
RESEARCH ARTICLE

Rethreading the needle: A novel molecular

index of soil health (MISH) using microbial

functional genes to predict soil health

management

Heather L. Deel1, Daniel K. Manter1, Jennifer M. MooreID
2*

1 United States Department of Agriculture, Agricultural Research Service, Soil Management and Sugarbeet

Research Unit, Fort Collins, Colorado, United States of America, 2 United States Department of Agriculture,

Agricultural Research Service, Forage Seed and Cereal Research Unit, Corvallis, Oregon, United States of

America

* Jennifer.moore2@usda.gov

Abstract

Soil health relies on the actions and interactions of an abundant and diverse biological com-

munity. Current soil health assessments rely heavily on a suite of soil biological, chemical,

and physical indicators, often excluding molecular information. Soil health is critical for sus-

tainable agricultural production, and a comprehensive understanding of how microbial com-

munities provide ecosystem services can help guide management practices. To explore the

role of microbial function in soil health, 536 soil samples were collected from 26 U.S. states,

representing 52 different crops and grazing lands, and analyzed for various soil health indi-

cators. The bacterial functional profile was characterized using 16S ribosomal RNA gene

sequencing paired with PICRUSt2 to predict metagenome functions. Functional data were

used as predictors in eXtreme Gradient Boosting (XGBoost), a powerful machine learning

algorithm, and enzymes important to soil health indicators were compiled into a Molecular

Index of Soil Health (MISH). The overall MISH score significantly correlated with non-molec-

ular measures of soil health and management practice adoption. Additionally, several new

enzymes were identified as potential targets to better understand microbial mediation of soil

health. This low-cost, DNA-based approach to measuring soil health is robust and generaliz-

able across climates.

Introduction

Jenkinson [1] described the microbial community as the “eye of the needle through which all

nutrients pass”. This pioneering work launched a new research emphasis to link soil microbes

with key soil functions important for plant productivity and ecosystem health. With rapid

advances in sequencing technologies using marker genes, numerous studies have linked shifts

in the soil microbial community with land use [2, 3] and fundamental functions of healthy

soils [4–8], including nutrient cycling [9], aggregate stability [10], carbon sequestration [11],

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0314072 December 2, 2024 1 / 17

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Deel HL, Manter DK, Moore JM (2024)

Rethreading the needle: A novel molecular index of

soil health (MISH) using microbial functional genes

to predict soil health management. PLoS ONE

19(12): e0314072. https://doi.org/10.1371/journal.

pone.0314072

Editor: Hao-Xun Chang, National Taiwan

University, TAIWAN

Received: September 13, 2024

Accepted: November 4, 2024

Published: December 2, 2024

Copyright: This is an open access article, free of all

copyright, and may be freely reproduced,

distributed, transmitted, modified, built upon, or

otherwise used by anyone for any lawful purpose.

The work is made available under the Creative

Commons CC0 public domain dedication.

Data Availability Statement: All data and code

used in this study are available at: https://github.

com/HeatherDeel-USDA/microbial_indicators.

Funding: The author(s) received no specific

funding for this work.

Competing interests: The authors have declared

that no competing interests exist.

https://orcid.org/0000-0001-5403-8184
https://doi.org/10.1371/journal.pone.0314072
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0314072&domain=pdf&date_stamp=2024-12-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0314072&domain=pdf&date_stamp=2024-12-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0314072&domain=pdf&date_stamp=2024-12-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0314072&domain=pdf&date_stamp=2024-12-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0314072&domain=pdf&date_stamp=2024-12-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0314072&domain=pdf&date_stamp=2024-12-02
https://doi.org/10.1371/journal.pone.0314072
https://doi.org/10.1371/journal.pone.0314072
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/
https://github.com/HeatherDeel-USDA/microbial_indicators
https://github.com/HeatherDeel-USDA/microbial_indicators


and plant health and crop productivity through plant growth-promoting bacteria [12, 13]. Addi-

tionally, the microbiome provides defenses against environmental stresses like disease [14],

drought [15–17], and flooding [18]. These marker gene studies quantified microbial community

composition metrics (e.g., alpha and beta diversity) and/or relative abundances of specific taxa.

