF53 in rice seedlings under salt stress, mitigating the inhibitory effect of salt 
on rice growth and development [60]. The ZmERF1 gene in maize is involved in regulating 
hypoxia tolerance under waterlogging stress [61]. Salt stress induces a significant upregula-
tion of the ZmERF1 gene and has a positive regulatory effect on salt tolerance in maize [62]. 
Flesh lignification is a unique response to low temperatures in plants that causes deteriora-
tion in the quality of stored red-fleshed loquat fruits. EjERF39 and EjMYB8 in loquat fruits 
form a co-activator complex, which is capable of transactivating the promoter in the lignin 
biosynthesis gene Ej4CL1. These two transcription factors have shown similar expression 
patterns of lignification-related genes in the red-fleshed loquat variety ‘Luoyangqing’ and the 
white-fleshed loquat variety ‘Ninghaibai’ during postharvest treatment, which are considered 
to undergo different lignification processes. Another study has shown that EjERF39 interacts 
with EjMYB8 to regulate the lignin biosynthesis gene Ej4CL1, thereby enhancing the low- 
temperature tolerance of loquat fruits [63]. Zhang [64] found that the transcription factor 
TERF2/LeERF2 in tomatoes was upregulated under low-temperature stress. After being trans-
ferred to tobacco, this transcription factor regulated the expressions of cold tolerance -related 
genes (e.g., NtERD10B and NtERD10C), which led to higher low-temperature tolerance of 
tobacco. Sun [65] cloned the VaERF080 and VaERF087 genes in grapes and transferred them 
into A. thaliana. They found that these two transcription factors improved the cold tolerance 
of A. thaliana by increasing the activity of antioxidant enzymes and upregulating the expres-
sions of cold tolerance-related genes. Dai [66] showed that overexpression of the VvERF2 
gene promoted callus growth of grapes and the accumulation of secondary metabolites, such 
as phenols, which further promoted salt tolerance of grapes. PtrERF108 from trifoliate orange 
regulates raffinose synthesis by regulating the raffinose synthase-encoding gene PtrRafS, 
thereby enhancing cold tolerance. PtrERF108 overexpression led to higher cold tolerance of 
transgenic lemon plants, and the virus-mediated gene silencing of PtrERF108 dramatically 
enhanced cold intolerance in trifoliate orange [67]. BpERF13 in birch strengthened cold 
tolerance by upregulating the CBF gene and reducing reactive oxygen species [68]. From some 
cold-tolerant plants, such as Tetrastigma hemsleyanum Diels & Gilg [28], Panax ginseng C.A. 
Mey [69], and Juglans mandshurica Maxim. [70], researchers have identified several candidate 
cold-stress-responsive genes belonging to the AP2/ERF family.

D. kaki, a native plant species of China, has a cultivation history of more than 2000 years. 
China is rich in Diospyros resources, and 57 Diospyros species and 6 variants can be found in 
China [71], typically in tropical and subtropical regions. But in the north of China, Diospyros 
plants are vulnerable to low-temperature damage in winter. Low temperature is considered 
a major factor restricting the development of the persimmon industry in Northern China. 
D. lotus (https://www.plantplus.cn/info/Diospyros%20lotus?t=foc) is a Diospyros species 

https://www.plantplus.cn/info/Diospyros%20lotus?t=foc
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belonging to the Ebenaceae family [72] and is known for its high seedling survival rate [73], 
cold tolerance [74], and high grafting affinity with D. kaki [75]. Because of these advantages, 
D. lotus has been widely used as rootstock for Diospyros species. ERF transcription factors 
are involved in regulating plant growth and stress tolerance, though their roles in Diospyros 
species remain largely unknown. In this study, the DlERF10 gene was identified from the 
young leaves of D. lotus and cloned. The cloned sequence was analyzed using bioinformatics, 
and the DlERF10 overexpression vector was constructed and transferred into tobacco plants. 
The phenotype and the physiological and biochemical properties of the transgenic plants were 
analyzed to determine the roles of DlERF10 in cold tolerance. Our results provide valuable 
clues for understanding the gene regulatory network and molecular mechanism of DlERF10 in 
the cold tolerance of D. lotus.

