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Abstract

One way to treat diabetes mellitus type II is by using α-glucosidase inhibitor, that will slow

down the postprandial glucose intake. Metabolomics analysis of Artabotrys sumatranus leaf

extract was used in this research to predict the active compounds as α-glucosidase inhibi-

tors from this extract. Both multivariate statistical analysis and machine learning approaches

were used to improve the confidence of the predictions. After performance comparisons

with other machine learning methods, random forest was chosen to make predictive model

for the activity of the extract samples. Feature importance analysis (using random feature

permutation and Shapley score calculation) was used to identify the predicted active com-

pound as the important features that influenced the activity prediction of the extract samples.

The combined analysis of multivariate statistical analysis and machine learning predicted 9

active compounds, where 6 of them were identified as mangiferin, neomangiferin, norisocor-

ydine, apigenin-7-O-galactopyranoside, lirioferine, and 15,16-dihydrotanshinone I. The

activities of norisocorydine, apigenin-7-O-galactopyranoside, and lirioferine as α-glucosi-

dase inhibitors have not yet reported before. Molecular docking simulation, both to 3A4A (α-

glucosidase enzyme from Saccharomyces cerevisiae, usually used in bioassay test) and

3TOP (a part of α-glucosidase enzyme in human gut) showed strong to very strong binding

of the identified predicted active compounds to both receptors, with exception of neomangi-

ferin which only showed strong binding to 3TOP receptor. Isolation based on bioassay

guided fractionation further verified the metabolomics prediction by succeeding to isolate

mangiferin from the extract, which showed strong α-glucosidase activity when subjected to

bioassay test. The correlation analysis also showed a possibility of 3 groups in the predicted

active compounds, which might be related to the biosynthesis pathway (need further
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research for verification). Another result from correlation analysis was that in general the α-

glucosidase inhibition activity in the extract had strong correlation to antioxidant activity,

which was also reflected in the predicted active compounds. Only one predicted compound

had very low positive correlation to antioxidant activity.

Introduction

Diabetes is a worldwide metabolic disorder disease, which affected by estimation 463 million

people in 2019. The number is estimated to increase to around 578 million people in 2030 and

700 million people in 2045 [1]. This is also a killer disease, with contribution to worldwide

mortality estimated to be 11.3% in 2019 [2]. Not only the number of affected people is stagger-

ing, but also the amount of financial expenditure related to this disease is impressive. It was

estimated to be 760 billion US dollar in 2019, and increasing to 825 billion US dollar in 2030

and 845 billion US dollar in 2045 [3].

This disease is characterized by metabolic disorder of insulin, either in the production

(secretion), functionality, or both [4, 5]. As a result of this chronical disorder, hyperglycemia,

or elevated blood sugar level, is usually the characteristic symptom of diabetes. Unfortunately,

the disease does not stop here. Hyperglycemia induces complications in other organs, such as

obesity, hypertension, cardiovascular diseases, hypertension, kidney diseases, blindness, and

even nerve damages [5, 6]. Indeed, diabetes poses major threats in fatality, if not in mortality

[7].

There are several types of diabetes, but the most prevalent one is diabetes mellitus type II,

which is the type in about 90% of all cases of diabetes [5, 8, 9]. Diabetes mellitus type II is

caused by a combination of insulin resistance and damage in insulin secretion. This type of

diabetes most often affects adults, and the risk of developing this disease is increased by hyper-

tension, hyperlipidemia, and genetic tendency [10]. Obesity, which can be caused by unhealthy

eating pattern or lack of movements, has increased the number of diabetes mellitus type II

among young adults and children [10].

Unfortunately, there are still no medicine that effectively deals directly with the insulin met-

abolic dysfunction, which is the cause of diabetes, including diabetes mellitus type II [5]. Since

hyperglycemia is the cause of many complications, many diabetes medicines are focused to

control the glucose level in the blood [8, 10]. One approach is by inhibiting the α-glucosidase

enzyme to decrease the glucose intake into blood from the digestion of carbohydrates in the

intestine [4–6, 9]. Unfortunately, α-glucosidase inhibitors, including acarbose, usually give

negative side-effects on the digestive systems, such as flatulence, diarrhea, and discomfort in

abdominal area [11, 12]. Nevertheless, medicines that inhibit α-glucosidase are still used as the

chosen alternatives for patients of early diabetes mellitus type II. It is also an effective medicine

that can be used for patients who cannot tolerate other kind of diabetes medicines. Some of

the potent α-glucosidase inhibitors, which are also approved to be used clinically, are acarbose,

voglibose, and miglitol [5].

Some of the popular α-glucosidase inhibitors, such as acarbose and vogliobose, are

extracted from natural products. Even metformin, one of the most popular antidiabetic medi-

cines, is also a natural product [5]. Indeed, natural products are important sources of for drug

active compounds, with more than 1/3 of active small compounds in all globally approved

medicines from 1981 to 2006 came from natural origin, or semi synthetically derived from nat-

ural products [13]. These successes motivated the search of α-glucosidase inhibitors from
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natural products, with the hope to find α-glucosidase inhibitors with better efficacy and/or less

side-effects, that ideally can also be extracted or synthesized more easily [6, 9].

Artabotrys is one of genus with large number of members in the family of Annonaceae [14].

One of the members of this genus is Artabotrys sumatranus which is a climbing plant that can

be found on the islands of Sumatera, Java, and Borneo in Indonesia [15]. Not many research

has been done to investigate the active compounds in this plant, but a recent study [16] has

found out that the leaf of this plant has potential to inhibit α-glucosidase, and moreover it was

predicted that the α-glucosidase active compound in the leaf of this plant had also antioxidant

activity. These double activities are beneficial since hyperglycemia in diabetes mellitus type II

patients can induce oxidative stress, which can result in cell damage [17]. To help avoiding the

cell damage due this oxidative stress, antioxidants are indeed needed [18].

Since Artabotrys sumatranus leaf extract has been found to show α-glucosidase inhibition

and antioxidant activities, it is of interest to find the active compounds in the extract. One of

the new approaches for finding active compounds from natural products, including plants, is

metabolomics, especially untargeted metabolomics. Metabolomics is a comprehensive study

that analyses and evaluates the data of the small molecules (usually called metabolites) in cells,

tissues, and body fluids [19]. It is called untargeted metabolomics if the active compounds are

not yet known. Untargeted metabolomics can be used to predict the active compounds from

natural products. Metabolomics analysis can help to find the profile pattern of compounds

which corresponds to the activity of the extract, which can be the result of one active com-

pound or the synergy of several compounds [20]. In metabolomics, the prediction of the active

compound is made by finding the pattern in the data of the existing compounds in the extracts

(usually obtained from LC/MS (liquid chromatography mass spectrometry) or other spec-

trometry analysis such as GC/MS (gas chromatography mass spectrometry) and NMR (nuclear

magnetic resonance)), coupled with the activity data of the extracts obtained from bioassay

analysis [21]. In metabolomics, the data can be analyzed using multivariate statistical analysis

[22–27] such as PCA (principal component analysis), PLS (partial least squares), OPLS

(orthogonal projection to latent structures), PLS-DA (partial least squares–discriminant analy-

sis), and OPLS-DA (orthogonal projection to latent structures–discriminant analysis). Besides

the multivariate statistical analysis, machine learning such as random forest can also be used in

metabolomics analysis [28–30]. The multivariate statistical analysis has been used in natural

product–drug discovery, such as to predict the α-glucosidase inhibitors from Clinacanthus
nutans leaf, Psychotria malayana, and Capsicum spp [31–33], and also to discover the synergy

between berberine and piperine as the antimicrobial against Staphylococcus aureus [34]. Mean-

while, machine learning techniques have also been used in different stages at drug discovery

[30]. For example, the bioactivity of abaucin, an antibiotic to cure infection caused by Acineto-
bacter baumannii, was identified using machine learning [35]. Moreover, halicin, an antimi-

crobial agent that has a wide phylogenetic spectrum of pathogens, was also found using the

deep learning and artificial neural network, which are some examples of machine learning

methods [36].

Beside doing the isolation to get the predicted active compounds, verification of the meta-

bolomics analysis can also be done by doing in-silico analysis, namely by using molecular

docking technique [37, 38]. In this technique, the binding (or docking) of the predicted active

compound to the protein receptor is simulated in computers. The strength of the docking of

the compound to the binding site will be computed as the free binding energy. The more nega-

tive the free binding energy, the stronger the binding is. By analyzing the free binding energy,

the activity of the compound can be deduced. This technique has been used in drug discovery

[37, 39], for example to find α-glucosidase inhibitors from marine brown alga Dictyopteris hoy-
tii [40], Chinese bayberry (Morella rubra Sieb. et Zucc.) fruit [41], Artabotrys hexapetalus
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stembark and leaf [42], and Artabotrys suaveolens stembark and leaf extracts [43]; as well as

potential main protease inhibitors of COVID-19 or SARS-Cov-2 virus [44, 45].

This research’s goal was to find the active compound(s) in the leaf of Artabotrys sumatranus
that showed high potential in α-glucosidase inhibition activity, and ideally also in antioxidant

activity. The activity screening of this plant’s leaf ethanol extract showed promising potential

of these two activities [16]. One of the uniqueness of this research, besides being the first

research to find α-glucosidase inhibitor(s) and antioxidant(s) in Artabotrys sumatranus
extract, was the use of two metabolomics approaches: multivariate statistical analysis and

machine learning. The goal was not to compare the results of these two approaches, but to

combine the results to get predictions of active compounds with higher confidence level. The

predictions of metabolomics analysis were verified using molecular docking and isolation

using bioassay guided fractionation.