While information about the actions and interactions of microbes holds great promise to support

future developments in sustainable agriculture [19], interpretations are hampered. A significant

limitation of taxonomy is a decoupling of microbial function from composition such that the

composition may change in response to external perturbations while function does not [20]. This

is an example of functional redundancy, or the ability of a broad range of taxa to perform similar

metabolic functions [20, 21]. Consequently, shifts in community composition do not provide

answers as to why or how the community function changes. This is exacerbated in large-scale

studies in which community composition is more likely to differ by region even when function is

similar [20]. Conversely, microbiomes are capable of changing function without changing com-

position, as was shown in Bowles et al. [22] in which enzyme activities changed more dramatically

than the soil taxonomic community under different nutrient sources and rates. These caveats

highlight the importance of characterizing function rather than taxonomy for a more complete

understanding of microbial responses to the environment.

Soil enzymes are critical catalysts responsible for biochemical reactions necessary to sup-

port soil life and numerous ecosystem functions. Enzymes that are known to differ across land

use management strategies and disease states include (but are not limited to) carbohydrate

hydrolases (e.g., β-glucosidase, β-N-acetylglucosaminidase, chitinase, catalase, invertase etc.),

sulfur cycling enzymes (e.g., arylsulfatase), phosphorus cycling enzymes (e.g., phosomonoes-

terases, phosphodiesterase), and nitrogen cycling enzymes (e.g., amidohydrolases and enzymes

involved in ammonia oxidation, protein decomposition, denitrification, and nitrogen fixation)

[23–25]. These enzymes have been studied for decades and are commonly measured because

they are closely linked with nutrient cycling and mineralization. However, most soil enzyme

assays are conducted using bench-scale approaches where a limited number of enzymes are

evaluated. Furthermore, microbes can produce at least 2500 different enzymes [26]. Thus, a

broader and non-specific approach is necessary to effectively capture the diverse microbial

functions that collectively enhance soil health.

The appropriate methodology for assessment of functional gene profiles is not without con-

troversy with recommendations ranging from biochemical to molecular techniques. Although

biochemical enzymatic and targeted molecular techniques (e.g., gene-specific quantitative

PCR) can provide information on how microbial communities respond to management and

climate [27], these approaches require a known substrate and an individual assay for each tar-

get enzyme or gene [28]. For more inclusive molecular techniques, two widely available

options are whole genome sequencing [29] and metagenome prediction tools (e.g., PICRUSt2

[30], Tax4Fun [31]) using phylogenetic reconstruction. Sun et al. [29] compared metagenome

prediction tools (PICRUSt, PICRUSt2, Tax4Fun) with whole genome sequencing for a variety

of sample types. Overall, they found very high spearman correlations (r > 0.622) between gene

relative abundances; however, significant differences between groups were more consistent

with samples of less complexity (e.g., human metagenomes) versus higher complexity (e.g.,

soil metagenomes). Furthermore, Rodriguez and Konstantinidis [32] estimated that soil sam-

ples require a 100-fold or more greater sequencing depth to achieve 95% coverage for a single

soil (50 Gbp) vs human (0.5 Gbp) metagenome sample. To achieve this level of coverage, a sin-

gle soil sample would require upwards of four Illumina MiSeq (~15 Gbp) sequencing runs or

one Oxford Nanopore (~48 Gbp) sequencing run per sample. Assuming a consumable cost of

$1,000 per Oxford Nanopore sequencing run, metagenome sequencing of 500 samples at 95%

coverage would cost approximately $500,000. In contrast, gene (e.g., 16S rRNA) sequencing
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costs approximately $20–50 per sample [33]. Assuming a consumable cost of $30 per sample, a

500-sample study using amplicon sequencing and phylogenetic reconstruction would cost

$15,000. For wide-scale surveys, such as the one conducted here, whole genome sequencing

efforts for complex soil samples are currently cost-prohibitive and unfeasible.

As described above and outlined in Manter et al. [4], many studies have identified specific

taxa or key functional genes that respond to management practices and are associated with

healthy soils. More recently, machine learning techniques have been used to align specific taxa

as predictors of traditional soil health indicators [7], but we are unaware of any studies that

have developed a microbial functional index that represents their collective contribution to

soil health. Thus, our objective was to develop and test a new soil health index based on the

molecular characterization of microbial functional capacity. To tackle this complex goal, we

sequenced over 500 soil samples previously used as part of a national soil health assessment

[34] and posed two interdependent questions: 1) Can the relative abundance of enzymes as

estimated using PICRUSt2 predict individual soil health indicators using a random forest

modeling approach? 2) Can we use this model to develop a new molecular index of soil health

(MISH) that is sensitive to management at a national scale? Previous comparisons between

gene abundances derived from PICRUSt2 phylogenetic reconstruction and qPCR have also

been shown to be significantly correlated [35] but may be influenced by primer-specificity.