Materials and methods

Materials and processing
The seeds of D. lotus were collected from Zhangcun Town, Huixian City, Henan Province 
(altitude 336.2 m, E113°52’, N35°33’). After collection the seeds were soaked in alcohol for 
30 s, and then disinfected with 9% sodium hypochlorite for 15 min. The seeds were sown in a 
nutrient bowl. When 3–4 new leaves grew out, seedlings with consistent growth status were 
chosen for carrying out different stress treatment experiments. The stress treatments were: 
low-temperature at 4°C, drought using 20% PEG6000, and salt using 250 mmol/L NaCl. 
Sampling for low-temperature stress treatment were done at intervals of 0 h, 6 h, 1 d, 3 d, and 
5 d. However, sampling for drought and salt stress treatments were carried out at 0 h, 6 h, 12 h, 
1 d, 3 d, 5 d, and 7 d intervals. Three seedlings were chosen for each time point in each stress 
treatment. Leaves were picked from D. lotus seedlings at 2nd–3rd leaves from the bottom to top, 
immediately placed in liquid nitrogen, and stored at −80°C.

Cloning and bioinformatic analysis of the DlERF10 gene
RNA extraction from young leaves was performed using the Trizol reagent. The first strand 
of cDNA was synthesized by RNA reverse transcription using the RevertAidTM reverse 
transcription kit. Based on the identified ERF gene sequences, specific primers DlERF10-F 
and DlERF10-R were designed (Table 1). PCR amplification was performed using cDNA as 
a template. The 20 µL PCR reaction system consisted of the following: cDNA template 1 µL 
(<200 ng), 2 × Taq PCR Master Mix II 10 µL, primers DlERF10-F and DlERF10-R 0.5 µL each, 

Table 1. Primer sequences.

Primer name Primer sequence (5’ to 3’)
DlERF10-F AGAAGAAGCAAGTATGTGTGGC
DlERF10-R TCCGTCCTGCCATCTCCTAGAA
qDlERF10-F ATCTGGAAGGGGGACAATTC
qDlERF10-R AGAGTAGCGCGGCAAAATTA
DkActin-F GCCATCATTAATTGGAATGGAAGC
DkActin-R GTGCCACAACCTTGATCTTCA
NPTⅡ-F GATGGATTGCACGCAGGTTC
NPTⅡ-R ATATCACGGGTAGCCAACGC
F35s GGAAGGTGGCTCCTACAAATGC
NtActin-F CCTGAGGTCCTTTTCCAACCA
NtActin-R GGATTCCGGCAGCTTCCATT

https://doi.org/10.1371/journal.pone.0314135.t001
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supplemented with ddH2O until 20 µL. PCR procedure followed: Predenaturation at 95°C for 
2 min; denaturation at 95°C for 30 s, annealing at 56°C for 30 s, extension at 72°C for 1 min, 35 
cycles; final extension at 72°C for 5 min. After the reaction, the PCR-amplified products were 
recovered and ligated to the pMD18-T vector to construct the recombinant plasmid. Next, E. 
coli DH5α competent cells were transformed with the recombinant plasmid, and the positive 
clones were screened and sequenced.

The cDNA sequences thus obtained were aligned against the homologous sequences using 
the NCBI BLAST program. The ORF and amino acid sequence of the gene were analyzed 
using DNAMAN 6. 0. 3. The phylogenetic tree was constructed using the MEGA 5.0 software. 
The conserved domain structure of the protein was predicted using the NCBI conserved 
domain search and Pfam 31. 0. Subcellular localization was performed using online software, 
including CELLO v. 2.5, PSORT Prediction, and SoftBerry ProtComp 9. 0 [55,76,77]. The 
2,000-bp sequence upstream of DlERF10 was regarded as the promoter region and extracted 
from the D. lotus genome database (http://persimmon.kazusa.or.jp/blast.html) by TBtools and 
submitted to the Plant CARE database for identifying the cis-acting elements.

Specificity of DlERF10 gene expression under environmental stresses
RNA was extracted from the samples in each of the above stress treatments in section 1.1, 
using the versatile plant RNA extraction kit (DNase I, CW2598S). cDNA synthesis was per-
formed using the RevertAidTM 1st cDNA Synthesis Kit (#K1622, Thermo Scientific), and the 
product was stored at −20°C. DkActin was used as the internal reference gene. The DlERF10 
gene expressions under different abiotic stresses were determined using SYBR Premix Ex Taq 
Ⅱ (Tli RNaseH Plus). The 10 µL qRT-PCR consisted of the following: SYBR premix Ex TaqTM 
II 5 µL, Primer-F 0.4 µL, Primer-R 0.4 µL, cDNA 0.7 µL, and ddH2O 3.5 µL. The reaction pro-
cedure consisted of the following steps: 95°C 30 s, 95°C 5 s, 56°C 30 s, 40 cycles, 95°C 15 s, 60°C 
30 s, 95°C 15 s. Four replicates were set up for each sample. The expressions of the target gene 
in different stress treatments were calculated using the 2−ΔΔCT method [78].

