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Abstract

Sustainability has become a key factor on our planet. If this concept is applied correctly, our

planet will be greener and more eco-friendly. Nowadays, waste classification and manage-

ment practices have become more evident than ever. It plays a crucial role in the sustainabil-

ity ecosystem. Computer algorithms and deep learning can help in this sustainability

challenge. In this paper, An Optimized Neutrosophic Deep Learning (ONDL) model was pro-

posed to classify waste objects. Two datasets were tested in this research {Dataset for

Waste Management 1 (DSWM1), and Dataset for Waste Management 2 (DSWM2)}.

DSWM1 consists of two classes (Organic or Recycled) objects. The DSWM2 consists of

three classes (Organic, Recycled, or Non-Recyclable) objects. Both datasets exist publicly

on the internet. The ONDL model architecture is constructed based on Alexnet as a Deep

Transfer Learning (DTL) model and the conversion of images to True (T) neutrosophic

domain and Grey Wolf Optimization (GWO) for the image features selection. The selection

process of the building components of the ONDL model is comprehensive as different DTL

models (Alexnet, Googlenet, and Resnet18) are tested, and three neutrosophic domains (T,

I, and F) domain are included. The ONDL model proved its efficiency against all the tested

models, moreover, it achieves competitive results with related works in terms of testing

accuracy and performance metrics. In DSWM1, the ONDL model achieved 0.9189, 0.9177,

0.9176, and 0.9177 in Testing Accuracy (TA), Precision (P), Recall (R), and F1 score. In

DSWM2, it achieved 0.8532, 0.7728, 0.7944, and 0.7835 in TA, P, R, and F1 Score

consequently.

1 Introduction

Sustainability refers to the practice of fulfilling the demands of the current generation while

ensuring that the capacity of future generations to fulfill their own needs remains intact.
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Achieving a balanced equilibrium between economic expansion, ecological conservation, and

societal welfare is integral to this endeavor [1].

The global production and accumulation of waste have reached billions of metric tons

every year [2]. This observed phenomenon can be recognized by the growing prevalence of

urbanization, whereby a larger population resides in major metropolitan centers, resulting in a

proportional rise in waste generation stemming from home, commercial, and industrial

endeavors. The issue of waste management presents a global challenge, encompassing a multi-

tude of environmental considerations [3].

A portion of these waste materials are deposited in landfills, where they are interred to facil-

itate gradual decomposition. Additionally, a portion of these waste materials is subjected to

incineration as a result of the mounting pressure exerted by the substantial volume of waste

materials on the finite capacity of landfills [4]. Certain types of waste are commonly disposed

of in soil, oceans, and rivers, particularly in less developed nations where waste management

systems are less advanced. The accumulation of solid waste in metropolitan areas is a major

worry that, if not effectively handled, could lead to environmental pollution and be dangerous

to human health. To manage a range of waste products, it’s crucial to have an advanced/intelli-

gent waste management system. The process of separating waste into its various components

is one of the most crucial parts of waste management, and it is typically carried out manually

by hand-picking [5].

The primary objective of sustainable waste management is to optimize resource utilization

through the prolonged retention of materials in active circulation. Furthermore, its primary

objective is to prioritize the reduction of solid waste that is deposited in landfills or incinerated.

There is a pressing need for the implementation of novel waste management strategies to effec-

tively address current waste streams and concurrently reduce overall waste generation [6].

The field of sustainability research with Artificial Intelligence (AI) places significant empha-

sis on the utilization of machine learning (ML) models and algorithms to demonstrate the

capacity of machines to analyze and acquire knowledge from data. Machine learning (ML)

encompasses a range of approaches, such as reinforcement learning, transduction, and multi-

tasking, as well as supervised, unsupervised, and semi-supervised learning [7]. Deep Learning

is widely recognized as a subfield of machine learning that relies on algorithms to facilitate

data processing and simulate cognitive processes, as well as to construct abstractions. Deep

Learning employs a hierarchical approach to transform input data into output predictions,

leveraging multiple layers of computational approaches to effectively analyze and discern

latent patterns within the data, particularly in the context of visual object detection. In a deep

network, information is propagated via successive layers, where the output of each layer serves

as the input for the subsequent layer. The initial layer in a deep neural network is referred to as

the input layer, whilst the last layer in the deep network is known as the output layer. The hid-

den layers are located intermediate to the input layers and output layers [8]. Deep learning is

used in many domains such as Visual Question Answering (VQA) [9, 10], potato leaf disease

classification, plant leaves disease recognition, and date classification [11–13], semantic seg-

mentation for COVID-19 lesions [10], the detection of COVID-19 in CT medical images [14,

15], COVID-19 infections predictions models [16], and waste classifications [17–19].

Also, Neutrosophic can help in sustainability applications. Neutrosophic is a mathematical

paradigm that addresses the concepts of indeterminacy, incompleteness, and inconsistency

within decision-making processes. The conventional binary logic, which operates based on

true or false values, is expanded by the inclusion of a third truth value known as "indetermi-

nacy" which serves to represent information that is uncertain or unclear [20]. Neutrosophic

logic demonstrates significant use in addressing intricate and unpredictable systems, rendering
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it usable across diverse domains, such as COVID-19 X-ray classification [20, 21], face mask

classification [22], and waste management. The main contributions of this research are:

1. We propose a new model, ONDL, for waste classification based on Alexnet as a Deep

Transfer Learning (DTL) model and the conversion of images to True (T) neutrosophic

domain and Grey Wolf Optimization (GWO) for the image features selection.

2. A new features selection layer was added to customize the architecture of the Alexnet

model. This layer is based on GWO for the feature selection process. This layer enhances

the model’s efficiency and performance by selecting the most relevant features.

3. Investigation of different DTL models on different Neutrosophic domains.

4. We have compared the new proposed ONDL model with the original Alexnet model and

other related works, the ONDL achieved competitive results against the Alexnet model,

other DTL models, and related works in terms of testing accuracy, performance metrics,

number of selected features, consumed training time, and testing time.

The forthcoming sections of this paper will explore various aspects of the proposed model.

