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Abstract

Previous explanations for the persistence of polarization of opinions have typically included
modelling assumptions that predispose the possibility of polarization (i.e., assumptions
allowing a pair of agents to drift apart in their opinion such as repulsive interactions or
bounded confidence). An exception is a recent simulation study showing that polarization is
persistent when agents form their opinions using social reinforcement learning. Our goal is
to highlight the usefulness of reinforcement learning in the context of modeling opinion
dynamics, but that caution is required when selecting the tools used to study such a model.
We show that the polarization observed in the model of the simulation study cannot persist
indefinitely, and exhibits consensus asymptotically with probability one. By constructing a
link between the reinforcement learning model and the voter model, we argue that the
observed polarization is metastable. Finally, we show that a slight modification in the learn-
ing process of the agents changes the model from being non-ergodic to being ergodic. Our
results show that reinforcement learning may be a powerful method for modelling polariza-
tion in opinion dynamics, but that the tools (objects to study such as the stationary distribu-
tion, or time to absorption for example) appropriate for analysing such models crucially
depend on their properties (such as ergodicity, or transience). These properties are deter-
mined by the details of the learning process and may be difficult to identify based solely on
simulations.

1 Introduction

Since at least 1964 scientists have been trying to answer the question “what on earth must one
assume to generate the bimodal outcome of community cleavage studies” [1, p. 153]. Possible
answers to this question have been presented; bounded confidence [2-5] whereby agents stop
listening to others if their opinion is too different from their own, repulsive forces between
agents [6-10] based on possible negative connections within a network or messages eliciting
the opposite effect within a recipient, stubbornness of an agent toward changing their opinion
[11-13], and distinguishing between an agent’s expressed opinion and their internal opinion
[14, 15]. What unifies these explanations is that the resulting models all include some element
from which one might infer the possibility of polarization. Models with only attractive forces
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on the other hand, typically lead only to consensus (see for example the models of weighted
averaging [16-19] and imitation [20, 21]). Thus it comes as a surprise that the model studied
by Banisch and Olbrich [22] with only attractive forces between agents, seems to exhibit persis-
tent polarization.

The dynamics in models of opinion formation typically take place on a network. A network
consists of nodes (representing agents) and edges between them (representing social influence
or ties). Nodes that share an edge are said to be neighbours in the network. A well studied class
of opinion dynamics models on networks from the sociophysics literature is the class of voter
models [20, 21] (see [23] for an introduction). In these models a random agent is selected each
round to update their opinion. The agent does this by copying the opinion held by one of their
neighbours. Reinforcement learning is a model for learning by feedback: actions (or opinions
in our case) for which an agent receives positive feedback are reinforced. Actions that receive
negative feedback on the other hand are less likely to be taken in the future.

For convenience, in the remainder we refer to the paper of Banisch and Olbrich [22] as
BO while we refer to the reinforcement learning model they study as the ‘Asymmetric Rein-
forcement Learning for Opinion Dynamics model,” or simply the ARLOD model. This influ-
ential model includes no repulsive element in the interaction between agents. It proposes
modelling the evolution of opinions (of agents on connected networks) using multiagent
reinforcement learning, where agents interact via a coordination game. They find, using sim-
ulations, that allowing agents to learn their opinion through trial and error gives rise to the
emergence of persistent polarization. This is surprising, because in this model after an inter-
action between two agents, the opinions of the two necessarily get closer together and cannot
remain unchanged or get further apart. That is, in the ARLOD model there are no repulsive
forces or assumptions of bounded confidence. Models of opinion dynamics may be classified
into ‘assimilative,” ‘repulsive’ and models with ‘similarity bias’ [24]. The model under consid-
eration here does not traditionally fall in the category of models with only assimilative forces
between agents because it utilizes experience based learning. Note that in the original article
BO [22], ‘persistent’ and ‘stable’ are used interchangeably. In order to avoid confusion, we
use ‘persistent’ to discuss their claims about the ARLOD model and ‘stable’ when making
our own claims. Térnberg et al. [25] build on the ideas of the ARLOD model by incorporat-
ing the role of agent identity. Tornberg [26], similarly looking for drivers of polarisation
without the assumption of negative influences but dissatisfied with BO’s assumption of selec-
tive exposure (a fixed and constant network), analysed a model which includes non-local
interaction to model the effect of media. A variant of the reinforcement learning model with
multiple opinions and synchronous updating has been studied in [27]. Their results highlight
the difficulty of reaching consensus in complex networks using reinforcement learning. The
idea of modelling opinion dynamics by reinforcement learning has been built on since (e.g.
[28-31]).

An overarching goal in this paper is to highlight the importance of the relationship between
model assumptions and characteristics. It can be tempting to design a model and study its
characteristics by simulation. However, to accurately present the results of such a simulation
study it may be important to first identify certain model characteristics. We illustrate the
importance of this by presenting three results on the ARLOD model by BO [22].

We show analytically that consensus is reached in the ARLOD model with probability one
in the long run. The polarisation found in [22] necessarily gives way to consensus eventually.
To elucidate this result, we run simulations to estimate the tail probabilities for the time to
consensus. We find that these exhibit heavy tails, indicating that there may be metastable states
(corresponding to polarization) in which the model resides for a long time before reaching
consensus.
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The phenomenon of metastable polarization together with eventual consensus has previ-
ously been observed in the context of the voter model, first introduced in [21]. Specifically,
consensus is reached eventually if the state space of the model is finite [32], and it has been
shown that polarisation is metastable in certain network topologies [33-36]. Recently, metasta-
ble opinion polarisation has been identified in [37] where it is shown to arise from biased
information processing.

The dynamics of the voter model on networks consists of agents adopting one of their
neighbours’ opinions at random. At first sight, dynamics of this kind seem rudimentary in
comparison to the sophisticated dynamics of reinforcement learning. However, we show that,
under a separation of time scales, the ARLOD model converges in distribution to a voter
model. This relationship highlights that the polarisation observed in the ARLOD model may
indeed be metastable depending on the network structure. It also bridges the seemingly dispa-
rate approaches to modelling opinions: sociophysics and computational sociology. These two
approaches differ in their typical level of abstraction, and whether they aim for tractability by
keeping the dynamics simple or aim to approach realism by modelling the agents with a rela-
tively high level of sophistication. The ARLOD model falls in the class of computational sociol-
ogy seeing as the agents in the model are sophisticated enough to learn from experience. The
relationship we show between this model and the voter model (a very simple model where
agents imitate one another) is thus an example of a bridge between the two approaches to
studying polarization.