Expression vector construction and transfer into tobacco
The plasmid vector was constructed using one-step cloning. The E. coli DH5α competent cells 
were transformed with the pBI121-DlERF10 overexpression vector. Based on PCR validation, 
positive clones were picked and submitted to sequencing by Shanghai Shenggong Biological 
Company. The GV3101 Agrobacterium electro-competent cells were transformed with the 
recombinant pBI121 plasmid with the correct sequence. Nicotiana benthamiana Domin was 
transformed using the leaf disc method. The plants carrying the tolerance gene were screened 
using the kanamycin-containing culture medium. PCR validation was performed using 
primers of the target gene, universal primer 35s-F, reverse primer of the target gene, and NPT 
Ⅱ primers. Positive plants were identified based on the results for the three pairs of primers. 
T2 transgenic tobacco plant was obtained by self-cross and screening and used for further 
experiments.

Cold tolerance analysis of transgenic tobacco plants
Seeds of wild-type and transgenic tobacco plants were harvested and disinfected with 75% 
alcohol for 1 min and 9% sodium hypochlorite for 10 min. The seeds were washed with sterile 
water, placed on the 1/2MS solid medium, and incubated in an illumination incubator at 
22°C, with a relative humidity of 50–60% and light intensity of 10,000 Lx, under a 16/8 h light/
dark cycle. After incubation for 7 d, seedlings with consistent growth status were selected 
and transferred to a nutrient bowl. Seedlings after 30 days of growth were subjected to 

http://persimmon.kazusa.or.jp/blast.html
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low-temperature stress at 4°C. At 0 h, 12 h, 1 d, 3 d, 5 d, and 7 d of the treatment, leaves were 
harvested from the same position in different plants and immediately placed in liquid nitro-
gen at −80°C. Three biological replicates were set up. The contents of MDA and PRO and the 
activities of SOD, POD, and CAT in leaves were determined using the kits manufactured by 
Ruixin Tech.

Data processing
Analysis of variance was conducted using SPSS 25.0. Means were compared across the plants 
using Duncan’s test. Data were analyzed and plotted using Excel.

Results

DlERF10 gene clones and sequence analysis
One target sequence was cloned from the leaves of D. lotus using RT-PCR. The product was 
detected by 1.0% agarose gel electrophoresis. The target sequence was about 1100 bp in length 
(Fig 1). The target sequence was recovered and aligned with the ERF gene sequence in the 
gene pool. This newly identified gene was named DlERF10. The conserved structural domain 
of the DlERF gene was analyzed. The results showed that DlERF contained one conserved AP2 
domain lying between the 95th to the 158th nucleotides. Therefore, DlERF belonged to the AP2 
family.

Bioinformatic analysis of the DlERF10 gene
DlERF10 gene contains an ORF of 1104 bp in length encoding 367 amino acids, with a protein 
molecular weight of 41.48 kDa and a theoretical isoelectric point of 9.37. It is a hydrophilic 
protein without a signal peptide structural domain, with a subcellular localization predicted 

Fig 1. Result of PCR product of the purpose gene. M: DNA marker DL2000; 1: DlERF10 gene clone fragment of D. 
lotus.

https://doi.org/10.1371/journal.pone.0314135.g001

https://doi.org/10.1371/journal.pone.0314135.g001
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to be in the nucleus, and a secondary and tertiary structure consisting mainly of an irregularly 
convoluted and α-helix. The amino acid sequence of the DlERF10 protein was compared 
with the amino acid sequences of nine ERF proteins, including D. kaki (AGC79344.1), D. 
oleifera Cheng (EVM0025771.1), Parasponia andersonii (Planch.) Planch. (PON40526.1), 
Tripterygium wilfordii Hook. f. (XP_038684704.1), Actinidia chinensis Planch. (ADJ67433.1), 
Pistacia vera L. (XP_031287991.1), Gossypium hirsutum (XP_016702145.1), Prunus per-
sica (XP_007200418.1), and Malus domestica Borkh. (NP_001306945.1) (Fig 2). The results 
showed that D. lotus had the highest amino acid homology with D. kaki belonging to the same 
genus of the same family, which was 83.85%. Besides, all of the 20 protein sequences con-
tained the conserved AP2 domains (the part underlined in black in Fig 3). The 14th amino acid 
of this structural domain was alanine (A14). and the 19th amino acid was aspartic acid (D19), 
which are typical of the ERF family proteins [79]. It was presumed that the DlERF10 protein 
belonged to the ERF subfamily of the AP2/ERF family. Therefore, the protein was named 
DlERF10.