Since our goal was to assess the entire microbial functional capacity in soil samples and

develop an untargeted molecular index of soil health, we utilized 16S rRNA amplicon sequenc-

ing and gene abundance estimates from PICRUSt2 as both the most comprehensive and cost-

effective approach currently amenable to a large-scale national survey of soils.

Methods

Sample collection and DNA sequencing

Details on soil collection, management histories, geography, and soil health measurements are

provided in [34]. Briefly, subsamples from the 536 soil samples (0–15 cm) collected from 26

states in the U.S. representing annual cropland (n = 335), perennial cropland (n = 91), and

rangeland (n = 110) systems were frozen and shipped to the U.S. Department of Agriculture,

Agricultural Research Service, Fort Collins, CO. DNA extraction, PCR amplification, and

library preparation were conducted following protocols commonly used in our laboratory [36].

Briefly, DNA was extracted from 0.25 g subsamples using the Qiagen DNeasy Powersoil Pro Kit

(Qiagen, Germantown, MD) using a 10-min vortex lysis step and a fully automated Qiagen

QIAcube robot. DNA quality was assessed using a Nanodrop 1000 (Thermo Scientific, Wal-

tham, MA) and quantified fluorometrically with the Invitrogen dsDNA HS Assay Kit on a

Qubit 2.0 (Life Technologies, Carlsbad, CA). The V3-V4 hypervariable region of the 16S rRNA

gene was amplified and prepared for sequencing using the Illumina MiSeq Reagent Kit v3 using

the following primers: forward 50-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTAC
GGGNGGCWGCAG-30 and reverse 50-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGAC
TACHVGGGTATCTAATCC-30 with Illumina adapter sequences denoted in italics and under-

lined. The master mix consisted of 2 μL sample genomic DNA, 10 μL of 2X Maxima SYBR

Green (Thermo Scientific, Waltham, MA, USA), and 2 μL each (10 μM) of forward and reverse

primers for a total 20 μL reaction mix. The PCR thermal cycling conditions were as follows:

95˚C for 5 min, 30 cycles of 95˚C for 40 s, 55˚C for 120 s, 72˚C for 60 s, and a final annealing at

72˚C for 7 min. The resulting amplicons were purified using an in-house preparation of solid

phase reversible immobilization (SPRI) magnetic beads.

Samples were barcoded using Illumina Nextera XT index sequences added by a second

PCR amplification. The master mix (50 μL) consisted of 5 μL of first-round PCR product,
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25 μL of 2X Maxima SYBR Green (Thermo Scientific, Waltham, MA, USA), 10 μL water, and

5 μL each of forward and reverse indices. PCR reactions were amplified at 95˚C for 3 min, 8

cycles of 95˚C for 30 s, 55˚C for 30 s and 72˚C for 30 s, followed by final annealing of 72˚C for

5 min. Following amplification, the PCR product was cleaned using SPRI beads and quantified

using a Qubit fluorometer (Thermo Scientific, Waltham, MA, USA). Final library size and

purity were verified using a TapeStation system (Agilent Technologies, Santa Clara, CA, USA)

and the Kapa Biosystems kit (Sigma Aldrich, St Louis, MO, USA). The final pooled sample was

diluted to 4 nM with ddH2O, denatured with 0.2 N NaOH, and a final dilution to 15 pM with

HT1 buffer. Sequencing was performed on an Illumina MiSeq using the v3 600 cycle kit (Illu-

mina, San Diego, USA) with a 25% PhiX spike-in control. DNA sequence processing consisted

of primer removal from demultiplexed raw fastq files using Cutadapt v3.2 [37] and inference

of amplicon sequence variants using the default pipeline in DADA2 [38]. All sequence variants

were classified using the default NCBI-linked 16S rRNA reference database available from

Emu v3.0.0 (https://github.com/treangenlab/emu) using minimap2 v2.22 [39].

Functional profiling

The bacterial community functional profiles were created using the metagenome prediction

pipeline, PICRUSt2 [30]. The full pipeline (picrust2_pipeline.py) was used with the representa-

tive sequences and biom tables for each sequencing with the “—stratified” (to create stratified

tables at all steps) and “—skip_norm” (to skip normalizing sequence abundances by predicted

marker gene copy numbers) parameters. Additionally, hidden state prediction (hsp.py) was

used to predict 16S copy numbers with the “-n” parameter so that Nearest-sequenced taxon

index (NSTI) values were calculated.