In designing their model, BO [22] decide to make the interaction-learning relationship
asymmetric: only one of the agents partaking in the interaction is allowed to explore and learn
from the experience. We show that adapting the model to be symmetric fundamentally
changes the nature of the opinion dynamics from being non-ergodic to being ergodic. Under
this model, consensus is no longer absorbing so that the tools appropriate for studying polari-
zation and consensus differ from those required in the case of the ARLOD model. For exam-
ple, in an ergodic system the stationary distribution may be estimated by studying the mean
return time to polarized (or consensus) states. On the other hand for a non-ergodic system
with absorbing states one typically studies the time to absorption (in a consensus or polarized
state if these are indeed absorbing) or the number of visits to transient states before absorption.
If there are both consensus and polarized absorbing states, the relative probability of consensus
or polarization can be studied.

2 Results

In this section, we present the asymptotic analysis of the asymmetric reinforcement learning
for opinion dynamics (ARLOD) model presented by Banisch and Olbrich [22] in the long-
time limit, its relation to the voter model and the asymptotic analysis of a symmetric modifica-
tion of the model.

All three analyses (on the ARLOD model, the symmetrized version thereof, and the rela-
tionship between the ARLOD model and the voter model) consider the same reinforcement
learning method, namely, Q-learning. By using Q-learning, agents assign an estimate of the
“quality” of expressing each opinion to a randomly selected neighbour called a Q-value. We
present the ARLOD model for completeness of the current text. We refer to this model as the
asymmetric model because in the interaction between two agents the roles are distinguishable.
One agent is chosen to express their opinion to another, who merely responds. Only the first
agent updates their Q-values, and only the first agent can explore.

Different notions of stability exist in various fields related to the model we study. To avoid
confusion we present the definition of a stable state as used in this and the Methods section of
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the paper. The notion we use is strongly related to the notion of absorption. In the Introduc-
tion and Discussion sections we revert to using ‘absorbing’ and ‘stable’ separately as we discuss
these notions outside of the paradigm of the model we study here.

Definition 1 (Stability). A state (or class of states) is stable if once the process has entered this
state (class of states), it remains there indefinitely.

2.1 Asymptotic behaviour

2.1.1 The asymmetric reinforcement learning opinion dynamics (ARLOD) model.
This model of learning through social feedback considers N € N agents on a random (con-
nected) geometric network topology [38]. In particular, the network is given by G = (V, E)
where V are the vertices representing agents, and E are the connections between agents. The
graph is constructed according to the random geometric graph model with radius 7, (for
details, see §4.2 and Appendix E). Initially, all agents i € {1, .. ., N} assign a (possibly random)
quality Q) € [—1, 1] to each opinion o € {-1, 1}. Note that in the simulation we initialize these
values in [-0.5, 0.5] instead of -1, 1] which is all that is required for the theoretical analysis.
We do this following BO’s original simulation. The reason provided is to have on average half
the agents favouring each opinion. An agent holds the opinion which they assign the higher
quality. In each discrete time step ¢, an agent i is chosen uniformly at random to express their
opinion o,(t) to a randomly selected neighbour j. This neighbour responds by either punishing
them if the expressed opinion differs from their own (R; = ~1), or rewards them if the
expressed opinion is shared (R; = 1).

Agents thus learn the value of each of the two possible opinions {-1, 1} from their experi-
ences using stateless Q-learning. This means that each opinion o is assigned a Q-value Q,,
measuring its “quality”, which is updated as follows for the opinion o,(t) expressed in round #:

é,(t)(t + 1) = Q;,(t)(t)(l - Of) + Rjd. (1)

Here a € (0, 1) is called the learning rate. The Q-value of the opinion they did not express is
not altered so that

ioi(t)(t + 1) = Qig,(t)(t) (2)

We assume that the agent chosen to express their opinion exploits their favoured opinion
(the one with the greater Q-value) with probability 1—€ and explores by expressing their disfa-
voured opinion with probability € > 0.1. This is known as e-greedy Q-learning with fixed
exploration rate e.

The dynamics per round are depicted in a schematic in Fig 1. Note that only agent i adjusts
their Q-values after such an interaction, and that agent j’s response is deterministic (honest).

2.1.2 Asymptotic consensus and non-ergodicity. We now prove that in the ARLOD
model the long-time limit of the dynamics necessarily results in consensus and does not allow
for polarization. The proof is inspired by the proof of an analogous result for agents who learn
by simple exponential smoothing in [39]. We explore the time to consensus by means of simu-
lation. For the details on the simulation, see §4.1.

Analytical results. Our first result states that consensus is a stable state. In this regard, we
define consensus as the state of the model in which the Q-values each agent assigns to the opin-
ions have the same ordering. Note that we use a slightly different notation to that used by BO.
We define Q' (¢) as the Q-value that agenti € {1, 2, .. ., N} assigns to opinion o € {-1, 1} at
time t € N.
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Fig 1. A schematic of the procedure followed by the two agents selected to interact in one round of the ARLOD model, as originally described in
[22]. Agent i expresses an opinion O; to their neighbour j, who responds by punishing or rewarding agent i. Agent i updates the Q-value for the opinion
they expressed accordingly. The numbers to the top left of the boxes indicate the suggested order for reading the schematic.

https://doi.org/10.1371/journal.pone.0313951.g001

Lemma 1 (Consensus is stable). If there exists a time t, such that Q' (t,) > Q' (t,) for some
opinion o € {1, 1}, and each agent i € {1,2, ..., N}, then Q' (t) > Q" (t) for all t > t, and for
all agentsi € {1,2, ..., N}.

