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Abstract

Wastewater-Based Epidemiology (WBE) has become a powerful tool for assessing disease

occurrence in communities. This study investigates the coronavirus disease 2019

(COVID-19) epidemic in the United States during 2023–2024 using wastewater data from

189 wastewater treatment plants in 40 states and the District of Columbia. Severe acute

respiratory syndrome coronavirus 2 (SARS-CoV-2) and pepper-mild mottle virus normalized

SARS-CoV-2 RNA concentration data were compared with COVID-19 hospitalization

admission data at both national and state levels. We further investigate temporal features in

wastewater viral RNA abundance, with peak timing and cross-correlation lag analyses indi-

cating that wastewater SARS-CoV-2 RNA concentrations precede hospitalization admis-

sions by 2 to 12 days. Lastly, we demonstrate that wastewater treatment plant size has a

significant effect on the variability of measured SARS-CoV-2 RNA concentrations. This

study highlights the effectiveness of WBE as a non-invasive, timely and resource-efficient

disease monitoring strategy, especially in the context of declining COVID-19 clinical

reporting.

1. Introduction

On 30 January 2020, the World Health Organization (WHO) declared the coronavirus disease

2019 (COVID-19) outbreak a public health emergency of international concern [1]. Three

years and three months later, the WHO declared the end of the public health emergency,

despite severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infections remaining

a leading cause of death worldwide and in the United States (US). Even with the availability of

vaccines and therapeutic treatments in the US, SARS-CoV-2 was responsible for a reported

49,931 deaths in 2023, highlighting the need to understand COVID-19 disease burden to

inform public health policies [2].

While clinical data remain the standard for tracking disease burden, maintaining testing on

a large scale is resource intensive, fails to detect asymptomatic cases and relies on the compli-

ance of the public [3]. Wastewater-based epidemiology (WBE) provides a complementary
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monitoring option that helps fill knowledge gaps such as undetected community spread,

asymptomatic cases, and the lag in clinical reporting [4–6]. Human shedding of pathogens and

chemicals into wastewater provides an important source of information on the health of the

entire community living in a catchment area [7]. As an established surveillance method, WBE

contributed to the management of the COVID-19 pandemic early on. Medema et al. [8],

Ahmed et al. [9] among others [10–14] laid out the foundational work for SARS-CoV-2 sur-

veillance using wastewater. While clinical testing efforts have decreased, WBE remains a cen-

tral technology in monitoring SARS-CoV-2 in the population, as well as increasing in use for

the detection of other pathogens [15–18].

Timely epidemiological data are crucial for assessing infectious disease outbreaks and imple-

menting the necessary public health interventions. Both clinical testing data and hospital admis-

sion data correlate strongly to viral RNA concentrations in wastewater, with wastewater leading

both clinical testing and hospitalization data [14, 19–22]. WBE as an early warning system has

been discussed in literature thoroughly [23, 24]. A streamlined process of logistics, sample anal-

ysis and data reporting are critical to leverage the temporal advantages of WBE. Understanding

the lead times of WBE data is critical for the construction of forecasting models.

In this study the 2023–2024 COVID-19 epidemic in the US is investigated by analyzing lon-

gitudinal measurements of SARS-CoV-2 RNA in wastewater from 189 wastewater treatment

plants (WWTPs) throughout the US. The data are aggregated on several spatial levels to com-

pare to data on COVID-19 hospitalizations in 10 states. This paper’s novelty lies in its exten-

sive dataset from WWTPs across the US, providing a comprehensive nationwide analysis of

the 2023–2024 post-emergency period. We then investigate leading or lagging behavior by

comparing peak timings and computing maximum cross-correlation coefficients. Lastly, we

demonstrate that SARS-CoV-2 RNA concentration variability is a function of WWTP size,

offering new insights into the influence of WWTP size on the underlying data volatility

characteristics.