Section 2 will present a comprehensive review of the relevant literature. Section 3 will provide

an overview of the dataset characteristics. The process of selecting the ONDL model will be

elaborated upon in Section 4. In the subsequent section, Section 5, the experimental results

that have been acquired will be presented. Lastly, the research will conclude with Section 6,

wherein potential opportunities for future research will also be outlined.

2 Related works

Previous studies on waste classification have investigated diverse methods and approaches for

the efficient identification and categorization of waste objects. In [23], The authors proposed a

waste classification approach that constructively utilizes deep learning. The dataset comprises

various categories of waste materials, which are metals, non-recyclables, paper, unknown

waste, plastics, vital waste, and glass. The researchers employed Efficientnet [24] in their study,

and their model achieved a mean accuracy of 0.75 in classification for the test dataset.

The authors in [25], The researchers utilized the TrashNet dataset to train and assess differ-

ent deep-learning architectures for the automated categorization of waste categories. Signifi-

cantly, a comparative analysis was performed on various Convolutional Neural Network

(CNN) architectures, specifically VGG, Inception, and ResNet. Among the various models

considered, the combined Inception-ResNet architecture demonstrated the most positive per-

formance, attaining a notable accuracy rate of .8806 in the task of classification.

In the fields of sustainability and waste classification, there are not enough research studies

that have employed the same dataset used in our research. In [26], the authors proposed a five-

layer CNN for Solid Waste Image Classification. The authors used data augmentation to avoid

overfitting. The achieved accuracy was 0.8088. The authors in [17] developed a new framework

for efficient future waste management. To enhance the accuracy and effectiveness of waste

classification, a novel learning approach (Learning method with a deep neural network for

smart systems) was proposed. This method utilizes deep neural networks to achieve superior

performance in waste classification. The proposed framework surpassed the AlexNet, VGG16,

and ResNet34 models by achieving an accuracy of 0.9453. The authors of [27] suggested a new

method for classifying waste into recyclable, non-recyclable, and organic materials by using

neural networks to identify waste objects. Training accuracy for the model was 0.8377, and

testing accuracy was 0.8125. Table 1 presents a comparison of related works that use the same

dataset used in our study of not.
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The ONDL model proposed in this paper contributes to addressing some of these disadvan-

tages. By incorporating neutrosophic image conversion and GWO-based feature selection, the

ONDL model enhances the efficiency and accuracy of waste classification. The neutrosophic

conversion improves the representation of waste objects, while GWO reduces the dimension-

ality of the feature space, leading to a more computationally efficient and robust model. The

model’s ability to achieve high accuracy on both DSWM1 and DSWM2 datasets, even with

their inherent class imbalance, demonstrates its potential to address real-world waste classifi-

cation scenarios.

3 Dataset characteristics

Two datasets are investigated in this research {Dataset for Waste Management 1 (DSWM1)

[28], and Dataset for Waste Management 2 (DSWM2) [29]}. The DSWM1 is a dataset with

open access. It is comprised of 25,077 images of waste objects and is divided into two catego-

ries, Organic (O) and Recyclable (R) objects. The O class contains 13,966 samples, while the R

class contains 11,111. The dataset consists of cardboard, glass, metal, paper, plastic, fabric, and

organic consumables. The image resolutions are not identical. The images have a JPG file

extension. The images within the dataset have been gathered from the Google Images and Ima-

geNet websites as presented in Table 2.

The DSWM2 is a dataset with open access too. It is a continuation of DSWM1. It consists

of 25,509 images of waste objects categorized as Organic (O), Recyclable (R), and Non-recycla-

ble (N) objects. The O class contains 14001 samples, while the R class has 8264 and the N class

has 3244. The (N) class contains mirrors, window glass, and light bulbs. The images within the

dataset have been gathered from the Google Images and ImageNet websites. Fig 1 illustrates

DSWM1 and DSWM2 samples.

Table 1. Comparison of related works that use the same dataset used in our study of not.

Ref The same Dataset

in our study

Year Model Accuracy Advantages Disadvantages

[25] No 2019 Inception-ResNet 0.8806 Comparative analysis of various CNN

architectures, achieving high accuracy.

The study is limited to the TrashNet dataset and may

not generalize well to other waste classification

scenarios.

[27] Yes 2020 CNN 0.8125 Focuses on classifying waste into recyclable,

non-recyclable, and organic categories.

The reported accuracy is relatively lower compared to

other state-of-the-art methods.

[23] No 2022 EfficientNet 0.7500 Constructive use of deep learning for waste

classification.

The dataset may not be diverse enough for real-world

applications.

[26] Yes 2022 5-layer CNN 0.8088 Uses data augmentation to prevent

overfitting.

The model architecture is relatively simple and may

not capture complex features in waste images.

[17] Yes 2023 LADS (deep

neural network)

0.9453 Novel learning approach for smart systems,

outperforming several established models.

The study lacks details on the specific architecture and

implementation of the LADS method.

https://doi.org/10.1371/journal.pone.0313327.t001

Table 2. Datasets attribute description.

Dataset

Name

Number of

Images

Classes Class Distribution Image Types

DSWM1 [28] 25,077 Organic (O), Recyclable (R) O: 13,966 Cardboard, metal, glass, paper, plastic, fabric, organic

consumablesR: 11,111

DSWM2 [29] 25,509 Organic (O), Recyclable (R), Non-recyclable

(N)

O: 14,001 Mirrors, window glass, light bulbs (in addition to DSWM1

types)R: 8,264

N: 3,244

https://doi.org/10.1371/journal.pone.0313327.t002
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One of the potential biases is image resolutions in DSWM1 and DSWM2 are not identical,

which could introduce variability in the quality and clarity of the images, potentially affecting

the performance of the deep learning models. Additionally, both datasets exhibit class imbal-

ance, where the ’Organic’ class has a significantly higher number of samples compared to the

other classes. This imbalance can bias the models towards the majority class, leading to

reduced accuracy for the minority classes. We solved those challenges by changing all images

to a standard resolution of 72 pixels per inch (PPI). The severity of the class imbalance, data

augmentation, and resampling were used.