We prove Lemma 1 in Appendix B. The proof follows from the fact that agents respond
honestly, so that once all agents have the same ordering of Q-values, each exploration is pun-
ished while each exploitation is rewarded. This preserves the Q-value ordering.

The next result required to prove that consensus is reached with probability one in the
long-time limit, is that consensus is reachable from any state that is not consensus.

Lemma 2 (Consensus is reachable from all other states). If the learning rate a > 0, the
exploration rate e > 0, and G is connected then the probability of reaching consensus in finite
time is positive, i.e.,

P(3t, <oo:Qi(t) >Q (), Vie {1,...,N}) >0, (3)

for some o € {-1, 1}.

Lemma 2 is proved in Appendix B and hinges on the realisation that the ordering of an
agent’s Q-values may switch in a finite number of rounds as long as they have a neighbour
whose Q-value ordering differs from theirs. The number of rounds required for this switch to
occur is bounded from above by 2r + 2 with

_ | _log(¢)
T lrlog(l —oc)-‘7 )

for some & € (0, @). Note that Lemma 2 is true for all connected graphs between N < co agents
and all starting states (Q-values of agents) that are not in consensus. Furthermore, consensus
on either of the two opinions is reachable in this way.

We now state the first main theorem of the paper, which states that consensus is reached
with probability one in the long run in the ARLOD model.
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Theorem 1 (Consensus is guaranteed). If the learning rate a € (0, 1), the exploration rate
€ € (0, 1), and G is connected then the probability of consensus in the long run is one, i.e.,

P(3t, < 00: Q(t) > Q ,(t),0 € {~1,1},Vie {1,... ,N},Vt > t) = 1. (5)

Proof. By Lemma 1 consensus is stable and so once it is reached it persists. By Lemma 2 the
probability of reaching consensus from not consensus in R = (N — 1)(2r + 2) rounds is
bounded from below by p > 0. Thus, the probability of not reaching consensus in kR rounds is
bounded from above by

P(At, <kR:Q(t) > Q (t),0€ {~1,1},Vie {1,....N},Vt > ¢t) < (1 —p)*.  (6)

The probability of never being absorbed is then bounded from above by the limit of (6) as
k — oo which is zero. Therefore, the probability of the complement is one.

This implies that the polarisation observed as persistent in the presentation of the original
model’s simulation cannot persist indefinitely. In particular, the probability reported in Fig 5
of BO should be reinterpreted from ‘probability of consensus’ to ‘probability of consensus
before time Nx20000.” Furthermore, this implies that the probability of the system being in a
polarised state tends to zero as t — oo.

Note that the conditions on the network are only that it is connected. This is not a signifi-
cant limitation. Studying polarization is most interesting in connected networks where there is
still interaction between agents that disagree. The results also hold separately for each compo-
nent of a disconnected network. Though consensus within each component does not imply
consensus between components.

Simulations. In light of Theorem 1, we investigate the time to consensus as a function of the
radius of the geometric network structure by simulation. The parameter settings are stated and
motivated in §4.1. We define the time to consensus 7 as

m=min{t: Q/(t) > Q (t),0 € {-1,1},Vie {1,...,N}}. (7)

In Fig 2(A), we show the tail probabilities of the time to consensus P(t > t) for different
radii of the random geometric graph model on a logarithmic scale. A clear pattern emerges;
the bigger the radius, the sooner consensus is reached. We also note that the distributions
exhibit heavy tails, especially for the smallest three settings of the radius: r, € {0.25, 0.3, 0.35}.
This can be seen by the near linear lines (on the log-log scale) which are representative of
power-law and log-normal distributions.

In Fig 2(B), we show box and whisker diagrams of the simulated time to consensus (condi-
tioned on T < tq, = 10'%). This representation of the simulated data clearly shows that there
are many runs which might be identified as ‘outliers.’” This indicates that the time to consensus
has a high skewness and, like the tail probabilities, points towards a heavy-tailed distribution.
A possible explanation for the heavy-tails is the existence of metastable states, which the system
may spend a lot of time in before eventually jumping’ out to consensus. Indeed, similar heavy-
tailed survival probabilities were observed for the voter model on small-world networks, which
exhibit metastable polarisation [35]. We see that as the radius r, decreases, the probability that
consensus is reached after time ¢ € R increases. This shows how quantitatively the dynamics
do depend on the realisation of the network structure.

To illustrate this phenomenon of metastability, we plot the state of the system at different
points in time for a single trajectory. In Fig 3 we show the total number of agents holding opin-
ion 0 = 1 over time in this trajectory, which illustrates the metastable behaviour. In Fig 4 we
show the network of agents coloured according to their opinion at different time steps. Note
that because we select a run which illustrates metastable polarization, the network depicted
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Fig2. (A) Tail probabilities (P(t > t)) (on a log-log scale) and (B) a box and whisker diagram for the time to consensus for different values of the
radius r, used in the random geometric graph model to sample networks. The linear nature of these plots are indicative of a heavy tailed distribution.
The high number of outliers on the upper end of the time to consensus is indicative of a heavy-tailed distribution. The parameter settings are detailed in
§4.1.
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Fig 3. Number of agents holding opinion o = 1 in a simulation run exhibiting metastable behaviour plotted with time on a
logarithmic scale. The state of the network is plotted for telling timestamps of this simulation run in Fig 4. In this simulation run
re= 0.25, the other parameters are as in §4.1.

https://doi.org/10.1371/journal.pone.0313951.9003

here has more community structure than what may be typical of the random geometric net-
work algorithm. This is because the presence of community structure allows nodes to have
more in-community than out-community connections and so hold the opinion of their com-
munity for a long time (metastable), even if this is not uniform across communities. We see
that by ¢ = 10* two groups emerge; just less than 20 agents holding opinion o = 1 and the rest
holding opinion o = 1. This remains the case until shortly after time step 5.82x10° when the
opinions all quickly converge to o = 1. The long time spent around one state with many small
fluctuations followed by a quick exit to a stable state is typical of metastability.
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Fig 4. Opinions in simulation run with metastable behaviour at timestamp (A) t= 1, (B) t = 100, (C) t = 10°, (D)
t=10% (E) t = 10°% and (F) t ~ 5.82x10°. Note the group with opinion o = -1 (blue) forms around ¢ = 10* and
switches to o = 1 (red) after t = 10° The corresponding total number of agents holding opinion o = 1 is plotted in Fig 3.
In this simulation run r, = 0.25, the other parameters are as in §4.1.

https://doi.org/10.1371/journal.pone.0313951.9004

2.2 Relationship to voter model

It is not clear from the simulations presented by BO or the simulations we have executed that
consensus occurs with probability one. Indeed, polarisation may seem persistent because
many simulation runs ended in a state of polarisation in both sets of numerical simulations.
We know that consensus will be reached asymptotically, but how long the process may be in a
state of polarisation is not addressed by Theorem 1. To explore the stability of polarisation, we
employ a separation of time scales argument which relates the ARLOD model to a different
Markov chain, namely, the voter model.