The stratified metagenome output (pred_metagenome_contrib.tsv.gz) and the predicted

16S copy numbers (marker_predicted_and_nsti.tsv.gz) were imported into R. The predicted

16S copy numbers were used to correct bacterial abundances, and relative abundances were

calculated using the general equation taxon_relative_abundance / 100 * genome_function_-

count / genome_16S_count. Functional gene relative abundances were calculated for each

gene associated with an enzyme commission number (EC), then converted to a feature table of

ECs per sample and merged with metadata.

Previous indicator ratings and management indices used for model

development and testing

We developed and tested our new molecular-based index against the three soil health metrics

from our previous national assessment: 1) individual soil health indicator ratings; 2) an overall

soil health index; and 3) our Soil Health Management Index. The first two were developed

using a structural equation model (SEM) that accounted for differences in climate and texture,

thus enabling comparison at a national level, and are described in detail in Deel et al. [34].

Briefly, indicator ratings were calculated using the embedded SEM regressions to predict indi-

cator values at each location based on clay content and climate zone, and the residuals

(observed–predicted) were converted into a rating using the empirical distribution function in

R (S1 Fig). Soil health indicator ratings were calculated for two physical properties (wet aggre-

gate stability [AggStab], available water capacity [WaterCap]) and four biological properties

(soil organic matter [SOM], active carbon [ActiveC], autoclaved-citrate extractable protein

[ACE], and soil respiration [Resp]). Details of all protocols for the soil health indicators are

provided by Schindelbeck and Moebius-Clune [40]. These indicators are among those that

have been evaluated for use in “standardized, rapid, and quantitative assessments of soil health

based on relevance to key soil processes [and] response to management” [41]. In addition, this
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SEM combined the contribution of each soil health indicator into a single latent variable of

soil health, which we refer to as SEMWISE (Structural Equation Model for Well-Informed Soil

Evaluation) [34]. Similar to the individual ratings, we used the empirical distribution function

in R to transform these values into an overall SEMWISE rating that ranged from 0–100. The

overall ratings were then grouped into five equidistant bins (very low: 0–20, low: 20–40, med:

40–60, high: 60–80, and very high: 80–100) to reflect soil health status across the samples.

Our Soil Health Management Index (SHMI) was designed to translate the influence of multi-

ple management practices into a single index based on three soil health principles [34]. The

practices include increasing plant biodiversity, minimizing soil disturbance, and maximizing

living roots and soil cover. The SHMI score is then grouped into five bins, with lower values

representing management systems of low soil health (e.g., monocultures with intensive tillage

practices) and higher values approaching a management system represented by all soil health

principles (e.g., perennial grazing lands with a diversity of plant species or cover crops with no-

till and/or diverse crop rotations). Distilling management into a single index allows for the com-

parison of management across a wide range of agricultural systems that differ in their manage-

ment histories and captures the influence of multiple practices (e.g., cover cropping and tillage).

Molecular index development and testing

All analyses were performed in R v4.4.0 [42]. We used Extreme Gradient Boosting decision

trees (XGBoost) to model the relationship between microbial functional gene profiles (i.e., EC

relative abundances) and the SEMWISE-derived soil health indicator ratings. XGBoost has

been shown to perform well on microbiome data [43, 44]. Each feature (EC relative abun-

dances) was first scaled between 0 and 1 using the vegan package [45] and only features present

in more than one-third of the samples were included in the XGBoost model. The dataset was

then randomly split into training (80%) and test (20%) sets stratified by climate zone using the

rsample package [46]. Models were run 25 times using independent splits to account for lucky

and unlucky splits. For each run, model tuning was based on three-fold cross-validation of

training data combined with Bayesian optimization [47] to select the best hyperparameters

(eta, gamma, max_depth, min_child_weight, lambda, alpha) using AUC as the evaluation cri-

teria. To compare accuracies of all model types, R2 values between observed versus predicted

for all 25 models and all indicators were graphed as a distribution. A linear model between

observed versus predicted values was generated for each model using the appropriate test data-

sets [48, 49]. R packages used for modeling include xgboost [50], caTools [51], and caret [52].

For each soil health indicator rating, the top enzymes were selected (e.g., enzymes present

in 13 or more of the 25 independent models runs and ranked by their average gain across all

model runs where the enzyme was present) to create a molecular index of soil health (MISH).