4 Proposed model selection process

The proposed model {Optimized Neutrosophic Deep Learning Model (ONDL)} selection pro-

cess includes the selection of its building components. ONDL was built based on three compo-

nents. The first component is the conversion to RGB neutrosophic domain for dataset images.

The second component is Deep Transfer Learning Models (DTL) to extract image features

and for classification. The third component is feature selection using Grey Wolf Optimization

(GWO). Fig 2 presents the selection process of the ONDL model among other models.

The selection and the nomination process of the ONDL model is presented in Algorithm 1.

The ONDL model selection algorithm focuses on choosing the most appropriate deep transfer

Fig 1. Dataset image samples for (a) DSWM1 [28], and (b) DSWM2 [29].

https://doi.org/10.1371/journal.pone.0313327.g001
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learning (DTL) model and image domain for training, using images from two datasets

(DSWM1 and DSWM2). The algorithm begins by initializing several variables: the best model,

the best image domain, and the highest test accuracy (TA) are set to default values. Three DTL

models (AlexNet, GoogleNet, and ResNet18) and four image domains (RGB, True Neutro-

sophic, Indeterminacy Neutrosophic, and Falsity Neutrosophic) are used. For each combina-

tion of a model and image domain, the algorithm preprocesses the images and splits the

dataset into training and testing sets. It then augments the training data and trains the model

using a specific set of hyperparameters (learning rate, epochs, batch size, and early stopping).

After training, the model is evaluated based on test accuracy, precision, recall, F1 score, and

execution time.

The most appropriate model and image domain combination is selected based on the high-

est test accuracy (TA). If two combinations achieve the same accuracy, the model with the

lower training and testing time is preferred. Once the best model and domain are identified, a

feature selection method, Grey Wolf Optimizer (GWO), is applied to enhance the selected

model’s performance. The ONDL model is then trained using the best model, the selected fea-

tures, and the training data. Finally, the model is evaluated once more on the test set, with the

final test accuracy, precision, recall, and F1 score recorded. This iterative process ensures the

selection of an optimal model and image domain for the ONDL system.
Algorithm 1. The selection process algorithm of ONDL model
Input: Images from two datasets (DSWM1 and DSWM2
Output: The ONDL model
best_model = None

Fig 2. The selection process of the ONDL model among other models.

https://doi.org/10.1371/journal.pone.0313327.g002
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best_domain = None
best_TA = 0
best_time = 0
DTL_models = [Alexnet, Googlenet, Resnet18]
image_domains = [RGB, True(T) Neutrosophic, Indeterminacy(I) Neutro-
sophic, Falsity(F) Neutrosophic]
foreach 8model 2 DTL_models do

foreach 8domain 2 image_domains do
processed_images = preprocess_images(images, domain)
X_train, X_test, y_train, y_test = train_test_split(pro-

cessed_images, labels, test_size = 0.2)
X_train = augment_data(X_train)
clf = train_DTL_model(model, X_train, y_train, learnin-

g_rate = 0.001, epochs = 50, batch_size = 64, early_stopping = 5)
TA, P, R, F1, train_time, test_time = evaluate_model

(clf, X_test, y_test)
if TA > best_TA or (TA = = best_TA and

train_time + test_time < best_time):
best_model = model
best_domain = domain
best_TA = TA
best_time = train_time + test_time

endif
endfor

endfor
best_DTL_model = best_model
best_image_domain = best_domain
selected_features = apply_GWO (best_DTL_model, best_image_domain,
X_train)
ONDL = train_best_model(best_DTL_model, selected_features, y_train)
TA_final, P_final, R_final, F1_final = evaluate_model(ONDL, X_test,
y_test)
end

4.1 Neutrosophic RGB domain conversion

The concept of neutrosophic logic (NL), was introduced and implemented by Florentin Smar-

andache [30, 31]. It involves defining three neutrosophic subsets for each event: true (T) value,

indeterminacy (I) value, and falsity (F) value. These neutrosophic values (T, I, F) are com-

monly employed to transform a grayscale image into a neutrosophic image. In this study, we

explore the use of neutrosophic RGB for our research, where T represents the waste object, I

represent the waste object boundary, and F represents the image background. The image-to-

neutrosophic image (NI) conversion is illustrated by Eqs (1)–(4) [32–34]:

NIða; bÞ ¼ fTa;b; Ia;b; Fa;bg ð1Þ

Ta;b ¼
vða; bÞ � vmin

vmax � vmin
ð2Þ

Fa;b ¼ 1 � Ta;b 3

Ia;b ¼ 1 �
Uða; bÞ � Umin

Umax � Umin
ð4Þ
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Let v(a,b) is the local mean value of related pixels. vmax and vmin are the maximum and min-

imum absolute difference pixels of the histogram. U(a,b) is the homogeneity value of T(a,b).

While Umax and Umin are the maximum and minimum peaks respectively, measured from U
(a,b).

As mentioned earlier, neutrosophic logic is commonly linked to the image grayscale

domain. In this study, the researchers utilized the neutrosophic RGB conversion method. The

fundamental principle underlying this approach entails the division of the RGB domain into

three distinct domains, namely Red, Green, and Blue. Following that, the equations about neu-

trosophic conversion are implemented autonomously within each respective domain [34].

Ultimately, the images are merged back together within the RGB domain. To obtain a visual

depiction of this procedure.

Fig 3 demonstrates examples of (Ta,b,Ia,b,Fa,b) The images obtained after conducting a neu-

trosophic image transformation in various domains (T, I, F). Where Ta,b the domain of the

waste object, Ia,b the domain of the waste object’s edges and Fa,b the domain of the image

background.

4.2 Deep Transfer Learning models

The objective of Deep Transfer Learning (DTL) is to mitigate the reliance and expenses associ-

ated with training on target data/tasks by leveraging the learned knowledge from a source

data/task. Most of the strategies used in Deep Transfer Learning (DTL) are based on network

or model architectures. These strategies aim to mitigate the dependence of deep learning

Fig 3. Various neutrosophic RGB image domains were explored in this study, including (a) original RGB images, (b)

F domain, (c) I, and (d) T domain for DSWM1 and DSWM2 for the different dataset’s classes.

https://doi.org/10.1371/journal.pone.0313327.g003
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models on large quantities of training data and significantly decrease the costs associated with

training [35].