It is well known [40-45] that reinforcement learning dynamics can be described by the
replicator dynamics in the continuous time limit, using a separation of times scales between
agent learning and strategy adjustment. We now present a similar relationship between the
ARLOD model and the jump chain (discrete time version) of the voter model [21] on a finite
topology and in the case of two opinions. It is known that the voter model on scale-free
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networks [33, 34], and small-world networks [35, 36] exhibits metastable polarisation and sta-
ble consensus.

2.2.1 Discrete time voter model. In the voter model, nodes on a graph have an opinion,
which may take one of two values —1, 1. Repeatedly, a node is selected at random from the set
of all nodes. This node performs an update in which it selects one of its neighbours and copies
whichever opinion they have. Time may be indexed by each such round, or by a collection of
rounds in which on average each node is selected once (on the order of the population size).
The version we discuss uses the former indexation of time.

We define the discrete time voter model as a Markov chain (X,); > o with t € N. As such, we
define the graph on which the voter model is to take place G = (V, E), with V the set of vertices
(voters) and E the set of edges (connections between voters). The number of voters is |V] = N
and we endow each vertex i with an opinion o; € {-1, 1} fori € {1, ..., N}. As a result, the state
space of the system is all possible assignments of each vertex to an opinion: S=={—1,1}".

We denote the unit vector of length N with a one at the [-th entry and zeros everywhere
else, as e;for [ € {1, 2, ..., N}. The transition probability from state # € S to state { € S'is
denoted P, .:=P(X,,, = { | X, = 1) and is given by

0 if [[n—=C1, > 2,
1/(1 0,

=3~ l5 57 if | = ¢, =2and { =i—2
1=2 0Py it {=n.

Here d, is the degree of voter | € Vand N(I) = {u: (u, [) € E} is their neighbourhood in the
graph G.

Informally, the transition probability in (8) is simply the uniform probability of agent i €
{1, ..., N} being chosen, multiplied by the probability of them selecting a neighbour (uni-
formly at random) holding opinion —o;. All transitions from n € Sto { € S in which the two
states 17 and { differ in more than one position occur with probability zero.

Given a starting assignment of opinions to voters 1 € S, the voter model is the Markov pro-
cess (Xy); > o that is Markov(8,, P), taking values in S. Here &, is the delta function. Alterna-
tively, given a distribution of the possible starting assignments of opinions to voters A such
that P(X, = 1) = A, for each ) € S, the voter model is Markov(A, P).

The dynamics of the voter model are illustrated in Fig 5. In this example, we consider 5
voters, V =1{1, .. ., 5} with connections E = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 5), (3, 5), (4, 5)} and
initial opinions X, = [-1, 1, 1, -1, 1]. We show the transitions conditioned on voter 1 being
selected to copy the opinion of one of their neighbours. In particular, if voter 1 selects voters 2
or 3 they switch their opinion and if they select voter 4 they keep their current opinion. These
transitions occur with probability 2/3 and 1/3, respectively.

2.2.2 ARLOD model in batches. The concept of multi-agent learning in batches has been
explored in its own right [46-48]. It may be interpreted as a separation of time scales. That is,
the rate at which agents learn about the behaviour of the environment or the other agents is
faster than the rate at which they adjust their behaviour. Practically, it may be implemented by
defining a batch size b € N which constitutes a number of rounds in which the agent keeps
their behaviour fixed and collects samples from their environment. At the end of this batch,
the belief of the agent is updated using all the observations made during the batch.

To establish the link between the ARLOD model (with sophisticated agents) from computa-
tional sociology and the voter model (from sociophysics), we define the preference vector at
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Fig 5. Illustration of the voter model dynamics. We show the transition probabilities conditioned on voter 1 being
selected to copy the opinion of one of their neighbours at random.

https://doi.org/10.1371/journal.pone.0313951.9005

time t € N: Y, whose elements are:

{1 if Q(t) = QL (b),

—1  otherwise.

It takes values in the state space S:={—1,1}".
Note that we use the weak inequality in (9), though in the limit of interest, equality occurs

with probability zero. We define the preference vector for the batched model as (Y7),.,. In

t>0°
essence, the batched model is a biased realisation of ARLOD; in the batch at time ¢ an agent is
chosen to express their opinion to a neighbour as often (b, € N times) as is needed for them to
have the same opinion preference. This occurs in the ARLOD model at probability (1/N)".

Now we define the batch learning version of the ARLOD model. In particular, agent i cho-
sen to express their opinion in batch ¢t € N will express their opinion to their chosen neighbour
jinabatch of size b, € N.

That is, the dynamics follow the steps:
1. Attimet, an agenti € {1, 2,..., N} is selected uniformly at random from the population.
2. This agent i chooses a neighbour j from their neighbourhood N(i) uniformly at random.

3. Then follow a sequence of subrounds indexed s = 1, . . ., b,. Because agent i is the only agent
who can adjust their belief in this batch, we denote agent i’s Q-values in the subround s by
Q'(s) and their opinion preference Y7 (with Q'(0) = Q'(¥) and Y] = Y!(i)). In each sub-
round, agent i expresses an opinion to agent j, following the rules of the ARLOD model:

o expressing their preferred opinion o,(s) = Y! at probability 1—¢,
« expressing their disfavoured opinion o,(s) = —Y! at probability €, and
» incorporating agent j’s honest response R;(s) into their Q' value Q, .
Now we define the random batch size b, = min{s : Y/ = Y,(j)}, i.e., the number of sub-

rounds required until agent i’s preference matches that of agent j.

