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Abstract

Previous explanations for the persistence of polarization of opinions have typically included

modelling assumptions that predispose the possibility of polarization (i.e., assumptions

allowing a pair of agents to drift apart in their opinion such as repulsive interactions or

bounded confidence). An exception is a recent simulation study showing that polarization is

persistent when agents form their opinions using social reinforcement learning. Our goal is

to highlight the usefulness of reinforcement learning in the context of modeling opinion

dynamics, but that caution is required when selecting the tools used to study such a model.

We show that the polarization observed in the model of the simulation study cannot persist

indefinitely, and exhibits consensus asymptotically with probability one. By constructing a

link between the reinforcement learning model and the voter model, we argue that the

observed polarization is metastable. Finally, we show that a slight modification in the learn-

ing process of the agents changes the model from being non-ergodic to being ergodic. Our

results show that reinforcement learning may be a powerful method for modelling polariza-

tion in opinion dynamics, but that the tools (objects to study such as the stationary distribu-

tion, or time to absorption for example) appropriate for analysing such models crucially

depend on their properties (such as ergodicity, or transience). These properties are deter-

mined by the details of the learning process and may be difficult to identify based solely on

simulations.

1 Introduction

Since at least 1964 scientists have been trying to answer the question “what on earth must one

assume to generate the bimodal outcome of community cleavage studies” [1, p. 153]. Possible

answers to this question have been presented; bounded confidence [2–5] whereby agents stop

listening to others if their opinion is too different from their own, repulsive forces between

agents [6–10] based on possible negative connections within a network or messages eliciting

the opposite effect within a recipient, stubbornness of an agent toward changing their opinion

[11–13], and distinguishing between an agent’s expressed opinion and their internal opinion

[14, 15]. What unifies these explanations is that the resulting models all include some element

from which one might infer the possibility of polarization. Models with only attractive forces
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on the other hand, typically lead only to consensus (see for example the models of weighted

averaging [16–19] and imitation [20, 21]). Thus it comes as a surprise that the model studied

by Banisch and Olbrich [22] with only attractive forces between agents, seems to exhibit persis-

tent polarization.

The dynamics in models of opinion formation typically take place on a network. A network

consists of nodes (representing agents) and edges between them (representing social influence

or ties). Nodes that share an edge are said to be neighbours in the network. A well studied class

of opinion dynamics models on networks from the sociophysics literature is the class of voter

models [20, 21] (see [23] for an introduction). In these models a random agent is selected each

round to update their opinion. The agent does this by copying the opinion held by one of their

neighbours. Reinforcement learning is a model for learning by feedback: actions (or opinions

in our case) for which an agent receives positive feedback are reinforced. Actions that receive

negative feedback on the other hand are less likely to be taken in the future.

For convenience, in the remainder we refer to the paper of Banisch and Olbrich [22] as

BO while we refer to the reinforcement learning model they study as the ‘Asymmetric Rein-

forcement Learning for Opinion Dynamics model,’ or simply the ARLOD model. This influ-

ential model includes no repulsive element in the interaction between agents. It proposes

modelling the evolution of opinions (of agents on connected networks) using multiagent

reinforcement learning, where agents interact via a coordination game. They find, using sim-

ulations, that allowing agents to learn their opinion through trial and error gives rise to the

emergence of persistent polarization. This is surprising, because in this model after an inter-

action between two agents, the opinions of the two necessarily get closer together and cannot

remain unchanged or get further apart. That is, in the ARLOD model there are no repulsive

forces or assumptions of bounded confidence. Models of opinion dynamics may be classified

into ‘assimilative,’ ‘repulsive’ and models with ‘similarity bias’ [24]. The model under consid-

eration here does not traditionally fall in the category of models with only assimilative forces

between agents because it utilizes experience based learning. Note that in the original article

BO [22], ‘persistent’ and ‘stable’ are used interchangeably. In order to avoid confusion, we

use ‘persistent’ to discuss their claims about the ARLOD model and ‘stable’ when making

our own claims. Törnberg et al. [25] build on the ideas of the ARLOD model by incorporat-

ing the role of agent identity. Törnberg [26], similarly looking for drivers of polarisation

without the assumption of negative influences but dissatisfied with BO’s assumption of selec-

tive exposure (a fixed and constant network), analysed a model which includes non-local

interaction to model the effect of media. A variant of the reinforcement learning model with

multiple opinions and synchronous updating has been studied in [27]. Their results highlight

the difficulty of reaching consensus in complex networks using reinforcement learning. The

idea of modelling opinion dynamics by reinforcement learning has been built on since (e.g.

[28–31]).

An overarching goal in this paper is to highlight the importance of the relationship between

model assumptions and characteristics. It can be tempting to design a model and study its

characteristics by simulation. However, to accurately present the results of such a simulation

study it may be important to first identify certain model characteristics. We illustrate the

importance of this by presenting three results on the ARLOD model by BO [22].

We show analytically that consensus is reached in the ARLOD model with probability one

in the long run. The polarisation found in [22] necessarily gives way to consensus eventually.

To elucidate this result, we run simulations to estimate the tail probabilities for the time to

consensus. We find that these exhibit heavy tails, indicating that there may be metastable states

(corresponding to polarization) in which the model resides for a long time before reaching

consensus.
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The phenomenon of metastable polarization together with eventual consensus has previ-

ously been observed in the context of the voter model, first introduced in [21]. Specifically,

consensus is reached eventually if the state space of the model is finite [32], and it has been

shown that polarisation is metastable in certain network topologies [33–36]. Recently, metasta-

ble opinion polarisation has been identified in [37] where it is shown to arise from biased

information processing.

The dynamics of the voter model on networks consists of agents adopting one of their

neighbours’ opinions at random. At first sight, dynamics of this kind seem rudimentary in

comparison to the sophisticated dynamics of reinforcement learning. However, we show that,

under a separation of time scales, the ARLOD model converges in distribution to a voter

model. This relationship highlights that the polarisation observed in the ARLOD model may

indeed be metastable depending on the network structure. It also bridges the seemingly dispa-

rate approaches to modelling opinions: sociophysics and computational sociology. These two

approaches differ in their typical level of abstraction, and whether they aim for tractability by

keeping the dynamics simple or aim to approach realism by modelling the agents with a rela-

tively high level of sophistication. The ARLOD model falls in the class of computational sociol-

ogy seeing as the agents in the model are sophisticated enough to learn from experience. The

relationship we show between this model and the voter model (a very simple model where

agents imitate one another) is thus an example of a bridge between the two approaches to

studying polarization.

