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Abstract

When undergoing or about to undergo a needle-related procedure, most people are not

aware of the adverse emotional and physical reactions (so-called vasovagal reactions;

VVR), that might occur. Thus, rather than relying on self-report measurements, we investi-

gate whether we can predict VVR levels from the video sequence containing facial informa-

tion measured during the blood donation. We filmed 287 blood donors throughout the blood

donation procedure where we obtained 1945 videos for data analysis. We compared 5 dif-

ferent sequences of videos—45, 30, 20, 10 and 5 seconds to test the shortest video duration

required to predict VVR levels. We used 2D-CNN with LSTM and GRU to predict continuous

VVR scores and to classify discrete (low and high) VVR values obtained during the blood

donation. The results showed that during the classification task, the highest achieved F1

score on high VVR class was 0.74 with a precision of 0.93, recall of 0.61, PR-AUC of 0.86

and an MCC score of 0.61 using a pre-trained ResNet152 model with LSTM on 25 frames

and during the regression task the lowest root mean square error achieved was 2.56 using

GRU on 50 frames. This study demonstrates that it is possible to predict vasovagal

responses during a blood donation using facial features, which supports the further develop-

ment of interventions to prevent VVR.

Introduction

On average one in three adults is scared of needles [1] which unfortunately also makes them

vulnerable to experiencing adverse emotional and physical responses during a needle-related

procedure. These so-called vasovagal reactions (VVR) consist of nausea, dizziness, heart palpi-

tations, hyperventilation, or even fainting with a loss of consciousness. VVR can be at least

partly explained by sympathetic autonomic nervous system activations which can occur dur-

ing stressful events such as an injection or blood draw. These reactions can result in physiolog-

ical changes such as increased heart rate [2,3], sweating, nausea, pupillary dilation, changes in

facial pallor or hyperventilation [4–6]. In contrast to other types of fearful stimuli or situations,
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during needle-related procedures specifically physiological changes can also occur which are

more likely to be due to increased parasympathetic activity, such as drops in heart rate or

blood pressure [3]. During a vasovagal reaction, the patient or the blood donor experiences a

sudden drop in arterial blood pressure and as a result, it reduces blood flow to the brain and

the person reports feeling lightheaded or dizzy [7]. A loss of consciousness in such a case is

called a vasovagal syncope. Even though vasovagal reactions and syncopes are usually benign

in nature, they can lead to more serious complications for both patients and healthcare provid-

ers, including head or fall-related injuries in the short term [8] but also the refusal, avoidance

or aborted medical procedures in the future [9,10].

Risk factors of experiencing VVR

One of the main risk factors of experiencing vasovagal reactions is needle fear [9,10]. Needle

fear may be triggered by a combination of environmental and personal factors such as genetic

predisposition [11,12], frequent exposure to needles or blood draws [13], or personality char-

acteristics such as heightened sense of anxiety [14]. Other psychological states such as antici-

pated anxiety, fear of blood and injury, fear of blood draws, perceived blood loss, pain,

anticipated pain, and anticipated disgust, have also been associated with increased risk of

experiencing vasovagal reactions [15–18] as well as demographical characteristics such as

(female) gender, younger age, and lower BMI [9,10,19,20].

To summarize, Thijsen & Masser (2019) [10] divided the risk factors into three categories

such as 1) donor characteristics that are observable like gender or ethnicity, 2) donor charac-

teristics that may not be immediately known such as fear of needles and 3) contextual features

of the procedure itself such as increased waiting time or how experienced medical staff were in

helping people with needle fear. In terms of prevention, unfortunately, many of these factors

cannot be targeted for change and can at most provide a guide to who would benefit from an

intervention most. The main targets for current interventions, however, are behavioral risk

factors such as lack of sleep prior to the needle-related procedure, food and water intake and

caffeine consumption [21,22].

Current intervention strategies to prevent vasovagal reactions

Currently, well-known interventions aimed at preventing VVR are mostly geared towards

donors, who may faint due to the loss of 500ml blood, and these techniques include water load-

ing or actively applied muscle tension, which are meant to combat the symptoms related to the

loss of blood pressure that may occur as a result. Water loading refers to a technique where a

person is asked to ingest around 500 ml of water within 30 minutes or less prior to the proce-

dure [23,24]. Applied muscle tension consists of repeated contractions of muscles in the legs

and/or abdomen in order to increase blood pressure [23,25]. Even though research shows that

these techniques could work for a subset of donors [25], a meta-analysis suggested that these

techniques are insufficient for the majority of donors [23] and do not reduce the rate of synco-

pic reactions [25].

Other preventive strategies provided by healthcare professionals range from providing

extra information, social support or distractions or even administering calming medication

such as low doses of benzodiazepines that allow the patients to reduce their anxiety levels [26].