4. Agent i updates their Q-values: Q(t+1) — Q(t+b).
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.......................

Subround update
0,(8) = Q5,(s — 1)(1 — @) + Rjcx

No: s+ s+ 1

_Batch update
Q'(t+1)=Q'(b)

Fig 6. The dynamics in one time step of the batched version of the ARLOD model at a high level of abstraction.
Agent i expresses an opinion b, times to their neighbour agent j who responds each time. Thereafter, agent i updates
their Q-values with all the feedback they received.

https://doi.org/10.1371/journal.pone.0313951.9006

We use this perhaps unconventional construction because the techniques in [49] are not
applicable here, as the states are not lumpable.

On a high level, the procedure of one such time step is depicted in Fig 6.

2.2.3 Relationship between the ARLOD model and the voter model. We now state the
main result of this section, which relates a batch learning version of the ARLOD model to the
discrete time version of the voter model.

Theorem 2. For any initial assignment of Q-values resulting in preference vector
Y, =1, € S, the random process tracking the change of the preference vector (Y?),., in the
batch version of the ARLOD model on graph G converges in distribution to the voter model on
the same graph:

with (X;); > o Markov(0, , P) with P as defined in (8).

The proof is provided in Appendix C and relies on the fact that an agent will receive enough
feedback to make the ordering of their Q-values match that of their neighbour in finite time.
Thus, we have shown that under a particular separation of time scales, the ARLOD model
behaves like the discrete time voter model on a finite graph with two opinions. The construc-
tion of the batched ARLOD model and its relation to the voter model ensures that any state
that is metastable in the voter model will also be metastable in the ARLOD model. This is
because any realisation of events in the batched ARLOD model also occur with positive proba-
bility in the standard ARLOD model.
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2.3 Instability of consensus and ergodicity of symmetric reinforcement
learning

We now introduce a new model based closely on the ARLOD model, with a subtle difference:
both agents involved in an interaction express their opinion in the same way and update their
Q-values as a result of what they observe. Because now the roles of the two agents are indistin-
guishable, we call this the symmetric reinforcement learning for opinion dynamics (SRLOD)
model.

2.3.1 The symmetric reinforcement learning opinion dynamics (SRLOD) model. A
population of n € N agents is embedded in a random (connected) geometric network topology.
In each discrete time step ¢ € N, an edge (i, j))€E is selected uniformly at random. The two
agents on either end of this edge i and j express an opinion to one another o,(t), 0,(t)€{~1, 1}.
Subsequently, both agents update the Q-value of their expressed opinion as follows:

oy (t+ 1) = G4,y ((1 = o) + 20,(£)0,(1) (11)

Qoo (E+ 1) = g, ()(1 — ) + 0,(£)0,(1), (12)

where a € (0, 1) is the learning rate. To differentiate it from the ARLOD model, we let g’ (¢)
denote the Q-value agent i € {1, ..., N} has for opinion o € {-1, 1} at time ¢ € N. The Q-value
of the opinion the agents did not express is not updated. We call the opinion o such that
q.(t) > g’ (t) agent i’s preferred opinion. We assume that both agents express their preferred
opinion with probability 1—¢ (called exploitation) and express their disfavoured opinion with
probability e (called exploration).

The difference thus between this model and the original model is only that instead of a one-
sided interaction, both agents may explore and learn from the interaction each round.

2.3.2 Instability of consensus in the SRLOD model. We show that consensus is no lon-
ger stable in this model.

Lemma 3 (Consensus is not stable). If there exists a time t, € N such that ¢ (t,) > q' (t,)
for some opinion o € {-1, 1} and each agent i € {1, 2, ..., N}, then

P(q,(t) > q_,(¢),Vt = 1,) = 0. (13)

The proof of Lemma 3 is presented in Appendix D. This and the next result depend on the
fact that any sequence of actions has positive probability in this model because both agents
learn from an interaction and explore with probability e > 0. In particular, the probability of
any finite sequence of actions of length I < 0o occurs with a probability bounded from below

by p(D):
p(l) = (ﬁ) () > 0. (14)

Consensus not being a stable state is a fundamental difference between the symmetric and
the asymmetric model. To elucidate this difference, we introduce the preference vector, y,, of
length N, whose i-th element takes the value:

' L if g (f) > 4., (¢)
7:(i) = (15)

—1 otherwise.

The preference vector describes which opinion (1 or —1) each agenti € {1, 2, .. ., N} favours.
The dynamics of the preference vector are ergodic in the symmetric model.

PLOS ONE | https://doi.org/10.1371/journal.pone.0313951 December 17, 2024 12/23


https://doi.org/10.1371/journal.pone.0313951

PLOS ONE

Social reinforcement learning, metastable polarisation and the voter model

Proposition 1 (Time-evolution of the preference vector is ergodic) The probability of the
preference vector transitioning in finite time between any two states 17, { € S is positive, i.e.,

Py,=Cly,=n) >0, forall n,{ €S, and some k < oco. (16)

To prove this, one first delineates a finite sequence between any two states n, { € S and
observes that the probability of these sequences is positive by (14). For any two states there is a
finite sequence of events which leads from one to the other as all agents take both actions with
positive probability, and can always switch their belief in a finite number of rounds. Thus, all
states communicate with one another. The ergodicity of the SRLOD model is illustrated in
Appendix F. The SRLOD model being ergodic means that looking for the probability of con-
sensus, or polarization is no longer as straightforward because both of these occur with proba-
bility one over the infinite time horizon. Instead, it is reasonable, for example, to calculate or
estimate the stationary distribution of the model which gives insights into the relative time
spent in consensus and polarized states. This illustrates how the tools used to study a model
differ based on the seemingly innocuous assumption of asymmetry in the agent-to-agent
interaction.