To further understand the genetic relationship between the species, we downloaded the 
amino acid sequences of 20 plant proteins homologous to the DlERF10 protein from the 

Fig 2. Comparison of multiple sequences between DlERF10 and other species ERF protein. The black line represents the conserved AP2 domain.

https://doi.org/10.1371/journal.pone.0314135.g002

https://doi.org/10.1371/journal.pone.0314135.g002
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NCBI database. A phylogenetic tree was constructed using the neighbor-joining method (NJ) 
in the MEGA 5.0 software (Fig 3). The results showed that D. lotus had the closest genetic 
relationship with D. oleifera and D. kaki belonging to the same genus of the same family in 
terms of the DlERF10 protein; D. lotus had the most distant genetic relationship with Populus 
alba L., Pistacia vera, and Parasponia andersonii.

The 2,000 bp nucleotide sequence upstream of the DlERF10 gene was analyzed by Plant CARE to 
obtain the regulatory elements (Table 2). The prediction results showed that this sequence con-
tained not only a large number of core sequence (TATA-box) in the promoter, the CAAT-box in 
the promoter and enhancer regions, and other basic promoter elements across eukaryotes, but also 
included 14 light-responsive elements (G-box, Box 4, I-box, GATA-motif, TCT-motif and AE-box), 
8 hormone response-related cis-elements (TGA-box, P-box, TCA-element, ABRE, TGACG-motif 
and CGTCA-motif), and 2 growth and development related elements (CAT-box and circadian).

Expression analysis of the DlERF10 gene under abiotic stresses
qRT-PCR was performed to detect DlERF10 expressions under abiotic stresses. The results 
showed that under all three types of stresses, DlERF10 was upregulated than before. Under 
low-temperature stress, the DlERF10 expression in leaves increased most significantly at 6 h, 
reaching the peak at this time point. The expression level was 6.39 times the expression in the 

Fig 3. Phylogenetic tree analysis of DlERF10 protein.

https://doi.org/10.1371/journal.pone.0314135.g003

https://doi.org/10.1371/journal.pone.0314135.g003
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control group. A reduction was observed on 1 d, though followed by another rise on 3 d. The 
DlERF10 expression in the low-temperature stress treatment on 3 d was 3.56 times the expres-
sion in the control group. A reduction occurred on 5 d, and the expression in the low- 
temperature stress treatment was 1.5 times the expression in the control group (Fig 4A). 
Under the drought stress using PEG6 00, the DlERF10 expression increased from 6 h to 
12 h, followed by a reduction from 1 d to 3 d. Another increase was observed on 5 d, and 
the expression increased most significantly on 5 d, reaching the peak. At this time point, the 
DlERF10 expression in the drought stress treatment was 6.70 times the expression in the 
control group (Fig 4B). Under the NaCl-imposed salt stress, the relative DlERF10 expression 
varied in a similar pattern as under the drought stress. The DlERF10 expression peaked on 5 
d, the value being 3.11 times the expression in the control group (Fig 4C). From the above it 
was speculated that DlERF10 expression was induced by low temperature, drought, and salt 
stresses and DlERF10 might be involved in the response of D. lotus to abiotic stresses.

Table 2. Cis-acting elements of DlERF10 gene.

Type of cis-acting element Associated element Number Function of response
Light response-related cis-element G-box Three Light-responsive element

Box 4 Three Light-responsive element
I-box Two Light-responsive element
GATA-motif One Light-responsive element
TCT-motif Four Light-responsive element
AE-box One Light-responsive element

Hormone response-related cis-element TGA-box One Growth hormone responsiveness
P-box One Gibberellin responsiveness
TCA-element One Salicylic acid responsiveness
ABRE One Abscisic acid responsiveness
TGACG-motif Two MeJA responsiveness
CGTCA-motif Two MeJA responsiveness

Growth-related cis-element CAT-box One Hyphal tissue expression-related
circadian One Circadian regulatory

https://doi.org/10.1371/journal.pone.0314135.t002

Fig 4. Relative expression level of DlERF10 gene under abiotic stress.