2. Methods

2.1. Viral RNA quantification and data characterization

For this study, wastewater data and hospitalization data are analyzed. COVID-19 hospitaliza-

tion data are publicly available from the Centers for Disease Control and Prevention (CDC)

[2]. State-aggregated, daily hospitalization data consists of data on COVID-19 occupancy and

admission numbers. The wastewater data used in this study were retrieved through the nucleic

acid extraction of settled solids from WWTPs nationwide. In June 2024 a total of 189 treat-

ment plants were monitoring SARS-CoV-2 RNA in 40 different states throughout the US

using a standardized approach by a single laboratory. Wastewater composite samples are col-

lected with a sample frequency of 2 to 3 times per week for most plants, while some plants col-

lect samples up to 7 times per week. Settled solids were extracted after dewatering by

centrifugation at 24,000 x g for 30 minutes [25]. Solids were resuspended in DNA/RNA shield

to a concentration of 75 mg/mL. Bovine coronavirus (BCoV) was used as a positive recovery

control in all samples. Extraction was performed using a Chemagic Viral DNA/RNA 300 kit

H96 in conjunction with a Perkin Elmer Chemagic 360 instrument (Chemagic #CMG-

1033-S). Inhibitor removal was performed using a Zymo OneStep-96 PCR Inhibitor removal

kit (Zymo Research #D6035). Extraction negative controls and positive controls were extracted

during the same run. SARS-CoV-2 digital droplet RT-PCR was performed using primers and

probes previously described [25]. BCoV and pepper-mild mottle virus were quantified in a

duplex assay in each sample as controls. Each sample was run in 6 to 10 replicate wells and

merged before analysis [26]. In the study period between 1st of May 2023 and 1st of June 2024,
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a total of 29,364 daily samples were examined. Within this timeframe the number of moni-

tored plants remained relatively stable. Readers are directed to the Data Descriptor for a full

description of the SARS-CoV-2 measurements methods [27].

Fig 1 illustrates a map of the US, highlighting the number of WWTPs participating in SARS--

CoV-2 RNA wastewater surveillance for the project. California, Texas, and Florida are the states

with the highest number of contributing WWTPs, with 57, 14, and 13 plants respectively. Over-

all, 40 states have at least one WWTP monitoring SARS-CoV-2. Table 1 provides a detailed list

of the states in the US, including the number of WWTPs contributing to the study. It also

includes the total population served and the percentage of population coverage in each state.

2.2. Data pretreatment

SARS-CoV-2 RNA (SC2) and pepper mild mottle virus RNA (PMMoV) concentrations were

measured with digital droplet RT-PCR and reported as gene copies per gram dry weight.

PMMoV-RNA is shed by humans in great abundance following the consumption of bell pep-

per and other pepper products [28]. Dividing SC2 by PMMoV RNA concentrations compen-

sates for the diversity of fecal strength of waste stream. This concept follows the mass balance

model that relates concentrations of SARS-CoV-2 RNA in wastewater solids to incident infec-

tions of individuals in the sewershed [29]. The PMMoV normalized SC2 concentration was

computed as follows:

SC2PMMoV ¼
SC2

PMMoV
ð1Þ

Before the spatial aggregation of WBE data, the data were examined for outliers. Wastewa-

ter data are marked by random and systematic errors. Random errors are immanent to the

technique of WBE and caused by heterogeneities in the environmental sample and processes

that affect concentrations in the sample; these can be difficult to reduce. Systematic errors are

caused by a failure in the measurement process. With the outlier removal approach in this

work, systematic errors are targeted. Concentrations larger than 3 standard deviations above

the log10 transformed mean of the entire dataset (n = 29,364) are discarded. It is acknowledged

Fig 1. Map of the US. shading indicates the number of WWTPs contributing to WBE in each state.

https://doi.org/10.1371/journal.pone.0313927.g001
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that all samples represent real data, but real data is prone to have errors. Without outlier detec-

tion, the analysis has no mechanism of protection against errors.

The analyses outlined in the following subsections have been performed on both raw SC2

concentrations and PMMoV normalized data. We present the results of the PMMoV normal-

ized analyses, considering it is a standard procedure in the field. The conclusions remain

unchanged whether PMMoV normalization is applied or not (data not shown). S1 Fig in the

S1 File compares raw SC2 RNA and PMMoV normalized SC2 RNA concentrations.

2.3. Spatial data aggregation

In order to compare wastewater data with hospitalization levels on a state by state basis (or on

national scale), the SC2 concentration measurements were spatially aggregated. The spatial

aggregation for WBE data in a state was performed by computing weighted daily averages of

all WWTPs that provided data at a given date in that state, where the weighting factor is the

population size that each plant serves. This computation results in a representative daily aver-

age of the SC2 circulation in the state, where the size of the plant was taken into consideration

accordingly. The state aggregated daily weighted averages are calculated by

SC2PMMoV;SðdÞ ¼
XP

i¼1

SC2PMMoV;iðdÞ∗popi

 !