Any enzyme (normalized relative abundance) that exhibited a negative Spearman correlation

with the indicator of interest was first inverted (subtracted from 1) and then a weighted mean

was calculated using the scaled relative abundances with average gains as weights to create

individual MISH indicator ratings. An overall MISH rating was created similarly using

enzymes from the previous step. The number of enzymes to select from each rating for the

overall MISH rating was determined by creating the MISH score with variable numbers of

enzymes (from 10–100), running a regression between the MISH indicator rating and the

SEMWISE indicator rating, and observing when the R2 and average AIC reached a maximum.

If a feature was common between two or more soil health indicators, the maximum gain was

used for weighting.

The ability of the MISH ratings to capture differences associated with soil health indicators

or management was assessed by comparing the distribution of ratings across indicator bins
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(very low: 0–20, low: 20–40, med: 40–60, high: 60–80, and very high: 80–100) using the non-

parametric Kruskal-Wallis test with pairwise comparisons using Wilcoxon rank sum tests with

FDR adjustment. All bins were constructed to account for climate and textural differences to

enable comparisons across regions, soil types, and individual management practices.

The top enzymes for each indicator were assigned to KEGG pathways [53], which provides

information on the function of each enzyme. All enzyme names and classifications were

extracted from the ExplorEnz database, which is the approved International Union of Bio-

chemistry and Molecular Biology Enzyme nomenclature and classification list [54].

Results and discussion

Data quality and coverage

A total of eight MiSeq runs were conducted resulting in 7,332,013 high-quality sequencing

reads, approximately 2 Gbp of sequence data, and an average sequencing depth of 17,262 reads

per sample. For the entire dataset, we observed a total of 6,733 bacterial species and a total of

2,433 bacterial enzymes after phylogenetic reconstruction with PICRUSt2. A collector’s curve

analysis showed that approximately 450 and 50 samples were required to reach 95% coverage

of the total taxonomic and enzymatic richness, respectively (Fig 1A). Furthermore, the enzyme

collector’s curve flattened while the species curve did not, indicating that we had likely cap-

tured the full enzyme community but not species. In a typical sample, an average of 280 species

and 1,704 enzymes were present, representing 4% and 70% of the total potential richness. In

addition, there were 1,547 enzymes present in over 80% of samples, while most species were

present in less than 20% of samples (Fig 1B).

Since species are often unique to smaller subsets of samples, as shown here, more samples

are required to create an accurate model. Furthermore, it is uncertain whether unique species

perform the same functions (i.e., functional redundancy). By using an enzyme approach, we

circumvent the need to characterize functional redundancy, and we utilize the universally

present enzymes to create a widely applicable model for measuring soil health. However,

PICRUSt2 also has potential limitations. First, due to its DNA-based nature, it is not a direct

measure of enzyme presence or activity but rather a measure of functional gene abundance or

capacity. This limitation is true for any DNA-based marker gene or metagenome sequencing

project as activity will ultimately depend upon gene expression and protein activity. Second,

Fig 1. Collector’s curve and proportion analysis of species or enzyme prevalence. (A) Number of observed species

(orange points) or enzymes (green points) as sample number increases. (B) Histogram of the proportion of species

(orange bars) or enzymes (green bars) present in each sample, binned by the proportion of samples. Values above each

bar are the number of species or enzymes in that bin.

https://doi.org/10.1371/journal.pone.0314072.g001
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there is some uncertainty in applying a phylogenetic approach using a single marker gene (i.e.,

16S rRNA) [55]; however, previous studies have shown that PICRUSt2 can be highly corre-

lated with metagenome sequencing [29, 30], but for a fraction of the price. Overall, previous

studies and the data shown in Fig 1 highlight the robustness of using enzymes to develop a soil

health index due to its ubiquity across a variety of soils and its cost-effectiveness.

Microbial functional data predicts soil health indicators

Since the goal is to develop a comprehensive index, we ran each model 25 times and compiled

the results. This is because random forest variable importance measures are biased [56], and

repeating the model increases confidence in the enzymes identified as important to soil health

indicators. A compilation of the 25 models predicting soil health indicator ratings from the

PICRUSt2 functional genes (enzyme relative abundances) was developed for each of the six

soil health indicators. Linear regression p-values of predicted versus observed values for the

test sets were significant (p< 0.001) for all soil health indicators. Mean adjusted R2 values for

each soil health indicator rating ranged from 0.221 to 0.337 (Table 1) and root mean square

errors (RMSE) ranged from 0.239 to 0.251 (Table 1). ACE protein (0.337) and SOM (0.310)

measurements had the highest mean R2 values with WaterCap (0.221) and Resp (0.223) the

lowest. For the 25 independent model runs, the average number of enzymes retained in the

models ranged from a low of 359 (AggStab) to a high of 554 (SOM) (Table 1). There was signif-

icant variation in the number of enzymes retained in each random forest model depending on

the train/test data split. For example, the number of enzymes ranged from 8 to 1164 for ACE

protein (Table 1). The enzymes selected also varied between each model run with a range of

0–7 enzymes present in all 25 model runs for each indicator (S2 Fig).

