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Abstract

Sea turtles exhibit high migratory rates and occupy a broad range of habitats, which in turn

makes monitoring these taxa challenging. Applying deep learning (DL) models to vast

image datasets collected from citizen science programs can offer promising solutions to

overcome the challenge of monitoring the wide habitats of wildlife, particularly sea turtles.

Among DL models, object detection models, such as the You Only Look Once (YOLO)

series, have been extensively employed for wildlife classification. Despite their successful

application in this domain, detecting objects in images with complex backgrounds, including

underwater environments, remains a significant challenge. Recently, instance segmentation

models have been developed to address this issue by providing more accurate classification

of complex images compared to traditional object detection models. This study compared

the performance of two state-of-the-art DL methods namely; the object detection model

(YOLOv5) and instance segmentation model (YOLOv5-seg), to detect and classify sea tur-

tles. The images were collected from iNaturalist and Google and then divided into 64% for

training, 16% for validation, and 20% for test sets. Model performance during and after fin-

ishing training was evaluated by loss functions and various indexes, respectively. Based on

loss functions, YOLOv5-seg demonstrated a lower error rate in detecting rather than classi-

fying sea turtles than the YOLOv5. According to mean Average Precision (mAP) values,

which reflect precision and recall, the YOLOv5-seg model showed superior performance

than YOLOv5. The mAP0.5 and mAP0.5:0.95 for the YOLOv5 model were 0.885 and 0.795,

respectively, whereas for the YOLOv5-seg, these values were 0.918 and 0.831, respec-

tively. In particular, based on the loss functions and classification results, the YOLOv5-seg

showed improved performance for detecting rather than classifying sea turtles compared to

the YOLOv5. The results of this study may help improve sea turtle monitoring in the future.

Introduction

Sea turtles, the superfamily Chelonioidea, include the seven species: Caretta caretta, Chelonia
mydas, Dermochelys coriacea, Eretmochelys imbricata, Lepidochelys kempii, Lepidochelys
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olivacea, and Natator depressus, which belong to two families and six genera [1]. Sea turtles

play essential and diverse roles within ecosystems, such as consumers, prey, competitors, and

habitats for more than a hundred species of epibionts [2, 3]. Moreover, sea turtles significantly

contribute to nutrient transfer between different ecosystems by cycling between large, multi-

ecosystem feeding areas [2]. Despite their ecological importance, sea turtles are threatened by

many factors, including climate change, environmental pollution, ghost fishing, and poaching

[1]. For this reason, many conventions and conservation bodies, e.g., the International Union

for the Conservation of Nature and Natural Resources (IUCN) and the Convention on Inter-

national Trade in Endangered Species of Wild Fauna and Flora (CITES), aim to protect sea

turtles from extinction and reduce poaching. According to the IUCN Red List of Threatened

Species (https://www.iucnredlist.org), six sea turtle species, excluding Natator depressus, are

listed as facing some degree of endangerment. Specifically, Eretmochelys imbricate and Lepido-
chelys kempii are registered as "Critically Endangered," and Chelonia mydas is registered as

"Endangered." The other three species (i.e., Caretta caretta, Dermochelys coriacea, and Lepido-
chelys olivacea) are listed as "Vulnerable." In addition, trade of all seven species is prohibited

by listing in Appendix I of the CITES (https://checklist.cites.org).

Monitoring wild sea turtles is crucial for understanding their habitat, population structure,

and ecology but is challenging due to their high migratory rates and spending most of their lives

offshore [4–6]. Diverse survey methods have been developed to monitor wild sea turtles across

a broad range of habitats. For example, the beach survey method has typically been used to

monitor wild sea turtles in coastal areas [7, 8]. In addition, survey methods using image data

taken from remotely operated vehicles (ROV) have been widely used to monitor these species

[9]. Moreover, citizen science programs are continuing to collect data that can be collated to

monitor sea turtles [10, 11]. Citizen scientists can now upload images from their mobile phones

to biodiversity-associated citizen science platforms such as iNaturalist (https://www.inaturalist.

org). Consequently, collecting observation data from a broad range of sea turtle habitats is valu-

able by gathering data using citizen science programs [10]. However, since manually processing

such vast data is labor-intensive and time-consuming [12, 13], the development of automated

tools for handling these data is needed to effectively for monitor sea turtles [14].

