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Abstract

Wastewater-Based Epidemiology (WBE) has become a powerful tool for assessing disease
occurrence in communities. This study investigates the coronavirus disease 2019
(COVID-19) epidemic in the United States during 2023—2024 using wastewater data from
189 wastewater treatment plants in 40 states and the District of Columbia. Severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) and pepper-mild mottle virus normalized
SARS-CoV-2 RNA concentration data were compared with COVID-19 hospitalization
admission data at both national and state levels. We further investigate temporal features in
wastewater viral RNA abundance, with peak timing and cross-correlation lag analyses indi-
cating that wastewater SARS-CoV-2 RNA concentrations precede hospitalization admis-
sions by 2 to 12 days. Lastly, we demonstrate that wastewater treatment plant size has a
significant effect on the variability of measured SARS-CoV-2 RNA concentrations. This
study highlights the effectiveness of WBE as a non-invasive, timely and resource-efficient
disease monitoring strategy, especially in the context of declining COVID-19 clinical
reporting.

1. Introduction

On 30 January 2020, the World Health Organization (WHO) declared the coronavirus disease
2019 (COVID-19) outbreak a public health emergency of international concern [1]. Three
years and three months later, the WHO declared the end of the public health emergency,
despite severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infections remaining
a leading cause of death worldwide and in the United States (US). Even with the availability of
vaccines and therapeutic treatments in the US, SARS-CoV-2 was responsible for a reported
49,931 deaths in 2023, highlighting the need to understand COVID-19 disease burden to
inform public health policies [2].

While clinical data remain the standard for tracking disease burden, maintaining testing on
a large scale is resource intensive, fails to detect asymptomatic cases and relies on the compli-
ance of the public [3]. Wastewater-based epidemiology (WBE) provides a complementary
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monitoring option that helps fill knowledge gaps such as undetected community spread,
asymptomatic cases, and the lag in clinical reporting [4-6]. Human shedding of pathogens and
chemicals into wastewater provides an important source of information on the health of the
entire community living in a catchment area [7]. As an established surveillance method, WBE
contributed to the management of the COVID-19 pandemic early on. Medema et al. [8],
Ahmed et al. [9] among others [10-14] laid out the foundational work for SARS-CoV-2 sur-
veillance using wastewater. While clinical testing efforts have decreased, WBE remains a cen-
tral technology in monitoring SARS-CoV-2 in the population, as well as increasing in use for
the detection of other pathogens [15-18].

Timely epidemiological data are crucial for assessing infectious disease outbreaks and imple-
menting the necessary public health interventions. Both clinical testing data and hospital admis-
sion data correlate strongly to viral RNA concentrations in wastewater, with wastewater leading
both clinical testing and hospitalization data [14, 19-22]. WBE as an early warning system has
been discussed in literature thoroughly [23, 24]. A streamlined process of logistics, sample anal-
ysis and data reporting are critical to leverage the temporal advantages of WBE. Understanding
the lead times of WBE data is critical for the construction of forecasting models.

In this study the 2023-2024 COVID-19 epidemic in the US is investigated by analyzing lon-
gitudinal measurements of SARS-CoV-2 RNA in wastewater from 189 wastewater treatment
plants (WWTPs) throughout the US. The data are aggregated on several spatial levels to com-
pare to data on COVID-19 hospitalizations in 10 states. This paper’s novelty lies in its exten-
sive dataset from WWTPs across the US, providing a comprehensive nationwide analysis of
the 2023-2024 post-emergency period. We then investigate leading or lagging behavior by
comparing peak timings and computing maximum cross-correlation coefficients. Lastly, we
demonstrate that SARS-CoV-2 RNA concentration variability is a function of WWTP size,
offering new insights into the influence of WWTP size on the underlying data volatility
characteristics.