One of the famous DTL models is Alexnet. It was presented in 2012. It is based on convolu-

tion and pooling [36]. AlexNet is one of the first models to use ReLU activation functions,

which helps resolve the vanishing gradient problem and accelerated training convergence. Its

eight layers, which included five convolutional and three fully connected layers, made it one of

the first models to employ ReLU activation functions. Fig 4 depicts the architectural layout.

Another well-known DTL is Googlenet [37], Google developed this revolutionary deep

convolutional neural network in 2014. It introduced the concept of "inception" modules,

which employ parallel convolutional layers with varying kernel sizes to capture features of

varying scales and complexities. The Googlenet architecture consists of 22 layers (including

aggregating layers, a total of 27 layers).

Resnet18 [38], was introduced in 2016. It uses shortcut connections to expedite the training

of extremely deep networks. By permitting direct information flow across layers, Res-net18

mitigates the problem of vanishing gradients and enables the effective optimization of deeper

models. The architecture has 18 layers, including convolutional, batch normalization, max-

pooling, and fully connected layers, and is widely used in computer vision tasks.

4.3 Grey Wolf Optimization for features selection

The Grey Wolf Optimisation (GWO) [39] was inspired by the leadership and foraging mecha-

nisms of the grey wolf pack, which it simulated. In the wild, the grey wolf is a pack-living canid

that resides at the summit of the food chain. The pack adheres to a strict social dominance

hierarchy in which the alpha wolf is responsible for the pack’s decision-making, the beta wolf

assists the alpha wolf in decision-making, and the delta wolf follows the alpha and beta wolves

and dominates the omega wolves. GWO builds such social hierarchy at the beginning of each

iteration of the algorithm by assigning three positions with the best fitness values as α,β, and δ,

corresponding to the grey wolf pack’s alpha, beta, and delta wolves. Meanwhile, all other posi-

tions will then be ω, corresponding to the omega wolves.

When a grey wolf pack searches for prey, all wolves will gradually approach the prey and

surround it. GWO assumes α,β, and δ have the strongest ability to identify the optimal position

and let all ω follow them to approach the optimal solution. The procedure is divided into two

steps, (1) calculating the distance between each ω and α,β, and δ; (2) defining the direction and

stride lengths of ω to α,β, and δ; (3) updating each ω’s position. Eq (5) shows the calculation of

Fig 4. Alexnet architecture.

https://doi.org/10.1371/journal.pone.0313327.g004
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the distances between ω and α,β and δ.

Da ¼ jCa � Xa � Xoj;

Db ¼ jCb � Xb � Xoj;

Dd ¼ jCd � Xd � Xoj;

ð5Þ

where Dα,Dβ and Dδ represent the distance between ω and α,β and δ, respectively. Xα,Xβ,Xδ

and Xω represent the positions of α,β,δ, and ω, respectively. Cα,Cβ and Cδ are vectors calcu-

lated by Eq (6)

C ¼ 2 � r1; ð6Þ

where r1 is a random vector within the range of [0,1] After calculating the distance between

each ω and α,β, and δ, the direction and stride lengths of ω to α,β, and δ can be calculated by

the Eq (7)

La ¼ Xa � Aa � Da;

Lb ¼ Xb � Ab � Db;

Ld ¼ Xd � Ad � Dd;

ð7Þ

where Lα,Lβ and Lδ represent the direction and stride lengths of ω to α,β, and δ, respectively.

Aα,Aβ and Aδ are vectors calculated by Eq (8).

A ¼ 2a � r2 � a; ð8Þ

where a is the convergence factor, decreases linearly from 2 to 0 with iterations going. r2 is a

random vector within the range of [0,1]. The updated position of ω can be finally defined by

Eq (9).

Xo;new ¼
La þ Lb þ Ld

3
: ð9Þ

We select GWO as the main feature selection algorithm for its simple design which causes

faster convergence rates and less computational overhead, especially in deep learning scenarios

that require fast feature selection processes. GWO perform best where high-dimensional data

needs to be processed as quickly and efficiently as possible, without adding in any more com-

plexity to the already existing one [40], in order to have a model that may run smoothly but

still produce results with high accuracy.

Basically, GWO is convenient at balancing exploration and exploitation a critical ingredient

in feature selection tasks [40]. Its mechanism of social hierarchy inspired by alpha, beta, and

delta wolves enhances this capability of the algorithm for wide searches in the space of features,

refining solutions to get the most relevant features. This balance often leads to better generali-

zation of models that outperforms newer algorithms which may favor one over another. GWO

has proven success in image processing tasks[41]; for instance, it is very robust when dealing

with high-dimensional feature spaces [42]. Besides other algorithms that may not show this

much robustness, this is the rationale for choosing it for this application. GWO reduces

dimensionality without sacrificing accuracy; hence, it ensures a highly performing model.

When applied to feature selection, GWO aims to find the most relevant and informative

features from a given dataset, thus reducing the dimensionality, and enhancing the perfor-

mance of machine and deep learning models.
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4.4 The Optimized Neutrosophic Deep Learning model (ONDL)

The ONDL model’s basic components are introduced in the previous sections. The selection

process of the ONDL model among other models is based on the achieved results on testing

accuracy and performance metrics that will be introduced in the following section. The ONDL

model nominated components are Alexnet for feature generation and classification, The True

(T) neutrosophic domain, and GWO for the feature selection. Fig 5 illustrates the ONDEL

model design.

The Alexnet component in the ONDL model extracts image features (such as edges, tex-

tures, shapes, and complex patterns) using the feature extractor part. The final flattened layer

of the Alexnet produces a feature matrix of size N*9216, where N is the number of images in

the dataset. This high-dimensional feature matrix serves as the input to the GWO algorithm,

which selects a subset of M, the most informative and discriminative feature. The output of

GWO is a reduced feature matrix of size N*M, where M is 2536 for DSWM1 and 2730 for

DSWM2. The GWO-based feature selection enhances the model’s efficiency and performance

by reducing computational complexity, mitigating overfitting, and improving generalization.