Materials and methods

Overview of the methods

This research analyzed the LC-MS results of the Artabotrys sumatranus leaf ethanol extracts

(with different proportion of ethanol dan water) with metabolomics techniques. Two kinds of

metabolomic techniques were used: multivariate statistical methods and machine learning

methods. In this research, after trying different methods, the chosen machine learning method

was random forest [46]. The metabolomic analysis with machine learning was done in 2 stages:

the first stage was the development of predictive model for the activity of the extracts with dif-

ferent proportions ethanol and water, and the second stage was the prediction of the active

compounds as the most important features (variables) for the predictive extract activity model.

For the machine learning model, the feature importance was determined using random per-

mutations [47–49] and SHAP (SHapley Additive exPlanations) method [50, 51]. In multivari-

ate statistical methods, the first and second stages were combined directly, and therefore the

identification of the predicted active compounds did not need other methods.

The identifications of the predicted active compounds were done by analyzing the LC-MS/

MS spectrometry results of the extract. The further fragmentations of m/z values of the pre-

dicted active compounds were compared to the database of the LC-MS/MS machine. The frag-

mentation pattern results were also analyzed to ascertain the feasibility of the fragmentations

for the identified active compounds.

In the end, the prediction of the metabolomic analysis was verified by molecular docking

analysis and isolation of the active compound using bioassay guided fractionation [52, 53].

Bioassay guided fractionation, instead of metabolomics guided fractionation [54, 55], was used

in this research due to limitation of the quantity of extracts available. Metabolomics guided

fractionation can actually be used to isolate the not-yet-identified active compounds, but it

requires more quantity of extracts due to repeated LC-MS analyses for every fraction.

Materials

The materials used in this research were as follows: α-glucosidase from Saccharomyces cerevi-
siae (EC 232-604-7), p-nitrophenyl α-d-glucopyranoside (PNPG), acarbose (Sigma Aldrich,

USA), dimethyl sulfoxide (DMSO), dipotassium hydrogen phosphate, potassium dihydrogen

phosphate monohydrate, sodium carbonate, bovine serum albumin, TLC aluminum silica gel

60F254, Sephadex LH-20, chloroform (Merck, Germany), ethanol, n-hexane, ethyl acetate,

1,1-diphenyl-2-picrylhydrazyl (DPPH) (Smart Lab, Indonesia), and ascorbic acid (Loba Che-

mie, India).
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The equipment used were freeze dryer (Alpha 1–2 LDplus Martin Christ, Germany), rotary

evaporator (Heidolph Hei-Vap Core, Schwabach, Germany), vortex (Reax Top Heidolph,

Schwabach, Germany), incubator (Memmert IN55, Schwabach, Germany), UV spectropho-

tometer (Thermo Scientific Orion Aquamate 8000), microplate reader (HiPo MPP-96 Biosan),

LC-MS (Agilent 6520 Q-TOF LC/MS System with Agilent 1200 Series HPLC), LC-MS/MS

(Waters Vion IMS QTOF with acuity UPLC, USA), Ascend FTNMR (Bruker 700MHz), com-

puter (Lenovo Legion 7, China) with processor AMD Reizen 7 5800H and RAM 32 GB. The

software used were AutoDock Tools 1.5.7, AutoDock FR (ADFR) suite 1.0 (especially “prepare

ligand” module to prepare the ligands in batches), ChimeraX 1.7, Open Babel 3.1.1, Autodock

Vina version 1.2.3, Biovia Discovery Studio 21, SIMCA-P+ 14, and MZMine 2.53.

Plant material preparation

Artabotrys sumatranus leaf (collection number VI.D.148, access number C2009090117) was

harvested from Cibodas Botanical Garden in West Java, Indonesia, which was originally col-

lected by Iyung and Wiguna Rahman from the National Park Mount Leuser (latitude 03˚ 500

02.9@N and longitude 97˚ 310 17.2@ E) in Aceh, Sumatra, Indonesia. 700 g Artabotrys sumatra-
nus leaf were washed and dried using a freeze dryer, then continued by grinding, resulting in

350 g Artabotrys sumatranus leaf powder. Each 4 g of leaf powder was macerated with 20 ml of

ethanol for 24 hours and then filtered. The maceration process was repeated twice. The filtrate

was collected and dried by putting it in an oven whose temperature was set to be 40˚C for one

week. The extraction process was done for 5 different mixtures of ethanol and water as sol-

vents: 100% ethanol (0% water), 75% ethanol, 50% ethanol, 25% ethanol, and 100% water (0%

ethanol). Extract with each solvent mixture was repeated 6 times, resulting in total of 30 sam-

ples. Each sample was tested using α-glucosidase inhibition and DPPH radical scavenging (for

antioxidant) activity assays. The values of IC50 of both α-glucosidase inhibition and DPPH

radical scavenging activities for all the extract samples were shown in S1 Table.

α-glucosidase inhibition assay

This assay was done according to Elya et al. [56]. First, the 36 μl phosphate buffer solution with

pH 7.0 was added by 17 μl p-nitrophenyl-α-d-glucopyranoside (PNPG) 5mM. Second, 30 μl

samples with varying concentrations in DMSO (dimethyl sulfoxide) were added, homogenized

and incubated at 37˚C for 5 minutes. Third, the mixture was added with 17 μl α-glucosidase

(0.062 unit) and the solution was incubated at 37˚C for 15 minutes. Lastly, 0.1 ml sodium car-

bonate (Na2CO3) 0.2 M was added to stop the reaction, and the absorbance was measured at

405 nm using microplate reader. The control solution was a PNPG, α-glucosidase, and phos-

phate buffer mixture, while the positive control was acarbose. The percentage of α-glucosidase

inhibition activity was calculated using the following formula:

%Inhibition ¼
Abs control � Abs sample

Abs control
� 100% ð1Þ

This assay was conducted with several concentrations in triplicate to get the IC50 value.

DPPH inhibition assay

DPPH (2,2-diphenyl-1-picrylhydrazyl) assay was used to measure the antioxidant activity.

This method was done based on the methods used by González-Palma et al. [57] and Rosa

et al. [16]. The mixture of 1 ml of DPPH 0.175 mM and 0.8 ml sample in the ethanol was incu-

bated in dark condition for 30 minutes and the absorbance was measured at 517 nm using UV

spectrophotometer (Thermo Scientific Orion Aquamate 8000). The control was DPPH and

PLOS ONE Metabolomics analysis of alpha-glucosidase inhibition activity of Artabotrys sumatranus leaf extract

PLOS ONE | https://doi.org/10.1371/journal.pone.0313592 January 3, 2025 5 / 32

https://doi.org/10.1371/journal.pone.0313592


ethanol while ascorbic acid was used as positive control. The blank used was ethanol. This

assay was done triplicate for each sample. Antioxidant activity was expressed in percentage of

DPPH reduction by the following calculation:

%reduction DPPH ¼
Abs control � Abs sample

Abs control
� 100% ð2Þ

This assay was conducted with several concentrations in triplicate to get the IC50 value.

LC-MS-QTOF instrument and preparation

The LC/MS-QTOF system used in this study comprised of an Agilent 1200 liquid chromatog-

raphy system, equipped with a binary pump, a vacuum degasser unit, an auto sampler and

6520 quadrupole time of flight mass spectrometers with an electrospray ionization (ESI)

source. Column used was Agilent ZORBAX Eclipse Plus C18 Rapid Resolution HT (2.1 x 100

mm) 1.8 μm.

The preparation of the sample for the LC MS–QTOF analysis was done according to Muru-

gesu et al. [31]. 250 μl of methanol was added to 1 mg sample of plant extract, then it was

homogenized for 15 minutes. Afterward, 250 μl water was added and centrifuged for 15 min-

utes and the supernatant was put into a glass vial through syringe filtration to make it ready for

injection to the machine. The chromatographic separation was done at 40˚C using Agilent

ZORBAX Eclipse Plus C18 Rapid Resolution HT (2.1 x 100 mm) 1.8 μm with 0.1% formic acid

in dH20 as mobile phase A and 0.1% formic acid in acetonitrile as mobile phase B. The separa-

tion was done in positive mode. The gradient elution was set 5–95% mobile phase B at 0.00–

18.00 minutes then continued with 95% mobile phase B until minutes 23 and at 23.01 minutes

the mobile phase B was set to be 5%. The total run time is 30 minutes. The LC condition was

re-equilibrated for 2 minutes before starting the new injection. The sample injection volume

was set at 2 μl and the flow rate of the mobile phase was set at 0.25 ml/min. Meanwhile, the

mass spectrometer was operated in positive electrospray ionization (ESI) mode with optimum

gas temperature at 325˚C, gas flow at 11 L/min, and nebulizer at 35 psi, respectively.

LC-MS/MS QTOF instrument and preparation

LC-MS/MS QTOF was used to get further fragmentation patterns for the m/z values of the

predicted active compounds. These further fragmentation patterns were used to identify the

active compounds, which was done by comparing the fragmentation pattern with the available

database in the LC-MS/MS QTOF machine.