Although benzodiazepines reduce the number of vasovagal reactions by addressing underlying

fear and anxiety, some side effects could make them less favorable as a prevention strategy,

especially, as blood draws or immunizations are quick procedures. All previously applied pre-

ventive techniques might be effective, however, they are costly in terms of extra time required

by the staff. Hence, there is an enormous demand for new prevention methods.
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Anticipatory physiological response as a new VVR prevention

strategy

As risk factors are difficult to affect it may be more promising to look at when it is best to inter-

vene. Research shows that anticipatory fear, anxiety and stress and a history of previous vaso-

vagal reactions are one of the most important risk factors for experiencing vasovagal reactions

[10,14–16,27]. This is corroborated by studies from Hoogerwerf et al. (2018; 2017) [28,29] who

assessed psychological, hormonal and psychophysiological stress markers in donors through-

out a blood donation and found that the objective stress markers already occur at a very early

stage in anticipation of the needle insertion, at which time they peak. For example, the levels of

systolic blood pressure and cortisol levels increased towards needle insertion and then

decreased after the blood donation [28,29]. In addition, higher systolic blood pressure and

pulse rate were found in women and first-time donors, who are at the higher risk of experienc-

ing VVR [9,10,19,20].

To make matters even more challenging, these physical reactions that are targets for change,

such as heart rate, heart rate variability, respiratory signal, skin temperature, or brain waves

measured with EMG or EEG [30] are automatic, difficult to self-report [7,31] and require

devices such as heart-rate monitors with attached electrodes on the patient, EEG caps, or respi-

ratory vests. In one of our previous studies, we mimicked a blood donation using an experi-

mental ’virtual’ rubber arm illusion, capturing the participant with an infrared thermal

imaging camera. This experiment showed that changes in facial temperature could serve as

early indicators for vasovagal reactions [32,33]. Specifically, facial temperature fluctuations in

the area under the nose, chin and forehead are associated with increased risk of experiencing

VVR [33]. Although thermal cameras can be used in various light conditions including low-

light or even complete-darkness and are less likely to be affected by any changes in person’s

appearance, visible light imaging provide a much more detailed information about the visual

appearance, including any skin changes, have higher resolution, and, more importantly, are

much cheaper and more widely used than thermal imaging, making them a preferred option

for an intervention.

There is a lack of user-friendly solutions able to monitor to what extent patients are (start-

ing to) experience early signs and symptoms of VVR in real time. This is especially important

as anticipatory processes take place when patients are ‘out of sight’ of medical staff, for example

when they are in the waiting room. Given that the procedure at blood collection centers usu-

ally lasts around 10–15 minutes in total, which is long compared to the time it takes to collect a

sample for a medical test, it would not be feasible and practical to implement a solution that

requires more preparation time than the procedure itself.

Applying deep learning methods for automated video analysis for a

biofeedback-based serious game intervention

The most desirable solution would be using a non-invasive and low-cost method to monitor

donors or patients. In order to address the lack of interventions that address the anticipatory

risk factors for VVR in practice we developed a solution for people with needle fear that is able

to not only identify covert symptoms of emotional and physical reactions at a very early stage,

but also to immediately give them a tool which can help them to prevent the escalation into a

vasovagal event. To achieve that, we aimed to implement the best performing model in a seri-

ous game for smartphones, which through the facial video input from the front-facing camera,

controls a biofeedback mechanism which will help the player get control over their impeding

VVR in an early stage.
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Video recordings of the face contain many types of useful information. For example, it con-

tains information about facial expressions which, even when they are very subtle, enable the

detection of anxiety, stress, fear, pain, and vasovagal reactions [34–39]. In addition, the face

contains information of head movements, eye-gaze direction, changes in facial colors such as

paleness, etc. With the recent developments in the field of deep learning and in particular auto-

matic face analysis [40–42], it has been shown possible to predict not only mental health condi-

tions such as depression, anxiety, or obsessive-compulsive disorder [43], but also physical

symptoms such as pain [44–46]. These models can potentially be used as valuable tools for

clinical diagnosis and for monitoring and altering physical responses in real time [32]. Specifi-

cally, we found a significant association between vasovagal reactions and changes in facial tem-

perature [33] as well as facial micro-expressions [34]. Both changes in thermal fluctuations

and facial action units recorded prior to blood donation showed promising results in predict-

ing vasovagal reactions that occur during or after blood donation [32,33,41].

However, assessing the risk of VVR is only one part of the solution. Even better would be if

the patient can use this information to prevent the VVR from happening. This can be achieved

through biofeedback. Biofeedback is a self-regulation technique that allows individuals to gain

control over their typically involuntary physiological responses by providing real-time feed-

back on their neurological or physical processes [47]. The main goal of biofeedback is to help

individuals reduce the arousal of their sympathetic nervous system—the system responsible

for the "fight or flight" response—so that they can learn to consciously regulate processes like

heart rate, muscle tension, or blood pressure [48]. The feedback consists of a visual (or audi-

tory) reflection or representation of the person’s neurological or physiological state or pro-

cesses (e.g. heart rate, breathing patterns, muscle tension, skin conductance,

electroencephalogram, or skin temperature, just to name a few) measured with sensors or

devices. By seeing or hearing these physiological signals in real time, patients can experiment

with strategies to manage their stress or anxiety and bring their physiological state back into

balance. For example, biofeedback has been successfully used to treat conditions like stress,

anxiety [49], substance abuse [50], seizures, epilepsy [51], and ADHD [52]. Biofeedback can be

delivered via computer screens or mobile apps and is often incorporated into interactive envi-

ronments such as video games [53]. In these games, the stimuli adjust based on the player’s

bodily responses, allowing the individual to practice managing their physiological reactions in

a controlled and engaging environment.