Deep learning-based image classification has been widely used for classifying various organ-

isms, including sea turtles [15–19]. Object detection models are generally developed using con-

volutional neural networks (CNNs) and are capable of not only classification but also

regression, which predicts objects in images by employing a bounding box concept. Overall,

object detection models can be divided into two and one-stage detectors. A two-stage detector,

such as Faster R-CNN [20], can learn regression and classification independently and continu-

ously. In contrast, one-stage detectors, such as various versions of You Only Look Once

(YOLO) [21–23] and RetinaNet [24], learn regression and classification simultaneously. Hence,

one-stage detectors process data faster than two-stage detectors. Among all one-stage detectors,

YOLO series models currently lead this field. In addition, YOLO version 5 (YOLOv5) has been

found to outperform most object detection models in terms of both accuracy and speed [23]

and has been widely applied to classify various organisms [25–27]. Recently, instance segmenta-

tion models have been developed to classify complex images more accurately than object detec-

tion models. Instance segmentation models can be further divided into two-stage models, such

as Mask R-CNN [28], and one-stage models, such as You Only Look at CoefficienTs (YOLACT)

[29]. Normally, such models are developed by modifying previously used object detection mod-

els; for example, Mask R-CNN was developed by adding a small overhead to Faster R-CNN

[28]. In addition, the YOLACT was developed by adding a branch for producing a prototype

mask and an extra head for predicting a vector of mask coefficients to RetinaNet [29]. More

recently, the instance segmentation model of YOLOv5 (YOLOv5-seg) has been widely applied
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in a variety of studies [30–32] and has been shown to be a state-of-the-art real-time instance seg-

mentation algorithm [23, 33]. YOLOv5-seg was developed by adding a segmentation head to

the YOLOv5 architecture, which is similar to other instance segmentation models [23]. More-

over, according to the mean Average Precision (mAP) results calculated using the COCO data-

set [33], the YOLOv5-seg model outperformed the Mask R-CNN and YOLACT models. The

mAP value of YOLOv5-seg was 0.653, whereas the Mask R-CNN and YOLACT models

achieved mAP values of 0.600 and 0.506, respectively [23, 28, 29].

Although several studies applied deep learning models to detect or classify sea turtles [15–

17], no study has yet used a deep learning model to detect and classify all known sea turtle spe-

cies for the purpose of ecological monitoring. Moreover, many previous studies that classified

sea turtles using deep learning employed CNN models [15, 17], which were generally designed

to classify rather than detect objects. In the study conducted by [15], the Convolutional Neural

Network (CNN) model was shown to outperform traditional machine learning techniques in

the classification of sea turtles. Similarly, research presented in [16] demonstrated that an

ensemble CNN model, specifically combining VGGNet and DenseNet architectures achieved

higher classification accuracy for sea turtles than the individual original models. However,

object detection is considered to be an essential aspect of accurate wildlife monitoring [34, 35].

For example, one recent study compared both object detection and classification using object

detection models, Faster R-CNN [16]. However, this study did not classify sea turtles on the

species level and instead evaluated all sea turtles, either members or non-members of a single

class. The most recent study employed the Single Shot MultiBox Detector (SSD) to detect and

classify turtles, including four sea turtles, imported into Korea [36]. This study found that it

can be challenging to classify sea turtles using object detection models due to the complexity of

image backgrounds, which differ among coastal and underwater images. Although several

works have been conducted to detect and classify sea turtles, new studies applying the instance

segmentation model to classify sea turtle species and improve the detection efficiency of object

detection models are needed.

In this study, we developed deep learning-based sea turtle classification models using

images collected from the iNaturlist and Google. The object detection model (YOLOv5) and

instance segmentation model (YOLOv5-seg), both widely used and relatively advanced, were

applied for classifying sea turtles. Then the model performance was compared during the

training process by analyzing loss functions and after training by analyzing precision, recall,

and mean Average Precision (mAP). In addition, the classification results of the models were

presented as a confusion matrix. To the best of our knowledge, this is the first study to apply

and compare object detection and instance segmentation models to classify sea turtles. The

outcomes of this study can help monitor sea turtles for conservation. An overall scheme of the

study is presented in Fig 1.