In designing their model, BO [22] decide to make the interaction-learning relationship

asymmetric: only one of the agents partaking in the interaction is allowed to explore and learn

from the experience. We show that adapting the model to be symmetric fundamentally

changes the nature of the opinion dynamics from being non-ergodic to being ergodic. Under

this model, consensus is no longer absorbing so that the tools appropriate for studying polari-

zation and consensus differ from those required in the case of the ARLOD model. For exam-

ple, in an ergodic system the stationary distribution may be estimated by studying the mean

return time to polarized (or consensus) states. On the other hand for a non-ergodic system

with absorbing states one typically studies the time to absorption (in a consensus or polarized

state if these are indeed absorbing) or the number of visits to transient states before absorption.

If there are both consensus and polarized absorbing states, the relative probability of consensus

or polarization can be studied.

2 Results

In this section, we present the asymptotic analysis of the asymmetric reinforcement learning

for opinion dynamics (ARLOD) model presented by Banisch and Olbrich [22] in the long-

time limit, its relation to the voter model and the asymptotic analysis of a symmetric modifica-

tion of the model.

All three analyses (on the ARLOD model, the symmetrized version thereof, and the rela-

tionship between the ARLOD model and the voter model) consider the same reinforcement

learning method, namely, Q-learning. By using Q-learning, agents assign an estimate of the

“quality” of expressing each opinion to a randomly selected neighbour called a Q-value. We

present the ARLOD model for completeness of the current text. We refer to this model as the

asymmetric model because in the interaction between two agents the roles are distinguishable.

One agent is chosen to express their opinion to another, who merely responds. Only the first

agent updates their Q-values, and only the first agent can explore.

Different notions of stability exist in various fields related to the model we study. To avoid

confusion we present the definition of a stable state as used in this and the Methods section of
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the paper. The notion we use is strongly related to the notion of absorption. In the Introduc-

tion and Discussion sections we revert to using ‘absorbing’ and ‘stable’ separately as we discuss

these notions outside of the paradigm of the model we study here.

Definition 1 (Stability). A state (or class of states) is stable if once the process has entered this
state (class of states), it remains there indefinitely.

2.1 Asymptotic behaviour

2.1.1 The asymmetric reinforcement learning opinion dynamics (ARLOD) model.

This model of learning through social feedback considers N 2 N agents on a random (con-

nected) geometric network topology [38]. In particular, the network is given by G = (V, E)

where V are the vertices representing agents, and E are the connections between agents. The

graph is constructed according to the random geometric graph model with radius rg (for

details, see §4.2 and Appendix E). Initially, all agents i 2 {1, . . ., N} assign a (possibly random)

quality Qi
o 2 ½� 1; 1� to each opinion o 2 {−1, 1}. Note that in the simulation we initialize these

values in [−0.5, 0.5] instead of [−1, 1] which is all that is required for the theoretical analysis.

We do this following BO’s original simulation. The reason provided is to have on average half

the agents favouring each opinion. An agent holds the opinion which they assign the higher

quality. In each discrete time step t, an agent i is chosen uniformly at random to express their

opinion oi(t) to a randomly selected neighbour j. This neighbour responds by either punishing

them if the expressed opinion differs from their own (Rj = −1), or rewards them if the

expressed opinion is shared (Rj = 1).

Agents thus learn the value of each of the two possible opinions {−1, 1} from their experi-

ences using stateless Q-learning. This means that each opinion o is assigned a Q-value Qo,

measuring its “quality”, which is updated as follows for the opinion oi(t) expressed in round t:

Qi
oiðtÞ
ðt þ 1Þ ¼ Qi

oiðtÞ
ðtÞð1 � aÞ þ Rja: ð1Þ

Here α 2 (0, 1) is called the learning rate. The Q-value of the opinion they did not express is

not altered so that

Qi
� oiðtÞ
ðt þ 1Þ ¼ Qi

� oiðtÞ
ðtÞ: ð2Þ

We assume that the agent chosen to express their opinion exploits their favoured opinion

(the one with the greater Q-value) with probability 1−� and explores by expressing their disfa-

voured opinion with probability � > 0.1. This is known as �-greedy Q-learning with fixed

exploration rate �.

The dynamics per round are depicted in a schematic in Fig 1. Note that only agent i adjusts

their Q-values after such an interaction, and that agent j’s response is deterministic (honest).

2.1.2 Asymptotic consensus and non-ergodicity. We now prove that in the ARLOD

model the long-time limit of the dynamics necessarily results in consensus and does not allow

for polarization. The proof is inspired by the proof of an analogous result for agents who learn

by simple exponential smoothing in [39]. We explore the time to consensus by means of simu-

lation. For the details on the simulation, see §4.1.

Analytical results. Our first result states that consensus is a stable state. In this regard, we

define consensus as the state of the model in which the Q-values each agent assigns to the opin-

ions have the same ordering. Note that we use a slightly different notation to that used by BO.

We define Qi
oðtÞ as the Q-value that agent i 2 {1, 2, . . ., N} assigns to opinion o 2 {−1, 1} at

time t 2 N.
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Lemma 1 (Consensus is stable). If there exists a time t0 such that Qi
oðt0Þ > Qi

� oðt0Þ for some
opinion o 2 {−1, 1}, and each agent i 2 {1, 2, . . ., N}, then Qi

oðtÞ > Qi
� oðtÞ for all t� t0 and for

all agents i 2 {1, 2, . . ., N}.

We prove Lemma 1 in Appendix B. The proof follows from the fact that agents respond

honestly, so that once all agents have the same ordering of Q-values, each exploration is pun-

ished while each exploitation is rewarded. This preserves the Q-value ordering.

The next result required to prove that consensus is reached with probability one in the

long-time limit, is that consensus is reachable from any state that is not consensus.

Lemma 2 (Consensus is reachable from all other states). If the learning rate α> 0, the
exploration rate � > 0, and G is connected then the probability of reaching consensus in finite
time is positive, i.e.,

Pð9t1 <1 : Qi
oðt1Þ > Qi

� oðt1Þ; 8i 2 f1; . . . ;NgÞ > 0; ð3Þ

for some o 2 {−1, 1}.