Our serious game solution for needle fear (called AINAR, Artificial Intelligence for Needle

Induced Fainting) continuously assesses the likelihood of experiencing a vasovagal reaction

(VVR) through the model, which gets its input from the front-facing camera, which is then

reflected in the weather, which can be sunny, rainy, or snowy. The player’s task is to keep the

weather nice and sunny. If it starts to rain, the player can experiment with different relaxation

techniques or cognitive strategies to transition from a state of fear or stress to calmness, thus

learning to control their body’s automatic responses. The aim is to provide the feedback as

often as possible with little delay, therefore, we aim to investigate what is the shortest length of

video that is required for acceptable VVR prediction. This approach allows for real-time learn-

ing and adaptation, making biofeedback a powerful tool for overcoming anxiety and stress-

related conditions.

Use of machine learning when donors with high VVR scores are rare

The prevalence of severe VVRs in blood donors ranges from 0.1% to 0.5% [54]. This poses lim-

itations on training machine learning models from scratch given that deep learning models are

data-hungry. To train a model from scratch, a large amount of training data of donors with
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both high and low VVR scores is required, which is difficult to obtain. To overcome this limi-

tation, transfer learning will be applied. Transfer learning is one of the machine learning tech-

niques where a model, initially trained on one task, is used for a different task with some

additional tuning. The main advantages of transfer learning are that it requires smaller datasets

and shorter computational time, and may improve the overall performance since the initial

model was trained on a much larger dataset [55]. There are various transfer learning models

such as ResNet50, VGG16, VGG19, Inception, or Xception. All pre-trained models are usually

based on a Convolutional Neural Network (CNN) architecture, which is not only one of the

most popular neural network models used in solving image classification problems, but it also

requires fewer parameters and shorter training time than other conventional neural networks.

Instead of using a fully connected network of weights from each pixel, a CNN scans a small

patch of the image which is used to scan the entire image. We selected ResNet152 and Xcep-

tion models because they have deeper architectures than ResNet50, VGG or Inception models

and can capture more complex features and patterns in data [56,57], potentially leading to bet-

ter performance in capturing subtle facial changes. In addition, ResNet152 and Xception are

trained on larger datasets with more diverse images, which allows them to learn richer and

more generalizable representations compared to shallower models like ResNet50 and VGG

[56–58].

Two-dimensional convolutional neural networks (2D-CNN) architectures are used for

extracting spatial features whereas the recurrent neural network (RNN) is often used for cap-

turing temporal features [59]. However, the issue with applying RNN directly on long

sequences is that the gradients are propagated over so many stages that they might vanish or

explode [60–62]. Vanishing gradients make it difficult to see in which direction the parameters

should move to improve the loss functions and exploding gradients make the learning

unsteady [56]. To mitigate this problem, Long Short-Term Memory (LSTM) or gated Recur-

rent Unit (GRU) models are often used [62]. The GRU uses fewer parameters than the LSTM

and therefore has faster training time, but the LSTM is a more complex model that could cap-

ture prominent features more accurately [59]. Thus, the combination of a pre-trained

2D-CNN model with either GRU or LSTM is often used in similar studies [63]. Therefore, in

our study, we aim to use pre-trained deep learning models to extract facial features from the

video recording and use these spatial features for training LSTM and GRU models to be able

to predict low or high VVR levels.

To conclude, in this study, we aim to assess to what extent video classification algorithms

such as 2D-CNN pre-trained models with GRU and LSTM can be used to correctly classify the

level of VVR a donor is experiencing. Additionally, since the long-term goal of predicting

VVR levels would be to implement them into a biofeedback-based solution able to continu-

ously monitor the player and to give real-time visual feedback, the duration of the video

recording plays a crucial role. The shorter the duration of the video required, the more bio-

feedback signals can be sent to the user. Therefore, we evaluate the shortest duration necessary

for the model to achieve the highest performance.

Methods and materials

Participants

Participants were recruited from the regular blood donor pool from Sanquin, the not-for-

profit organization responsible for the blood supply in the Netherlands. The study took place

at four blood collection centers (BCC Leiden, ‘s-Hertogenbosch, Zwolle, and Utrecht). Donors

who adhered to the following inclusion criteria for one of three predefined subgroups were

invited to participate: (1) the control group (N = 85); consisting of donors who donated
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between 5 and 10 times, and who never experienced vasovagal reactions in the past, (2) the

sensitive group (N = 65); donors with 5 to 10 previous donations who experienced a VVR at

their previous donation, and (3) the new donor group (N = 137); consisting of first-time

donors.

Ethics approval

The study was approved by the Ethics Advisory Board of Sanquin and the Research Ethics and

Data Management Committe (REDC#2019172) of the School of Humanities and Digital Sci-

ences at Tilburg University. This study was performed in line with the principles of the Decla-

ration of Helsinki and written informed consent was obtained from all participants. The data

collection started on 11th September 2019 and lasted until 30th November 2022.