Materials and methods

Data collection

Because no standard dataset of sea turtles is available, the images of seven sea turtles were col-

lected from the iNaturalist (https://www.inaturalist.org). Additional data were collected from

Google (www.google.com) for more comprehensive image sampling. The numbers of images

collected from each dataset are presented in S1 Table. Images of research grades, which allow

for copying and redistributing the material in any medium or format, were collected using the

Inat_images R script package from iNaturalist [37]. To obtain images from Google Images, sci-

entific and common names were used as keywords and queried using a Python script [38].

This script collected images for which the copyright holders permit exposure to crawling
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software. In addition, this study did not use the images that were tagged or marked to prevent

unauthorized use. The collection and analysis method complied with the terms and conditions

for the source of the data. Sea turtle species were identified using morphological features spe-

cific to each species that were extracted from the taxonomic literature [39–41]. Images that

could not be accurately identified based on morphological features were removed. All images

used in this study were more than 500 × 500 pixels in size and had a resolution of 72 dpi. The

Fig 1. Schematic illustrating the overall workflow used for this study.

https://doi.org/10.1371/journal.pone.0313323.g001
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entire sea turtle body was set as objects of analysis since the morphological features that can be

used to distinguish between sea turtle species (e.g., the carapace, plastron, prefrontal, and post-

orbital scales) are present throughout the body. The objects were labeled as ground truth

bounding boxes using the LabelImg [42] for the YOLOv5 model dataset and as bounding poly-

gons using the labelme [43] for the YOLOv5-seg dataset. The resulting dataset was separated

randomly into 1,037 for the training set (64% of cases), 258 for the validation set (16%), and

332 for the test set (20%) (Table 1).

Model architecture

YOLOv5 and YOLOv5-seg, developed by Jocher et al. [23], were subjected to comparative anal-

ysis to evaluate the relative performance of object detection and instance segmentation models

when classifying the seven sea turtle species. These two models share a common backbone and

neck network but have different detection heads. The backbone network consists of CSP-Dar-

knet53, which extracts feature maps from the input image, while the neck network consists of

an FPN+PAN structure that strengthens network feature fusion. The detection head of

YOLOv5 convolves three different-scale feature map outputs using the neck network sized

80 × 80 × 256, 40 × 40 × 512, and 20 × 20 × 1024. The detection head of YOLOv5-seg has then

added a fully convolutional neural network (FCN) sized 160 × 160 × 32 at the detection head of

YOLOv5; this generates pixel-by-pixel classification prediction and binary masks for the objects.

According to different network depths and widths, the YOLOv5 and YOLOv5-seg could be

divided into five network structures, i.e., n, s, m, l, and x. Of these five structures, YOLOv5x and

YOLOv5x-seg, which showed the highest model performance, were used in this study.

Model training

The training of examined models was run with 1,000 maximum epochs at a batch size of 16

and input image size of 640 × 640. In addition, transfer learning was used to train two models

by applying a pre-trained model using the COCO dataset [33]. The data augmentation and an

early stop function were applied to prevent overfitting. Two data augmentation methods, albu-

mentation [44] and mosaic augmentation [45], were applied to the training set. The model

training stopped early at the epoch when model performance did not increase after 100 epochs

by setting patience to 100. The experimental platform of these models was based on the Rocky

Linux 8 operating system, which uses two Intel Xeon Gold 6326 central processing units

(CPUs), Nvidia RTX A5000 Graphics with 24G memory, and eight 64 GB of REG.ECC DDR4

SDRAM chips. The experimental program was based on Python 3.11.3, Pytorch 2.0.1, and

CUDA 12.2.

Table 1. The dataset containing the seven sea turtle species examined in this study.

Species Training set Validation set Test set

Caretta caretta 93 23 30

Lepidochelys kempii 40 10 13

Lepidochelys olivacea 58 14 20

Chelonia mydas 501 125 158

Eretmochelys imbricata 149 37 47

Natator depressus 40 10 14

Dermochelys coriacea 156 39 50

Total 1,037 258 332

https://doi.org/10.1371/journal.pone.0313323.t001
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Evaluation of model performance during training

In this study, various evaluation indexes were employed to evaluate the examined models. The

loss function is essential for deep learning to measure the error between predicted and true

results. Through the feedback obtained by quantifying loss, the model can gradually optimize

performance and complete training. In this study, the three specific loss functions, i.e., classes

loss (Lcls), objectness loss (Lobj), and Complete Intersection over Union (CIoU) loss (Lobj),

were assessed during the training process by using the validation set. The Lcls is the average

loss of the classification task, and its value is inversely proportional to the classification effect.