For LC-MS/MS analysis in this study, UHPLC was used. The sample for the LC-MS/MS

analysis was prepared by mixing 55 mg extract sample with 2 ml ethanol. Here only ethanol

was used since all the predicted active compounds were from extracts that use 100% ethanol as

solvent. The mixture was filtered, and then 2 μl of the filtration result was injected into the

UHPLC machine. UHPLC was performed on ACQUITY UPLC I-Class system from Waters,

consisting of a binary pump, a vacuum degasser, an auto- sampler and a column oven. The

compounds were chromatographically separated using a column ACQUITY UPLC HSS T3

(100 mm x 2.1 mm x 1.8 μm) also from Waters, maintained at 40˚C. A linear binary gradient

of water (0.1% formic acid) and acetonitrile (mobile phase B) was used as mobile phase A and

B respectively. The mobile phase composition was changed during the run as follows: 0 min,

1% B; 0.5 min, 1% B; 16.00 min, 35% B; 18.00 min, 100% B; 20.00 min, 1% B. The flow rate was

set to 0.6 mL/min and the injection volume was 2 μL.

The UHPLC system was coupled to a Vion IMS QTOF hybrid mass spectrometer from

Waters, equipped with a Lock Spray ion source. The ion source was operated in positive
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electrospray ionization (ESI) mode under the following specific conditions: capillary voltage,

1.50 kV; reference capillary voltage, 3.00 kV; source temperature, 120˚C; desolvation gas tem-

perature, 550˚C; desolvation gas flow, 800 L/h, and cone gas flow, 50 L/h. Nitrogen (>99.5%)

was employed as desolvation and cone gas. Data were acquired in high-definition MSE

(HDMSE) mode in the range m/z 50–1500 at 0.1 s/scan. Thus, two independent scans with dif-

ferent collision energies (CE) were alternatively acquired during the run: a low-energy (LE)

scan at a fixed CE of 4 eV, and a high- energy (HE) scan where the CE was ramped from 10 to

40 eV. Argon (99.999%) was used as collision-induced-dissociation (CID) gas.

LC-MS and LC-MS/MS data processing

The raw data from LC-MS was converted to MZML format using MS Convert (http://

proteowizard.sourceforge.net/tools.shtml). After that, the data was processed using MZmine

2.5.3 [58] such as the baseline correction (m/z bin width is 1.000, smoothing is 100.000, and

asymmetry is 0.5), mass detection (noise detection is 0), ADAP chromatogram (group inten-

sity threshold and minimum highest intensity is 2.5E3, m/z tolerance is 0–10 ppm, chromato-

gram deconvolution (minimum peak height is 2.5E3 and peak duration range 0–10 minutes),

isotope grouping (m/z tolerance 10 ppm, retention time tolerance is 0.1), join aligner (weight

for m/z is 75 and weight for retention time is 25), and gap filling (intensity tolerance is 10%).

The fragmentation patterns to validate the identification of the predicted active compounds

were obtained from LC-MS/MS machine directly. For each m/z of the predicted active com-

pound, a further fragmentation pattern was acquired. No data preprocessing was needed since

the fragmentation patterns were already in good form.

Metabolomics analysis

The processed LC-MS data of the 30 extract samples were used as the input of the metabolo-

mics analysis. The features (variables) were the detected m/z values in all extract samples.

There were 80 features in total, and the values of these features were the amounts of the com-

pounds corresponding to the m/z values in the extract samples (the values could be zero if the

compounds were not detected in the extract). The list of the features can be seen in S2 Table.

This input data was added with the activity data, which were the IC50 of α-glucosidase inhibi-

tion (AGI) and IC50 of DPPH assay (for antioxidant activity). To make the values of the activity

data to be increasing when the activity is stronger, the values of 1/IC50 of α-glucosidase inhibi-

tion (AGI) and 1/IC50 of DPPH assay were used. The activities were used as the outputs (tar-

gets) in the data analysis. To remove the dominance of large-valued features, the input data

was normalized to have zero mean and unity variance (UV) for each feature.

The input data was then analyzed using untargeted metabolomic methods. The analysis was

done by two kinds of methods. The first one was multivariate statistical analysis: PCA (princi-

pal component analysis), PLS (partial least squares), OPLS (orthogonal projection to latent

structures), PLS-DA (partial least squares–discriminant analysis), and OPLS-DA (orthogonal

projection to latent structures–discriminant analysis). All these methods tried to find new pro-

jection axis (coordinate systems) which can separate the data best, according to their own cri-

teria [22–27]. For simplicity, these projection axes were called principal components in this

research. The principal components were weighted linear combinations of the original features

(m/z values of the detected compounds in the extract samples). These weights were called load-

ings of the principal components. By analyzing the loadings, the most important features that

contributes to the activities of the extracts were found. The analysis of the loadings was done

by inspecting the values of the loadings, and also checking the VIP (variable importance for
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projection) [24]. The VIP value must be more than 1 to make the feature (input variable) to be

important.

For the PLS-DA and OPLS-DA, classes were needed, and it was set up as active class (all

100% ethanol extracts) and non-active class (the rest of the data). This division of the class was

based on the observation that all 100% ethanol extracts had higher 1/IC50 of α-glucosidase

inhibition (AGI) values than the rest.

Combinations of the methods and the outputs created 25 models which were investigated.

The models (M1 –M25) can be seen in Table 1.

The validity of these 25 models were first tested based on the following criteria [59–62]:

a. Differences between goodness-of-fit coefficients (R2) for the regression of the output vari-

ables of the original data (R2
Y) and output prediction of the cross-validated data (Q2) should

not be more than 0.3. R2
Y measures how good the model fits to the training dataset, while

Q2 to the test dataset [27]. If the differences between these two coefficients are large, then

there is an indication of overfitting (the model fits too much to the training dataset and

loses some capabilities to predict general data).

b. In the permutation results, where the values of output Y were permuted randomly with dif-

ferent correlation coefficients to the original Y, while keeping the values of the input X, the

decrease in the values of R2
Y and Q2 of the permuted data must be sufficiently lower than

the original (unpermuted) ones. If the values from the permuted simulations are

Table 1. Statistical multivariate models for leaf extract of Artabotrys sumatranus, with their analytical methods,

input variables (X) and output variabel (Y).

Model Methods Input variable X Output variable Y

M1 PCA m/z None

M2 PLS m/z 1/IC50 AGI

M3 PLS m/z IC50 AGI

M4 PLS–DA m/z 1/IC50 AGI

M5 OPLS -DA m/z 1/IC50 AGI

M6 OPLS m/z 1/IC50 AGI

M7 PLS m/z 1/IC50 AGI and 1/IC50 DPPH

M8 OPLS m/z 1/IC50 AGI and 1/IC50 DPPH

M9 PLS–DA m/z IC50 AGI

M10 OPLS–DA m/z IC50 AGI

M11 OPLS m/z IC50 AGI

M12 PLS m/z IC50 AGI and IC50 DPPH

M13 OPLS m/z IC50 AGI and IC50 DPPH

M14 PLS–DA m/z 1/IC50 AGI and 1/IC50 DPPH

M15 OPLS–DA m/z 1/IC50 AGI and 1/IC50 DPPH

M16 PLS–DA m/z IC50 AGI and IC50 DPPH

M17 OPLS–DA m/z IC50 AGI and IC50 DPPH

M18 PLS m/z 1/IC50 DPPH

M19 PLS–DA m/z 1/IC50 DPPH

M20 OPLS m/z 1/IC50 DPPH

M21 OPLS–DA m/z 1/IC50 DPPH

M22 PLS m/z IC50 DPPH

M23 PLS–DA m/z IC50 DPPH

M24 OPLS m/z IC50 DPPH

M25 OPLS–DA m/z IC50 DPPH

https://doi.org/10.1371/journal.pone.0313592.t001
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significantly low, then it indicates that the unpermuted model fits are good and valid. This

is measured from the regression plot of the values permuted R2
Y and Q2 with respect to the

correlation coefficients of the permutation to the original Y: the intercept of regression line

for the permuted R2
Y� 0.4 and the intercept of regression line for the permuted Q2� 0.05.

The number of permutations for this research was taken to be 20.

c. The p-value of the cross-validation ANOVA (CV-ANOVA)� 0.05. Cross validation

ANOVA [63] tests whether the cross-validated output prediction is significantly different to

the just the mean of the outputs, and it can only be used for methods based on PLS and

OPLS.

After applying the validity conditions, 11 models were found to be valid. The valid multi-

variate statistical models can be seen in Table 2, where the values of the validity conditions

above are also shown. For each of these 11 models, the most important features were selected

by analyzing the respective loadings of the principal components. In total 25 most important

features were selected from each model in Table 2. Then comparisons were made to determine

the features that most frequently appeared in these 11 models. These most frequently appeared

features were taken as the prediction of the active compounds using multivariate statistical

methods. All these results were computed using software SIMCA-P+ 14.

The second kind of methods which was used to do metabolomics analysis in this research

was machine learning. Several machine learning methods were tried: decision tree [64], ran-

dom forest [46], gradient boosting [65], artificial neural network [66], and ADA boost [67].

The calculations for the machine learning methods were done using Orange Data Mining soft-

ware version 3.34 (https://orangedatamining.com/). The parameters used for the methods fol-

lowed the defaults of the Orange Data Mining software, with some changes. For the decision

tree, the changes were that only binary trees were used, the minimum number of samples on

the leaf node was set to 2, subsets with samples less than 5 were not divided anymore, and tar-

get purity of the node was set to 95%. The division of the data for the decision tree method

would be stopped if one of these conditions were reached. For random forest method, the

changed parameters were that 100 decision trees were used in the method, and subsets with

Table 2. Valid multivariate statistical models for Artabotrys sumatranus leaf extracts, with the values of the validity conditions, divided for different outputs if the

models have several outputs.