Due to the 25 model repetitions and the feature selection implemented by XGBoost, many

enzymes were not present in all models. To compile these results, a list of potential “impor-

tant” enzymes was created, including enzymes that were present in more than half of the

model runs and had the highest impact on model accuracy or gain. These enzymes included

both positively and negatively correlated with the indicators and may not necessarily be

defined by linear relationships. Most enzymes were not included in the models, with an

approximate range of 15–23% of the total number of identified enzymes included in any single

model run.

The enzymes with the top ten average gains for each soil health indicator tended to be

unique for each indicator (Fig 2 and S1 Table), and they spanned a range of KEGG pathways

(Fig 3 and S2 Table) and enzyme classes (S3 Table). The top 50 enzymes for each indicator

were compiled. Since some of the top enzymes were common between indicators, this resulted

in a final list of 235 unique enzymes. Of these 235 enzymes, 22.6% were associated with “Car-

bohydrate metabolism”, 20.9% with “Amino acid metabolism”, 9.8% with “Energy

Table 1. Summary statistics of XGBoost modeling results. Data included is from all 25 models and each soil health indicator. RMSE = root mean squared error. No. of

Enzymes represents the number of enzymes retained in the model after feature selection.

Adjusted R2 RMSE No. of Enzymes

Indicator Mean SD Mean SD Mean SD Min Max p-value

ACE 0.337 0.077 0.239 0.019 451 310 8 1164 <0.001

ActiveC 0.262 0.080 0.248 0.015 413 245 8 894 <0.001

AggStab 0.270 0.064 0.251 0.015 359 246 13 987 <0.001

Resp 0.223 0.084 0.256 0.012 372 300 20 1163 <0.001

SOM 0.310 0.056 0.240 0.014 554 214 195 1133 <0.001

WaterCap 0.221 0.051 0.249 0.016 397 246 11 1085 <0.001

https://doi.org/10.1371/journal.pone.0314072.t001
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Metabolism” or “Metabolism of cofactors and vitamins”, 9.4% with “Xenobiotics biodegrada-

tion and metabolism”, 6.8% with “Biosynthesis of other secondary metabolites”, and 6.4% with

“Lipid metabolism” or “Nucleotide metabolism”; all other KEGG pathways were associated

with less than 5% of the enzymes. For each indicator, the distribution of enzymes and their

mapped KEGG pathways differed (Fig 3 and S2 Table). The pathways represented by the 50

important enzymes for the SOM rating was most diverse (Fig 3), likely because organic matter

is complex and requires the use of many bacterial enzymes to break it down.

Carbohydrate metabolism was among the most common pathway for all six indicators.

Many of these enzymes (a full list is shown in S2 Table) are dehydrogenases, which are known

to oxidize SOM as part of the microbial respiration pathway [25]. This may explain why the

carbohydrate metabolism pathway, closely followed by energy metabolism, have the highest

Fig 2. Enzymes with the top ten average gains for each soil health indicator rating. For each enzyme on the x-axis, the average gain on the y-axis was

calculated by averaging the gains from all 25 XGBoost models for the respective indicator (see section Molecular index development and testing for method

of gain calculation). Enzymes are labelled by their Enzyme Commission numbers and additional details about each enzyme can be found in S1 and S2

Tables.

https://doi.org/10.1371/journal.pone.0314072.g002
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proportion of enzymes in the Resp rating (Fig 3). Carbohydrate metabolism was also the most

abundant pathway in the ACE and AggStab ratings (Fig 3).

Amino acid metabolism was the next most abundant pathway of the top enzymes. Manipu-

lating amino acid metabolism has been shown to improve crop nitrogen (N) use efficiency

through regulating N uptake, assimilation, and remobilization efficiencies [57]. Amino acids

are a key mobilizable source of N for plants in which the N is made available by extracellular

microbial enzymes through deamination and the release of ammonium N [58]. This influx of

N can then influence soil aggregation, either by increasing [59] or decreasing [60] its stability.