Lemma 2 is proved in Appendix B and hinges on the realisation that the ordering of an

agent’s Q-values may switch in a finite number of rounds as long as they have a neighbour

whose Q-value ordering differs from theirs. The number of rounds required for this switch to

occur is bounded from above by 2r + 2 with

r ¼

&
logðxÞ

logð1 � aÞ

’

; ð4Þ

for some ξ 2 (0, α). Note that Lemma 2 is true for all connected graphs between N<1 agents

and all starting states (Q-values of agents) that are not in consensus. Furthermore, consensus

on either of the two opinions is reachable in this way.

We now state the first main theorem of the paper, which states that consensus is reached

with probability one in the long run in the ARLOD model.

Fig 1. A schematic of the procedure followed by the two agents selected to interact in one round of the ARLOD model, as originally described in

[22]. Agent i expresses an opinion Oi to their neighbour j, who responds by punishing or rewarding agent i. Agent i updates the Q-value for the opinion

they expressed accordingly. The numbers to the top left of the boxes indicate the suggested order for reading the schematic.

https://doi.org/10.1371/journal.pone.0313951.g001
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Theorem 1 (Consensus is guaranteed). If the learning rate α 2 (0, 1), the exploration rate
� 2 (0, 1), and G is connected then the probability of consensus in the long run is one, i.e.,

Pð9t0 <1 : Qi
oðtÞ > Qi

� oðtÞ; o 2 f� 1; 1g;8i 2 f1; . . . ;Ng; 8t � t0Þ ¼ 1: ð5Þ

Proof. By Lemma 1 consensus is stable and so once it is reached it persists. By Lemma 2 the

probability of reaching consensus from not consensus in R = (N − 1)(2r + 2) rounds is

bounded from below by p> 0. Thus, the probability of not reaching consensus in kR rounds is

bounded from above by

Pð∄t0 � kR : Qi
oðtÞ > Qi

� oðtÞ; o 2 f� 1; 1g; 8i 2 f1; . . . ;Ng;8t � t0Þ � ð1 � pÞk: ð6Þ

The probability of never being absorbed is then bounded from above by the limit of (6) as

k!1 which is zero. Therefore, the probability of the complement is one.

This implies that the polarisation observed as persistent in the presentation of the original

model’s simulation cannot persist indefinitely. In particular, the probability reported in Fig 5

of BO should be reinterpreted from ‘probability of consensus’ to ‘probability of consensus

before time N×20000.’ Furthermore, this implies that the probability of the system being in a

polarised state tends to zero as t!1.

Note that the conditions on the network are only that it is connected. This is not a signifi-

cant limitation. Studying polarization is most interesting in connected networks where there is

still interaction between agents that disagree. The results also hold separately for each compo-

nent of a disconnected network. Though consensus within each component does not imply

consensus between components.

Simulations. In light of Theorem 1, we investigate the time to consensus as a function of the

radius of the geometric network structure by simulation. The parameter settings are stated and

motivated in §4.1. We define the time to consensus τ as

t≔minft : Qi
oðtÞ > Qi

� oðtÞ; o 2 f� 1; 1g; 8i 2 f1; . . . ;Ngg: ð7Þ

In Fig 2(A), we show the tail probabilities of the time to consensus Pðt � tÞ for different

radii of the random geometric graph model on a logarithmic scale. A clear pattern emerges;

the bigger the radius, the sooner consensus is reached. We also note that the distributions

exhibit heavy tails, especially for the smallest three settings of the radius: rg 2 {0.25, 0.3, 0.35}.

This can be seen by the near linear lines (on the log-log scale) which are representative of

power-law and log-normal distributions.

In Fig 2(B), we show box and whisker diagrams of the simulated time to consensus (condi-

tioned on τ< tmax = 1010). This representation of the simulated data clearly shows that there

are many runs which might be identified as ‘outliers.’ This indicates that the time to consensus

has a high skewness and, like the tail probabilities, points towards a heavy-tailed distribution.

A possible explanation for the heavy-tails is the existence of metastable states, which the system

may spend a lot of time in before eventually ‘jumping’ out to consensus. Indeed, similar heavy-

tailed survival probabilities were observed for the voter model on small-world networks, which

exhibit metastable polarisation [35]. We see that as the radius rg decreases, the probability that

consensus is reached after time t 2 R increases. This shows how quantitatively the dynamics

do depend on the realisation of the network structure.

To illustrate this phenomenon of metastability, we plot the state of the system at different

points in time for a single trajectory. In Fig 3 we show the total number of agents holding opin-

ion o = 1 over time in this trajectory, which illustrates the metastable behaviour. In Fig 4 we

show the network of agents coloured according to their opinion at different time steps. Note

that because we select a run which illustrates metastable polarization, the network depicted
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here has more community structure than what may be typical of the random geometric net-

work algorithm. This is because the presence of community structure allows nodes to have

more in-community than out-community connections and so hold the opinion of their com-

munity for a long time (metastable), even if this is not uniform across communities. We see

that by t = 104 two groups emerge; just less than 20 agents holding opinion o = −1 and the rest

holding opinion o = 1. This remains the case until shortly after time step 5.82×106 when the

opinions all quickly converge to o = 1. The long time spent around one state with many small

fluctuations followed by a quick exit to a stable state is typical of metastability.

Fig 3. Number of agents holding opinion o = 1 in a simulation run exhibiting metastable behaviour plotted with time on a

logarithmic scale. The state of the network is plotted for telling timestamps of this simulation run in Fig 4. In this simulation run

rg = 0.25, the other parameters are as in §4.1.

https://doi.org/10.1371/journal.pone.0313951.g003

Fig 2. (A) Tail probabilities (Pðt > tÞ) (on a log-log scale) and (B) a box and whisker diagram for the time to consensus for different values of the

radius rg used in the random geometric graph model to sample networks. The linear nature of these plots are indicative of a heavy tailed distribution.

The high number of outliers on the upper end of the time to consensus is indicative of a heavy-tailed distribution. The parameter settings are detailed in

§4.1.

https://doi.org/10.1371/journal.pone.0313951.g002
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2.2 Relationship to voter model

It is not clear from the simulations presented by BO or the simulations we have executed that

consensus occurs with probability one. Indeed, polarisation may seem persistent because

many simulation runs ended in a state of polarisation in both sets of numerical simulations.

We know that consensus will be reached asymptotically, but how long the process may be in a

state of polarisation is not addressed by Theorem 1. To explore the stability of polarisation, we

employ a separation of time scales argument which relates the ARLOD model to a different

Markov chain, namely, the voter model.