No. Model Intercept of permuted R2 Intercept of permuted Q2 R2
Y –Q2 p-value of CV-ANOVA Output variable

1 M2 0.239 -0.224 0.160 0.00000799

2 M3 0.370 -0.267 0.188 0.00149557

3 M6 0.310 -0.550 0.132 0.00000895

4 M7 0.313 -0.218 0.127 0.00005730 1/IC50 AGI

0.00028243 1/IC50 DPPH

5 M8 0.261 -0.478 0.178 0.00142708 1/IC50 AGI

0.00210300 1/IC50 DPPH

6 M11 0.375 -0.538 0.220 0.00312608

7 M12 0.343 -0.283 0.126 0.00480171 IC50 AGI

0.00000992 IC50 DPPH

8 M13 0.234 -0.218 0.180 0.00785429 IC50 AGI

0.00002841 IC50 DPPH

9 M18 0.374 -0.345 0.100 0.00004086

10 M20 0.387 -0.577 0.142 0.00010182

11 M22 0.238 -0.185 0.147 0.00000079

https://doi.org/10.1371/journal.pone.0313592.t002
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samples less than 2 were not divided anymore in the decision trees of the random forest. Gra-

dient boosting implementation used 100 decision trees, with the maximum depth level of the

decision trees was set to 3, subsets with samples less than 2 would not be divided anymore in

the decision trees of gradient boosting, and learning rate was set to 0.05. The artificial neural

network was implemented with 4 hidden layers with 100 nodes each, activation function in

each node was ReLu, the weight optimization was done using Adam solver with 0.006 as regu-

larization coefficient, and maximum iteration was set to 500. In the ADA boost method, the

base estimator was set to be 100 decision tree stumps, using SAMME.R algorithm with linear

loss function and learning rate for the weight adaptation = 0.01.

First the machine learning methods were used to make a prediction model for the activity

of the extract samples. The target of prediction was 1/IC50 AGI (α-glucosidase inhibition). The

input data was the same as the multivariate statistical methods. This input data was then

divided using random sampling into training set (50%) and test set (50%). The training set was

used to build the models, while the testing was done on the test set. The performance of the

models was measured mainly by the difference of the predicted and measured (true) values of

1/IC50 AGI in the form of RMSE (root mean square error). The smaller the value of RMSE, the

better the performance was.

Comparisons of the performances of the machine learning methods were done to deter-

mine the best machine learning method which would be investigated further. Here beside

RMSE, the performance was also measured by the value of R2 (goodness-of-fit) of the regres-

sion line between the predicted value of the output (1/IC50 AGI) with the its true value from

measurement. The bigger the value of R2 (the closer it was to 1), the better the performance

was. The performance was evaluated for both the training and test sets.

The prediction of the activity of extract samples was not the end goal of the machine learn-

ing analysis. The goal was to find the active compounds in the extract samples, which trans-

lated into finding the most important features (m/z values of the compounds in the extracts)

which had the most influence on the activity prediction of the extract samples. This untargeted

metabolomics analysis (untargeted since the active compounds were not known) was done

only for the machine learning method with the best performance in predicting the activity of

the extract samples. Several methods were used to find the active compounds. First, before the

predictive models were computed, the correlations were calculated between the values of m/z

responses (indicating how much the corresponding compounds were found in the extract

sample) and the target 1/IC50 AGI (indicating the strength of α-glucosidase inhibition activ-

ity). The features (m/z values) that had the strong positive correlation with the target were can-

didates for active compounds. Correlation analysis was also done between the features and 1/

IC50 DPPH (indicating the strength of antioxidant activity), because the side goal of this

research was to find an α-glucosidase inhibitor which was also an antioxidant.

Second, after the predictive models were developed, the most important features were com-

puted using 2 methods: random permutations [47–49] and SHAP (SHapley Additive exPlana-

tions) method [50, 51]. In random permutation, values of the investigated feature were

randomly permuted. In this research the number of permutations was set to 100. If the investi-

gated feature was important (had strong influence on the extract activity prediction), then the

performance of the extract activity prediction would decrease strongly when random permuta-

tion was done to the values of this feature. The most important features could be found by

identifying the features with the highest increase of RMSE (error) after random permutation.

SHAP method computed a score (called the Shapley score) which corresponded to the contri-

bution of the investigated feature to the prediction output (in this research the value of 1/IC50

AGI). The Shapley score of a certain feature for a certain model was computed for every extract

sample by comparing the prediction output of the model using sets of features that contain the
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investigated feature, with prediction output of the same model but now using sets of features

that do not contain the investigated feature. The Shapley score could be positive (the investi-

gated feature would increase the value of the prediction output), zero (no contribution of the

investigated feature to the prediction output), and negative (the investigated feature would

decrease the value of the prediction output). Both positive and negative Shapley scores were

taken to be important, and therefore the reported SHAP score for a certain feature was com-

puted as the mean of the absolute values of the Shapley scores for each extract samples for that

particular feature.

In this research, 25 features that showed the most dominant influence (the most important

features) were taken from each analysis: random permutation, SHAP, and correlation analysis.

The list of each analysis would be compared, the features that showed most frequently in all

the lists would be taken as the predicted active compounds from machine learning approach.

The predicted active compounds from the multivariate statistical analysis would be com-

pared to the results of machine learning approach. The features that appeared in both

approaches would be taken as the predicted active compounds of the metabolomics analysis.

Molecular docking

Molecular docking is a computational method that investigates how good a relatively small

compound (called ligand) can bind (or dock) in a protein or receptor. In general, the method

will try to move the ligand as a whole, or rotate a part of it (depending on how flexible the

ligand is), to fit the ligand into the binding (or docking) site of the receptor. The fitting process

is done by minimizing a cost function, that usually resembles the free binding energy [68].

In this research, the ligand was the predicted active compound, while the receptor was the

α-glucosidase enzyme. The structure coded as 3A4A from Protein Data Bank or PDB (https://

www.rcsb.org/) was usually taken as the receptor. This structure is actually the homology of α-

glucosidase enzyme from Saccharomyces cerevisiae, which is usually used in the bioassay of α-

glucosidase inhibition [69]. To simulate the binding in human, this research used the structure

3TOP from PDB, which resembles a part of the α-glucosidase enzyme in human gut [70]. The

structures of the ligand, obtained from online databases such as ZINC (https://zinc.docking.

org/) or PubChem (https://pubchem.ncbi.nlm.nih.gov/), was transformed into PDB or PDBQT

format using OpenBabel tool (http://openbabel.org/index.html). Both receptor dan ligand files

must be first prepared for simulation, for example to remove water molecules, addition of char-

ges, choosing the grid box for the molecular docking simulation, etc., which were done by using

AutoDock Tools 1.5.7 (https://autodocksuite.scripps.edu/adt/) for the receptor files, and “pre-

pare ligand” module in AutoDockFR (https://ccsb.scripps.edu/adfr/) for batch processing of the

ligand files. Sometimes the protein or receptor file must be first repaired, e.g. for missing atoms,

which was done using Swiss Model tool (https://swissmodel.expasy.org/) and ChimeraX soft-

ware [71] for 3A4A and 3TOP structures respectively. The molecular docking simulation itself

was done using AutoDock Vina 1.2.3 [72]. The parameters of AutoDock Vina must be tuned to

get the best docking result. The simulation was done on a computer with the following specifi-

cations: processor AMD Ryzen 7 5800H and RAM 32 GB. To present the result of molecular

docking visually, including showing the types of binding that occurred, Biovia Development

Studio software (https://www.3ds.com/products/biovia) was used.

The validation of the molecular docking results was done by comparing the position and

orientation of molecular docking result and the actual binding of the native ligand, which was

obtained from X-ray diffraction analysis. The error of this comparison was represented in the

form of RMSD (root mean square deviation) [73]. To make the choice of the docking parame-

ters valid, the RMSD of the native ligand was required to be� 2 Å (see for example [16, 42]).
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For molecular docking simulation to receptor 3A4A, the grid box used as the place where

the docking or binding was simulated, was set to cover the binding site of the native ligand of

this receptor, which was glucose. The grid box center was located at coordinate X = 21.1; Y =

-7.4; and Z = 24.2; the grid box size was 17 Å × 17 Å × 17 Å, and the grid size was 0.375 Å. For

the molecular docking simulation, Autodock Vina was used with the following parameters:

exhaustiveness = 64, number of modes (position and orientation which was simulated) = 50,

and energy range = 4. This set of parameters and grid box settings were validated by redocking

result of the native ligand, glucose, which had RMSD = 0.561 Å� 2 Å. Fig 1 indeed shows that

the difference between the actual’s (from X-ray diffraction) and redocking’s orientation and

position of the native ligand, glucose, at 3A4A receptor, was indeed small.

For the receptor 3TOP, the grid box also covered the binding site of the native ligand,

which in this case was acarbose. The grid box had its center located at coordinate X = -31.324;

Y = 34.587; and Z = 26.317 and had the size of 40 Å × 40 Å × 40 Å, with grid size = 0.375 Å.

The molecular docking simulation was also done with Autodock Vina, with the same parame-

ters as for the receptor 3A4A, except the exhaustiveness was set to 32 for better redocking

result (smaller RMSD). The choices of these parameters and grid box were validated by the

results of the redocking of acarbose, the native ligand, which had RMSD = 1.096 Å� 2 Å. The

comparison between the actual’s and redocking’s orientation and position of acarbose as

native ligand to 3TOP receptor in Fig 2 shows that the difference was indeed small.