2. Methods
2.1. Viral RNA quantification and data characterization

For this study, wastewater data and hospitalization data are analyzed. COVID-19 hospitaliza-
tion data are publicly available from the Centers for Disease Control and Prevention (CDC)
[2]. State-aggregated, daily hospitalization data consists of data on COVID-19 occupancy and
admission numbers. The wastewater data used in this study were retrieved through the nucleic
acid extraction of settled solids from WW'TPs nationwide. In June 2024 a total of 189 treat-
ment plants were monitoring SARS-CoV-2 RNA in 40 different states throughout the US
using a standardized approach by a single laboratory. Wastewater composite samples are col-
lected with a sample frequency of 2 to 3 times per week for most plants, while some plants col-
lect samples up to 7 times per week. Settled solids were extracted after dewatering by
centrifugation at 24,000 x g for 30 minutes [25]. Solids were resuspended in DNA/RNA shield
to a concentration of 75 mg/mL. Bovine coronavirus (BCoV) was used as a positive recovery
control in all samples. Extraction was performed using a Chemagic Viral DNA/RNA 300 kit
H96 in conjunction with a Perkin Elmer Chemagic 360 instrument (Chemagic #CMG-
1033-S). Inhibitor removal was performed using a Zymo OneStep-96 PCR Inhibitor removal
kit (Zymo Research #D6035). Extraction negative controls and positive controls were extracted
during the same run. SARS-CoV-2 digital droplet RT-PCR was performed using primers and
probes previously described [25]. BCoV and pepper-mild mottle virus were quantified in a
duplex assay in each sample as controls. Each sample was run in 6 to 10 replicate wells and
merged before analysis [26]. In the study period between 1*' of May 2023 and 1*' of June 2024,
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a total of 29,364 daily samples were examined. Within this timeframe the number of moni-
tored plants remained relatively stable. Readers are directed to the Data Descriptor for a full
description of the SARS-CoV-2 measurements methods [27].

Fig 1 illustrates a map of the US, highlighting the number of WWTPs participating in SARS--
CoV-2 RNA wastewater surveillance for the project. California, Texas, and Florida are the states
with the highest number of contributing WWTPs, with 57, 14, and 13 plants respectively. Over-
all, 40 states have at least one WWTP monitoring SARS-CoV-2. Table 1 provides a detailed list
of the states in the US, including the number of WWTPs contributing to the study. It also
includes the total population served and the percentage of population coverage in each state.

2.2. Data pretreatment

SARS-CoV-2 RNA (SC2) and pepper mild mottle virus RNA (PMMoV) concentrations were
measured with digital droplet RT-PCR and reported as gene copies per gram dry weight.
PMMoV-RNA is shed by humans in great abundance following the consumption of bell pep-
per and other pepper products [28]. Dividing SC2 by PMMoV RNA concentrations compen-
sates for the diversity of fecal strength of waste stream. This concept follows the mass balance
model that relates concentrations of SARS-CoV-2 RNA in wastewater solids to incident infec-
tions of individuals in the sewershed [29]. The PMMoV normalized SC2 concentration was
computed as follows:

SC2

SC2 ey = PMMoV

(1)
Before the spatial aggregation of WBE data, the data were examined for outliers. Wastewa-
ter data are marked by random and systematic errors. Random errors are immanent to the
technique of WBE and caused by heterogeneities in the environmental sample and processes
that affect concentrations in the sample; these can be difficult to reduce. Systematic errors are
caused by a failure in the measurement process. With the outlier removal approach in this
work, systematic errors are targeted. Concentrations larger than 3 standard deviations above
the log;, transformed mean of the entire dataset (n = 29,364) are discarded. It is acknowledged

57

Number of WWTPs/state

111

—
Fig 1. Map of the US. shading indicates the number of WWTPs contributing to WBE in each state.
https://doi.org/10.1371/journal.pone.0313927.9001
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that all samples represent real data, but real data is prone to have errors. Without outlier detec-
tion, the analysis has no mechanism of protection against errors.