It is well known [40–45] that reinforcement learning dynamics can be described by the

replicator dynamics in the continuous time limit, using a separation of times scales between

agent learning and strategy adjustment. We now present a similar relationship between the

ARLOD model and the jump chain (discrete time version) of the voter model [21] on a finite

topology and in the case of two opinions. It is known that the voter model on scale-free

Fig 4. Opinions in simulation run with metastable behaviour at timestamp (A) t = 1, (B) t = 100, (C) t = 103, (D)

t = 104, (E) t = 106, and (F) t� 5.82×106. Note the group with opinion o = −1 (blue) forms around t = 104 and

switches to o = 1 (red) after t = 106. The corresponding total number of agents holding opinion o = 1 is plotted in Fig 3.

In this simulation run rg = 0.25, the other parameters are as in §4.1.

https://doi.org/10.1371/journal.pone.0313951.g004
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networks [33, 34], and small-world networks [35, 36] exhibits metastable polarisation and sta-

ble consensus.

2.2.1 Discrete time voter model. In the voter model, nodes on a graph have an opinion,

which may take one of two values −1, 1. Repeatedly, a node is selected at random from the set

of all nodes. This node performs an update in which it selects one of its neighbours and copies

whichever opinion they have. Time may be indexed by each such round, or by a collection of

rounds in which on average each node is selected once (on the order of the population size).

The version we discuss uses the former indexation of time.

We define the discrete time voter model as a Markov chain (Xt)t � 0 with t 2 N. As such, we

define the graph on which the voter model is to take place G = (V, E), with V the set of vertices

(voters) and E the set of edges (connections between voters). The number of voters is |V| = N
and we endow each vertex i with an opinion oi 2 {−1, 1} for i 2 {1, . . ., N}. As a result, the state

space of the system is all possible assignments of each vertex to an opinion: S≔f� 1; 1g
N

.

We denote the unit vector of length N with a one at the l-th entry and zeros everywhere

else, as el for l 2 {1, 2, . . ., N}. The transition probability from state Z 2 S to state z 2 S is

denoted PZ;z≔PðXtþ1 ¼ z j Xt ¼ ZÞ and is given by

PZ;z ¼

0 if k Z � z k1 > 2;

1

N
1

2
�

ol

2dl

X

k2NðlÞ

ok

 !

if k Z � z k1 ¼ 2; and z ¼ i � 2olel;

1 �
P

z6¼Z
PZ;z if z ¼ Z:

8
>>>>>><

>>>>>>:

ð8Þ

Here dl is the degree of voter l 2 V and N(l) = {u: (u, l) 2 E} is their neighbourhood in the

graph G.

Informally, the transition probability in (8) is simply the uniform probability of agent i 2
{1, . . ., N} being chosen, multiplied by the probability of them selecting a neighbour (uni-

formly at random) holding opinion −oj. All transitions from Z 2 S to z 2 S in which the two

states η and z differ in more than one position occur with probability zero.

Given a starting assignment of opinions to voters Z 2 S, the voter model is the Markov pro-

cess (Xt)t � 0 that is Markov(δη, P), taking values in S. Here δη is the delta function. Alterna-

tively, given a distribution of the possible starting assignments of opinions to voters λ such

that PðX0 ¼ ZÞ ¼ lZ for each Z 2 S, the voter model is Markov(λ, P).

The dynamics of the voter model are illustrated in Fig 5. In this example, we consider 5

voters, V = {1, . . ., 5} with connections E = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 5), (3, 5), (4, 5)} and

initial opinions X0 = [−1, 1, 1, −1, 1]. We show the transitions conditioned on voter 1 being

selected to copy the opinion of one of their neighbours. In particular, if voter 1 selects voters 2

or 3 they switch their opinion and if they select voter 4 they keep their current opinion. These

transitions occur with probability 2/3 and 1/3, respectively.

2.2.2 ARLOD model in batches. The concept of multi-agent learning in batches has been

explored in its own right [46–48]. It may be interpreted as a separation of time scales. That is,

the rate at which agents learn about the behaviour of the environment or the other agents is

faster than the rate at which they adjust their behaviour. Practically, it may be implemented by

defining a batch size b 2 N which constitutes a number of rounds in which the agent keeps

their behaviour fixed and collects samples from their environment. At the end of this batch,

the belief of the agent is updated using all the observations made during the batch.

To establish the link between the ARLOD model (with sophisticated agents) from computa-

tional sociology and the voter model (from sociophysics), we define the preference vector at
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time t 2 N: Yt whose elements are:

YtðiÞ ¼
1 if Qi

1
ðtÞ � Qi

� 1
ðtÞ;

� 1 otherwise:

(

ð9Þ

It takes values in the state space S≔f� 1; 1g
N

.

Note that we use the weak inequality in (9), though in the limit of interest, equality occurs

with probability zero. We define the preference vector for the batched model as ðYb
t Þt�0

. In

essence, the batched model is a biased realisation of ARLOD; in the batch at time t an agent is

chosen to express their opinion to a neighbour as often (bt 2 N times) as is needed for them to

have the same opinion preference. This occurs in the ARLOD model at probability ð1=NÞbt .

Now we define the batch learning version of the ARLOD model. In particular, agent i cho-

sen to express their opinion in batch t 2 N will express their opinion to their chosen neighbour

j in a batch of size bt 2 N.

That is, the dynamics follow the steps:

1. At time t, an agent i 2 {1, 2, . . ., N} is selected uniformly at random from the population.

2. This agent i chooses a neighbour j from their neighbourhood N(i) uniformly at random.

3. Then follow a sequence of subrounds indexed s = 1, . . ., bt. Because agent i is the only agent

who can adjust their belief in this batch, we denote agent i’s Q-values in the subround s by

Q0(s) and their opinion preference Y 0s (with Q0(0) = Qi(t) and Y 0
0
¼ Yb

t ðiÞ). In each sub-

round, agent i expresses an opinion to agent j, following the rules of the ARLOD model:

• expressing their preferred opinion oiðsÞ ¼ Y 0s at probability 1−�,

• expressing their disfavoured opinion oiðsÞ ¼ � Y 0s at probability �, and

• incorporating agent j’s honest response Rj(s) into their Q0 value Q0os
:

Now we define the random batch size bt ¼ minfs : Y 0s ¼ YtðjÞg, i.e., the number of sub-

rounds required until agent i’s preference matches that of agent j.