https://doi.org/10.1371/journal.pone.0314135.g004

https://doi.org/10.1371/journal.pone.0314135.t002
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Expression vector construction and genetic transformation
The DlERF10 gene was cloned from the leaves of D. lotus and used to construct the recom-
binant overexpression vector pBI121 (CaMV 35S promoter). The sequencing showed that 
the length of the nucleotide sequence of the cloned DlERF10 gene was consistent with the 
search result. The coding sequence of the gene was also consistent with the reference sequence 
downloaded from NCBI, indicating that the expression vector was successfully constructed. 
Agrobacterium-mediated transformation was performed to transfer the gene into tobacco 
leaves (Fig 5). Two plants, namely, plant 11 and plant 35, were selected by screening on the 
kanamycin-containing culture medium (Fig 6). The DNA extracted from the transgenic 
tobacco plants was used as a template for PCR. The PCR-amplified bands appeared at similar 

Fig 5. Genetic transformation of tobacco with DlERF10 overexpression vector. (A) Tobacco seed seeding. (B-C) Sterile tobacco 
seedlings. (D) Co-culture. (E-F) Selective culture. (G) Rooting culture. (H) Transplanting.

https://doi.org/10.1371/journal.pone.0314135.g005

Fig 6. PCR detection of transgenic tobacco plants. (A) PCR validation of primers of the target gene. (B) PCR validation of 35S-F and downstream primer 
of the target gene. (C) PCR validation of the NPTⅡ primers; M: DNA marker DL2000; 1: Negative control (water); 2: Positive control (plasmid); 3: Wild-type 
N. benthamiana; 4: Transgenic plant 11; 5: Transgenic plant 35.

https://doi.org/10.1371/journal.pone.0314135.g006

https://doi.org/10.1371/journal.pone.0314135.g005
https://doi.org/10.1371/journal.pone.0314135.g006
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positions as those in the positive control (plasmid). Therefore, the two plants were considered 
as positive (Fig 6).

Phenotypic analysis of the transgenic tobacco plants
Potted tobacco seedlings in good growth and at the same age were chosen for phenotypic 
observation before the stress was imposed. As shown in Fig 7A, the leaves were dark green in 
the transgenic plants, while the leaves were light green in the wild-type plants. Plant heights 
were measured, and the transgenic plants were much shorter than the wild-type plants (Fig 8), 
indicating that DlERF10 overexpression had an impact on plant growth.

At 6 h of low-temperature stress treatment (Fig 7B), leaves in the lower part of the wild-
type and the transgenic plants were mildly wilted, but only with limited damage. On 1 d of 
low-temperature stress treatment (Fig 7C), except for the curled edges of two leaves in the 
top of the wild-type plants, all other leaves were wilted and drooping. The leaves in the lower 
part of the transgenic plant 11 were wilted and drooping and those in the upper part were 
only wilted at the edges but not drooping. In the transgenic plant 35, very few leaves in the 
lower part were wilted. On 3 d of low-temperature stress treatment (Fig 7D), the stalk of the 

Fig 7. Phenotypic changes of tobacco plants under low-temperature stress. (A-F) Phenotype of tobacco plants treated at 0 h, 6 h, 1 d, 3 d, 5 d and 7 d under low- 
temperature stress. (G) Phenotype of tobacco plants after 2 days of recovery.

https://doi.org/10.1371/journal.pone.0314135.g007

https://doi.org/10.1371/journal.pone.0314135.g007
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wild-type plants began to bend. In the transgenic plant 11, except for curled edges in two 
leaves in the top, all other leaves were wilted and drooping. A few leaves in the lower part of 
the transgenic plant 35 were wilted and drooping, while the leaves in the upper part remained 
normal. On 5 d of low-temperature stress treatment (Fig 7E), the apical buds of the wild-type 
plants began to wilt. The upper stalk segment was seriously curved into a right angle. Except 
for the apical bud, all other leaves began to wilt and droop in the transgenic plant 11. The 
leaves in the lower part of the transgenic plant 35 also began to wilt and droop, while those 
in the upper part were slightly wilted. On 7 d of low-temperature salt treatment (Fig 7F), the 
upper stalk of the wild-type plant was drooping. The apical bud in the transgenic plant 11 was 
slightly wilted, and the stalk began to curve. The leaves in the upper part of the transgenic 
plant 35 began to curl and dry out, while the apical bud was in good condition. After 2 d of 
recovery culture (Fig 7G), the death rate of wild-type plants was 30.8%. The death rate of the 
transgenic plant 11 was 23.08%, and the leaves of undead plants were severely dried up. The 
death rate of the transgenic plant 35 was 23.08%, and very few leaves of the undead plants 
were dried out, presenting fast growth during recovery. To sum up, the wild-type tobacco 
plants under low-temperature stress were severely wilted, drooping, and dried out, and their 
death rate was higher than that of the transgenic plants. The above results indicated that 
DlERF10 overexpression enhanced the cold tolerance of the transgenic tobacco plants. The 
leaves of the transgenic plant 35 displayed even higher cold tolerance, and the plant suffered 
from less low-temperature-induced damage.