The analyses outlined in the following subsections have been performed on both raw SC2
concentrations and PMMoV normalized data. We present the results of the PMMoV normal-
ized analyses, considering it is a standard procedure in the field. The conclusions remain
unchanged whether PMMoV normalization is applied or not (data not shown). S1 Fig in the
S1 File compares raw SC2 RNA and PMMoV normalized SC2 RNA concentrations.

2.3. Spatial data aggregation

In order to compare wastewater data with hospitalization levels on a state by state basis (or on
national scale), the SC2 concentration measurements were spatially aggregated. The spatial
aggregation for WBE data in a state was performed by computing weighted daily averages of
all WWTPs that provided data at a given date in that state, where the weighting factor is the
population size that each plant serves. This computation results in a representative daily aver-
age of the SC2 circulation in the state, where the size of the plant was taken into consideration
accordingly. The state aggregated daily weighted averages are calculated by

P P
SC2PMM0V,S(d) = Z SC2PMM0V‘i(d)*popi /Zpopi (2)
i=1 i=1

where the summation over the P indicates the plants in state S and pop; denotes the population
served by plant i. Analogous to the spatial aggregation on a state level, national weighted daily
averages are computed by utilizing all available plants in the US. To obtain gapless time-series
for the temporal analysis of the data, linear interpolation was performed if no datapoint was
available at a given day after spatial aggregation.

Table 1. Number of WWTPs by state and percentage of population covered.

State #WWTPs Pop. Pop. State #WWTPs Pop. Pop.
served/10° coverage % served/10° coverage %

CA 57 20,511 52.6 | UT 2 715 20.9
X 14 2,425 7.9 | TN 2 700 9.8
FL 13 3,650 16.1 | OH 2 539 4.6
GA 8 1,109 10.1 | LA 2 383 84
NJ 6 1,882 20.3 | NE 2 300 15.2
HI 6 858 59.8 | IL 2 149 32.7
MI 6 482 4.8 | MD 2 145 1.2
AL 5 627 12.3 | NY 2 120 2.3
IN 5 322 4.7 | CO 2 60 0.6
KS 5 267 9.1 | MS 2 53 1.0
ME 5 185 13.3 | NV 1 990 1.8
1A 5 129 4.0 | KY 1 423 31.0
MN 4 326 5.7 | AK 1 220 9.4
PA 3 361 28| CT 1 140 39
ID 3 345 17.6 | WV 1 100 5.6
NC 3 167 3.1 | WI 1 44 0.7
VA 3 153 1.8 | SD 1 20 2.2
NH 3 79 5.6 | AR 1 15 0.5
VT 3 56 8.7 | DE 1 13 1.3
MA 2 2,650 37.8 | WA 1 10 0.1

https://doi.org/10.1371/journal.pone.0313927.t001
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Spatial aggregation is an essential computational step to ensure that WBE data can be accu-
rately compared with other epidemiological data of a different spatial scale. Without proper
weighting, aggregating WBE data from various WWTPs would lead to biased results, as
smaller plants would exert disproportionate influence, while larger plants would be underrep-
resented. To address this, a population-weighted approach was employed, ensuring that each
WWTP’s contribution is proportional to the population it serves. While PMMoV normaliza-
tion accounts for variations within individual catchment areas, it may not adequately address
the significant disparities in plant sizes.

2.4. Temporal analysis

The temporal features of PMMoV RNA-normalized SC2 concentrations (SC2ppnov) in waste-
water are investigated in this study and compared on a state by state basis to hospitalization
admission. The association between WBE data and hospitalization admission was determined
using two approaches. First, cross-correlation function analysis (CCF) and second by examin-
ing the peaks in SC2pppov OVer time. Waves are periodic surges or peaks in the concentration
of SC2ppmov OVer time. Furthermore, Spearman correlation r was examined to outline the
quantitative relation between the time series.