Isolation of active compound

To verify the results of metabolomics analysis, isolation of the active compounds was done on

the Artabotyrs sumatranus leaf extract using bioassay guided fractionation [52, 53]. The 225 g

of Artabotrys sumatranus dried leaf powder was mixed with 100% ethanol with proportion 1:5,

macerated for 24 hours, and then filtered. The maceration process was repeated twice. The fil-

trate was collected and evaporated using a rotary evaporator resulting in the ethanol crude

Fig 1. Comparison between the actual’s (from X-ray diffraction, in red color) and redocking’s (in green color)

orientation and position of the native ligand, glucose, at 3A4A receptor.

https://doi.org/10.1371/journal.pone.0313592.g001
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extract. After that, solid-liquid partitions using n-hexane, ethyl acetate, and ethanol were done

to get the n-hexane, ethyl acetate, and ethanol fractions. Each of the fractions was tested for its

α-glucosidase inhibition activity. The ethanol fraction which had the highest inhibition per-

centage of α-glucosidase was put in the silica column with mobile phase a combination of

ethyl acetate and methanol using a gradient system (ethyl acetate–methanol proportion was

changed from 1:0 to 0:1). The volume of each combination was 500 ml and the flow rate was 2

ml/minutes. The partition of silica column resulted in 15 fractions which were further tested

for their activities. Two fractions with the highest α-glucosidase inhibitions were chosen to put

in Sephadex LH-20 column using the methanol as the mobile phase. One of the chosen frac-

tions resulted in 20 fractions that contained only minor compounds based on NMR analysis

and were not promising to be isolated further. The other fraction resulted in 29 fractions, and

based on the similarity in TLC (thin layer chromatography) pattern, some of these fractions

were pooled together. The TLC pattern of the pooled fractions was promising to be isolated,

and therefore it was evaporated in room temperature, leaving only a small amount of methanol

solvent. Then, 2 ml of chloroform was added to the dried pooled fraction, and precipitation

was formed, resulting in one isolate, which was then elucidated with 1D and 2D NMR.

For more information, a figure summarizing the isolation process is provided in S1 Fig.

The α-glucosidase inhibition bioactivity assay results for the isolation fractions were also

shown in this S1 Fig.

Nuclear magnetic resonance (NMR)

The isolated samples from bioassay guided fractionation were dissolved in deuterated metha-

nol and put in the FTNMR (Fourier transform nuclear magnetic resonance). The isolate

would be analyzed by using 1D NMR (1H NMR and 13C NMR) and 2D NMR (HMBC (hetero-

nuclear multiple bond correlation) and HSQC (heteronuclear single quantum coherence)).

These analyses would elucidate the molecular structure of the isolate.

Results and discussion

For the statistical multivariate approach in metabolomics analysis, all 11 valid models in

Table 2 were analyzed. Due to space constraint, here only an example of these analyses is

Fig 2. Comparison between the actual’s (from X-ray diffraction, in red color) and redocking’s (in green color)

orientation and position of the native ligand, acarbose, at 3TOP receptor.

https://doi.org/10.1371/journal.pone.0313592.g002
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shown, which is for model M8. As can be seen in Table 1, this model used OPLS method and

the output variables were 1/IC50 AGI (α-glucosidase inhibition) and 1/IC50 DPPH (antioxi-

dant activity). Since α-glucosidase inhibition (AGI) activity was the main focus of this

research, the analysis shown here is only for the output 1/IC50 AGI. The validity of this model

could be verified by analyzing the permutation plot of this model (see Fig 3). As can be seen in

Fig 3, the values of the goodness-of-fit coefficients for the permuted training set (R2 = R2
Y)

and permuted test or cross-validated set (Q2) were lower than for the unpermuted ones (at the

upper right corner). The intercepts of the regression lines for R2 and Q2 were also under the

validity upper thresholds, which were 0.4 and 0.05 respectively. This indicated that the original

unpermuted model could fit quite well to the training set, and more importantly to the test set

(by way of cross-validation).

Since the validity of model M8 could be assured, the analysis of this model could go further.

The scoring plot of this model can be seen in Fig 4, which showed that model M8 separated

the active and non-active samples mainly by the first principal component (PC1, or in Fig 4

the horizonal (t[1]) axis). The smaller the values of PC1, the more active the extract samples.

The vertical (t[2]) axis showed the second principal component (PC2), which seemed to sepa-

rate the samples more on their polarity (small or negative values of PC2 corresponded to sam-

ples in solvents with 100% water or 0% ethanol, while large values of PC2 corresponded to

samples in solvents with more percentage of ethanol). Therefore, for the α-glucosidase activity,

small PC1 was preferred.

Fig 3. Permutation plot of multivariate statistical model M8, showing the goodness-of-fit coefficients for the permuted training set (R2 = R2Y) and

permuted test or cross-validated set (Q2), with respect to the correlation coefficients of the permuted output Y (1/IC50 AGI) to the original data. The

values of the output Y were permuted 20 times. The values of R2 and Q2 of the unpermuted data can be seen at the upper right corner. The model was valid if

the values of R2 and Q2 for the permuted data were significantly lower than for unpermuted one.

https://doi.org/10.1371/journal.pone.0313592.g003
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The conclusion of the analysis of the scoring plot in Fig 4 guided the determination of pre-

dicted active compounds from loadings plot. The loadings plot of the first principal compo-

nent (PC1) was shown in Fig 5. Due to the conclusion of the analysis of the scoring plot, the

active compounds should be found from the features (input variables, m/z values) which made

the PC1 small, in other words, the features that had small or even negative loadings values of

PC1. By cross-checking between the most negative features and the VIP values of the corre-

sponding features (VIP values must be larger than 1), 25 most important features were

selected. The same procedure was done for the other valid models in Table 2.

Collecting all the features which most often appeared (more than 50% appearances) in the

lists of most important features from all valid multivariable statistical methods, a list of pre-

dicted active compounds (in the form of m/z values) was constructed. This list could be seen

in Table 3, and it served as the prediction of active compounds from statistical multivariate

analysis. Most of the active compounds appeared quite often in the statistical multivariate

models. There were some compounds, such as compounds represented by Var43 and Var47 –

Var 50, which always appeared in every model. This list would be later compared with the pre-

dicted active compound list from machine learning approach, to create the predicted active

compounds of the metabolomic analysis.

The first analysis for machine learning approach was to find the correlations between the

features and activities, both 1/IC50 AGI and 1/IC50 DPPH. A list of 25 features which had the

highest correlation coefficients to 1/IC50 AGI, and another for 1/IC50 DPPH case, were

Fig 4. Scoring plot of model M8, which used OPLS method, with input variable X (feature) the values of m/z of the detected compounds in extract

samples, and output variable Y (target) the values of 1/IC50 AGI and 1/IC50 DPPH. Labels showed the fraction names (the number after the dash line

showed the percentage of ethanol in the solvent). The color was according to the values of 1/IC50 AGI.

https://doi.org/10.1371/journal.pone.0313592.g004
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Fig 5. Loadings plot of the first principal component (PC1) of model M8, which used OPLS method, with horizontal axis the input variables X (feature)

i.e., the values of m/z of the detected compounds in extract samples, and the vertical axis the loadings value. The output variables Y (target) of the model

were the values of 1/IC50 AGI and 1/IC50 DPPH.

https://doi.org/10.1371/journal.pone.0313592.g005

Table 3. List of predicted active compounds from multivariate statistical analysis, constructed from the features

that most often appeared in the lists of predicted compounds of the 11 valid multivariate statistical analyses. The

compounds were ordered by the variable ID.

No. Variable ID m/z values Percentage of appearances in the multivariate statistical models

1 Var54 595.165 90.91

2 Var50 293.212 100.00

3 Var49 328.155 100.00

4 Var48 203.18 100.00

5 Var47 433.114 100.00

6 Var46 279.232 90.91

7 Var45 423.093 90.91

8 Var44 328.155 90.91

9 Var43 342.171 100.00

10 Var42 258.244 72.73

11 Var31 585.145 100.00

12 Var19 258.244 90.91

13 Var09 195.087 81.82

https://doi.org/10.1371/journal.pone.0313592.t003
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created. The list can be seen in S3 Table. The correlation list to 1/IC50 AGI was used to deter-

mine the active compound prediction for machine learning approach, while the one to 1/IC50

DPPH was used to get some insights whether the active compounds for AGI were also antioxi-

dants. In general, many features (i.e. compounds) which had high positive correlation to 1/

IC50 AGI, also had high correlation to 1/IC50 DPPH. This indicated that α-glucosidase inhibi-

tors in the extract were likely to have antioxidant activities too, supporting the results obtained

from the screening of this plant [16].

The performance results of the machine learning methods to predict the activity of the

extract samples as AGI can be seen in Table 4. Here linear regression was added as a

comparison.

As can be seen in Table 4, the performances for training set were understandably better

than for test set, since the models were trained on the training set. What was more important

was the performances for test set. Here random forest was the best. The differences between

the performances for the training set and test set were also in general smallest for random for-

est. This was considered good, since large difference between performances for training and

test sets indicated the possibility of overfitting, where the model fitted too much on the train-

ing set, and therefore lost some of its capability to capture the pattern of the general data.

Since the performances of the machine learning models on test set were rather poor, boot-

strapping (using stratified random sampling with replacements) was tried to increase the num-

ber of extract samples which was indeed small (only 30). Increasing the number of data can

increase the performance of the machine learning methods. Bootstrapping increased the num-

ber of samples to 50. The performances of the machine learning models were measured again

with the results shown in Table 5.