4. Agent i updates their Q-values: Qi(t + 1) Q0(t + bt).

Fig 5. Illustration of the voter model dynamics. We show the transition probabilities conditioned on voter 1 being

selected to copy the opinion of one of their neighbours at random.

https://doi.org/10.1371/journal.pone.0313951.g005
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We use this perhaps unconventional construction because the techniques in [49] are not

applicable here, as the states are not lumpable.

On a high level, the procedure of one such time step is depicted in Fig 6.

2.2.3 Relationship between the ARLOD model and the voter model. We now state the

main result of this section, which relates a batch learning version of the ARLOD model to the

discrete time version of the voter model.

Theorem 2. For any initial assignment of Q-values resulting in preference vector
Y0 ¼ Z0 2 S, the random process tracking the change of the preference vector ðYb

t Þt�0
in the

batch version of the ARLOD model on graph G converges in distribution to the voter model on
the same graph:

PðYb
t ¼ ZÞ ¼ PðXt ¼ ZÞ; 8Z 2 S; ð10Þ

with (Xt)t � 0 Markov(dZ0
; P) with P as defined in (8).

The proof is provided in Appendix C and relies on the fact that an agent will receive enough

feedback to make the ordering of their Q-values match that of their neighbour in finite time.

Thus, we have shown that under a particular separation of time scales, the ARLOD model

behaves like the discrete time voter model on a finite graph with two opinions. The construc-

tion of the batched ARLOD model and its relation to the voter model ensures that any state

that is metastable in the voter model will also be metastable in the ARLOD model. This is

because any realisation of events in the batched ARLOD model also occur with positive proba-

bility in the standard ARLOD model.

Fig 6. The dynamics in one time step of the batched version of the ARLOD model at a high level of abstraction.

Agent i expresses an opinion bt times to their neighbour agent j who responds each time. Thereafter, agent i updates

their Q-values with all the feedback they received.

https://doi.org/10.1371/journal.pone.0313951.g006
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2.3 Instability of consensus and ergodicity of symmetric reinforcement

learning

We now introduce a new model based closely on the ARLOD model, with a subtle difference:

both agents involved in an interaction express their opinion in the same way and update their

Q-values as a result of what they observe. Because now the roles of the two agents are indistin-

guishable, we call this the symmetric reinforcement learning for opinion dynamics (SRLOD)

model.

2.3.1 The symmetric reinforcement learning opinion dynamics (SRLOD) model. A

population of n 2 N agents is embedded in a random (connected) geometric network topology.

In each discrete time step t 2 N�0 an edge (i, j)2E is selected uniformly at random. The two

agents on either end of this edge i and j express an opinion to one another oi(t), oj(t)2{−1, 1}.

Subsequently, both agents update the Q-value of their expressed opinion as follows:

qi
oiðtÞ
ðt þ 1Þ ¼ qi

oiðtÞ
ðtÞð1 � aÞ þ aoiðtÞojðtÞ ð11Þ

qj
ojðtÞ
ðt þ 1Þ ¼ qj

ojðtÞ
ðtÞð1 � aÞ þ aoiðtÞojðtÞ; ð12Þ

where α 2 (0, 1) is the learning rate. To differentiate it from the ARLOD model, we let qi
oðtÞ

denote the Q-value agent i 2 {1, . . ., N} has for opinion o 2 {−1, 1} at time t 2 N. The Q-value

of the opinion the agents did not express is not updated. We call the opinion o such that

qi
oðtÞ > qi

� oðtÞ agent i’s preferred opinion. We assume that both agents express their preferred

opinion with probability 1−� (called exploitation) and express their disfavoured opinion with

probability � (called exploration).

The difference thus between this model and the original model is only that instead of a one-

sided interaction, both agents may explore and learn from the interaction each round.

2.3.2 Instability of consensus in the SRLOD model. We show that consensus is no lon-

ger stable in this model.

Lemma 3 (Consensus is not stable). If there exists a time t0 2 N such that qi
oðt0Þ > qi

� oðt0Þ

for some opinion o 2 {−1, 1} and each agent i 2 {1, 2, . . ., N}, then

Pðqi
oðtÞ > qi

� oðtÞ; 8t � t0Þ ¼ 0: ð13Þ

The proof of Lemma 3 is presented in Appendix D. This and the next result depend on the

fact that any sequence of actions has positive probability in this model because both agents

learn from an interaction and explore with probability � > 0. In particular, the probability of

any finite sequence of actions of length l<1 occurs with a probability bounded from below

by p(l):

pðlÞ ¼
1

jEj

� �l

ð�2Þ
l
> 0: ð14Þ

Consensus not being a stable state is a fundamental difference between the symmetric and

the asymmetric model. To elucidate this difference, we introduce the preference vector, yt, of

length N, whose i-th element takes the value:

ytðiÞ ¼
1 if qi

1
ðtÞ � qi

� 1
ðtÞ

� 1 otherwise:

(

ð15Þ

The preference vector describes which opinion (1 or −1) each agent i 2 {1, 2, . . ., N} favours.

The dynamics of the preference vector are ergodic in the symmetric model.
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Proposition 1 (Time-evolution of the preference vector is ergodic) The probability of the

preference vector transitioning in finite time between any two states Z; z 2 S is positive, i.e.,

Pðyt0þk ¼ z j yt0
¼ ZÞ > 0; for all Z; z 2 S; and some k <1: ð16Þ

To prove this, one first delineates a finite sequence between any two states Z; z 2 S and

observes that the probability of these sequences is positive by (14). For any two states there is a

finite sequence of events which leads from one to the other as all agents take both actions with

positive probability, and can always switch their belief in a finite number of rounds. Thus, all

states communicate with one another. The ergodicity of the SRLOD model is illustrated in

Appendix F. The SRLOD model being ergodic means that looking for the probability of con-

sensus, or polarization is no longer as straightforward because both of these occur with proba-

bility one over the infinite time horizon. Instead, it is reasonable, for example, to calculate or

estimate the stationary distribution of the model which gives insights into the relative time

spent in consensus and polarized states. This illustrates how the tools used to study a model

differ based on the seemingly innocuous assumption of asymmetry in the agent-to-agent

interaction.

3 Discussion

We have analysed the ARLOD model of social learning put forth by Banisch and Olbrich [22].