Peak timing in time series provides a good reference point for comparison. The COVID-19
epidemic in the US in the latter half of 2023 was characterized by a wave peaking in early fall,
followed by a larger wave peaking in January 2024. In this work the peak timings for hospitali-
zation admission and SC2pppov in Wastewater are compared relative to one another on a state
by state basis. Peaks are determined by locating the highest values of the 7-day moving mean
of the SC2ppmmMmoy concentrations in wastewater and hospitalization admission time-series. The
peaks are determined for both occurring waves, where the 1** of November is the date of sepa-
ration between first and second wave. This date was chosen by visual inspection of the data
and allows for a good separation of the two peaks for all states. The average time differential A¢
was than calculated by averaging the difference between peak occurrences of the two peaks for
each state. At was calculated by

- At eak_1,S + Atpeak?Z‘S

At i 3
S 5 (3)

where At,eax_1,s and Atpeqr 5 s denote the time difference in days between the peaks of hospital-
ization admission and SC2ppvov concentrations for the two respective waves one and two.
The subscript S denotes the state. The hospitalization peak date t;,,, was subtracted from the
wastewater peak date ¢, so that negative days signify an earlier peak date in wastewater

Atpeak.s = tww - thosp (4)

The reliability of the results is influenced by the abundance of WBE data available in each
state. For this reason, the analysis in this study primarily focuses on the 10 states with the high-
est population coverage (from Table 1, CA, FL, NJ, HL, ID, MA, UT, NE, IL, KY). All analyses
are performed with MATLAB 2023b, The MathWorks Inc.

2.5. Data dispersion analysis

SC2 and PMMoV RNA concentrations in wastewater are characterized by substantial amounts
of variability. Herein, data dispersion and variability characteristics are examined to quantify
WBE data attributes. Data variability was explored for different sizes of WWTPs, where the
proxy for plant size is given by the number of populations that each plant serves. The popula-
tion served by the plants varies significantly, with the smallest plant serving approximately
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5,000 individuals and the largest, a plant in Los Angeles, California, serving 4 million individu-
als. This analysis aims to investigate whether there are significant differences in data properties
between small and large plants. It is hypothesized that differences in concentration variability
may be observed due to the substantial variation in plant size, spanning three orders of
magnitude.

To investigate the potential differences in concentration behavior between small and large
wastewater treatment plants, the WBE dataset was partitioned into five groups. The partition-
ing regime was determined by quantile intervals of the population served. Data groups corre-
sponding to the five quantile intervals are denoted as Qg_9.2, Qo2-0.4> - - -» Qos_1 (from smallest
20% of plants to largest 20% of plants). Table 2 outlines the quantile intervals and data parti-
tioning regime used for this analysis. The grouping in the described manner is designed to par-
tition plants into groups that have similar sizes.

For each of the five data groups standard deviation (SD) and interquartile-ranges (IQR) are
computed of the logl0 SC2 concentrations. This enables a comparison of the degree of vari-
ability as a function of plant size. To test that the five data groups stem from different statistical
populations, two-sided Wilcoxon rank sum tests are performed between adjacent data groups.
The data dispersion analysis was carried out on raw SC2 (not PMMoV normalized) RNA con-
centrations. This ensures that data variability changes based on plant size are not driven by
effects in PMMoV, but SC2 RNA concentrations.

3. Results

The COVID-19 epidemic in the timeframe May 2023 to June 2024 was characterized by waves
in SC2 RNA concentrations, similar to previous years [30]. This is shown in Fig 2, plotting
national aggregated daily SC2ppmoy concentrations (and its 7-day moving average) along with
hospitalization admissions in the US. This figure outlines the general development of the epi-
demic in the US in the studied timeframe. The two peaks are visually evident in the national
aggregated wastewater data. Reporting of SC2 hospitalization data was discontinued from the
beginning of May 2024 and therefore truncated in Fig 2. The bottom bar chart outlines the
number of WWTPs that are monitored at a particular day. On the right of the figure, a scatter
plot depicts WBE and hospitalization admission data with a simple ordinary least squares
(OLS) regression line.