Bootstrapping indeed increased the performance of the machine learning methods on

training set (see Table 5). But on the test set, only random forest, gradient boosting, and ADA

boost improved the performance. Linear regression and decision tree showed worse perfor-

mance than without bootstrapping, which indicated the occurrence of overfitting, since the

Table 4. Performance results of the prediction of the 1/IC50 AGI values of extract samples by machine learning methods for training sets and test sets, using RMSE

(root mean square error) and R2 as indicators. Small value of RMSE and value of R2 near 1 indicated good performance.

No Method Test on training set Test on test set

RMSE R2 RMSE R2

1 Linear regression 0.000 1.000 0.003 0.428

2 Decision tree 0.000 0.988 0.002 0.535

3 Random forest 0.001 0.927 0.002 0.603

4 Gradient boosting 0.000 1.000 0.002 0.543

6 ADA boost 0.000 0.999 0.002 0.561

https://doi.org/10.1371/journal.pone.0313592.t004

Table 5. Performance results of the prediction of the 1/IC50 AGI values of extract samples by machine learning methods, after the implementation of bootstrap-

ping, for training sets and test sets, using RMSE (root mean square error) and R2 as indicators. Small value of RMSE and value of R2 near 1 indicated good

performance.

No Method Test on training set Test on test set

RMSE R2 RMSE R2

1 Linear regression 0.000 1.000 0.003 0.173

2 Decision tree 0.000 0.998 0.004 -0.809

3 Random forest 0.000 0.989 0.001 0.791

4 Gradient boosting 0.000 1.000 0.002 0.632

6 ADA boost 0.000 1.000 0.002 0.748

https://doi.org/10.1371/journal.pone.0313592.t005
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performances on test set were better. Random forest still showed the best performance on test

set, and therefore in this research random forest was used for the machine learning approach.

The random forest models, both using bootstrapping and not, were then analyzed for their

most important features to obtain the predicted active compounds. The methods which were

used to obtain the most important features were random permutation of the features and

SHAP. The applications of these 2 methods on the random forest models (with and without

bootstrapping) resulted in 4 lists, each containing 25 most potential features, ordered by the

mean of increase of RMSE (root mean error) for random permutation method and by the

SHAP score for SHAP method. The SHAP scores were computed as the mean of absolute val-

ues of the Shapley scores for each extract sample. These lists can be seen in S4 Table.

Comparison was made between the results of feature importance analysis using random

permutation and SHAP methods for the random forest models (with and without bootstrap-

ping, total 4 results) and correlation analysis of the features to 1/IC50 AGI (α-glucosidase inhi-

bition). The results of correlation (only the highest positive correlations) and feature

importance analyses can be seen in S3 and S4 Tables respectively. Some features that appeared

in feature importance results, i.e. Var5, Var8, and Var11, were removed during this compari-

son since these features had negative correlations to 1/IC50 AGI (not shown in S3 Table which

only showed the features with highest positive correlations). Cross-checking with results of

multivariate statistical models, these 3 features or variables indeed had large negative influ-

ences to predicted activity output (had large weights in the loadings of the relevant principal

components, but the weights contributed to the decrease instead of increase of the activity out-

put). Feature importance analysis of the machine learning models turned out to be able to cap-

ture the features which were important in the negative sense also. Features that appeared in

the feature importance analyses and also showed strong positive correlation to 1/IC50 AGI

constructed the list of predicted active compounds from machine learning models (see

Table 6. List of predicted active compounds from machine learning models, constructed from the features that

most often appeared in the lists of predicted compounds of feature importance analyses and in the list of features

that had the strongest positive correlation to 1/IC50 AGI (α-glucosidase inhibition). The compounds were ordered

by the variable ID.

No. Variable ID m/z value Percentage of appearances in machine learning models and correlation analysis
1 Var55 593.276 60

2 Var51 621.305 60

3 Var50 293.212 100

4 Var49 328.155 100

5 Var48 203.18 100

6 Var47 433.114 60

7 Var46 279.232 100

8 Var45 423.093 60

9 Var44 328.155 60

10 Var43 342.171 80

11 Var42 258.244 100

12 Var31 585.145 80

13 Var30 701.493 60

14 Var28 814.577 60

15 Var27 905.679 60

17 Var21 288.256 60

18 Var02 290.27 80

https://doi.org/10.1371/journal.pone.0313592.t006
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Table 6). Like for multivariate statistical results, the predicted active compounds were taken

from features that had percentage of appearances� 50%.

The results of multivariate statistical (Table 3) and machine learning models (Table 6) were

compared. The differences between multivariate statistical and machine learning results might

be because multivariate statistical models were linear models, while machine learning (here

random forest) models could be non-linear. The features that appeared in both results were

taken as the predicted compounds of the metabolomic analysis. Combining the results of these

methods together, and making the final predictions through voting (taking the predictions

that appeared in all methods) should increase the accuracy of the final prediction. This idea of

combining models and doing voting among the models to get the final prediction was inspired

by the ensemble methods in machine learning, such as random forest [46, 47]. Random forest,

which is a combination of many decision tree models, has been shown to show better accuracy

than the individual decision tree [46].

In an effort to identify these predicted compounds, LC-MS/MS were done to get the frag-

mentation patterns of the corresponding m/z signals. By analyzing the fragmentation patterns

and using the available database in the LC-MS/MS, some of the predicted compounds could

be identified. The list of the predicted compounds, with their identified compound names (if

available), can be seen in Table 7. The fragmentation patterns of the identified active com-

pounds were analyzed manually to verify the database-based identification. This manual analy-

sis confirmed the identification of the active compounds, and it can be seen in S1 File. From

the 10 m/z values which were predicted to be active as α-glucosidase inhibitors, 6 compounds

could be identified.

Table 7. List of predicted compounds from metabolomic analysis with their m/z values and identified compound names (if available), sorted by the variable ID.

Variable ID m/z value Compound name

31 585.145 neomangiferin

42 258.244 -

43 342.171 lirioferine

44 328.155 norisocorydine

45 423.093 mangiferin

46 279.232 15,16-dihydrotanshinone I

47 433.114 apigenin-7-O-galactopyranoside

48 203.18 -

49 328.155 norisocorydine

50 293.212 -

https://doi.org/10.1371/journal.pone.0313592.t007

Table 8. Results of molecular docking simulation of predicted active compounds on receptor 3A4A (α-glucosidase enzyme in Saccharomyces cerevisiae) and 3TOP

(a part of the α-glucosidase enzyme found in human gut). The binding was stronger when the free binding energy was more negative. The value of IC50 was obtained

from α-glucosidase inhibition bioassay result of the isolated compound from the extract.

No Compound name Free binding energy (kcal/mol) to 3A4A receptor Free binding energy (kcal/mol) to 3TOP receptor IC50 value (ppm)

Acarbose (as comparison) -9.156 -8.0942

1 Mangiferin -10.3011 -8.7348 83.72

2 Neomangiferin -5.6295 -8.9733

3 Apigenin-7-O-galactopyranoside -12.8365 -9.0971

4 15,16-dihydrotanshinone I -8.2679 -9.4811

5 Norisocorydine -7.2797 -7.4533

6 Lirioferin -9.4422 -8.1709

https://doi.org/10.1371/journal.pone.0313592.t008
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To verify the activities of the known predicted compounds, molecular docking simulations

were done for 2 receptors: 3A4A, the α-glucosidase enzyme in Saccharomyces cerevisiae which

was usually used in α-glucosidase inhibition bioassay, and 3TOP, a part of the α-glucosidase

enzyme found in human gut. The results of the molecular docking analysis for the 6 predicted

compounds that could be identified can be seen in Table 8. Here acarbose was added as a

comparison.

The value of IC50 reported in Table 8 was obtained from α-glucosidase inhibition bioassay

test on the compound which was successfully isolated from the extract. The isolation used bio-

assay guided fractionation and resulted in one isolated compound. The isolated compound

structure was elucidated using 1D NMR (1H NMR and 13C NMR) and 2D NMR (HMBC (het-

eronuclear multiple bond correlation) and HSQC (heteronuclear single quantum coherence)),

and it could be concluded that the isolated compound was mangiferin with the structure as

shown in Fig 6. The NMR results and elucidation explanation can be seen in S2 File. The eluci-

dation was also confirmed by elucidation of mangiferin in literatures [74, 75].

The IC50 of α-glucosidase inhibition for isolated mangiferin in Table 8 indicated that man-

giferin was quite a potent α-glucosidase inhibitor. The free binding energy obtained from

molecular docking simulation, also showed that the binding for mangiferin was stronger than

acarbose, both to 3A4A and 3TOP receptors. In literature, mangiferin was also reported as

potent α-glucosidase inhibitor [76, 77]. Mangiferin was also reported as one of the major com-

pounds in the screening of Artabotrys sumatranus leaf extract [16], which might be the reason

why this compound was the one that could be isolated.

As shown in Fig 7, in the results of molecular docking simulation, mangiferin occupied the

same binding site as the native ligands, both for 3A4A (glucose) and 3TOP (acarbose). Acar-

bose, which was a known potent α-glucosidase inhibitor and has been used as antidiabetic

drug, also occupied the same binding site, not only in 3TOP receptor (where it was the native

ligand), but also in 3A4A receptor. This indicated that mangiferin indeed had the potential to

become a potent α-glucosidase inhibitor.

The interactions of mangiferin to both receptors, 3A4A and 3TOP, showed that this com-

pound had not only weak van der Waals bonds to the amino acids in the receptors, but also

some strong hydrogen bonds, beside other kinds of bonds (see Fig 8). This supported the con-

clusion that mangiferin had strong binding to the receptors.