3 Discussion

We have analysed the ARLOD model of social learning put forth by Banisch and Olbrich [22].
Our first main theorem shows that consensus is reached asymptotically with probability one
for any finite and connected population structure. In particular, this is in contrast with the per-
sistence of polarisation originally reported for that model. A small modification of that model,
based on symmetrizing the interaction-learning relation between the agents, results instead in
ergodic dynamics, which thus destabilizes consensus somewhat. This result mirrors the differ-
ence between the voter model and the noisy voter model, in which a random probability of
switching one’s opinion is introduced [50, 51].

The highlighted importance of network structure in the original article [22] warrants atten-
tion. The theoretical arguments we present here to show that a) consensus is the only stable
state in the original model and b) that the symmetrized model is ergodic required only that the
network is connected. Thus, qualitatively, the assumption of network structure is not very
important. We do, however, see that it plays an important role quantitatively in the time taken
for consensus to be reached. It is likely that the metastability of polarization emerges because
of strong community structure in the network. This is in accordance with previous findings of
the effect of network structure on the timescales of the resulting dynamics (see for instance
[52, 53]) Many studies on polarisation and other social dynamics focus on the importance of
network structure. In addition to investigating the effects of networks, it may also be important
to disentangle which outcomes of the model are truly caused by networks structure and which
outcomes are the result of other—more implicit—modelling decisions, such as asymmetry in
the agent-to-agent interaction.

Having proved that the polarisation observed in the ARLOD model is not stable and that
consensus is guaranteed, we turn to the original research question. What causes stable polari-
sation? We provide conditions (a systematic biasing) for which the ARLOD model converges
to the voter model. Polarisation can be metastable in the voter model, and, by their relation,
also in the reinforcement learning model. This (relationship between the ARLOD model and
the voter model) bridges multiagent learning models and models well studied in sociophysics
and theoretical biology.

Our results raise questions regarding the possibility of finding a model of opinion dynamics
excluding repulsive forces and allowing for stable polarisation. Can we say that a reasonable
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model of opinion dynamics should exhibit stable (as defined in Definition 1) polarisation? Is
the polarisation we observe around us stable or metastable? Future research is required to give
an example of such a model or a proof that it does not exist. These questions might be explored
by investigating learning in the ‘real world’ (to identify appropriate a and €) as well as the influ-
ence of parameter values o and € in the ARLOD model. It could be that ‘real world’ learning is
such that consensus would be reached quickly under the ARLOD model, indicating that a
more realistic model requires additional elements. Alternatively, it may be that the parameters
of the ‘real world” are such that the time it takes to exit the metastable polarised state is so long
that differentiating between metastable and stable polarisation in the real world is difficult.

A limitation of the models we study is that the memory of the agents is entirely implicit
because we use stateless Q-learning. Explicit inclusion of memory may be done by using Q-
learning with states, where each state corresponds to the last action taken by each of an agents
neighbours. This would complicate the analysis: If additionally to memory, an agent knows
the identity of the neighbour they are expressing their opinion to, it is possible that polariza-
tion becomes absorbing (and therewith stable). Note that care would have to be taken to deter-
mine how an agent responds to an opinion to avoid decoupling the dynamics of each pair of
agents from other interactions. Another limitation of the model relates to the isolation of the
dynamics from other influences. Effects other than social influence that may be driving agent
opinions are an internal cognitive process related to their opinion such as in [15, 54], or pres-
sure applied by mass media to follow a certain opinion [26, 55-57]. Finally, the assumption
that the agents of the model are fixed (no new agents enter, or old ones leave) can be seen as
unrealistic. Important to note that changing this assumption may change the outcome of the
analysis. In particular if new agents have random Q-values, this destabilizes consensus in the
ARLOD model.

4 Methods
4.1 ARLOD simulation settings

We have chosen the parameter settings based on the following considerations. A greater num-
ber of agents means that more rounds are required to select each agent sufficiently often to
reach consensus. On the other hand, a smaller learning rate increases what ‘sufficiently often’
means per agent, as indicated in (4). To strike a balance between these effects, we set N = 100
and a = 0.25. Following BO, we set € = 0.1 and initialise the Q-values uniformly in [-0.5, 0.5].
The radius for the random geometric graph model r, € [0.25, 0.5] is selected to exhibit a range
of behaviour, focusing on connected graphs. We have chosen the maximum time to simulate
(10x10° rounds) and the number of simulation iterations (500 iterations) to be significantly
greater than those used by BO (2x10° rounds and 100 iterations). This allows the simulation to
reach consensus more frequently, which we know occurs eventually with probability one (by
Theorem 1).

4.2 Random connected geometric graphs

The algorithm to generate a connected random graph is provided in Appendix E. We use the
subroutine for the generation of a random geometric network from the Python NetworkX
package [58]. For a detailed discussion on random geometric graphs and their properties, the
interested reader is referred to [38, 59]. The random geometric graph model is popular in the
context of social dynamics because it mimics the homophily of real social networks as claimed
by [60].

The general idea of the random geometric graph is to distribute the desired number of
nodes randomly in Euclidean space (we use [0, 1]%) and fixes a radius re- Subsequently, any
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nodes u, v that are distance d(u, v)<r, from one another are connected by an edge (v, v).
Because we are interested in connected networks, we simply repeat the standard procedure
until a connected graph is sampled. We take care to only use r, for which the probability of
sampling a connected graph is sufficiently high (as described in §4.1).

Proof of Lemma 1

We proceed by induction on time. Suppose that Q' (¢,) > Q' (¢,) at time £, > 0, for some
opinion o € {-1, 1}, and each agenti € {1, 2, ..., N}.

The base case is that in round £, + 1, the ordering of all the Q-values will remain the same.

In round o, any agent i € {1, 2, . .., N} may be chosen to express their opinion to one of
their neighbours.

Case 1. Suppose they exploit their preferred opinion (the one with greater Q-value). Any
agent they express their opinion to, has the same ordering among their Q-values by the condi-
tions of the lemma, and so responds with an action that leads to a positive reward. Thus,

Q(ty +1) = Q,(t), (17)

the Q-value of the preferred opinion in round ¢, + 1 is at least as great as in f.