=
XP

i¼1

popi ð2Þ

where the summation over the P indicates the plants in state S and popi denotes the population

served by plant i. Analogous to the spatial aggregation on a state level, national weighted daily

averages are computed by utilizing all available plants in the US. To obtain gapless time-series

for the temporal analysis of the data, linear interpolation was performed if no datapoint was

available at a given day after spatial aggregation.

Table 1. Number of WWTPs by state and percentage of population covered.

State #WWTPs Pop.

served/103
Pop.

coverage %

State #WWTPs Pop.

served/103
Pop.

coverage %

CA 57 20,511 52.6 UT 2 715 20.9

TX 14 2,425 7.9 TN 2 700 9.8

FL 13 3,650 16.1 OH 2 539 4.6

GA 8 1,109 10.1 LA 2 383 8.4

NJ 6 1,882 20.3 NE 2 300 15.2

HI 6 858 59.8 IL 2 149 32.7

MI 6 482 4.8 MD 2 145 1.2

AL 5 627 12.3 NY 2 120 2.3

IN 5 322 4.7 CO 2 60 0.6

KS 5 267 9.1 MS 2 53 1.0

ME 5 185 13.3 NV 1 990 1.8

IA 5 129 4.0 KY 1 423 31.0

MN 4 326 5.7 AK 1 220 9.4

PA 3 361 2.8 CT 1 140 3.9

ID 3 345 17.6 WV 1 100 5.6

NC 3 167 3.1 WI 1 44 0.7

VA 3 153 1.8 SD 1 20 2.2

NH 3 79 5.6 AR 1 15 0.5

VT 3 56 8.7 DE 1 13 1.3

MA 2 2,650 37.8 WA 1 10 0.1

https://doi.org/10.1371/journal.pone.0313927.t001
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Spatial aggregation is an essential computational step to ensure that WBE data can be accu-

rately compared with other epidemiological data of a different spatial scale. Without proper

weighting, aggregating WBE data from various WWTPs would lead to biased results, as

smaller plants would exert disproportionate influence, while larger plants would be underrep-

resented. To address this, a population-weighted approach was employed, ensuring that each

WWTP’s contribution is proportional to the population it serves. While PMMoV normaliza-

tion accounts for variations within individual catchment areas, it may not adequately address

the significant disparities in plant sizes.

2.4. Temporal analysis

The temporal features of PMMoV RNA-normalized SC2 concentrations (SC2PMMoV) in waste-

water are investigated in this study and compared on a state by state basis to hospitalization

admission. The association between WBE data and hospitalization admission was determined

using two approaches. First, cross-correlation function analysis (CCF) and second by examin-

ing the peaks in SC2PMMoV over time. Waves are periodic surges or peaks in the concentration

of SC2PMMoV over time. Furthermore, Spearman correlation r was examined to outline the

quantitative relation between the time series.

Peak timing in time series provides a good reference point for comparison. The COVID-19

epidemic in the US in the latter half of 2023 was characterized by a wave peaking in early fall,

followed by a larger wave peaking in January 2024. In this work the peak timings for hospitali-

zation admission and SC2PMMoV in wastewater are compared relative to one another on a state

by state basis. Peaks are determined by locating the highest values of the 7-day moving mean

of the SC2PMMoV concentrations in wastewater and hospitalization admission time-series. The

peaks are determined for both occurring waves, where the 1st of November is the date of sepa-

ration between first and second wave. This date was chosen by visual inspection of the data

and allows for a good separation of the two peaks for all states. The average time differential Dt
was than calculated by averaging the difference between peak occurrences of the two peaks for

each state. Dt was calculated by

Dts ¼
Dtpeak� 1;S þ Dtpeak� 2;S

2
ð3Þ

where Δtpeak_1,S and Δtpeak_2,S denote the time difference in days between the peaks of hospital-

ization admission and SC2PMMoV concentrations for the two respective waves one and two.

The subscript S denotes the state. The hospitalization peak date thosp was subtracted from the

wastewater peak date tww, so that negative days signify an earlier peak date in wastewater

Dtpeak;S ¼ tww � thosp ð4Þ

The reliability of the results is influenced by the abundance of WBE data available in each

state. For this reason, the analysis in this study primarily focuses on the 10 states with the high-

est population coverage (from Table 1, CA, FL, NJ, HI, ID, MA, UT, NE, IL, KY). All analyses

are performed with MATLAB 2023b, The MathWorks Inc.