The reduced feature set also leads to faster testing times, which is crucial in real-world applica-

tions, while maintaining high accuracy compared to the original Alexnet model.

5 Experimental results and discussion

The first research decision is the selection of the DTL model and the selection of the image

domain (original domain or neutrosophic domains). The selection process will be based on

the highest achieved accuracy and least consuming time in the training and testing phases.

Afterward, GWO will be applied to the selected DTL and image domain to study its effective-

ness in detail.

The experiments were piloted on a computer server that was packed with a 2-megahertz

Intel Xeon processor as well as 96 GB of random access memory (RAM). As the platform for

conducting the numerous experimental trials, MATLAB software was chosen. Throughout the

experiments, specific configurations and settings were chosen to ensure consistent and reliable

results. To select the DTL and its relevant image domain that will achieve the highest possible

testing accuracy and the least amount of time consumed during the training and testing

phases, the following configurations and settings were chosen:

Fig 5. The ONDL design.

https://doi.org/10.1371/journal.pone.0313327.g005
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• Two Datasets–DSWM1 and DSWM2.

• Four images’ domains:

� The original RGB domain.

� The True (T) neutrosophic domain.

� The Indeterminacy (I) neutrosophic domain.

� The Falsity (F) neutrosophic domain.

• Three DTL models (Alexnet–Googlenet–Resnet18)

• The datasets are divided into two parts [43] (80% of the data for the training process, and

20% for the testing process). The 80/20 split for training and testing is a widely adopted prac-

tice in machine learning, providing a sufficient amount of data for training while reserving a

reasonable portion for unbiased evaluation

• Data Augmentation [44, 45] was applied to the training data. It helps to increase the diversity

of the training data and prevent overfitting, especially given the relatively small size of the

datasets.

• The learning rate of DTL models is 0.001. It allows for gradual and stable convergence dur-

ing training without causing excessive oscillations or getting stuck in local minima.

• The number of epochs to be 50, early stopping [46] to be 5 epochs if the accuracy didn’t

improve.

• the mini-batch size [47] is set to 64. It strikes a balance between computational efficiency

and gradient stability. It allows for faster training while providing sufficient information for

each gradient update.

• Training and testing time and the number of features will be recorded during the

experiments.

• The GWO algorithm’s parameters, such as the number of wolves and the maximum number

of iterations, were determined through experimentation and fine-tuning to achieve optimal

feature selection performance.

• The evaluation criteria selected for performance assessment encompass Testing Accuracy

(TA), Precision (P), Recall (R), and F1 Score [33]. The metrics presented in this study are

computed utilizing Eqs (10) to (13) and are accompanied by the recorded duration of the

training and testing process.

Testing Accuracy TAð Þ ¼
TPositiveþ TNegitive

ðTPositiveþ FPositiveÞ þ ðTNegitiveþ FNegitiveÞ
ð10Þ

Precision Pð Þ ¼
TPositive

ðTPositiveþ FPositiveÞ
ð11Þ

Recall Rð Þ ¼
TruePositive

ðTPositiveþ FNegitiveÞ
ð12Þ
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F1 Score ¼ 2∗
Precision∗Recall
ðPrecisionþ RecallÞ

ð13Þ

Where TPositive is the total number of True Positive samples, TNegitive is the total number of

True Negative samples, FalsePositive is the total number of False Positive samples, and False-

Negitive is the total number of False Negative samples from a confusion matrix.

The empirical findings will be showcased in four discrete subsections. The initial subsection

will present a comprehensive analysis of the findings acquired from the first dataset, DSWM1.

Subsequently, the subsequent subsection will concentrate on the outcomes derived from the

second dataset, DSWM2. In the subsequent section, the results obtained from the implementa-

tion of GWO on DSWM1 and DSWM2 will be presented. Finally, the fourth section will pro-

vide a comparative analysis between the ONDL model and relevant research studies.

5.1 Experimental results for the first dataset (DSWM1)

In this section, the experimental results for DSWM1 will be presented. Table 3 presents the

testing accuracy and performance metrics for different DTL models. From the table data, a set

of information can be concluded, and they are as follows:

• Alexnet in any image domain achieved the highest testing accuracy possible with its perfor-

mance metrics except for the (F) domain.

• Alexnet in any image domain achieved the least training and testing time.

• In the falsity (F) domain, the model’s performance is very close to each other. The testing

accuracy for the different models is 0.8312, 0.8227, and 0.8371 for Alexnet, Googlenet, and

Resnet18 consequently.

• In the falsity (F) domain, the testing accuracy and performance metrics have been improved

for Googlenet and Resnet18 models than the original RGB domain.

Table 3. Testing accuracy and performance metrics for different DTL models for the first dataset DSWM1.

Model/Metric TA P R F1 Training time (s) Testing time (s)

Original RGB Domain

Alexnet 0.8578 0.8593 0.8558 0.8575 968.199083 6.285276

Googlenet 0.8060 0.7960 0.8105 0.8032 1328.791247 7.796522

Resnet18 0.8177 0.8127 0.8168 0.8147 2717.495061 6.38035

True (T) neutrosophic domain

Alexnet 0.8446 0.8469 0.8424 0.8446 781.159759 5.938651

Googlenet 0.7919 0.7805 0.7953 0.7878 1311.579343 7.442283

Resnet18 0.8063 0.7968 0.8081 0.8024 2563.128037 6.667492

Indeterminacy (I) neutrosophic domain

Alexnet 0.8393 0.8375 0.8366 0.8371 843.637462 5.939909

Googlenet 0.7895 0.7838 0.787 0.7854 1779.088962 7.342477

Resnet18 0.7998 0.7962 0.7968 0.7965 1159.845373 6.168556

Falsity (F) neutrosophic domain

Alexnet 0.8312 0.8281 0.8288 0.8284 776.608952 5.965344

Googlenet 0.8227 0.8164 0.822 0.8192 1325.215742 7.220966

Resnet18 0.8371 0.8346 0.8345 0.8346 989.326114 6.100387

https://doi.org/10.1371/journal.pone.0313327.t003
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• Alexnet in the original RGB domain achieved the highest accuracy possible with perfor-

mance metrics with 0.8578, 0.8593, 0.8558, and 0.8575 in TA, P, R, and F1 consequently.