Cold tolerance analysis of the transgenic tobacco plants
The MDA contents of the wild-type and transgenic tobacco plants remained low under 
normal conditions, without significant difference. As the duration of low-temperature stress 
was extended, the MDA contents of leaves in both wild-type and transgenic tobacco plants 
increased significantly. Meanwhile, the MDA content of the transgenic plants was signifi-
cantly lower than that of the control group (Fig 9). On 3 d of low-temperature stress, the 
MDA content of leaves in the wild-type plant was 1.55 times the content in the transgenic 
plant 11 and 1.76 times the content in the transgenic plant 35. On 5 d of low-temperature 

Fig 8. Determination of plant height of tobacco. * Means significant difference (P < 0.05).

https://doi.org/10.1371/journal.pone.0314135.g008

https://doi.org/10.1371/journal.pone.0314135.g008
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stress, the MDA content of leaves in the wild-type plant was 1.62 and 1.92 times the content in 
the two transgenic plants, respectively. These results indicated that the cell membrane was less 
damaged in the transgenic plants.

Under normal conditions, the activities of SOD, POD, and CAT in the leaves of the wild-
type and transgenic plants were not significantly different, and they were slightly higher in 
the transgenic plants. As the duration of low-temperature stress was extended, the activities of 
SOD, POD and CAT were significantly higher in the transgenic plants than in the wild-type 
plants. On 5 d of low-temperature stress, the SOD activity of both wild-type and transgenic 
plants peaked. In the wild-type plants, the SOD activity on 5 d was 1.71 times the activity 
before stress. The SOD activity of the two transgenic plants was 3.51 and 3.42 times the 
activity before stress, respectively, and 2.32 and 2.18 times the activity in the wild-type plant 
on 5 d (Fig 10A), respectively. On 3 d of low-temperature stress, the POD activity of the two 
transgenic plants was 1.40 and 1.53 times the activity in the wild-type plant, respectively (Fig 
10B). The CAT activity of the two transgenic plants was 1.32 and 1.23 times the activity in 
the wild-type plant, respectively, on 3 d (Fig 10C). The above results suggested that DlERF10 
overexpression enhanced the antioxidant enzyme activities in the transgenic tobacco plants, 
thereby strengthening the reactive oxygen species scavenging capacity and hence the cold 
tolerance of the transgenic plants. The Pro contents of leaves were determined in the wild-
type and transgenic tobacco plants (Fig 10D). Under low-temperature stress, the Pro content 
increased to varying degrees in all plants, though the Pro contents of the two transgenic plants 
were significantly higher than that of the wild-type plant. On 5 d of low-temperature stress, 
the Pro contents peaked in all plants. The Pro content in the two transgenic plants was 2.14 
and 1.77 times the content before stress, respectively, and 1.34 and 1.19 times the content in 
the wild-type plant on 5 d, respectively. These results suggested that DlERF10 overexpression 
promoted Pro accumulation in tobacco plants under low-temperature stress while maintain-
ing the balance of external osmotic pressure in plant cells, thereby enhancing the cold toler-
ance of the transgenic plants.

Fig 9. Changes of MDA content in DlERF10 overexpressed tobacco and wild-type tobacco under low-temperature 
stress. * means significant difference (P < 0.05), ** means extremely significant difference (P < 0.01). * and ** repre-
sent the same meaning unless otherwise specified.

https://doi.org/10.1371/journal.pone.0314135.g009

https://doi.org/10.1371/journal.pone.0314135.g009
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Discussion
AP2/ERF transcription factors are believed to play important regulatory roles in plant growth 
and stress responses. ERF proteins are part of the AP2/ERF family and are divided into the 
ERF and DREB subfamilies, each of which contains at least one AP2 DNA binding domain 
[80]. In the present study, an AP2/ERF family gene was cloned from D. lotus. The sequence 
analysis showed that the gene only contained one AP2 domain but no B3 domain. It was 
inferred that the protein encoded by the gene belonged to the ERF family. In all ERF sub-
family proteins, the 14th and 19th amino acids in the AP2 domain are alanine and aspartic 
acid, respectively. These two amino acid residues play vital roles in specific DNA binding. In 
DREB subfamily proteins, the amino acids at the above two positions are valine and glu-
tamic acid, respectively. The functions fulfilled by the ERF and DREB subfamily proteins are 
disparate due to their differences in the structural domain [81]. In this study, we found that 
the structural domain in the cloned gene sequence was typical of an ERF subfamily protein. 
Homologous cloning was performed to isolate the gene from D. lotus, using primers that were 
designed by alignment against the sequence of the DkERF10 gene in D. kaki (GenBank acces-
sion No.: JX145122.1). Sequence analysis showed that the protein sequence encoded by this 
gene had the highest homology with the DkERF10 protein. Therefore, this gene was named 
DlERF10. The phylogenetic tree analysis indicated a close genetic relationship between the 