Our first main theorem shows that consensus is reached asymptotically with probability one

for any finite and connected population structure. In particular, this is in contrast with the per-

sistence of polarisation originally reported for that model. A small modification of that model,

based on symmetrizing the interaction-learning relation between the agents, results instead in

ergodic dynamics, which thus destabilizes consensus somewhat. This result mirrors the differ-

ence between the voter model and the noisy voter model, in which a random probability of

switching one’s opinion is introduced [50, 51].

The highlighted importance of network structure in the original article [22] warrants atten-

tion. The theoretical arguments we present here to show that a) consensus is the only stable

state in the original model and b) that the symmetrized model is ergodic required only that the

network is connected. Thus, qualitatively, the assumption of network structure is not very

important. We do, however, see that it plays an important role quantitatively in the time taken

for consensus to be reached. It is likely that the metastability of polarization emerges because

of strong community structure in the network. This is in accordance with previous findings of

the effect of network structure on the timescales of the resulting dynamics (see for instance

[52, 53]) Many studies on polarisation and other social dynamics focus on the importance of

network structure. In addition to investigating the effects of networks, it may also be important

to disentangle which outcomes of the model are truly caused by networks structure and which

outcomes are the result of other—more implicit—modelling decisions, such as asymmetry in

the agent-to-agent interaction.

Having proved that the polarisation observed in the ARLOD model is not stable and that

consensus is guaranteed, we turn to the original research question. What causes stable polari-

sation? We provide conditions (a systematic biasing) for which the ARLOD model converges

to the voter model. Polarisation can be metastable in the voter model, and, by their relation,

also in the reinforcement learning model. This (relationship between the ARLOD model and

the voter model) bridges multiagent learning models and models well studied in sociophysics

and theoretical biology.

Our results raise questions regarding the possibility of finding a model of opinion dynamics

excluding repulsive forces and allowing for stable polarisation. Can we say that a reasonable

PLOS ONE Social reinforcement learning, metastable polarisation and the voter model

PLOS ONE | https://doi.org/10.1371/journal.pone.0313951 December 17, 2024 13 / 23

https://doi.org/10.1371/journal.pone.0313951


model of opinion dynamics should exhibit stable (as defined in Definition 1) polarisation? Is

the polarisation we observe around us stable or metastable? Future research is required to give

an example of such a model or a proof that it does not exist. These questions might be explored

by investigating learning in the ‘real world’ (to identify appropriate α and �) as well as the influ-

ence of parameter values α and � in the ARLOD model. It could be that ‘real world’ learning is

such that consensus would be reached quickly under the ARLOD model, indicating that a

more realistic model requires additional elements. Alternatively, it may be that the parameters

of the ‘real world’ are such that the time it takes to exit the metastable polarised state is so long

that differentiating between metastable and stable polarisation in the real world is difficult.

A limitation of the models we study is that the memory of the agents is entirely implicit

because we use stateless Q-learning. Explicit inclusion of memory may be done by using Q-

learning with states, where each state corresponds to the last action taken by each of an agents

neighbours. This would complicate the analysis: If additionally to memory, an agent knows

the identity of the neighbour they are expressing their opinion to, it is possible that polariza-

tion becomes absorbing (and therewith stable). Note that care would have to be taken to deter-

mine how an agent responds to an opinion to avoid decoupling the dynamics of each pair of

agents from other interactions. Another limitation of the model relates to the isolation of the

dynamics from other influences. Effects other than social influence that may be driving agent

opinions are an internal cognitive process related to their opinion such as in [15, 54], or pres-

sure applied by mass media to follow a certain opinion [26, 55–57]. Finally, the assumption

that the agents of the model are fixed (no new agents enter, or old ones leave) can be seen as

unrealistic. Important to note that changing this assumption may change the outcome of the

analysis. In particular if new agents have random Q-values, this destabilizes consensus in the

ARLOD model.

4 Methods

4.1 ARLOD simulation settings

We have chosen the parameter settings based on the following considerations. A greater num-

ber of agents means that more rounds are required to select each agent sufficiently often to

reach consensus. On the other hand, a smaller learning rate increases what ‘sufficiently often’

means per agent, as indicated in (4). To strike a balance between these effects, we set N = 100

and α = 0.25. Following BO, we set � = 0.1 and initialise the Q-values uniformly in [−0.5, 0.5].

The radius for the random geometric graph model rg 2 [0.25, 0.5] is selected to exhibit a range

of behaviour, focusing on connected graphs. We have chosen the maximum time to simulate

(10×109 rounds) and the number of simulation iterations (500 iterations) to be significantly

greater than those used by BO (2×106 rounds and 100 iterations). This allows the simulation to

reach consensus more frequently, which we know occurs eventually with probability one (by

Theorem 1).

4.2 Random connected geometric graphs

The algorithm to generate a connected random graph is provided in Appendix E. We use the

subroutine for the generation of a random geometric network from the Python NetworkX

package [58]. For a detailed discussion on random geometric graphs and their properties, the

interested reader is referred to [38, 59]. The random geometric graph model is popular in the

context of social dynamics because it mimics the homophily of real social networks as claimed

by [60].

The general idea of the random geometric graph is to distribute the desired number of

nodes randomly in Euclidean space (we use [0, 1]2) and fixes a radius rg. Subsequently, any
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nodes u, v that are distance d(u, v)<rg from one another are connected by an edge (u, v).

Because we are interested in connected networks, we simply repeat the standard procedure

until a connected graph is sampled. We take care to only use rg for which the probability of

sampling a connected graph is sufficiently high (as described in §4.1).

Proof of Lemma 1

We proceed by induction on time. Suppose that Qi
oðt0Þ > Qi

� oðt0Þ at time t0� 0, for some

opinion o 2 {−1, 1}, and each agent i 2 {1, 2, . . ., N}.

The base case is that in round t0 + 1, the ordering of all the Q-values will remain the same.

In round t0, any agent i 2 {1, 2, . . ., N} may be chosen to express their opinion to one of

their neighbours.

Case 1. Suppose they exploit their preferred opinion (the one with greater Q-value). Any

agent they express their opinion to, has the same ordering among their Q-values by the condi-

tions of the lemma, and so responds with an action that leads to a positive reward. Thus,

Qi
oðt0 þ 1Þ � Qi

oðt0Þ; ð17Þ

the Q-value of the preferred opinion in round t0 + 1 is at least as great as in t0.