• In the training and testing time, Alexnet achieved the least consumed time whatever the

image domain is.

According to the previous information, Alexnet in the original RGB domain and true (T)

domain will be selected to apply GWO for the feature selection process for investigation as

Alexnet achieved the highest testing accuracy possible with 0.8578 in the original RGB domain

and with 0.8446 in the True (T) domain.

5.2 Experimental Results for the second dataset (DSWM2)

Table 4 presents the testing accuracy and performance metrics for different DTL models for

DSWM2. From the table data, a set of information can be concluded, and they are as follows:

• Alexnet in any image domain achieved the highest testing accuracy possible.

• Alexnet in any image domain achieved the least training and testing time.

• In the True (T), and falsity (F) domains, the testing accuracy of all models has been

improved to the original RGB domain.

• Alexnet in the True (T) domain achieved the highest accuracy possible with performance

metrics with 0.7751, 0.7068, 0.7097, and 0.7082 in TA, P, R, and F1 consequently.

• In the training and testing time, Alexnet achieved the least consumed time whatever the

image domain is.

According to the previous information, Alexnet in the true (T) domain and the Falsity (F)

domain will be selected to apply GWO for the feature selection process for investigation as

Alexnet achieved the highest testing accuracy possible with 0.7751 in the True (T) domain and

with 0.7643 in the Falsity (F) domain.

Table 4. Testing accuracy and performance metrics for different DTL models for the second dataset DSWM2.

Model/Metric TA P R F1 Training time (s) Testing time (s)

Original RGB Domain

Alexnet 0.7322 0.6496 0.6761 0.6626 814.135373 6.207606

Googlenet 0.7320 0.6757 0.6933 0.6844 2668.084067 8.074914

Resnet18 0.7214 0.6723 0.6747 0.6735 1028.873745 6.259593

True (T) neutrosophic domain

Alexnet 0.7751 0.7068 0.7097 0.7082 950.236882 6.34519

Googlenet 0.7454 0.6802 0.7223 0.7006 1335.560533 7.81629

Resnet18 0.7329 0.6665 0.6888 0.6775 1008.955662 6.355134

Indeterminacy (I) neutrosophic domain

Alexnet 0.6735 0.5874 0.5809 0.5841 1157.365639 6.19458

Googlenet 0.6728 0.5739 0.6234 0.5977 2402.328079 7.838642

Resnet18 0.6725 0.5955 0.5930 0.5942 2627.879801 6.309215

Falsity (F) neutrosophic domain

Alexnet 0.7643 0.6970 0.6965 0.6967 1160.805256 6.149536

Googlenet 0.7386 0.6793 0.6810 0.6801 1491.740982 7.721447

Resnet18 0.7621 0.6915 0.7184 0.7047 1227.861257 6.353459

https://doi.org/10.1371/journal.pone.0313327.t004
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5.3 Experimental results of GWO for the DSWM1 and the DSWM2

In sections 5.1 and 5.2, The result of the selection process ended up with selecting Alexnet as

the main model for the investigation as it achieved the highest testing possible whatever the

domain was, or the dataset was.

In this section, the Alexnet model will be investigated after the feature selection process

using GWO. The image domains that will be investigated are the Original RGB Domain, the

True (T) neutrosophic domain, and the Falsity (F) neutrosophic domain for the DSWM1 and

the DSWM2. Fig 6 illustrates the Testing accuracy and performance metrics for Alexnet in the

original RGB, True (T) neutrosophic, and Falsity (F) neutrosophic domains after feature selec-

tion using GWO.

From Fig 6, some interesting facts can be deduced which will be the core design of the pro-

posed model in this research (the ONDL model). The facts are as follows:

• The highest accuracy possible was achieved in the True (T) neutrosophic domain whether

the dataset was DSWM1 or DSWM2. The ONDL model achieved 0.9189 testing accuracy in

DSWM1 and 0.8532 in DSWM2.

• The achieved testing accuracy of the ONDL model is supported by performance metrics. In

DSWM1, the performance metrics achieved 0.9177, 0.9176, and 0.9177 in P, R, and score. In

DSWM2, the performance metrics achieved 0.7728, 0.7944, and 0.7835 in P, R, and F1 score.

The ONDL model performance metrics were calculated based on the confusion matrix.

The confusion matrix for the ONDL model is presented in Fig 7. Fig 7 presents the accuracy

for every class for the ONDL model. In DSWM1, the class accuracy for the (O) class is 0.931,

while for the (R) class is 0.896. In DSWM2, the class accuracy for the (O) class is 0.923, while

for the (R) class is 0.788 and for the (N) class is 0.672. Also, Fig 7 presents the progress of itera-

tions for the GWO algorithm for selecting the best features for the ONDL model for DSWM1

and DSWM2.

The ONDL model was selected and nominated during the selection process. It proved its

effectiveness in the classification task whatever the dataset is. The ONDL model achieved the

Fig 6. Testing accuracy and performance metrics for Alexnet in the original RGB, True (T) neutrosophic, and

Falsity (F) neutrosophic domains after feature selection using GWO for DSWM1 and DSWM2.

https://doi.org/10.1371/journal.pone.0313327.g006
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highest accuracy possible if it is compared to the original model Alexnet in the original domain

without optimization. Table 5 presents the ONDL model against the original Alexnet in the

RGB domain without optimization for the DSWM1 or DSWM2.

Table 5 illustrates that the ONDL model improves the classification testing accuracy by

6.11% over the Alexnet on the DSWM1. On DSWM2, the ONDL model also improves the

classification testing accuracy by 12.1%. Moreover, the performance metrics in both datasets

have also been improved. One of the drawbacks of the ONDL model is the time consumed in

the feature selection process. The consumed time for the feature selection and training is dou-

bled than the Alexnet. However, in deep learning research, the training time can be neglected.

The testing time is crucial in deep learning, the ONDL model achieved less time than Alexnet

in the testing phase. The less testing time is due to the number of selected features as ONDL

reduces the number of features for the testing. The ONDL model selected 2536 features in

DSWM1 and 2730 features in DSWM2 while Alexnet works on 9216 features.