A more detailed analysis of the molecular interactions can be seen in Table 9 for 3A4A

receptor and Table 10 for 3TOP receptor. The information in this Tables 8 and 9 was taken

Fig 6. Molecular structure of mangiferin, the isolated compound from Artabotrys sumatranus leaf extract.

https://doi.org/10.1371/journal.pone.0313592.g006
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from observations of 2D interactions figures like Fig 8 for all the identified predicted active

compounds. In Tables 9 and 10, a summary of the total number of bonds is presented, but

actually for each type of bonding, there were bonds which were available for different identi-

fied predicted active compounds. The more complete descriptions of the molecular

Fig 7. Positions and orientations of molecular docking simulations of mangiferin (blue color) to 3A4A (a) and 3TOP (b) receptors. The position and

orientations of the native ligands, which were glucose (green color) in 3A4A receptor and acarbose (purple) in 3TOP receptor were also shown. The position

and orientation of acarbose (red) in 3A4A receptor were also shown for comparison.

https://doi.org/10.1371/journal.pone.0313592.g007

Fig 8. Interactions between mangiferin to the amino acids of the 3A4A (a) and 3TOP (b) receptors.

https://doi.org/10.1371/journal.pone.0313592.g008
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interactions, including the amino acids involved in each type of bonding, can be seen in S5

Table for 3A4A receptor and S6 Table for 3TOP receptor.

In Table 9, it can be seen that for 3A4A receptor mangiferin, lirioferin, and apigenin-7-O-

galactopyranoside had more favorable bonds than acarbose, which corresponded well with the

free binding energy of these three compounds which were more negative (stronger binding)

than acarbose (see Table 8). Neomangiferin also had more favorable bonds than acarbose, but

this compound also had more unfavorable bonds which seemed to make the binding weaker,

resulting in more positive free binding energy. 15,16-dihydrotanshinone I and norisocorydine

had less favorable bonds than acarbose, which matched well with the more positive free bind-

ing energy of these compounds compared to acarbose. Although the distributions of the bond-

ing types were different, all these identified predicted active compound occupied the same

Table 9. Summary of molecular interactions between identified predicted active compounds with 3A4A receptor.

Type of Bonding Acarbo-se Mangi-

ferin

Neo-mangi-

ferin

15,16-Dihydro-tanshino-

ne I

Lirio-

ferin

Noriso-

corydine

Apigenin-7-O-Galacto-pyrano-

side

Total hydrogen bonding 9 1 5 0 3 4 2

Total unfavorable bump 0 0 2 0 0 0 0

Total Van der Waals 7 14 19 8 8 6 17

Total carbon hydrogen bond 3 3 1 0 4 0 1

Total unfavorable acceptor-

acceptor

1 1 0 0 0 0 0

Total Unfavorable donor-

donor

0 0 2 0 0 0 0

Total pi cation 0 1 0 0 2 2 1

Total pi anion 0 1 0 1 1 1 1

Total pi sigma 0 0 0 0 2 0 0

Total pi-pi stacked 0 0 0 1 0 0 1

Total pi-alkyl 0 1 1 1 1 3 0

Total favorable bonds 19 21 26 11 21 16 23

Total unfavorable bonds 1 1 4 0 0 0 0

https://doi.org/10.1371/journal.pone.0313592.t009

Table 10. Summary of molecular interactions between identified predicted active compounds with 3TOP receptor.

Type of bonding Acarbose Mangi-

ferin

Neo-mangi-

ferin

15,16-Dihydro-tanshino-

ne I

Lirioferin Noriso-

corydine

Apigenin-7-O-Galacto-pyrano-

side

Total hydrogen bonding 2 5 1 0 1 0 2

Total Van der Waals 13 8 16 9 9 8 10

Total carbon hydrogen bond 0 0 0 2 1 1 1

Total unfavor-able acceptor-

acceptor

0 0 1 0 0 0 1

Total unfavor-able donor-

donor

0 0 1 0 0 0 0

Total pi anion 0 1 1 0 0 1 0

Total pi sigma 0 0 0 0 1 1 0

Total pi-pi T-shaped 0 4 2 3 2 2 2

Total pi-alkyl 0 0 0 4 0 1 0

Total salt bridge 1 0 0 0 0 0 0

Total attractive charge 1 0 0 0 0 0 0

Total favorable bonds 17 18 20 18 14 14 15

Total unfavor-able bonds 0 0 2 0 0 0 1

https://doi.org/10.1371/journal.pone.0313592.t010
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binding site in 3A4A receptor like mangiferin and acarbose in Fig 7 (see S3 File). The propor-

tion of hydrogen bonding or other kinds of bonding did not seem to influence the strength of

the binding very much. Of course, further investigation is needed to confirm this.

While all the predicted active compounds occupied the same binding site in 3TOP receptor

as mangiferin and acarbose (see Fig 7 and S3 File), the distributions of the bonding types were

different for the compounds. The bonding summary for 3TOP receptor can be seen in

Table 10. Mangiferin and 15,16-dihydrotanshinone I had more favorable bonds than acarbose,

which corresponded well to the more negative free binding energies of these compounds com-

pared to acarbose in Table 8. Neomangiferin also had more favorable bonds than acarbose, but

it had also more unfavorable bonds. However, in this case it seemed that the unfavorable

bonds in neomangiferin did not affect the binding strength very much, since the free binding

energy of neomangiferin was still more negative than acarbose. Norisocorydine had fewer

favorable bonds than acarbose which matched its more positive free binding energy. Lirioferin

had the same number of favorable bonds as norisocorydine, but lirioferine had hydrogen

bonding which was not available for norisocorydine. This might be the reason why free bind-

ing energy of lirioferin was more negative than norisocorydine. Apigenin-7-O-galactopyrano-

side had fewer favorable bonds than acarbose, but the free binding energy of this compound

was more negative than acarbose. The reason might be in the proportion of bonding types

available for apigenin-7-O-galactopyranoside. Further investigation is needed to ascertain the

reasons behind the strength of the bindings of these predicted active compounds.

Although the other predicted active compounds were not isolated from the extract in this

research, the α-glucosidase inhibition activities of some predicted compounds were reported

in literatures, i.e. 15,16-dihydrotanshinone I that had rather strong activity [78] and neoman-

giferin that had weak activity [77]. The molecular docking results for 15,16-dihydrotanshinone

I supported the literature, since the free binding energy for this compound was comparable or

even better than acarbose for 3A4A and 3TOP receptors respectively. For neomangiferin, the

molecular docking result to 3A4A receptor was in agreement with the literature, but the result

to 3TOP receptor indicated that this compound had strong activity as α-glucosidase inhibitor.

It might be explained by the fact that in-vitro bioassay test for α-glucosidase inhibition usually

uses α-glucosidase enzyme from Saccharomyces cerevisiae, the same structure as 3A4A recep-

tor. Then this result indicated that although neomangiferin did not show strong activity in in-

vitro test, this compound might actually have strong activity as α-glucosidase inhibitor in

human. Although the activity data was from bioassay results (corresponded to 3A4A receptor),

metabolomic analysis predicted neomangiferin to be an active compound. This might happen

because neomangiferin appeared often together with mangiferin (correlation between neo-

mangiferin (Var31) and mangiferin (Var45) was 0.979, see later in Fig 7). Of course, these indi-

cations must be further researched later. The α-glucosidase inhibition activity of the other

predicted compounds, i.e. apigenin-7-O-galactopyranoside, norisocorydine, and lirioferin,

have not yet been reported. Further investigation and verification of the α-glucosidase inhibi-

tion activities of these 3 compounds were needed, especially for apigenin-7-O-galactopyrano-

side and lirioferin which showed stronger activity than acarbose in molecular docking results.

Beside the identified compounds, the prediction of metabolomics analysis also included

some unknown compounds, which were represented by Var50, Var48, and Var42 (see

Table 7). These 3 compounds were promising, since they appeared in all machine learning

model results (see Table 6). Var50 and Var48 also appeared in the results of all multivariate sta-

tistical analysis (see Table 3).

To get more insights about the predicted compounds, the correlations between all the 25

features (representing detected compounds in the extract) that had the highest positive corre-

lations to 1/IC50 AGI (α-glucosidase inhibition activity) were investigated (see Fig 9). All the
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compounds represented by these features had the potentials to become α-glucosidase inhibi-

tors. It turned out that the identified predicted compounds: Var31 (neomangiferin), Var43

(lirioferine), Var44 (norisocorydine), Var45 (mangiferin), Var47 (apigenin-7-O-galactopyra-

noside) and Var 49 (norisocorydine), were all highly positively correlated. This suggested that

these compounds might be related in the biosynthesis pathway. Of course, further research is

needed for verification, but this indication is interesting since neomangiferin and mangiferin

have indeed similar structures and of the same compound group, xanthone. The unknown

predicted compounds represented by Var48 and Var50 were also highly positively correlated,

together with Var46 (15,16-dihydrotanshinone I), and also in less strength to Var43 (liriofer-

ine) and Var44 (norisocorydine). This might indicate another biosynthesis pathway group.

The last unknown predicted active compound, Var42, had different correlation pattern, sug-

gesting different group of compounds, since it was highly positively correlated to Var2, Var3,

Var6, Var7, Var10, Var12, Var13, Var17, Var19, Var28, and Var30. These indications about

the biosynthesis pathways must of course be investigated further to get a strong conclusion.

Conclusive results would be obtained if all the predicted compounds could be isolated and

tested, especially the unidentified ones. Metabolomics guided fractionation (see for example

[79]) might be a good way to isolate the specific compound, since the fractionation will only be

continued if the fraction contains the desired chromatogram profiles, for example from NMR

or LC-MS, which corresponds to the desired compound. Nevertheless, this procedure will

need a lot of NMR or LC-MS analyses (analysis is needed for all fractions), which might not be

always available.