2.5. Data dispersion analysis

SC2 and PMMoV RNA concentrations in wastewater are characterized by substantial amounts

of variability. Herein, data dispersion and variability characteristics are examined to quantify

WBE data attributes. Data variability was explored for different sizes of WWTPs, where the

proxy for plant size is given by the number of populations that each plant serves. The popula-

tion served by the plants varies significantly, with the smallest plant serving approximately
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5,000 individuals and the largest, a plant in Los Angeles, California, serving 4 million individu-

als. This analysis aims to investigate whether there are significant differences in data properties

between small and large plants. It is hypothesized that differences in concentration variability

may be observed due to the substantial variation in plant size, spanning three orders of

magnitude.

To investigate the potential differences in concentration behavior between small and large

wastewater treatment plants, the WBE dataset was partitioned into five groups. The partition-

ing regime was determined by quantile intervals of the population served. Data groups corre-

sponding to the five quantile intervals are denoted as Q0-0.2, Q0.2–0.4, . . ., Q0.8–1 (from smallest

20% of plants to largest 20% of plants). Table 2 outlines the quantile intervals and data parti-

tioning regime used for this analysis. The grouping in the described manner is designed to par-

tition plants into groups that have similar sizes.

For each of the five data groups standard deviation (SD) and interquartile-ranges (IQR) are

computed of the log10 SC2 concentrations. This enables a comparison of the degree of vari-

ability as a function of plant size. To test that the five data groups stem from different statistical

populations, two-sided Wilcoxon rank sum tests are performed between adjacent data groups.

The data dispersion analysis was carried out on raw SC2 (not PMMoV normalized) RNA con-

centrations. This ensures that data variability changes based on plant size are not driven by

effects in PMMoV, but SC2 RNA concentrations.

3. Results

The COVID-19 epidemic in the timeframe May 2023 to June 2024 was characterized by waves

in SC2 RNA concentrations, similar to previous years [30]. This is shown in Fig 2, plotting

national aggregated daily SC2PMMoV concentrations (and its 7-day moving average) along with

hospitalization admissions in the US. This figure outlines the general development of the epi-

demic in the US in the studied timeframe. The two peaks are visually evident in the national

aggregated wastewater data. Reporting of SC2 hospitalization data was discontinued from the

beginning of May 2024 and therefore truncated in Fig 2. The bottom bar chart outlines the

number of WWTPs that are monitored at a particular day. On the right of the figure, a scatter

plot depicts WBE and hospitalization admission data with a simple ordinary least squares

(OLS) regression line.

Fig 3 displays the histogram of all SC2PMMoV data in the timeframe May 2023 to June 2024.

Values above 3 standard deviations above the mean are discarded as systematic errors (27 data

points out of 29,364). The mean normalized concentration was 0.00052 and the resulting out-

lier threshold 0.012 (SC2PMMoV concentrations are unitless, because it is a fraction of concen-

trations). Three standard deviations above the mean on the log10 transformed data

corresponds to a 24-fold higher concentration on linear scale in relation to the mean of the

data.

Table 2. Data partitioning into quantile ranges of plant sizes.

Quantile ranges Population served #WWTPs SC2

data points

Q0-0.2 5,000–30,000 42 6278

Q0.2–0.4 30,001–64,000 34 4697

Q0.4–0.6 64,001–102,125 38 5632

Q0.6–0.8 102,126–227,238 38 6324

Q0.8–1 227,239–400,0000 38 6433

https://doi.org/10.1371/journal.pone.0313927.t002
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In addition to the histogram on Fig 3, a normal distribution fit is computed to outline the

resemblance of the SC2PMMoV data with a log-normal distribution. To test the log10 trans-

formed data for normality, Shapiro-Wilk and Kolmogorov-Smirnov tests are performed with

a 5% significance level each. Both tests reject the null hypothesis and suggest that the data are

not normally distributed. Compared to an ideal log-normal distribution, the measured data

are characterized by a fat tail on the left. Unlike the right side of the distribution, the left side is

Fig 2. National aggregation of SC2PMMoV and COVID-19 hospitalization admissions (top left), number of WWTPs measured per day (bottom) and OLS regression

between the datasets.

https://doi.org/10.1371/journal.pone.0313927.g002

Fig 3. SC2PMMoV data distribution and QQ-plot.

https://doi.org/10.1371/journal.pone.0313927.g003
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not truncated with a lower bound for outlier removal. Low/very low concentration values are

not considered outliers. On the right graph of Fig 3, the quantile-quantile (QQ) plot is

depicted. It can be seen that both tails of the distribution deviate from the normal line. The

data are characterized by a slight negative skew (skewness = -0.16).