5.4 The ONDL model VS related works

One of the methods to evaluate the ONDL model is the comparison with related works that

used the same datasets. Table 6 presents a comparison of the ONDL model and the other

Fig 7. Confusion matrix and Feature selection iteration for GWO for the ONDL model for the dataset (a) DSWM1,

and (b) DSWM2.

https://doi.org/10.1371/journal.pone.0313327.g007

Table 5. The ONDL model against the original Alexnet in the RGB domain without optimization for the DSWM1 or DSWM2 with training, testing time, and num-

ber of features.

Model/Metric TA P R F1 FS and Training time (s) Testing time (s) # Features

DSWM1

Alexnet 0.8578 0.8593 0.8558 0.8575 968.19901 6.485276 9216

ONDL 0.9189 0.9177 0.9176 0.9177 1965.6715 2.48905 2536

DSWM2

Alexnet 0.7322 0.6496 0.6761 0.6626 814.13537 6.207606 9216

ONDL 0.8532 0.7728 0.7944 0.7835 2116.7255 2.69515 2730

https://doi.org/10.1371/journal.pone.0313327.t005
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related works. The ONDL model achieved competitive results with related works in terms of

testing accuracy. It achieved 91.89% in testing accuracy in DSWM1 while related works

achieved 80.88% in [26] and 88.7% in [17]. In DSWM2, the ONDL model achieved 85.32% in

testing accuracy while in [27], their proposed CNN model achieved 81.25%.

The superior performance of the ONDL model can be attributed to several points, first, the

conversion of RGB images to the True (T) neutrosophic domain enhances the representation

of waste objects by focusing on the object itself while suppressing background noise and edge

ambiguity. Second, the incorporation of GWO for feature selection plays a crucial role in

enhancing the model’s performance. By identifying and retaining the most salient features,

GWO reduces the dimensionality of the feature space, mitigating overfitting and improving

generalization. The combination of Alexnet for feature extraction and GWO for feature selec-

tion creates a synergistic effect. The deep learning model leverages its pre-trained knowledge

to capture complex patterns in the images, while GWO refines the feature set by selecting the

most informative ones. This synergy allows the ONDL model to achieve high accuracy and

efficiency in waste classification.

The study presented in [17] utilizes the DSWM1 dataset and reports a testing accuracy of

94.53% and a precision of 88.70%. The proximity of the Testing Accuracy (TA), Precision (P),

Recall (R), and F1-score values in the proposed ONDL model (91.89%, 91.77%, 91.76%, and

91.77%, respectively) indicates its robustness. While the model in [17] surpasses the ONDL

model in terms of testing accuracy by 2.64%, the ONDL model exhibits a superior precision

with a 3.07% improvement. The emphasis on precision is particularly crucial in waste manage-

ment, as false positives (non-recyclable items incorrectly classified as recyclable) can lead to

contamination of recycling streams, process disruptions, and increased costs. The ONDL

model’s high precision ensures stringent classification, minimizing such errors and promoting

efficient recycling efforts. By prioritizing precision, the ONDL model contributes to resource

conservation and a more sustainable waste management system by accurately identifying and

diverting recyclable materials from landfills.

Deeper DTL models such as Nasnet-large [48], Densenet-201 [49], and Inception-resnet-v2

[50] can achieve better testing accuracy than the ONDL model. Those models had large num-

bers of layers, over 150 layers in their architecture. They had the advantage of extracting better

features from images which would be reflected in the achieved testing accuracy. The ONDL

model had 25 layers and was constructed upon the Alexnet which is considered one of the

smallest architectures in DTL models. It is an advantage; ONDL will consume less training

time, testing time, memory, and computation. The ONDL model can fit to run on mobile and

IoT devices while deeper DTL models can’t.

6 Conclusion and future works

Waste management plays a critical role in the achieving of sustainability goals, as it endeavors

to confront the complicated challenges arising from the generation and disposal of waste,

Table 6. A comparison of the ONDL model and the other related works.

Model/Metric Description TA

DSWM1

[26] Proposed a five-layer CNN 80.88%

ONDL (Ours) Alexnet + True (T) neutrosophic domain + GWO 91.89%

DSWM2

[27] Proposed a CNN Model 81.25%

ONDL (Ours) Alexnet + True (T) neutrosophic domain + GWO 85.32%

https://doi.org/10.1371/journal.pone.0313327.t006
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including ecological, social, and economic challenges. Sustainable waste management practices

seek to minimize waste generation, promote recycling and reuse, and ensure proper disposal

of residual waste to reduce environmental pollution and conserve natural resources. In this

paper, An Optimized Neutrosophic Deep Learning (ONDL) model was proposed to classify

waste objects. Two datasets were tested in this research. The first Dataset for Waste Manage-

ment (DSWM1) included two classes (Organic or Recycled) objects. The Second Dataset for

Waste Management (DSWM2) included three classes (Organic, Recycled, or Non-Recyclable)

objects. The ONDL model architecture was based on Alexnet as a deep transfer learning

model and the conversion of images to True (T) neutrosophic domain and GWO for feature

selection. The selection process of the building components of the ONDL model was compre-

hensive as different DTL models (Alexnet, Googlenet, and Resnet18) were tested, and three

neutrosophic domains (T, I, and F) domain were included. The ONDL model proved its effec-

tiveness against all the tested models, moreover, it achieves competitive results with related

works in terms of testing accuracy and performance metrics such as P, R, and F1 score. In

DSWM1, the ONDL model achieved 0.9189, 0.9177, 0.9176, and 0.9177 in TA, P, R, and F1

Score. In DSWM2, it achieved 0.8532, 0.7728, 0.7944, and 0.7835 in TA, P, R, and F1 Score.