To investigate whether the predicted active α-glucosidase inhibitor compounds in Artabo-
trys sumatranus leaf extract also showed antioxidant activity, the correlation of the amounts of

the predicted compounds to 1/IC50 DPPH (antioxidant activity) was analyzed. The correlation

coefficients for the predicted compound to 1/IC50 DPPH, beside of course to 1/IC50 AGI (α-

glucosidase inhibition activity), as a part of S3 Table, can be seen in Table 11.

As can be seen in Table 11, all predicted compounds had positive correlations to both 1/

IC50 AGI. A comparison between Tables 8 and 11 showed that the correlation coefficients to

1/IC50 AGI did not correlate perfectly to free binding energy from molecular docking simula-

tion. There were some compounds which had strong free binding energies (very negative), but

the correlation coefficients were not very positive. This might be because the correlation only

investigated the pattern between the amounts of the compounds to the activity, but not the

actual binding strengths. The direct relation to activity was further complicated because there

were also correlations between the compounds. Therefore, correlation could be used to give

some indications of the activity of the compound, but other analysis was needed to verify it.

In general, the predicted compounds also showed positive correlations to 1/IC50 DPPH,

indicating that these compounds were also antioxidant. The only exception was the compound

represented by Var42, which showed very small positive correlation to 1/IC50 DPPH, which

supported the deduction of it belonging to different group of compounds from correlation

analysis results (see Fig 9). These double activities were also supported by literatures. Mangi-

ferin was reported to show antioxidant activity [77, 80], as well as 15,16-dihydrotanshinone I

[81] and norisocorydine [82]. The antioxidant activity of neomangiferin was also reported,

albeit weak [77]. For the other predicted compounds, no literatures about their antioxidant

activities have been found. The existence of double activities in Artabotrys sumatranus leaf

extract was further supported by the correlations between α-glucosidase inhibition (AGI) and

antioxidant (DPPH) activities in this extract, as can be seen in Table 12. The correlations

between these two activities were quite strong, namely 0.73 (when comparing 1/IC50) or 0.82

(when comparing IC50). This verified the prediction that α-glucosidase inhibitors in Artabo-
trys sumatranus leaf extract had also antioxidant activities in the screening process [16].
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Conclusion

Metabolomics analysis, using combined multivariate statistical and machine learning analyses,

predicted 9 active compounds as α-glucosidase inhibitors in the leaf extract of Artabotrys
sumatranus. Several machine learning methods were investigated, and it turned out the ran-

dom forest delivered the best model to predict the activity of the extract samples. Feature

importance analysis using random feature permutation and SHAP methods were used to iden-

tify the most important features that influenced the prediction model of the activity (i.e., the

predicted active compounds) of the extract samples. Six of these compounds could be identi-

fied using LC-MS/MS fragmentation analysis and database: mangiferin, neomangiferin, nori-

socorydine, apigenin-7-O-galactopyranoside, lirioferine, and 15,16-dihydrotanshinone I. The

α-glucosidase inhibition activities of norisocorydine, apigenin-7-O-galactopyranoside, and lir-

ioferine were not yet reported in literatures. Molecular docking simulations, both to 3A4A

receptor (α-glucosidase enzyme in Saccharomyces cerevisiae, which was used in bioassay for α-

glucosidase inhibition activity) and 3TOP receptor (a part of α-glucosidase enzyme in human

gut), verified the metabolomics analysis results by showing strong binding between the identi-

fied predicted active compounds to the receptors. Some even showed stronger binding then

acarbose, the known potent α-glucosidase inhibitor. The exception was neomangiferin, that

had rather weak binding to 3A4A receptor, although it showed strong binding to 3TOP recep-

tor. Isolation using bioassay guided fractionation succeeded in isolating mangiferin, which

Fig 9. The correlations between 25 features (represents the compounds detected in the Artabotrys sumatranus leaf

extract) which had the highest positive correlation to 1/IC50 AGI (α-glucosidase inhibition). Red colors represent

higher (more positive) correlation between the features, while blue color lower correlations. All 25 features had positive

correlations to 1/IC50 AGI, so that they all had potentials to be active compounds as α-glucosidase inhibitors.

https://doi.org/10.1371/journal.pone.0313592.g009

Table 11. Correlation coefficients of the predicted active compounds to 1/IC50 AGI (α-glucosidase inhibition) and 1/IC50 DPPH (antioxidant).

Variable ID Compound name (if available) Correlation coefficient to 1/IC50 AGI Correlation coefficient to 1/IC50 DPPH

Var50 - 0.687 0.705

Var49 norisocorydine 0.833 0.686

Var48 - 0.661 0.552

Var47 apigenin-7-O-galactopyranoside 0.566 0.564

Var46 15,16-dihydrotanshinone I 0.494 0.576

Var45 mangiferin 0.581 0.594

Var44 norisocorydine 0.754 0.678

Var43 lirioferine 0.705 0.626

Var42 - 0.649 0.161

Var31 neomangiferin 0.462 0.477

https://doi.org/10.1371/journal.pone.0313592.t011
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was elucidated using 1D and 2D NMR. The isolated mangiferin showed strong activity for α-

glucosidase inhibition in bioassay test, verifying the metabolomics analysis results.

Although further analysis was needed to verify it, the correlation analysis indicated that

there were 3 groups in the predicted active compounds, which might be related to the biosyn-

thesis pathways. Correlation analysis of the predicted compounds also showed that these com-

pounds in general also had potentials to be antioxidant. In general, α-glucosidase inhibition

activity in Artabotrys sumatranus leaf extract correlated to antioxidant activity, supporting the

screening results done in previous research [16].

Further research was needed to verify the activity the predicted active compounds beside

mangiferin, perhaps by metabolomics guided isolation. The prediction of the m/z values of the

unidentified active compounds from this research should help the further investigation.
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S1 Table. List of IC50 values for α-glucosidase inhibition (AGI) activity and antioxidant

activity (DPPH assay) for the extracts of Artabotrys sumatranus leaf using mixture of etha-
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S2 Table. List of variables (features) in the input data for metabolomics analysis. Each fea-

ture represented the m/z value of the detected compound in the extract samples of Artabotrys
sumatranus leaf.

(PDF)

S3 Table. List of variables (features) that showed the highest correlations between their

amounts (response in LC-MS) to 1/IC50 AGI (for the α-glucosidase inhibition–AGI) and 1/

IC50 DPPH (for the antioxidant). Each feature represented the m/z value of the detected

compound in the extract samples of Artabotrys sumatranus leaf.

(PDF)

S4 Table. List of most influential variables (features) to the prediction 1/IC50 AGI (α-glucosi-

dase inhibition) for random forest models: (a) with bootstrapping and (b) without bootstrap-

ping. Each random forest models were analyzed using random permutation and SHAP

methods. Variables are ordered based on the mean of RMSE (root mean square error) for ran-
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(PDF)

S5 Table. Molecular interactions between identified predicted active compounds and

3A4A receptor. The entries in the table show the amino acids of 3A4A receptor which were

involved in the bonding. The amino acids are arranged so that same kind of interactions

Table 12. Correlations between α-glucosidase inhibition (AGI) and antioxidant (DPPH) activities in Artabotrys sumatranus leaf extract.

1/IC50 AGI IC50 AGI 1/IC50 DPPH IC50 DPPH

1/IC50 AGI 1

IC50 AGI -0.873379721 1

1/IC50 DPPH 0.726829502 -0.838292965 1

IC50 DPPH -0.635525608 0.822423167 -0.959618582 1

https://doi.org/10.1371/journal.pone.0313592.t012
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which appeared in other identified predicted active compounds can be recognized.
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S6 Table. Molecular interactions between identified predicted active compounds and

3TOP receptor. The entries in the table show the amino acids of 3TOP receptor which were

involved in the bonding. The amino acids are arranged so that same kind of interactions

which appeared in other identified predicted active compounds can be recognized.

(PDF)

S1 Fig. The workflow of the isolation of active compound (mangiferin) from Artabotrys
sumatranus leaf extract using bioassay guided fractionation. The amount and α-glucosidase

inhibition bioassay results for the isolation fractions are shown in this figure.

(PDF)

S1 File. Analysis of fragmentation patterns of the predicted active compound using

LC-MS/MS. In this file the analysis of the fragmentation patterns is presented for m/z values

of the compounds which were predicted to be active by the metabolomics analysis. The frag-

mentation patterns were obtained from LC-MS/MS. The analysis results verify the identifica-

tion of the active compounds.

(PDF)

S2 File. Elucidation of mangiferin as isolated compound from Artabotrys sumatranus leaf

extract. This file contains the results of 1D NMR (1H NMR and 13C NMR) and 2D NMR

(HMBC (heteronuclear multiple bond correlation) and HSQC (heteronuclear single quantum

coherence)) of the isolated compound from Artabotrys sumatranus leaf extract. The elucida-

tion analysis is also explained.

(PDF)

S3 File. Binding sites of 15,16 dihydrotanshinone I, neomangiferin, apigenin-7-O-galacto-

pyranoside, lirioferin, and norisocorydine to 3A4A and 3TOP receptors. In this file, the

binding sites of the identified predicted active compounds to 3A4A receptors and 3TOP recep-

tors are shown. As comparison, the position and orientation of acarbose as a result of molecu-

lar docking are shown. Acarbose occupied the same binding site as the native ligands of the

3A4A and 3TOP receptors.

(PDF)
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