Procedure

Interested donors contacted the data manager for an appointment and received information

about the study. On arrival, participants signed the informed consent and then completed a

questionnaire containing items regarding needle fear and several personality questionnaires.

Next, the donors proceeded with the regular blood donation procedure consisting of several

phases: registration, health check at the donor physician, blood donation, and cafeteria visit.

This resulted in seven distinct stages during which video and VVR were recorded (see Fig 1).

Specifically, at each stage donors were recorded using a regular video camera and had to ver-

bally self-report their VVR score (see section Materials and measures, Vasovagal reactions for

more information on the VVR score). During stages 1–3 and 7, the video recordings lasted

around 1 to 2 minutes. In stages 4 to 6, the donors were seated in the donation chair, where

the video recording was continuous and lasted between 5 and 27 minutes (or, rather the entire

blood donation procedure). During this long recording, the VVR levels were accessed 3 times:

at the needle insertion (stage 4), around the extraction of 300 ml blood (stage 5), and during

needle uncoupling (stage 6). Throughout the entire procedure, donors were free to behave as

they normally would. Verbal VVR ratings were noted by the data manager and recorded using

a smartphone voice recorder.

Materials and measures

Vasovagal reactions (VVR levels; based on the Blood Donation Reactions Inventory

(BDRI); [31]). At each stage (see Fig 1) participants were asked to rate 8 questions regarding

experienced physiological reactions (faintness, dizziness, weakness, lightheadedness) and emo-

tional reactions (fear, stress, tension, and nervousness), on the Likert scale from 1 (not at all)

to 5 (extremely), resulting in a score between 8 and 40 per time point.

Video recording. The videos were recorded at 25 frames per second using the Nikon

Coolpix AW130. The camera was installed on a tripod at a distance of about 1m from the

donor. Donors were free to behave as they normally would throughout the whole procedure.

Video data preprocessing

To train the models to predict vasovagal reactions, video recordings were semi-automatically

preprocessed to separate them into seven distinctive stages that served as input for the model.

As the lengths of the videos varied, all videos were shortened to 45 seconds. The last 45 seconds

were extracted from the original videos at stages one, two, three and seven since those were

separate short recordings and in the first few seconds the donors were often positioning them-

selves in their chairs. The starting points for stages four, five and six were selected manually
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from the original continuous recording and the first 45 seconds of each stage were extracted,

specifically, 45 seconds before the needle insertion (stage 4), 45 seconds around 300 ml of

donated blood (stage 5), and 45 seconds around needle uncoupling moment (stage 6). We

eliminated redundant frames by reducing the frame rate to 5 frames per second for each of the

45 second recordings. This resulted in 225 frames per video with a resolution of 1920 x 1080

pixels. In total, 1945 videos were used for further analysis.

We tested the classification and regression performance on different video lengths: 45 sec-

onds (N = 225 frames), 30 seconds (N = 150 frames), 20 seconds (N = 100 frames), 10 seconds

(N = 50 frames), and 5 seconds (N = 25 frames). The last fraction of each video recording (i.e.,

the fraction that was closest to self-reported VVR) was selected to shorten the videos. For

instance, 45 seconds before needle insertion, 30 seconds before needle insertion, 20 seconds

before needle insertion, etc. (see Fig 1).

Deep learning approach

Transfer learning using Xception and ResNet152. In our study we used two pre-trained

models based on Convolutional Neural Network (CNN) architecture (Xception and

ResNet152) for spatial feature extraction. Xception is a convolutional neural network architec-

ture that is an extension of the Inception architecture. It is trained on the ImageNet database

Fig 1. An overview of the data collection and used methodology for data analysis. Stage 1: Data collection shows an overview of the blood donation

testing procedure and stages. At each of the seven stages, donors reported their VVR levels, and a video recording was made. At each stage, the video

recording lasted 1 to 2 minutes. From stage 4 until stage 6, the recording was continuous, lasting between 5 and 27 minutes. *The procedure is slightly

different per BCC. At two locations, donors were brought directly to the donation chair after the physician check and hence no recording at stage 3 was

made. If donors had to return to the waiting area after the physician check, they would be asked for an additional self-reported VVR score. An additional

recording of 1 to 2 minutes would be made. Stage 2: Data preprocessing shows an overview of the video preprocessing steps. At each step, the earliest

frames were removed. i.e. the frames closer to self-report VVR measures are kept for the analysis. In addition, the number of frames was reduced from 30

FPS to 5 FPS. Stage 3: Data analysis shows an overview of model training and evaluation steps.

https://doi.org/10.1371/journal.pone.0314038.g001
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that is 71 layers deep and relies solely on depth wise separable convolution layers [56]. Residual

Network (ResNet) is a feedforward network which consists of residual blocks with direct con-

nection that skips some layers in between and, in this way, generates new inputs and outputs

[57]. The premise of this network is to produce better accuracy without increasing the com-

plexity of the model with ResNet152 achieving the best performance among other ResNet

architectures [57].