Additionally, amino acid metabolism has been shown to maintain energetic balance by coordi-

nating with carbohydrate metabolism [61], the most abundant pathway. Amino acid metabo-

lism had the highest relative abundance in the ActiveC and WaterCap ratings (Fig 3). Active C

has been shown to be associated with soil N availability [62, 63], and a low C:N ratio is needed

to store and maintain N in the soil organic matter [41]. Water availability has been shown to

affect amino acid composition [64], and the associated enzymes identified here may be tar-

geted in future studies to better understand the role that microbes play in this relationship.

Two enzymes that were within the top predictive enzymes of several indicator ratings are

notable. EC 1.5.5.2, a proline dehydrogenase involved in amino acid metabolism, increased

with ACE, Active C, SOM, and WaterCap ratings (S1 Table). Additionally, EC 1.17.4.1, a

Fig 3. Number of enzymes associated with each KEGG pathway for each soil health indicator rating. Each enzyme may be classified to

more than one pathway and the reported values are expressed as a proportion of the total classifications. The “Other” pathway represents

pathways that were irrelevant to enzyme function in soils (i.e., pathways that were human-related).

https://doi.org/10.1371/journal.pone.0314072.g003
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reductase involved in DNA repair, significantly increased with ACE, Active C, and SOM rat-

ings (S1 Table). Both enzymes are likely constitutive, or always present in the soil [25] and

have consequently been ignored in studies relating microbial enzymes and soil health. How-

ever, their positive correlation with several soil health indicators warrants further investiga-

tion. The top enzymes showed both positive and negative correlations with the soil health

indicators (S1 Table). It is beyond the scope of this paper to determine if the positive enzymes

are responsible for building soil health or responding to the higher levels of C and N (e.g.,

SOM) increasing microbial growth and survival and thus enzyme abundances. However, these

enzymes are the most consistent and important features for predicting the various soil health

indicators and may be key for developing indices for predicting soil health from a single low-

cost 16S rRNA amplicon analysis.

Molecular index of soil health

Rather than supplying a single machine learning model as the tool for measuring soil health,

we chose to develop a comprehensive molecular index that incorporated results from multiple

(25) models. Random forest variable importance measures are biased [56] such that the split

during tree generation can change which features are identified as most important. By running

25 models, our goal was to account for this bias and identify enzymes that are consistently

important to soil health. These results could then be combined into a final, simplified index

that includes few, but important, enzymes, and still has accurate prediction of soil health. This

would additionally allow for the index to be readily applied across other datasets.

To compile important enzymes into a molecular index of soil health (MISH), the optimal

number of enzymes to incorporate was first selected using average R2 and Akaike Information

Criterion (AIC). Although all regressions between the MISH indicator rating and SEMWISE

indicator ratings were significant, average R2 and AIC appeared to reach a maximum at 50

enzymes (S3 Fig). We chose to create individual indicator indices as well as an overall MISH

index to determine which is more predictive across a variety of climates. Therefore, the top 50

important enzymes from each soil health indicator rating were compiled into individual indi-

cator ratings and an overall MISH rating in which all enzymes were combined, resulting in a

total of 235 unique enzymes.

For all six SEMWISE indicator ratings, MISH indicator ratings were significantly different

between bins based on a non-parametric Kruskal-Wallis test (p< 0.001) (Fig 4). MISH indica-

tor ratings tended to significantly increase (p< 0.05) with successive SEMWISE indicator bins

based on Wilcoxon rank sum tests with FDR adjustment. For each indicator, a single MISH

indicator rating derived from only 50 commonly occurring enzymes was sufficient to predict

the six soil health indicators from a wide range of agricultural systems across the U.S.