Fig 10. Changes of SOD (A), POD (B), CAT (C) and PRO (D) of overexpressed DlERF10 tobacco and wild-type tobacco under low-temperature stress.

https://doi.org/10.1371/journal.pone.0314135.g010

https://doi.org/10.1371/journal.pone.0314135.g010
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two species. It is generally believed that genes with high homology may share similar origins 
and perform similar biological functions.

Studies on the ERF transcription factors in Diospyros species have been generally focused 
on deastringency. For example, DkERF1 and DkERF6 can be only induced by CO2 treat-
ment, while DkERF4 and DkERF5 can be induced by both CO2 and C2H4 treatments [82]. 
Among the hypoxia-responsive genes, the expression of three ethylene response factor genes 
(DkERF8/16/19) showed significant correlations with postdeastringency persimmon fruit 
softening [83]. Using RNA-seq and realtime PCR, twelve ethylene response factor genes 
(DkERF11-22) were isolated and characterized, to determine those responsive to high CO2 
treatment. Only two genes, DkERF19 and DkERF22, showed trans-activation effects on 
the promoters of deastringency-related genes pyruvate decarboxylase genes (DkPDC2 and 
DkPDC3) and the transcript levels of these genes was enhanced by hypoxia. Moreover, 
DkERF19 and the previously isolated DkERF9 had additive effects on activating the DkPDC2 
promoter [84]. According to another study, the ERF and NAC transcription factors were syn-
ergistically involved in cellulose and hemicellulose degradation during post-deastringency  
persimmon fruit softening [85]. Zhu [86] found that high CO2/hypoxia-responsive transcrip-
tion factors DkERF24 and DkWRKY1 interacted with each other, activating the DkPDC2 
promoter. DkERF19, DkERF23, DkERF24 and DkERF25 were sensitive to hypoxia and 
might be also involved in hypoxia-driven deastringency and maturation of persimmon 
fruits. Besides, the transcription complex of DkERF24 and DkWRKY1 activated DkPDC2, 
which further affected the hypoxia response and deastringency of persimmon fruits. It has 
been found that the ERF subfamily proteins play vital roles in resisting abiotic stresses [87]. 
Wang [88] identified 57 low-temperature-responsive ZmERFs from the transcriptome of 
maize leaves constructed under 5 and 22°C, including 53 upregulated ZmERFs and 4 down-
regulated ZmERFs. Real-time fluorescence quantitative PCR showed that the expression 
of GRMZM2G434203 gene was induced under low temperature and drought stresses. The 
expression of the GRMZM2G544539 and GRMZM2G040664 genes was induced under low 
temperature, salt, and drought stresses. Jin [89] found that ‘Jinpeng No. 1’ tomato variety had 
a significant increase in the expression of the SlERFb.2 gene under low-temperature stress 
at 4°C, which peaked after 4 h of low-temperature stress. SlERFb.2 expression could be also 
induced by drought stress. Gao [47] performed RT-qPCR, which found that the expression of 
the PpcERF5 gene was induced by low temperature. The peak expression was observed in the 
leaves of Prunus pseudocerasus after 4 h of low-temperature stress at 4°C. Expression of the 
PpcERF5 gene promoted seed germination and precocious flowering of Arabidopsis thali-
ana, indicating the regulatory function of the gene in the dormancy release of flower buds of 
Prunus pseudocerasus [90]. In this study, real-time fluorescence quantitative PCR was per-
formed to determine the expression of the DlERF10 gene in the leaves of D. lotus under differ-
ent abiotic stresses. The results showed that the expression first increased and then decreased 
under low temperature, drought and salt stresses. It can be said that the DlERF10 gene from 
D. lotus was responsive to all three stresses. We have reason to suppose that the ERF transcrip-
tion factors are involved in plant responses to various abiotic stresses, including low tempera-
tures. We analysed the performance of transgenic tobacco under low-temperature stress and 
found that the transformed plants improved tolerance to low temperature. ERF transcription 
factors enhance plant cold tolerance by regulating downstream expression of cold tolerance- 
related genes. We analysed the pathways by which ERF transcription factors regulate genes 
downstream of low-temperature stress. One is through the regulation of key genes for plant 
hormone transduction in order to control hormone signalling pathways. PtrERF109 directly 
regulates PtrPrxl to scavenge ROS in plants for cold tolerance [91]. Secondly, cold tolerance is 
improved by regulating sugar metabolism pathway. PtrBAM1 is an amylase synthesis gene in 
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citrus, and PtrCBF can regulate cold tolerance by regulating PtrBAM1 expression and affect-
ing soluble sugar levels [92]. Another AP2/ERF transcription factor encoding gene in citrus, 
PtrERF108 regulates cottonseed sugar content through direct regulation of PtrRafS (RafS), 
which regulates cold hardiness [93]. Third, collaboration with proteins to improve plant 
cold tolerance. EjERF39 can form a synergistic activation complex with EjMYB8 to enhance 
Ej4CL1 gene expression, increase fruit lignification, and resist cold stress [63].