Case 2. Suppose they explore by taking the action with lesser Q-value. Any neighbour they
express this opinion to responds honestly. By the assumption, all agents have the same Q-value
ordering, so the honest response to exploration is an action that leads to a punishment. Thus,

Q. (t + 1) < Q%) (18)

the Q-value of the disfavoured action in round ¢, + 1 is lower than or equal to what it was in
round ;. This is true because the Q-values are initialised to be in [-1, 1] and will stay therein
indefinitely by the updating prescribed.

This proves the base case (as this holds for all agents that could have been chosen in round
f0): Q(t,+1) > Q (t, + 1) forall agentsi € {1,2, ..., N}.

In the induction step we assume it is true until rounds f, + n for n > 0. To show that it is
true for all rounds up until t, + n + 1, we simply follow the same procedure as in the base case
but for the game in round f, + n which determines the Q-values in round t, + n + 1.

Proof of Lemma 2

First, we delineate a sequence of events of finite length which may lead from any state to con-
sensus. Secondly, we will show that this sequence of events has positive probability.

Suppose agent i favours opinion o and has a neighbour j who prefers opinion —o, all at time
to. If agent i is drawn to express their opinion to agent j every round for L € N rounds and
always exploits their preferred opinion, the Q-value for this opinion is given by:

Qty+1) =Qt, +1-1)(1 —a) — o, (19)
foralll=1,2,..., L. Aterm by term comparison shows that this is bounded from above by
Q(ty +1) < Qt +1=-1)(1 — ), (20)

since o € (0, 1). Thus, an upper bound of the Q-value in round t, + [ is given by Q' (¢,)(1 — a)!
foralll=1,2,..., Laslongas Q (f,) > 0. When both Q-values have the same sign, only one of
them needs to be adjusted in the way described here until it changes sign.
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Subsequently, if agent i is drawn to express their opinion to agent j another M € N times
and explores their disfavoured action in each of these rounds, this opinion’s Q-value follows:

Q (ty,+L+m)=Q (t,+L+m—1)(1—o)+a, (21)
forallm=1,2,..., M. A term by term comparison shows that this is bounded from below by
Q, (ty+L+m)>Q (t,+L+m—1)(1—0). (22)

Again a lower bound to this Q-value in round t + 0 + L + m is given by Q' (¢, + L)(1 — )"
aslongas Q' (t,+ L) < 0.

We bound from above the number of rounds needed for any agent’s opinion to be
switched, by the number of rounds needed should they start as far away from one another as
possible, Q = (-1, 1), or (1, —1) and be set to cross at zero. The Q-value of the originally pre-
ferred opinion reaches & € (0, o) at least by the lowest integer r which satisfies:

Q) (1 —0) <, (23)

if they express this preferred opinion in each round. Dividing by Q' (¢,), taking the logarithm
on both sides and rearranging we get

1 Lt
_ os(e/Qut))] ”
log(1 — o)
By a similar procedure we see that the Q-value of the originally disfavoured opinion reaches
—c after a further r interactions (of exploring in each subsequent round). After two more inter-
actions in which the agent expresses each opinion once, the Q-value ordering has switched:

Q, (ty+2r+2)>-¢((1—a)+a>E(1l—a)—a>Q(t,+2r+2), (25)

as long as a > & which is satisfied by an appropriate choice of £.

The number of rounds this takes is 27 + 2. The probability that this happens is bounded
by the probability of the agent j being drawn to express their opinion to agent k 2r + 2 times,
multiplied by the probability that they take the required action in each round. This is a lower
bound because it does not matter whether agent i first exploits  + 1 times and then explores
r+ 1 times in that order. It only matters that there is a total of r + 1 explorations and exploita-
tions in the 2r + 2 rounds. Thus, the probability pgicn of one agent switching their opinion (if
they have at least one neighbour that disagrees with them) is lower bounded by

. 1 2r42
Poieen > (1 —€) €t <m> > 0. (26)
Here, agent i is drawn to express their opinion with probability 1/N and we bound the proba-
bility that they express this opinion to agent k from below by 1/(N-1) as that is the maximum
possible degree for any agent in the network. This probability is greater than zero simply
because it is a finite product of positive numbers.

In a connected population of N agents which is not yet in consensus, there is always at least
one edge which has an agent who prefers opinion o on one side and opinion —o on the other
side. Furthermore, in the initial state there are at most N—1 agents who prefer the ‘wrong’
opinion at time #,. So with probability p > p¥-1 > 0, in (N - 1)(2r + 2) < oo rounds all N

agents hold the same opinion.
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C Proof of Theorem 2

Attime t = 0, by definition, we have that P(Y, = #,) = 1 which is also true for X; under J, :
P(Xy =n,) = 1.
Next we show that for t € N,

P(Ytﬂ =1 | Yt =Ny YO = 770) = P(Ytﬂ =n | Yt = nt) = Pm,n' (27)

The Y;,,’s independence on Y, 4, ..., Y, follows from the fact that in the batch at time ¢ €
N the agents determine their behaviour entirely from the state Y,. Expressing agents express
their favoured opinion with probability 1—€ and express their disfavoured opinion with proba-
bility e. Responding agents always do so honestly, rewarding their favoured opinion and pun-
ishing their disfavoured opinion.

Note that P(Y, , = # | Y, = 5,) = 0 whenever ||[n—n||; > 2, just as in (8). This is because as
soon as ||17—1|; > 2 we have that more than one agent has switched their opinion after the
batch at time ¢. This is impossible because only one agent updates their Q-values during a
batch.

We proceed in two cases, one when ||77-7,||; = 2 and the other when ||7-7;||; = 0. Note that
In=nells # 1 because ,n, € S = {~1,1}".

Case 1. ||n—n,||; = 2: In this case states 17 and 7, differ in exactly one position which, without
loss of generality, we label I. In order for agent [ to switch their favoured opinion in batch ¢,
they must be selected uniformly at random to express their opinion to one of their neighbours.
This happens at probability 1/N.