These two pre-trained models were selected because they tend to perform better in compar-

ison to VGG and other Inception models [57,58].

Feature extraction using 2D-CNN with GRU and LSTM models. Each video frame was

passed to a pre-trained model after it was resized to fit the default size of the models, specifi-

cally 299x299 for Xception [64] and 224x224 for ResNet152 [57]. Both pre-trained models

returned vectors containing extracted features of size 2048, which were then used to train

LSTM and GRU models:

1. LSTM stands for long short-term memory and is a type of recurrent neural network (RNN)

that is capable of learning order dependence and avoiding long-term dependency problems

by having self-connected hidden layers containing memory cells and corresponding gate

units [65].

2. GRU stands for Gated Recurrent Unit, which is an advancement of the standard recurrent

neural network (RNN) that uses the reset and the update gates to overcome the issue of van-

ishing and exploding gradients [66].

The architecture of both the GRU and LSTM consisted of two GRU or LSTM layers and a

dropout layer as it previously yielded best results [67]. The optimizer, activation functions and

loss functions were predefined, but different for classification and regression models.

1. Adam was chosen as the optimizer for the classification task, with a learning rate of 0.0001,

as this is computationally efficient and suitable for a model with many parameters [68]. The

selected activation function was a sigmoid that produces a number between zero and one,

where any value below 0.5 is classified as negative and above as positive. The binary cross

entropy was specified as a loss function where the target of predictions is zero or one and

uses the sigmoid as the activation function for making these predictions [69].

2. For the regression task, Root Mean Squared Propagation (RMSprop) was chosen as the

optimizer, which is a gradient-based optimization technique that uses an adaptive learning

rate. The selected activation function was Relu with root mean squared error as a loss func-

tion. RMSE is a square root of the difference between the true dependent variable and the

predicted dependent variable.

The number of units used, learning rate, dropout rate and epochs were determined empiri-

cally. We have tested the following hyperparameters: learning rate of 0.0001, 0.001 and 0.01,

dropout rate of 0.1, 0.3, 0.5, batch size of 32 and 64, and epochs of 50, 100, and 200. For both

GRU and LSTM models the selected number of units was 32 and 16, the dropout rate was 0.1,

learning rate was 0.0001, batch size was 32, and number of epochs was 100.

Model training, validation, and evaluation. The dataset was split into a training (80%)

and test (20%) set, on which the model performance was assessed. We used validation splitting

to automatically reserve the fraction of the training data for evaluating the loss and model met-

rics at the end of each epoch. We selected 20% of the data for testing by taking the last 20% of

samples of the arrays received by the model, before any shuffling.

The original dataset contained 1945 videos of which 592 (30%) belonged to a high VVR

class sample. The data was split based on subject identification number to ensure that the same
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participants would not appear in both training and testing sets. Due to class imbalance, we

applied video data augmentation on the high VVR cases in the training data. Specifically, we

generated new videos by applying horizontal flips and adding some noise (Video Augmenta-

tion Library; [70]). Thus, after data augmentation, we split our sample again and then trained

our model on 1742 low VVR class and 1491 high VVR class examples. The test set was not

manipulated in any way and contained 158 low VVR class and 145 high VVR class examples.

To evaluate model performance and account for class imbalance, we used the following

metrics for evaluating the classification task:

1. Precision—the proportion of correctly predicted high VVR scores of all high VVR scores.

2. Recall—the proportion of correctly identified high VVR donors out of all donors classified

as high VVR donors.

3. F1 score, which is the harmonic mean of precision and recall.

4. AUC-PR score, which is the Area Under the Precision-Recall Curve that summarizes a pre-

cision-recall curve as the weighted mean of precisions over all recall values. The higher the

AUC-PR score, the better the overall performance of the model with 1.0 being a perfect

model.

5. Matthew’s correlation coefficient (MCC), which is a contingency matrix method of calcu-

lating Pearson correlation coefficient between actual and predicted values. This measure

provides a high score only if the binary predictor is able to correctly predict the majority of

instances of both low and high VVR groups [71,72]. This metric ranges from 1- to +1

where -1 indicates total disagreement between predicted and actual values, 0—predictions

that are no better than a random selection, and ±1—the perfect agreement between pre-

dicted and actual values.

We reported precision, recall, F1, AUC-PR and MCC scores on the test sets at each tested

time interval.

To evaluate which parts of the image are important for classifying low and high VVR

groups, we occluded some regions in the image and re-evaluated model performance as sug-

gested in Ertugrul et al., (2020) [73]: the more model performance drops after application of

the occlusion, the more important the region is for the classification. We applied larger rectan-

gles (100x100) around the face (containing only background information) and smaller rectan-

gles (80x80 and 60x60) within the face region. An overview of the occluded regions is shown

in Fig 2.

The Root Mean Squared Error (RMSE) was used to evaluate the performance of the regres-

sion task. The RMSE is considered the standard error metric for numerical predictions. Note

that the RMSE was calculated in the unit of measurement of our outcome of interest (VVR

score), and therefore this measure is directly interpretable. The lower the RMSE values, the

better the performance of the model.