The MDA content is closely related to the degree of lipid peroxidation of cell mem-
branes. MDA generation and accumulation can cause damage to plant cell membranes [94]. 
For this reason, MDA is a common physiological indicator in studies on plant aging and 
stress tolerance. Measuring MDA content offers a pathway to understanding lipid peroxi-
dation of plant cell membranes, which makes it possible to assess stress tolerance indirectly. 
Redox reaction is the most important metabolic pathway in organisms, supplying energy 
for life sustenance and exerting a decisive impact on aging and death. Oxygen is essential 
to all life activities. However, some metabolic processes involving oxygen may result in the 
generation of cytotoxic by-products, such as oxygen radicals, or reactive oxygen species 
[95]. SOD is a major antioxidant enzyme, which transforms reactive oxygen species into 
hydrogen peroxide and water through disproportionation, thereby clearing away reactive 
oxygen species, protecting the cell membrane system against damage, and maintaining nor-
mal physiological functions of cell membranes [96]. POD is an oxidase found extensively in 
animals, plants, and microorganisms, and catalyzes a variety of oxidation reactions involv-
ing hydrogen peroxide [97]. As an enzyme scavenger, CAT is a common enzyme found in 
nearly all living organisms exposed to oxygen and catalyzes the decomposition of hydrogen 
peroxide to water and oxygen, protecting cells against hydrogen peroxide-induced damage 
[98]. SOD, POD, and CAT interact with each other and jointly participate in the removal of 
reactive oxygen species, protecting plant cells from the damage caused by reactive oxygen 
species. Pro is an osmoregulatory substance that maintains osmotic balance across mem-
branes within the body and structural integrity of membranes. Pro can also activate SOD, 
POD, and CAT to clear away reactive oxygen species [99]. The amount of Pro accumulating 
in plants is an indicator of stress tolerance, to a greater or lesser degree. The Pro content 
is also a common measure of stress tolerance in plants [100]. In the present study, the 
MDA content of leaves of the transgenic tobacco plants under low-temperature stress was 
lower than that of the wild-type plant. Meanwhile, the SOD, POD, CAT, and Pro contents 
were higher in the former than in the latter. This indicated that compared with the wild-
type tobacco plants, the transgenic plants suffered from less cell membrane damage under 
low-temperature stress. Higher activities of antioxidant enzymes usually mean a greater 
reactive oxygen species scavenging capacity and less disturbance caused by low tempera-
tures to cellular osmolality and cell membranes. As a result, the transgenic tobacco plants 
displayed greater cold tolerance, which agreed with previous findings in grapes [65, 66], 
bananas [101], and birch [102].

Conclusion
In this study, the DlERF10 gene was cloned from the leaves of Diospyros lotus L., with a full 
length of 1104 bp and encoding a sequence consisting of 367 amino acids. The coded pro-
tein contained one transmembrane structural domain and a typical conserved AP2 domain 
and belonged to the ERF subfamily. Under the low temperature, drought and salt stresses, 
the DlERF10gene was upregulated, indicating that the expression of the DlERF10 gene was 
induced by different stresses and the gene might act as a multi-functional transcription 
regulation factor. The contents of MDA and Pro and the activity of SOD, CAT, POD in the 
transgenic tobacco plants were determined under low-temperature stress, and the results 
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confirmed the superiority of the transgenic plants in cold tolerance. Our research lays the 
foundation for revealing the regulatory function of the DlERF10 gene under abiotic stresses.
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