One of the limitations of the ONDL model is the out-of-distribution data (unseen or novel

varieties of new waste objects), it may struggle to classify those varieties accurately. The study’s

findings are subject to certain threats to validity. The use of publicly available datasets, while

beneficial for reproducibility, may introduce biases or limitations inherent to the data collec-

tion process. Also, the study makes certain assumptions. It assumes that the images in the data-

sets are representative of real-world waste objects and that the labels assigned to them are

accurate. The model’s performance might vary when applied to real-world waste streams with

different characteristics or distributions. There are several potential areas for future research

on the ONDL model for waste classification. The investigation of GWO variants, such as the

improved GWO (IGWO), the binary GWO (BGWO), or the hybrid GWO with other optimi-

zation techniques, to the ONDL model. One possibility is to investigate the impact of different

optimization algorithms such as the Whale Optimization Algorithm (WOA), the Salp Swarm

Algorithm (SSA), or the Harris Hawks Optimization (HHO) algorithm which are not investi-

gated in this research for feature selection techniques to further improve model accuracy and

efficiency. Additionally, it would be interesting to compare the performance of the ONDL on

different datasets rather than the datasets investigated in this research.
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25. Ruiz V., Sánchez Á., Vélez J. F., and Raducanu B., “Automatic Image-Based Waste Classification,” in

From Bioinspired Systems and Biomedical Applications to Machine Learning, Ferrández Vicente J. M.,
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33. Özyurt F., Sert E., Avci E., and Dogantekin E., “Brain tumor detection based on Convolutional Neural

Network with neutrosophic expert maximum fuzzy sure entropy,” Measurement, vol. 147, p. 106830,

Dec. 2019, https://doi.org/10.1016/j.measurement.2019.07.058

34. Salama A., Smarandache F., and ElGhawalby H., “Neutrosophic Approach to Grayscale Images

Domain,” Neutrosophic Sets Syst., vol. 21, no. 1, p. 3, 2018.

35. Iman M., Arabnia H. R., and Rasheed K., “A review of deep transfer learning and recent advance-

ments,” Technologies, vol. 11, no. 2, p. 40, 2023.

36. Krizhevsky A., Sutskever I., and Hinton G. E., “Imagenet classification with deep convolutional neural

networks,” in Advances in Neural Information Processing Systems, p. 2012.

37. C. Szegedy et al., “Going deeper with convolutions,” in Proceedings of the IEEE conference on com-

puter vision and pattern recognition, 2015, pp. 1–9.

38. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of

the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.

39. Mirjalili S., Mirjalili S. M., and Lewis A., “Grey wolf optimizer,” Adv. Eng. Softw., vol. 69, pp. 46–61,

2014.

PLOS ONE ONDL

PLOS ONE | https://doi.org/10.1371/journal.pone.0313327 November 8, 2024 20 / 21

https://doi.org/10.1007/s12559-020-09802-9
http://www.ncbi.nlm.nih.gov/pubmed/33425043
https://doi.org/10.1007/978-981-19-2948-9_1
https://doi.org/10.1007/978-981-19-2948-9_1
https://doi.org/10.1016/j.wasman.2021.12.001
http://www.ncbi.nlm.nih.gov/pubmed/34920243
https://proceedings.mlr.press/v97/tan19a.html
https://doi.org/10.1007/978-3-030-19651-6%5F41
https://doi.org/10.1007/978-3-030-19651-6%5F41
https://www.kaggle.com/datasets/techsash/waste-classification-data
https://www.kaggle.com/datasets/techsash/waste-classification-data
https://www.kaggle.com/datasets/sapal6/waste-classification-data-v2
https://www.kaggle.com/datasets/sapal6/waste-classification-data-v2
https://doi.org/10.1109/ICAMechS.2015.7287068
https://doi.org/10.1109/GRC.2011.6122666
https://doi.org/10.1109/GRC.2011.6122666
https://doi.org/10.1016/j.artmed.2018.11.007
http://www.ncbi.nlm.nih.gov/pubmed/30558825
https://doi.org/10.1016/j.measurement.2019.07.058
https://doi.org/10.1371/journal.pone.0313327


40. Al-Tashi Q., Md Rais H., Abdulkadir S. J., Mirjalili S., and Alhussian H., “A review of grey wolf optimizer-

based feature selection methods for classification,” Evol. Mach. Learn. Tech. Algorithms Appl., pp.

273–286, 2020.

41. Kumar A., Singh S., Kumar A., and others, “Grey wolf optimizer and other metaheuristic optimization

techniques with image processing as their applications: a review,” in IOP Conference Series: Materials

Science and Engineering, IOP Publishing, 2021, p. 012053.

42. Segera D., Mbuthia M., and Nyete A. M., “An Excited Binary Grey Wolf Optimizer for Feature Selection

in Highly Dimensional Datasets.,” in ICINCO, 2020, pp. 125–133.

43. Jena P. R., Majhi R., Kalli R., Managi S., and Majhi B., “Impact of COVID-19 on GDP of major econo-

mies: Application of the artificial neural network forecaster,” Econ. Anal. Policy, vol. 69, pp. 324–339,

Mar. 2021, https://doi.org/10.1016/j.eap.2020.12.013

44. Perez L. and Wang J., “The effectiveness of data augmentation in image classification using deep learn-

ing,” ArXiv Prepr. ArXiv171204621, 2017.

45. Khalifa N. E., Loey M., and Mirjalili S., “A comprehensive survey of recent trends in deep learning for

digital images augmentation,” Artif. Intell. Rev., pp. 1–27, 2021.

46. Prechelt L., “Early stopping-but when?,” in Neural Networks: Tricks of the trade, Springer, 1998, pp. 55–

69.

47. M. Li, T. Zhang, Y. Chen, and A. J. Smola, “Efficient mini-batch training for stochastic optimization,” in

Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data min-

ing, 2014, pp. 661–670.

48. B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable architectures for scalable image

recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition,

2018, pp. 8697–8710.

49. G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected convolutional net-

works,” in Proceedings of the IEEE conference on computer vision and pattern recognition,

2017, pp. 4700–4708.

50. C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, “Inception-v4, inception-resnet and the impact of

residual connections on learning,” in Proceedings of the AAAI conference on artificial intelligence, 2017.

PLOS ONE ONDL

PLOS ONE | https://doi.org/10.1371/journal.pone.0313327 November 8, 2024 21 / 21

https://doi.org/10.1016/j.eap.2020.12.013
https://doi.org/10.1371/journal.pone.0313327