Statistical analysis. For statistical analysis the data normal distribution was verified apply-

ing the Shapiro-Wilk test, rejecting the null hypothesis (normal distribution) at the 5% signifi-

cance level. An ANOVA test was used to determine if there was a statistically significant

difference between donor groups (categorical variable) by testing for differences of means

using a variance. Questionnaire data were analyzed using RStudio (2020) [74].

The Friedman test also known as the non-parametric repeated measures ANOVA was used

to compare the performance of the classifiers and evaluate whether there are significant differ-

ences in the performance.
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Results

Participants

The data was collected from 287 blood donors in total (control group: n = 85 sensitive group:

n = 65, new donors: n = 137). No statistically significant differences in gender (F(2) = 2.76, p =

.065), blood collection centers (F(2) = 1.57, p = .21), or age (F(2) = 1.66, p = 0.19; M = 38.98,

SD = 13.45) were found between the groups.

VVR levels

VVR scores were positively skewed, reflecting a high proportion of blood donors who reported

low VVR scores (M = 11.61, SD = 3.81, median = 11.0; min = 8, max = 40, see Fig 3). The raw

VVR scores were directly used for regression analysis. For the classification task, the videos

were split into representing low VVR (N videos = 1900, VVR score < = 11) and high VVR (N

videos = 1636, VVR level > 11) groups.

Fig 2. Overview of the regions occluded for the assessment their importance for classification. After alignment, the pixel values in the black boxes shown

were set to zero.

https://doi.org/10.1371/journal.pone.0314038.g002
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VVR classification results

We applied two pre-trained 2D CNN models with GRU and LSTM on various lengths of

image sequences in order to classify low and high VVR groups. The overall results of the classi-

fication are presented in Table 1.

The classification report on the test set showed that the models performed slightly better in

classifying low VVR classes. However, the main target group in this study is the high VVR

class because we aim to identify people who are at risk of experiencing VVR symptoms. There-

fore, we evaluated the model performance on the high VVR class. Since the performance was

similar across all video durations, we also evaluated the changes in precision and recall on the

shortest duration (see Fig 4). We conducted the Friedman test to determine if there were any

statistically significant differences in performance metrics (such as F1 score, precision, and

recall) across four models. We selected the scores obtained using the shortest video duration

on classifying the high VVR class. We found no statistically significant differences in the per-

formance of the models (Friedman test statistic = 5.64, p = 0.6).

Fig 3. Distribution of VVR scores per stage. Distribution of VVR ratings per stage and group. The dots above the box represent the outliers per group.

The black line represents the cut-off on which the low vs high VVR groups were split.

https://doi.org/10.1371/journal.pone.0314038.g003
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This shows that both pre-trained Xception and ResNet152 models overall performed simi-

larly across all tested sequences with precision scores ranging from 0.71 to 0.93 and recall

scores ranging from 0.61 to 0.71 for the high VVR class. The performance using GRU and

LSTM was also similar with the highest F1 score of 0.74 and PR-AUC of 0.86 using a pre-

trained ResNet152 model with LSTM on 25 frame sequence for high VVR class. ResNet152

Table 1. The 2D-CNN performance on the test set classifying low (n = 158) vs high (n = 145) VVR classes using pre-trained Xception and ResNet152 models with

GRU and LSTM on various video sequences ranging from 225 to 25 frames.