If an agent expresses their opinion to an agent who favours opinion —o, agent , gets pun-
ished for each time they express their favoured opinion and rewarded for each time they
express their disfavoured opinion. Thus, if agent [ expresses their favoured opinion at least
r+ 1 times and their disfavoured opinion at least r + 1 times, where

o Loﬁ(ﬁ)aﬂ ’ )

then their opinion will have switched (see the proof of Lemma 2). Thus, we can lower bound
the probability of the agent switching their opinion after 2r + 2 rounds by

Pswitch 2 €r+1(1 - 6)r+1' (29)

Then the probability that the agent does not switch their opinion in finite time is upper
bounded by lim; . oc(l—pswitch)k = 0. This means that if the agent has selected to express their
opinion to an agent who favours opinion —o;, they will switch their opinion, and this will hap-
pen in finite time.

The probability of agent [ switching their opinion is given by the probability that they select
a neighbour favouring the opposite opinion to theirs. As before, we denote dj as the degree of
agent [. Furthermore, we denote with a(l) and c(I) the number of agents in I's neighbourhood
who are in agreement and contradiction with [ respectively. Then, because agents select a
neighbour uniformly at random, the probability of / switching their opinion is

(30)
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This may be rewritten and rearranged as follows:

P(o, — —0) = ;j} " 2(2 (31)
_ c(l)  d—a(l)

2_d[ + 2d1 (32)

_ % (1 L —al) ;l a(l)> . (33)

To extract this from Y}, notice that it can be rewritten as

P(o, — —0,) = % (1 - Y[T(l) > Yt(k)>, (34)

I keN(l)

where N(I) is the neighbourhood of agent [ in the graph G. Multiplying this by 1/N, the proba-
bility that agent [ is selected to express their opinion in the first place, we get precisely P, i as
required.

Case 2. ||n—n,||; = 0: In this case, an agent is selected to express their opinion, and they do
so to a neighbour who is in agreement with them (in which case b, = 1). Given that agent [ is
selected, this happens with probability

P(o, — 0) =1 1 (1 - de(l) > Yt(k)>. (35)

2 I keN(l)

This is exactly 1-NP,, 7 for n = n,~2Y,(l)e;. Summing over all agents that might be selected
and multiplying by the probability of selecting those agents, we get the required probability of
transitioning to the same state, P, , =1 — Z" Y -

D Proof of Lemma 3

Proof. We show that a sequence of events which leads from consensus to not-consensus is of
finite length and positive probability.

Observe that each agent explores (expresses and reinforces the disfavoured opinion) at
probability € > 0. Observe also that if this disfavoured opinion is reinforced maximally x + 1

times with
- et

which is finite, and similarly if their preferred opinion is punished x + 1 times, that they switch
ordering of opinion Q-values. In similar fashion to as it was shown in the proof of Lemma 2
for the asymmetric model.

Given a sequence of agent actions, the probability that they take the action in some round
required by the sequence, is always bounded from below by € > 0. This is because they express
their disfavoured opinion at probability € and their favoured opinion at probability 1—€ > e.

This means that the probability of any finite sequence of actions of length [ < 0o occurs at a
probability bounded from below by p(I) defined in (14). Thus, the probability of an agent
exploring and being rewarded x + 1 times and exploiting and being punished x + 1 times is
positive because this is a sequence of events with length 2« + 2. This is the maximal length
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sequence which leads to one agent changing the ordering of their Q-values. So we have that
the probability that such a switch never happens (the probability of consensus for all ¢ > t):

P(g,(1) > 4,0,V 2 ) < lim(1 = p(2 +2))" = 0. 7)

Therefore consensus is not absorbing (and not a stable state).

E Algorithm to generate a geometric random graph

Algorithm 1: Generate connected random geometric graph with N nodes and radius r,.
Input: N: number of nodes, ry: radius

Output: G: connected random geometric graph

1 Check « True;

2 while Check do

G < empty graph;

4 for i «— 1 to Ndo

5 Add node i with random coordinates in [O, 1]2 to G;
6 end
7
8

w

for each pair of nodes (u, v) in G do
if distance(u, v) <r, then

9 Add edge (u, v) to G;
10 end
11 end

12 if G is connected then
13 Check « False

14 end

15 end

F lllustration of the ergodicity in the SRLOD model

The dynamics of the SRLOD model are ergodic by Proposition 1, meaning that the process
can reach all states from all other states. In the ergodic setting on a finite state space, one can
look for a stationary distribution. That is a probability distribution over the states reporting
the probability of observing each state as t — co. Thus, the questions one might ask of the
model changes from ‘What is the probability of consensus?’ to “What proportion of time does
the system spend in each state?” To illustrate the ergodicity of the SRLOD model, we show a
simulation run in which consensus was reached on both opinions in Figs 7 and 8.

50

=1

40 A
30 A
20 A

10 -
0

no. Agents: O

10° 10! 102 103 104 10° 10° 107
t

Fig 7. The number of agents holding opinion o =1 in a simulation run of the SRLOD model plotted with time on a logarithmic scale. Notice the
switch from consensus on opinion o = 1 to opinion o = —1 shortly after ¢ = 10°.

https://doi.org/10.1371/journal.pone.0313951.g007
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Fig 8. Opinions in simulation run of the SRLOD model at rounds (A) t=1, (B) t = 103, (C) t = 10%, (D) ¢ = 2x10°,
(E) t = 3x10%, and (F) t = 2x10°. Notice the switch from consensus on opinion o = 1 (red) to opinion o = —1 (blue)
between ¢ = 3x10° and ¢ = 2x10°.

https://doi.org/10.1371/journal.pone.0313951.9g008

In this simulation we set & = 0.25, € = 0.2, N = 50 and r, = 0.2. Because consensus is no lon-
ger stable, we stop the simulation manually at £ = 8x10°. The number of agents holding opin-
ion 0 = 1 is plotted on a logarithmic timescale in Fig 7 while the state of the network is shown
for telling rounds in Fig 8. The reason for reducing the number of agents in this simulation is
to speed up the dynamics thus making it possible to observe the phenomena in a relatively
short simulation.
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