Case 2. Suppose they explore by taking the action with lesser Q-value. Any neighbour they

express this opinion to responds honestly. By the assumption, all agents have the same Q-value

ordering, so the honest response to exploration is an action that leads to a punishment. Thus,

Qi
� 1
ðt0 þ 1Þ � Qi

� 1
ðt0Þ; ð18Þ

the Q-value of the disfavoured action in round t0 + 1 is lower than or equal to what it was in

round t0. This is true because the Q-values are initialised to be in [−1, 1] and will stay therein

indefinitely by the updating prescribed.

This proves the base case (as this holds for all agents that could have been chosen in round

t0): Qi
oðt0 þ 1Þ > Qi

� oðt0 þ 1Þ for all agents i 2 {1, 2, . . ., N}.

In the induction step we assume it is true until rounds t0 + n for n> 0. To show that it is

true for all rounds up until t0 + n + 1, we simply follow the same procedure as in the base case

but for the game in round t0 + n which determines the Q-values in round t0 + n + 1.

Proof of Lemma 2

First, we delineate a sequence of events of finite length which may lead from any state to con-

sensus. Secondly, we will show that this sequence of events has positive probability.

Suppose agent i favours opinion o and has a neighbour j who prefers opinion −o, all at time

t0. If agent i is drawn to express their opinion to agent j every round for L 2 N rounds and

always exploits their preferred opinion, the Q-value for this opinion is given by:

Qi
oðt0 þ lÞ ¼ Qi

oðt0 þ l � 1Þð1 � aÞ � a; ð19Þ

for all l = 1, 2, . . ., L. A term by term comparison shows that this is bounded from above by

Qi
oðt0 þ lÞ � Qi

oðt0 þ l � 1Þð1 � aÞ; ð20Þ

since α 2 (0, 1). Thus, an upper bound of the Q-value in round t0 + l is given by Qi
oðt0Þð1 � aÞ

l

for all l = 1, 2, . . ., L as long as Qi
oðt0Þ > 0. When both Q-values have the same sign, only one of

them needs to be adjusted in the way described here until it changes sign.
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Subsequently, if agent i is drawn to express their opinion to agent j another M 2 N times

and explores their disfavoured action in each of these rounds, this opinion’s Q-value follows:

Qi
� oðt0 þ LþmÞ ¼ Qi

� oðt0 þ Lþm � 1Þð1 � aÞ þ a; ð21Þ

for all m = 1, 2, . . ., M. A term by term comparison shows that this is bounded from below by

Qi
� oðt0 þ LþmÞ � Qi

� oðt0 þ Lþm � 1Þð1 � aÞ: ð22Þ

Again a lower bound to this Q-value in round t + 0 + L + m is given by Qi
� oðt0 þ LÞð1 � aÞm

as long as Qi
� oðt0 þ LÞ < 0.

We bound from above the number of rounds needed for any agent’s opinion to be

switched, by the number of rounds needed should they start as far away from one another as

possible, Q = (−1, 1), or (1, −1) and be set to cross at zero. The Q-value of the originally pre-

ferred opinion reaches ξ 2 (0, α) at least by the lowest integer r which satisfies:

Qi
oðt0Þð1 � aÞ

r
� �; ð23Þ

if they express this preferred opinion in each round. Dividing by Qi
oðt0Þ, taking the logarithm

on both sides and rearranging we get

r ¼
logðx=Qi

oðt0ÞÞ

logð1 � aÞ

� �

: ð24Þ

By a similar procedure we see that the Q-value of the originally disfavoured opinion reaches

−� after a further r interactions (of exploring in each subsequent round). After two more inter-

actions in which the agent expresses each opinion once, the Q-value ordering has switched:

Qi
� oðt0 þ 2r þ 2Þ � � xð1 � aÞ þ a > xð1 � aÞ � a � Qi

oðt0 þ 2r þ 2Þ; ð25Þ

as long as α> ξ, which is satisfied by an appropriate choice of ξ.

The number of rounds this takes is 2r + 2. The probability that this happens is bounded

by the probability of the agent j being drawn to express their opinion to agent k 2r + 2 times,

multiplied by the probability that they take the required action in each round. This is a lower

bound because it does not matter whether agent i first exploits r + 1 times and then explores

r + 1 times in that order. It only matters that there is a total of r + 1 explorations and exploita-

tions in the 2r + 2 rounds. Thus, the probability pswitch of one agent switching their opinion (if

they have at least one neighbour that disagrees with them) is lower bounded by

pswitch > ð1 � �Þ
rþ1
�rþ1

1

NðN � 1Þ

� �2rþ2

> 0: ð26Þ

Here, agent i is drawn to express their opinion with probability 1/N and we bound the proba-

bility that they express this opinion to agent k from below by 1/(N−1) as that is the maximum

possible degree for any agent in the network. This probability is greater than zero simply

because it is a finite product of positive numbers.

In a connected population of N agents which is not yet in consensus, there is always at least

one edge which has an agent who prefers opinion o on one side and opinion −o on the other

side. Furthermore, in the initial state there are at most N−1 agents who prefer the ‘wrong’

opinion at time t0. So with probability p > pN� 1
switch > 0, in (N − 1)(2r + 2) <1 rounds all N

agents hold the same opinion.
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C Proof of Theorem 2

At time t = 0, by definition, we have that PðY0 ¼ Z0Þ ¼ 1 which is also true for Xt under dZ0
:

PðX0 ¼ Z0Þ ¼ 1:

Next we show that for t 2 N,

PðYtþ1 ¼ Z j Yt ¼ Zt; . . . ;Y0 ¼ Z0Þ ¼ PðYtþ1 ¼ Z j Yt ¼ ZtÞ ¼ PZt ;Z: ð27Þ

The Yt+1’s independence on Yt−1, . . ., Y0 follows from the fact that in the batch at time t 2
N the agents determine their behaviour entirely from the state Yt. Expressing agents express

their favoured opinion with probability 1−� and express their disfavoured opinion with proba-

bility �. Responding agents always do so honestly, rewarding their favoured opinion and pun-

ishing their disfavoured opinion.

Note that PðYtþ1 ¼ Z j Yt ¼ ZtÞ ¼ 0 whenever kη−ηtk1 > 2, just as in (8). This is because as

soon as kη−ηtk1 > 2 we have that more than one agent has switched their opinion after the

batch at time t. This is impossible because only one agent updates their Q-values during a

batch.

We proceed in two cases, one when kη−ηtk1 = 2 and the other when kη−ηtk1 = 0. Note that

kη−ηtk1 6¼ 1 because Z; Zt 2 S ¼ f� 1; 1g
N

.