3.1. Temporal analysis results

In epidemiological surveillance, early detection and rapid information processing are critical.

Temporal features of WBE SC2 monitoring, such as peak timing, cross-correlation lag and

temporal trends are analyzed. While other epidemic waves of diseases like influenza or respira-

tory syncytial virus are characterized by clear onset/offset dates, SC2 has been persistently cir-

culating in the population since its outbreak in 2020 [31]. Resulting from the lack of a clear

onset/offset condition in the case of SC2 RNA concentrations, peak timing by state was investi-

gated in this work.

The COVID-19 epidemic in the US in the timeframe 2023–2024 was characterized by two

waves. The peak of the first wave was characterized by a lower magnitude in SC2PMMoV con-

centrations and hospitalization and occurred for most states in September 2023. The second

wave occurred around January 1st 2024. Fig 4 shows the cumulative occurrence of peaks in

wastewater and hospitalization data for each state and for both waves.

It can be seen in Fig 4 that the WBE peak generally occurs earlier than the hospitalization

peak. The peak timings between hospitalization admission and SC2PMMoV concentrations

decrease between the first and second wave. The difference between the median dates of hospi-

talization peaks and SC2 peaks was 9 days for the first wave and 4 days for the second wave.

Fig 4. Cumulative number of states by peak occurrence, WBE and hospitalization admission. Abbreviation for each state is provided next to its data point.

https://doi.org/10.1371/journal.pone.0313927.g004
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Spearman rank correlation of the order in which the states occur was 0.91 for the first wave

and 0.56 for the second wave. This means that generally the order of occurrence of peaks is

respected between the two data sets, especially in the first wave. The first wave occurs earliest

in the Southeastern region including the states Kentucky, Georgia, Florida and Alabama, fol-

lowed by Nevada, Hawaii and California among others. The second wave peaks earliest in mid-

western states including Iowa, South Dakota, Minnesota, accompanied by Oklahoma,

California and Nevada.

Fig 5 displays the state aggregated SC2PMMoV concentrations and superimposed hospitaliza-

tion admission per 100k population (gray bars) for the 10 states with the highest WBE cover-

age in the US. SC2PMMoV is shown on the left axis on log scale and hospitalization is shown on

the right axis on linear scale.

Table 3 outlines the results of the temporal analysis. CCF lag between the time series (state

aggregated SC2PMMoV and hospitalization admission) and the time differential Dt of the rela-

tive peak occurrence are listed. Negative values of CCF lag and Dt indicate that the WBE peak

occurred before the hospitalization peak. Furthermore, Spearman correlation r values are

listed as a comparative analysis between SC2 hospitalization admission and wastewater data

for the 10 states with the highest WBE coverage.

SC2 in wastewater leads hospitalization admission in 8 out of 10 states, following the results

of peak timing Dt . For the CCF lag, 9 out of 10 states show this characteristic. A median time

lead of 4 and 7.5 days was observed for CCF lag and 8Dt respectively among the 10 states with

the highest WBE population coverage. The correlation metrics r and R2 suggest a close agree-

ment between hospitalization admission and SC2PMMoV in wastewater (median r = 0.85).

3.2. Data dispersion results

Differences in data dispersion characteristics for different plant sizes are observed. To examine

the influence of plant size, the wastewater data are partitioned into 5 groups. The partitioning

is governed by the quantiles of the population served by each plant and carried out as

described in section 2.5.

Data dispersion results are listed in Table 4 and visualized in Fig 6. Table 4 describes data

mean, median, standard deviation (SD) and interquartile range (IQR) of the partitioned data.