Similar to the individual ratings, we compared the MISH overall rating to binned SEM-

WISE ratings (Fig 5A). The MISH overall ratings were significantly higher with each successive

SEMWISE bin in the very low, low, med, and high categories but not the very high bin. One of

the difficulties in conducting national-scale assessments of soil health is due to differing com-

binations of management practices that may co-exist in time and space. For example, two sites

may both have cover crops but one is under no-till and the other conventional tillage and/or

sites may differ in the diversity of crops. This complexity makes it difficult to compare ratings

across sites. To address these complexities, we previously introduced a soil health management

index (SHMI) that combines soil health management practices into a single index [34]. The

SHMI bins represent combinations of practices that manage soil health through the principles

to minimize soil disturbance, increase plant diversity, and provide continuous soil cover and

living roots [34]. This binning procedure resulted in different land uses typically assigned to
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specific bins. For example, the very high bin is represented by rangeland, perennial cropland

dominated in the high bin, and annual cropland was spread among the very low to high bins

(Fig 5). Typical annual cropland management systems for each SHMI bin are as follows: con-

ventionally tilled, monoculture cropping systems (very low); no-till monoculture cropping sys-

tems (low); conventionally tilled with cover crops or diversified crop rotations (medium); and

no-till plus cover crops and/or diversified crop rotations (high). The SHMI scores were calcu-

lated based on a two- to three-year management history and some of the samples experienced

a transition in management over that period (i.e., annual cropland converted to perennial

cropland or green dots in the low SHMI bin), which resulted in some of the inconsistency in

SHMI rankings across land use types. Across the entire national dataset, MISH overall ratings

significantly increased (p� 0.05) with each successive SHMI bin, except the very high bin (Fig

5B). The overall congruence between the two measures suggests that as soil health manage-

ment practice adoption increases, the MISH overall score increases. This trend is similar to

those seen for the individual indicator ratings (Fig 4), suggesting that individual indicator rat-

ings are not more accurate, and an overall index is suitable for comparison across locations. In

Fig 4. MISH indicator ratings between SEMWISE indicator bins for each soil health indicator. SEMWISE Indicator Bins represent the

individual indicator score in which “very low” is the lowest soil health and “very high” is the highest soil health based on the SEMWISE model

described in Deel et al. [34]. The MISH Indicator Ratings were calculated using the top enzymes for each indicator (see section Molecular index

development and testing for calculation) and are expressed as a percentage between 0–100. Different letter labels indicate a significant difference

between bins.

https://doi.org/10.1371/journal.pone.0314072.g004
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its current form, the SHMI rating does not address the length of time a management practice

has been in place. Soil health indicators can vary in their response times to management

changes. For example, converting from conventional to no-tillage can take up to 20 years to

reach a new SOM equilibrium [65]. Efforts are currently underway to improve our SHMI rat-

ing to account for time, which should further improve the relationship between MISH and

SHMI at the national scale.

Conclusions

In this study, we used PICRUSt2 to estimate enzyme or functional gene relative abundances

and developed individual scores and an overall molecular index of soil health (MISH).

Enzymes were first selected using XGBoost modeling to identify the most important enzymes

for predicting known soil health indicators (ACE, ActiveC, AggStab, Resp, SOM, and Water-

Cap). From these models, individual MISH ratings were constructed for each indicator, as well

as an overall MISH rating from the most important enzymes associated with each of the six

indicators. The individual MISH indices were positively correlated and showed good agree-

ment with the soil health indices across the 536 samples from this national assessment of U.S.

agricultural systems. An overall MISH index was also positively correlated with overall mea-

sures of soil health (SEMWISE) and management practices (SHMI). Additionally, since the

MISH index was created using indicator data that was corrected for clay content and climate

zone and based on enzymes present in all samples, it is suitable across multiple regions and

Fig 5. MISH Overall Rating vs SEMWISE and SHMI rating bins. Each panel shows the distribution of MISH Overall Ratings binned by (A) soil health

(SEMWISE) rating or (B) management (SHMI rating). Both ratings on the x-axes are described in Deel et al. [35]. Briefly, the SEMWISE Rating represents

the soil health score that incorporates all soil health indicators. The SHMI rating represents the overall management score based on the soil health

principles. In both ratings, the “very low” bin represents the lowest soil health and “very high” bin represents the highest soil health. The MISH Overall

Rating was calculated using top enzymes from all indicators (see section Molecular index development and testing for calculation) and is expressed as a

percentage between 0–100. Different letter labels indicate a significant difference between bins. Points are color-coded by current land use with annual

cropland (red), perennial cropland (green), and rangeland (blue).

https://doi.org/10.1371/journal.pone.0314072.g005
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agricultural systems. By leveraging the power of phylogenetic reconstruction using PICRUSt2,

this assay involves a single 16S rRNA amplicon sequencing approach that is relatively low cost

and easily employed in molecular biology laboratories. This new, molecular-based index corre-

lates with soil health indicators and management. It is a quick, easy, and inexpensive way to

measure and compare microbial contributions to soil health, and will be particularly useful for

surveys, meta-analyses, and long-term studies.
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