Model Number of frames Group Precision Recall F1 AUC-PR MCC

Pre-trained Xception model with GRU N = 225 High VVR 0.76 0.64 0.70 0.79 0.47

Low VVR 0.73 0.85 0.79 0.84

N = 150 High VVR 0.74 0.68 0.71 0.79 0.47

Low VVR 0.73 0.78 0.76 0.82

N = 100 High VVR 0.79 0.61 0.69 0.79 0.48

Low VVR 0.71 0.85 0.77 0.83

N = 50 High VVR 0.73 0.68 0.71 0.78 0.46

Low VVR 0.73 0.77 0.75 0.82

N = 25 High VVR 0.70 0.70 0.70 0.77 0.43

Low VVR 0.73 0.73 0.73 0.85

Pre-trained Xception model with LSTM N = 225 High VVR 0.83 0.63 0.71 0.82 0.53

Low VVR 0.72 0.81 0.76 0.82

N = 150 High VVR 0.71 0.71 0.71 0.78 0.44

Low VVR 0.73 0.73 0.73 0.84

N = 100 High VVR 0.74 0.63 0.68 0.77 0.43

Low VVR 0.70 0.79 0.74 0.83

N = 50 High VVR 0.75 0.61 0.67 0.77 0.43

Low VVR 0.69 0.82 0.75 0.85

N = 25 High VVR 0.73 0.64 0.68 0.77 0.43

Low VVR 0.70 0.78 0.74 0.83

Pre-trained ResNet152 model with GRU N = 225 High VVR 0.71 0.70 0.71 0.72 0.31

Low VVR 0.73 0.73 0.73 0.80

N = 150 High VVR 0.80 0.64 0.71 0.81 0.51

Low VVR 0.77 0.65 0.70 0.81

N = 100 High VVR 0.76 0.66 0.71 0.79 0.47

Low VVR 0.72 0.80 0.76 0.79

N = 50 High VVR 0.72 0.68 0.70 0.76 0.44

Low VVR 0.72 0.75 0.74 0.81

N = 25 High VVR 0.79 0.66 0.72 0.81 0.51

Low VVR 0.71 0.74 0.73 0.79

Pre-trained ResNet152 model with LSTM N = 225 High VVR 0.72 0.68 0.70 0.76 0.39

Low VVR 0.72 0.75 0.73 0.80

N = 150 High VVR 0.88 0.63 0.73 0.84 0.58

Low VVR 0.73 0.92 0.82 0.81

N = 100 High VVR 0.75 0.63 0.69 0.78 0.45

Low VVR 0.71 0.81 0.76 0.82

N = 50 High VVR 0.81 0.62 0.70 0.81 0.51

Low VVR 0.71 0.87 0.78 0.79

N = 25 High VVR 0.93 0.61 0.74 0.86 0.61

Low VVR 0.73 0.96 0.83 0.80

https://doi.org/10.1371/journal.pone.0314038.t001
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with LSTM showed high precision in identifying people who are at risk of experiencing VVR

symptoms, however, it had a slightly lower recall score in comparison to other models. The

results indicate that this model captures slightly fewer high-risk people than other models,

however, it is very accurate in identifying those who are at risk. On the other hand, this model

performed well on the precision-recall curve (Fig 4) and it had the highest MCC score of 0.61

showing that this model was the best in correctly classifying the majority of instances of both

low and high VVR groups, thus, we used this model to further explore correctly and incor-

rectly classified samples (see Fig 5) and identify the most important spatial and temporal fea-

tures that the model’s performance was based on.

We evaluated the sensitivity of this model to the occlusion of specific regions of the image

(see Fig 6).

Fig 6 shows that the occlusion of the eye and nose regions decreased the performance on

the test set drastically (F1 score dropped to 0.27–0.13 around those regions) and that therefore

the eye and nose regions are crucial for predicting low and high VVR classes. Conversely,

mouth and forehead areas were only moderately affected by occlusion (F1 score dropped to

0.5–0.68).

VVR regression results

As a regression task, we applied a 2D CNN model with GRU and LSTM on various lengths of

image sequences to directly predict VVR scores. The overview of the results is given in Table 2.

The lowest achieved RMSE on the test set was 2.56 using a pre-trained Xception model

with GRU on 50 frames sequence or, in other words, 10 seconds of video recording.

Discussion

In this study, we assessed whether it is possible to predict VVR levels from facial videos using

2D-CNN models with GRU and LSTM, on as short as possible video lengths. The results

showed that the best performance in the classification task was achieved using a pre-trained

ResNet152 model with LSTM. However, these results were only slightly better than using a

pre-trained ResNet152 model with GRU or a pre-trained Xception model with both GRU and

Fig 4. The figure shows the precision-recall curves of all 4 models using the sequence of 25 frames.

https://doi.org/10.1371/journal.pone.0314038.g004
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LSTM. In addition, the performance in the regression task was higher using GRU than LSTM

models. As the performance of GRU is also almost 30% faster [75], using a GRU model would

be more beneficial in real-time applications.

For both classification and regression tasks, shorter video lengths resulted in a similar or

even slightly better performance. In the classification task, the best-performing model reached

an F1 score of 0.74 in the high VVR group using the shortest sequence of 5 seconds (25 frames)

of video. As the F1 score is the overall harmonic mean of precision and recall, this measures

the ability of the model to both capture high VVR examples (recall) and be accurate with those

cases that the model captured (precision). In the regression task, the lowest achieved Root

Mean Square Error on the test set was 2.56 using an Xception model on 10 seconds (50 frames)

as an input. The RMSE shows how much the predictions made by the model differ from the

predicted data. The normalized RMSE of 0.08 (calculated as the RMSE divided by the differ-

ence between the maximum and minimum VVR scores) could be interpreted as very low,

Fig 5. Performance of ResNet152 with LSTM on test set. The figure shows correctly and incorrectly classified samples on the test set using a 2D CNN

pre-trained model on ResNet152 with LSTM on 25-frame video sequences. The dashed line in separates low (on the left side) and high (on the right side)

VVR groups.

https://doi.org/10.1371/journal.pone.0314038.g005
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indicating a very high performance of the model. However, a more realistic reflection of the

model performance would probably be obtained by dividing the RMSE by the mean VVR

score, resulting in a normalized RMSE value of 0.20, which shows moderate performance.

Nevertheless, the error rate of 2.56 on a scale ranging from 8 to 40 with a mean value of 11.60

can be considered relatively moderate.