Fig 3 displays the histogram of all SC2pyvov data in the timeframe May 2023 to June 2024.
Values above 3 standard deviations above the mean are discarded as systematic errors (27 data
points out of 29,364). The mean normalized concentration was 0.00052 and the resulting out-
lier threshold 0.012 (SC2ppnov cOncentrations are unitless, because it is a fraction of concen-
trations). Three standard deviations above the mean on the log;, transformed data
corresponds to a 24-fold higher concentration on linear scale in relation to the mean of the
data.

Table 2. Data partitioning into quantile ranges of plant sizes.

Quantile ranges Population served #WWTPs SC2

data points
Qo022 5,000-30,000 42 6278
Qo.2-04 30,001-64,000 34 4697
Qo.4-06 64,001-102,125 38 5632
Qos-0s 102,126-227,238 38 6324
Qos-1 227,239-400,0000 38 6433

https://doi.org/10.1371/journal.pone.0313927.1002
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Fig 2. National aggregation of SC2pppov and COVID-19 hospitalization admissions (top left), number of WWTPs measured per day (bottom) and OLS regression
between the datasets.

https:/doi.org/10.1371/journal.pone.0313927.g002

In addition to the histogram on Fig 3, a normal distribution fit is computed to outline the
resemblance of the SC2ppniov data with a log-normal distribution. To test the log; trans-
formed data for normality, Shapiro-Wilk and Kolmogorov-Smirnov tests are performed with
a 5% significance level each. Both tests reject the null hypothesis and suggest that the data are
not normally distributed. Compared to an ideal log-normal distribution, the measured data
are characterized by a fat tail on the left. Unlike the right side of the distribution, the left side is

800 ' 107
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€ 600 f ; 3
b 2 100
@ 500 f T
= o
: %
Q - 4
,g 400 % 10
[0}
2300t o
= g 10°
L 200 =
£ €]
Z 100 (8
0
] ] | | | | 107 . §
0% 20° 0t w0® 0= 10 : 0 5
SC2PMMov concentration Standard Normal Quantiles

Fig 3. SC2ppmov data distribution and QQ-plot.

https://doi.org/10.1371/journal.pone.0313927.g003
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not truncated with a lower bound for outlier removal. Low/very low concentration values are
not considered outliers. On the right graph of Fig 3, the quantile-quantile (QQ) plot is
depicted. It can be seen that both tails of the distribution deviate from the normal line. The
data are characterized by a slight negative skew (skewness = -0.16).

3.1. Temporal analysis results

In epidemiological surveillance, early detection and rapid information processing are critical.
Temporal features of WBE SC2 monitoring, such as peak timing, cross-correlation lag and
temporal trends are analyzed. While other epidemic waves of diseases like influenza or respira-
tory syncytial virus are characterized by clear onset/offset dates, SC2 has been persistently cir-
culating in the population since its outbreak in 2020 [31]. Resulting from the lack of a clear
onset/offset condition in the case of SC2 RNA concentrations, peak timing by state was investi-
gated in this work.

The COVID-19 epidemic in the US in the timeframe 2023-2024 was characterized by two
waves. The peak of the first wave was characterized by a lower magnitude in SC2pynoy cOn-
centrations and hospitalization and occurred for most states in September 2023. The second
wave occurred around January 1% 2024. Fig 4 shows the cumulative occurrence of peaks in
wastewater and hospitalization data for each state and for both waves.

It can be seen in Fig 4 that the WBE peak generally occurs earlier than the hospitalization
peak. The peak timings between hospitalization admission and SC2ppvoy concentrations
decrease between the first and second wave. The difference between the median dates of hospi-
talization peaks and SC2 peaks was 9 days for the first wave and 4 days for the second wave.