Case 1. kη−ηtk1 = 2: In this case states η and ηt differ in exactly one position which, without

loss of generality, we label l. In order for agent l to switch their favoured opinion in batch t,
they must be selected uniformly at random to express their opinion to one of their neighbours.

This happens at probability 1/N.

If an agent expresses their opinion to an agent who favours opinion −ol, agent l, gets pun-

ished for each time they express their favoured opinion and rewarded for each time they

express their disfavoured opinion. Thus, if agent l expresses their favoured opinion at least

r + 1 times and their disfavoured opinion at least r + 1 times, where

r ¼
logð�Þ

logð1 � aÞ

� �

; ð28Þ

then their opinion will have switched (see the proof of Lemma 2). Thus, we can lower bound

the probability of the agent switching their opinion after 2r + 2 rounds by

pswitch � �
rþ1ð1 � �Þ

rþ1
: ð29Þ

Then the probability that the agent does not switch their opinion in finite time is upper

bounded by limk!1(1−pswitch)k = 0. This means that if the agent has selected to express their

opinion to an agent who favours opinion −ol, they will switch their opinion, and this will hap-

pen in finite time.

The probability of agent l switching their opinion is given by the probability that they select

a neighbour favouring the opposite opinion to theirs. As before, we denote dl as the degree of

agent l. Furthermore, we denote with a(l) and c(l) the number of agents in l’s neighbourhood

who are in agreement and contradiction with l respectively. Then, because agents select a

neighbour uniformly at random, the probability of l switching their opinion is

Pðol ! � olÞ ¼
cðlÞ
dl
: ð30Þ
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This may be rewritten and rearranged as follows:

Pðol ! � olÞ ¼
cðlÞ
2dl
þ

cðlÞ
2dl

ð31Þ

¼
cðlÞ
2dl
þ

dl � aðlÞ
2dl

ð32Þ

¼
1

2
1þ

cðlÞ � aðlÞ
dl

� �

: ð33Þ

To extract this from Yt, notice that it can be rewritten as

Pðol ! � olÞ ¼
1

2
1 �

YtðlÞ
dl

X

k2NðlÞ

YtðkÞ

 !

; ð34Þ

where N(l) is the neighbourhood of agent l in the graph G. Multiplying this by 1/N, the proba-

bility that agent l is selected to express their opinion in the first place, we get precisely Pηt, η as

required.

Case 2. kη−ηtk1 = 0: In this case, an agent is selected to express their opinion, and they do

so to a neighbour who is in agreement with them (in which case bt = 1). Given that agent l is

selected, this happens with probability

Pðol ! olÞ ¼ 1 �
1

2
1 �

YtðlÞ
dl

X

k2NðlÞ

YtðkÞ

 !

: ð35Þ

This is exactly 1−NPηt, η for η = ηt−2Yt(l)el. Summing over all agents that might be selected

and multiplying by the probability of selecting those agents, we get the required probability of

transitioning to the same state, PZt ;Zt ¼ 1 �
P

Z6¼Zt
PZt ;Z.

D Proof of Lemma 3

Proof. We show that a sequence of events which leads from consensus to not-consensus is of

finite length and positive probability.

Observe that each agent explores (expresses and reinforces the disfavoured opinion) at

probability � > 0. Observe also that if this disfavoured opinion is reinforced maximally κ + 1

times with

k ¼
logð�Þ

logð1 � aÞ

� �

; ð36Þ

which is finite, and similarly if their preferred opinion is punished κ + 1 times, that they switch

ordering of opinion Q-values. In similar fashion to as it was shown in the proof of Lemma 2

for the asymmetric model.

Given a sequence of agent actions, the probability that they take the action in some round

required by the sequence, is always bounded from below by � > 0. This is because they express

their disfavoured opinion at probability � and their favoured opinion at probability 1−� > �.

This means that the probability of any finite sequence of actions of length l<1 occurs at a

probability bounded from below by p(l) defined in (14). Thus, the probability of an agent

exploring and being rewarded κ + 1 times and exploiting and being punished κ + 1 times is

positive because this is a sequence of events with length 2κ + 2. This is the maximal length
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sequence which leads to one agent changing the ordering of their Q-values. So we have that

the probability that such a switch never happens (the probability of consensus for all t� t0):

Pðqi
oðtÞ > qi

� oðtÞ; 8t � t0Þ � lim
k!1
ð1 � pð2kþ 2ÞÞ

k
¼ 0: ð37Þ

Therefore consensus is not absorbing (and not a stable state).

E Algorithm to generate a geometric random graph

Algorithm 1: Generate connected random geometric graph with N nodes and radius rg.
Input: N: number of nodes, rg: radius
Output: G: connected random geometric graph
1 Check  True;
2 while Check do
3 G  empty graph;
4 for i  1 to N do
5 Add node i with random coordinates in [0, 1]2 to G;
6 end
7 for each pair of nodes (u, v) in G do
8 if distance(u, v) �rg then
9 Add edge (u, v) to G;
10 end
11 end
12 if G is connected then
13 Check  False
14 end
15 end

F Illustration of the ergodicity in the SRLOD model

The dynamics of the SRLOD model are ergodic by Proposition 1, meaning that the process

can reach all states from all other states. In the ergodic setting on a finite state space, one can

look for a stationary distribution. That is a probability distribution over the states reporting

the probability of observing each state as t!1. Thus, the questions one might ask of the

model changes from ‘What is the probability of consensus?’ to ‘What proportion of time does

the system spend in each state?’ To illustrate the ergodicity of the SRLOD model, we show a

simulation run in which consensus was reached on both opinions in Figs 7 and 8.

Fig 7. The number of agents holding opinion o = 1 in a simulation run of the SRLOD model plotted with time on a logarithmic scale. Notice the

switch from consensus on opinion o = 1 to opinion o = −1 shortly after t = 106.

https://doi.org/10.1371/journal.pone.0313951.g007
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In this simulation we set α = 0.25, � = 0.2, N = 50 and rg = 0.2. Because consensus is no lon-

ger stable, we stop the simulation manually at t = 8×106. The number of agents holding opin-

ion o = 1 is plotted on a logarithmic timescale in Fig 7 while the state of the network is shown

for telling rounds in Fig 8. The reason for reducing the number of agents in this simulation is

to speed up the dynamics thus making it possible to observe the phenomena in a relatively

short simulation.
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