To ensure robustness of our results, we conducted additional investigations with a nested

5-fold cross-validation with inner k = 3 for testing hyperparameters and outer k = 5 for evalu-

ating model performance (see Supplementary material for the results). The results are consis-

tent across tested lengths, folds, and models: the average F1 score across 5 tested folds on

classification task using both ResNet152 with GRU and ResNet152 with LSTM was 0.68, and

the best F1 score achieved using ResNet152 with GRU was 0.71 and using ResNet152 with

Fig 6. The illustration of the overall F1 score on the test set after specific regions of the image were occluded using

ResNet152 with GRU on 25 frames video sequence. Note: a darker colour indicates that the performance goes down

when occluding that part of the image.

https://doi.org/10.1371/journal.pone.0314038.g006

Table 2. The 2D-CNN performance on test sets using a pre-trained Xception model with GRU and LSTM.

Video length

(N = number of frames)

RMSE on the test set

GRU LSTM

Pre-trained on Xception N = 25 2.74 2.97

N = 50 2.56 3.03

N = 100 2.95 2.95

N = 150 2.90 2.93

N = 225 2.94 2.80

https://doi.org/10.1371/journal.pone.0314038.t002
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LSTM was 0.70 (the average results are reported in S1 Table in S1 File and the best perfor-

mance along with tested hyperparameters is reported in S2 Table in S1 File). This is in line

with the presently reported F1 scores in this study which varied from 0.67 to 0.83. In both

main and additional analysis we found that pre-trained ResNet152 models performed better

than Xception models, however, the performance between GRU and LSTM models was simi-

lar. Although we concluded that ResNet152 with LSTM was the best model, we found no sta-

tistically significant differences between the ResNet152 with GRU and ResNet152 with LSTM

models in the present and additional analysis. As a practical solution for people with needle

fear, the main objective should be to correctly capture as many donors who belong to the high

VVR group as possible using the shortest duration. The shortest duration (e.g., 25 frames

instead of 225 frames) would increase the frequency of providing feedback by the model,

which may allow individuals to find the most suitable way of immediately responding to any

physical or psychological changes related to their fear. Also, a shorter recording would require

the collection of less data, have a more dynamic response in the game, and enable speedier

feedback. Having said that, we first assessed which model performed well in identifying the

high VVR group. The best balance in classifying both groups was achieved using ResNet152

with LSTM with an MCC score of 0.61. The balance between correctly identifying the low and

high VVR groups is preferred. However, given that there are misclassifications in the current

model, the preference is to capture as many individuals at risk of experiencing high VVR

symptoms even if the model sometimes incorrectly labels those who are not at risk. This is

important because those who may experience vasovagal reactions, are more likely to develop

needle fear and have repeat vasovagal reactions [1,10,19]. Thus, since ResNet152 showed a

slightly higher performance in the low VVR group reaching an F1 score of 0.83, the same

model showed also high performance in the high VVR group reaching an F1 score of 0.74.

Therefore, we concluded that the ResNet152 with an F1 score of 0.74 on 25 frames is preferred

for further investigation.

Our results show that the nose and eye regions are the most predictive. This corroborates

previous findings from a subset of the same data showing that micro-expressions around the

eyes (specifically eyelid raiser and tightener) and eyebrows (specifically, brow lowered) where

the most predictive action units of the best-performing machine learning model [34]. Further-

more, in another study using infrared thermal imaging in a virtual blood donation setting with

student participants, we also found that donors who experienced high VVR symptoms during

the donation tended to show greater velocity of thermal fluctuations around the nose, chin,

and forehead areas [32,33,41]. In the future, we could focus on a smaller facial area such as eye

and nose regions for extracting facial features. This potentially can provide better model per-

formance, and also use fewer computational resources in the real-world applications in com-

parison to using the facial features extracted from the entire face.

One of the limitations of our study was a skewed dataset. The majority of people reported

low VVR scores. Even though the number of donors who report high VVR symptoms reflects

the overall prevalence of VVR symptoms (e.g. [76–78]) the class imbalance may have nega-

tively impacted the performance of the classification models. For example, the model made

very few mistakes in identifying donors who belonged to the low VVR class, and the majority

of mistakes were in identifying donors who belonged to the high VVR class. Even though this

imbalance was addressed by applying a data augmentation technique where we generated new

samples for the minority class in the training set, this may not be sufficient. Hence, it would be

essential to obtain a more diverse and balanced dataset to evaluate whether model perfor-

mance could be improved further.

In this study, we used 2D-CNN with LSTM and GRU models and did not explore, for

instance, 3D-CNN or hybrid models that could combine both spatial and temporal data
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streams simultaneously. Moreover, we could collect psychophysiological data such as heart

rate, respiration and blood pressure in order to incorporate multiple streams of information or

compare their performances. Finally, as the prevalence rates of fear and VVR are higher in

more general samples, it would be ideal if more data could be collected in the future among

individuals who are at high risk of experiencing vasovagal reactions e.g. patients undergoing

blood draws or immunizations. Some of these limitations will be remedied in the future, as we

are currently repeating the virtual rubber arm experiment study. We not only use both thermal

and RGB cameras, but also include psychophysiological measurements. This study will also

allow us to invite people from the general population, potentially allowing us to collect a more

diverse sample.

In conclusion, our results demonstrate that using facial information from video recordings

as short sequence as 5 seconds can be used to distinguish high and low VVR responses in

blood donors and that this method could be used for predicting VVR responses in a non-

intrusive, contactless manner.
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