T T T T T T T
—— WBE peak date SD1 *gp
e Hospitalization peak date

35

T
g—
Zg5

-

o
>

25

20 -

Number of States

10 -

or | | |
Aug 2023 Sep 2023 Oct 2023 Nov 2023 Dec 2023 Jan 2024 Feb 2024
Date

Fig 4. Cumulative number of states by peak occurrence, WBE and hospitalization admission. Abbreviation for each state is provided next to its data point.

https://doi.org/10.1371/journal.pone.0313927.9004

PLOS ONE | https://doi.org/10.1371/journal.pone.0313927 November 18, 2024 8/13


https://doi.org/10.1371/journal.pone.0313927.g004
https://doi.org/10.1371/journal.pone.0313927

PLOS ONE

SARS-CoV-2 surveillance in US wastewater in 2023-2024

Spearman rank correlation of the order in which the states occur was 0.91 for the first wave
and 0.56 for the second wave. This means that generally the order of occurrence of peaks is
respected between the two data sets, especially in the first wave. The first wave occurs earliest
in the Southeastern region including the states Kentucky, Georgia, Florida and Alabama, fol-
lowed by Nevada, Hawaii and California among others. The second wave peaks earliest in mid-
western states including Iowa, South Dakota, Minnesota, accompanied by Oklahoma,
California and Nevada.

Fig 5 displays the state aggregated SC2ppnov cOncentrations and superimposed hospitaliza-
tion admission per 100k population (gray bars) for the 10 states with the highest WBE cover-
age in the US. SC2pppov is shown on the left axis on log scale and hospitalization is shown on
the right axis on linear scale.

Table 3 outlines the results of the temporal analysis. CCF lag between the time series (state
aggregated SC2pyvov and hospitalization admission) and the time differential At of the rela-
tive peak occurrence are listed. Negative values of CCF lag and At indicate that the WBE peak
occurred before the hospitalization peak. Furthermore, Spearman correlation r values are
listed as a comparative analysis between SC2 hospitalization admission and wastewater data
for the 10 states with the highest WBE coverage.

SC2 in wastewater leads hospitalization admission in 8 out of 10 states, following the results
of peak timing At. For the CCF lag, 9 out of 10 states show this characteristic. A median time
lead of 4 and 7.5 days was observed for CCF lag and 84t respectively among the 10 states with
the highest WBE population coverage. The correlation metrics r and R suggest a close agree-
ment between hospitalization admission and SC2pypov in wastewater (median r = 0.85).

3.2. Data dispersion results

Differences in data dispersion characteristics for different plant sizes are observed. To examine
the influence of plant size, the wastewater data are partitioned into 5 groups. The partitioning
is governed by the quantiles of the population served by each plant and carried out as
described in section 2.5.

Data dispersion results are listed in Table 4 and visualized in Fig 6. Table 4 describes data
mean, median, standard deviation (SD) and interquartile range (IQR) of the partitioned data.
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Fig 5. State aggregated SC2ppmov (black line) and hospitalization admission (gray bars).

https://doi.org/10.1371/journal.pone.0313927.9005

PLOS ONE | https://doi.org/10.1371/journal.pone.0313927 November 18, 2024 9/13


https://doi.org/10.1371/journal.pone.0313927.g005
https://doi.org/10.1371/journal.pone.0313927

PLOS ONE

SARS-CoV-2 surveillance in US wastewater in 2023-2024

Table 3. SC2pmmov and hospitalization temporal quantitative feature comparison by state. Negative lag values
indicate a time lead in wastewater over hospitalizations.

State At (d) CCF lag Spearman r
CA -12 -3 0.88
FL -6.5 -5 0.86
HI -7.5 -10 0.62
NJ 7.5 4 0.93
ID 7.5 -3 0.86
MA -12 -4 0.83
NE 3.5 4 0.85
uT -9.5 -5 0.86
AK -11 -9 0.67
NV -2 -2 0.76

The main measures of variability, SD and IQR, are observed to decrease with increasing plant
size. This observation is in line with expectations, considering the more stochastic behavior of
small plants and the law of large numbers. An intuitive explanation can be provided by consid-
ering a case prevalence of 0.1%. In a small plant serving 10,000 people, 10 individuals would be
infected. Due to the size of the sewer system and the stochastic shedding behavior of these 10
infected individuals, SC2 concentrations may exhibit significant variability. Conversely, in a
large WWTP serving a population of 1 million, 0.1% prevalence would correspond to 1,000
infected individuals. With a significant number of individuals shedding the virus, a more con-
sistent discharge of the virus into the sewer system is likely. These findings align with the
results from Nauta et al. [32], who performed Monte-Carlo simulations to estimate SC2 con-
centrations and data variability.