Fig 5. State aggregated SC2PMMoV (black line) and hospitalization admission (gray bars).

https://doi.org/10.1371/journal.pone.0313927.g005
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The main measures of variability, SD and IQR, are observed to decrease with increasing plant

size. This observation is in line with expectations, considering the more stochastic behavior of

small plants and the law of large numbers. An intuitive explanation can be provided by consid-

ering a case prevalence of 0.1%. In a small plant serving 10,000 people, 10 individuals would be

infected. Due to the size of the sewer system and the stochastic shedding behavior of these 10

infected individuals, SC2 concentrations may exhibit significant variability. Conversely, in a

large WWTP serving a population of 1 million, 0.1% prevalence would correspond to 1,000

infected individuals. With a significant number of individuals shedding the virus, a more con-

sistent discharge of the virus into the sewer system is likely. These findings align with the

results from Nauta et al. [32], who performed Monte-Carlo simulations to estimate SC2 con-

centrations and data variability.

Fig 6 visualizes the data dispersion as a function of plant size. On the left, a boxplot diagram

displays data median, upper and lower quartiles and minimum/maximum values by whiskers.

The graph shows consistent decrease of data range and variability with the increase in plant

size. On the right of Fig 6 aggregated time-series are graphed, corresponding to Q0-0.2 (top,

small plants) and Q0.8–1 (bottom, big plants). The ordinate axes are scaled equally for

comparison.

To test the hypothesis that the partitioned wastewater groups based on plant size originate

from statistically different data populations, two-sided Wilcoxon rank sum tests are per-

formed. Four tests are carried out among the five groups between the adjacent groups. All tests

reject the null hypothesis (that they stem from the same data population). Therefore, all tests

recommend to accept the alternative hypothesis, supporting the hypothesis that there are

underlying differences in data variability as a function of plant size.

Table 3. SC2PMMoV and hospitalization temporal quantitative feature comparison by state. Negative lag values

indicate a time lead in wastewater over hospitalizations.

State Dt (d) CCF lag Spearman r

CA -12 -3 0.88

FL -6.5 -5 0.86

HI -7.5 -10 0.62

NJ -7.5 -4 0.93

ID 7.5 -3 0.86

MA -12 -4 0.83

NE 3.5 4 0.85

UT -9.5 -5 0.86

AK -11 -9 0.67

NV -2 -2 0.76

Table 4. Data dispersion properties log10(SC2) mean, median, standard deviation and interquartile range by plant size.

Quantile mean log10(SC2) median log10(SC2) SD log10(SC2) IQR log10(SC2)

Q0-0.2 4.846 4.862 0.569 0.781

Q0.2–0.4 4.875 4.877 0.538 0.735

Q0.4–0.6 4.858 4.854 0.504 0.687

Q0.6–0.8 4.947 4.942 0.477 0.643

Q0.8–1 5.001 5.026 0.457 0.612

https://doi.org/10.1371/journal.pone.0313927.t004
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4. Conclusion

The COVID-19 epidemic in the US analyzed form WBE perspective in the time-frame 2023–

2024 was characterized by waves, that is periods of high and periods of low viral abundance in

wastewater. The epidemic’s burden on the general population was lower–considering that case

fatality was 60% lower in the studied timeframe, compared to the same time-frame one-year

earlier [2]. This work investigates the SARS-CoV-2 RNA concentration data in US wastewater

in 2023–2024. Clinical COVID-19 case reporting was largely discontinued as of March 2024

[2, 33, 34]; hospitalization data reporting was discontinued in early May 2024. In contrast,

SARS-CoV-2 wastewater surveillance endeavors (among other pathogens) are now well-estab-

lished across the US.

The work at hand examines statistical attributes of SARS-CoV-2 RNA and pepper mild

mottle RNA concentrations derived from wastewater surveillance. Firstly, temporal features,

such as peak timing and CCF lag in the data are analyzed and compared to hospitalization

admissions. The observations show that viral RNA abundance in wastewater leads hospitaliza-

tion admission between 2 and 12 days, in the 10 states with the highest WBE population cover-

age. Data variability was analyzed and the influence of plant size on data dispersion has been

observed, with the results demonstrating that smaller plants are subject to significantly more

data variability. By partitioning the data into five batches based on plant size, a decrease in

data variability with increased plant size is observed.

In addition to the findings presented in this study, several topics remain open for further

investigation. Further research beyond the scope of this study would be needed to investigate

the interdependency between vaccination and viral shedding patterns and whether the impact

significantly influences WBE data interpretation. Furthermore, as spatial aggregation is under-

represented in current literature, comparing different methods would offer valuable insights.

Supporting information

S1 File. Comparison between national aggregated WBE data. Raw SC2 RNA and PMMoV

normalized SC2 RNA concentrations.

(DOCX)

Fig 6. Data variability by quantile grouped data of different WWTPs sizes.
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