Fig 6 visualizes the data dispersion as a function of plant size. On the left, a boxplot diagram
displays data median, upper and lower quartiles and minimum/maximum values by whiskers.
The graph shows consistent decrease of data range and variability with the increase in plant
size. On the right of Fig 6 aggregated time-series are graphed, corresponding to Qg (top,
small plants) and Qg g_; (bottom, big plants). The ordinate axes are scaled equally for
comparison.

To test the hypothesis that the partitioned wastewater groups based on plant size originate
from statistically different data populations, two-sided Wilcoxon rank sum tests are per-
formed. Four tests are carried out among the five groups between the adjacent groups. All tests
reject the null hypothesis (that they stem from the same data population). Therefore, all tests
recommend to accept the alternative hypothesis, supporting the hypothesis that there are
underlying differences in data variability as a function of plant size.

Table 4. Data dispersion properties log;o(SC2) mean, median, standard deviation and interquartile range by plant size.

Quantile
QO-O.Z
Q0.270.4
Q0.4—0.6
Q0.6—0.8
Q0.871

https://doi.org/10.1371/journal.pone.0313927.t1004

mean log;((SC2) median log,;((SC2) SD log,;((SC2) IQR log;o(SC2)
4.846 4.862 0.569 0.781
4.875 4.877 0.538 0.735
4.858 4.854 0.504 0.687
4.947 4.942 0.477 0.643
5.001 5.026 0.457 0.612
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Fig 6. Data variability by quantile grouped data of different WWTPs sizes.
https://doi.org/10.1371/journal.pone.0313927.g006

4. Conclusion

The COVID-19 epidemic in the US analyzed form WBE perspective in the time-frame 2023-
2024 was characterized by waves, that is periods of high and periods of low viral abundance in
wastewater. The epidemic’s burden on the general population was lower—considering that case
fatality was 60% lower in the studied timeframe, compared to the same time-frame one-year
earlier [2]. This work investigates the SARS-CoV-2 RNA concentration data in US wastewater
in 2023-2024. Clinical COVID-19 case reporting was largely discontinued as of March 2024
[2, 33, 34]; hospitalization data reporting was discontinued in early May 2024. In contrast,
SARS-CoV-2 wastewater surveillance endeavors (among other pathogens) are now well-estab-
lished across the US.

The work at hand examines statistical attributes of SARS-CoV-2 RNA and pepper mild
mottle RNA concentrations derived from wastewater surveillance. Firstly, temporal features,
such as peak timing and CCF lag in the data are analyzed and compared to hospitalization
admissions. The observations show that viral RNA abundance in wastewater leads hospitaliza-
tion admission between 2 and 12 days, in the 10 states with the highest WBE population cover-
age. Data variability was analyzed and the influence of plant size on data dispersion has been
observed, with the results demonstrating that smaller plants are subject to significantly more
data variability. By partitioning the data into five batches based on plant size, a decrease in
data variability with increased plant size is observed.

In addition to the findings presented in this study, several topics remain open for further
investigation. Further research beyond the scope of this study would be needed to investigate
the interdependency between vaccination and viral shedding patterns and whether the impact
significantly influences WBE data interpretation. Furthermore, as spatial aggregation is under-
represented in current literature, comparing different methods would offer valuable insights.

Supporting information

S1 File. Comparison between national aggregated WBE data. Raw SC2 RNA and PMMoV
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(DOCX)
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