The Lobj function represents the mean loss of the target detection confidence, and its value is

inversely proportional to the target detection confidence. Finally, LCIoU represents the mean

value of the CIoU loss function, whose value is inversely proportional to the recognition effect

of the prediction box. Moreover, both Lcls and Lobj utilized cross-entropy loss. The calculation

of LCIoU was based on the Intersection over Union (IoU) as per the formula (1), in which G
and P represent the ground truth and prediction bounding boxes, respectively. Finally, the

LCIoU was calculated using the formula (2), where d and c represent the distance between the

two central points of two boxes and the diagonal length of the smallest enclosing box covering

two boxes, respectively. In addition, v represents the coincidence degree of the two-frame

aspect ratio and is calculated using the formula (3), in which wgt, hgt, w, and h represent the

width and of the ground truth bounding box, the height of the ground truth bounding box, the

width of the prediction bounding box, and height of the prediction bounding box, respectively.

The α is a trade-off parameter that is calculated using the formula (4).

IoU ¼
G \ P
G [ P

ð1Þ

LCIoU ¼ 1 � IoUþ
d2

c2
þ av ð2Þ

v ¼
4

p2
arctan

wgt

hgt
� arctan

w
h

� �2

ð3Þ

a ¼
v

ð1 � IoUÞ þ v
ð4Þ

Evaluation of model performance after training completion

Precision, recall, and mean Average precision (mAP) were the metrics used to evaluate the

model performance. These were assessed after the completion of training by using a test set.

Precision means the proportion of true results correctly predicted by the model, and recall

means the proportion of correctly predicted results by the model among the total true results.

mAP is, therefore, the indexes that reflect both precision and recall. The precision and recall

were calculated using the formulas (5) and (6), respectively. The true positive (TP) and false pos-

itive (FP) rates were defined using IoU. Model predictions were considered TPs and FPs when

the IoU value was more and less than the threshold, respectively. TPs were situations in which

the prediction of detecting objects and classification by the model examined was the same as

that of the true label. In contrast, FPs were when object detection and/or classification predic-

tions of the model differed from the true label. True negative (FN) results implied that the

model did not predict any result despite the presentation of a true label. Next, the Average

PLOS ONE Image classification of sea turtles by deep learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0313323 November 25, 2024 6 / 15

https://doi.org/10.1371/journal.pone.0313323


Precision (AP) was calculated using the formula (7), with n representing the number of ground

truth objects. It balances both precision and recall and is based on calculating the area under a

precision-recall curve to optimize detection and classification models. Finally, the mAP was cal-

culated using the formula (8), with Q representing the number of queries of the dataset and AP

(q) representing the AP of a given query q. In this study, the mAP0.5 and mAP0.5–0.95 were

assessed, which means the mAP when the threshold of IoU was set as 0.5 and from 0.5 to 0.95,

respectively. In addition, model classification results were also presented as a confusion matrix.

Precision ¼
True Positive

True Positiveþ False Positive
ð5Þ

Recall ¼
True Positive

True Positiveþ False Negative
ð6Þ

Average Precision ðAPÞ ¼
Xx¼n� 1

x¼0

fRecallðxÞ � Recallðxþ 1Þg � PrecisionðxÞ ð7Þ

mean Average Precision ðmAPÞ ¼
PQ

q¼1
APðqÞ
Q

ð8Þ

Results

Comparative model performance during the training process

The YOLOv5 model was trained for 26.225 h, reaching the 350th epoch, whereas the

YOLOv5-seg model was trained for 36.327 h, reaching the 331st epoch. In addition, the best

training results of the two models were achieved at the 250th and 231st epochs, respectively.

The losses of the training epochs of the YOLOv5 and YOLOv5-seg models are presented in

Fig 2, illustrated based on the values of S2 and S3 Tables. The losses of the best epoch display-

ing the best training results in both models are also presented in S4 Table. The result illustrated

that Lcls of the YOLOv5-seg model was lower and more stable than that of the YOLOv5 model

(Fig 2A), and the Lcls values of the best epoch of YOLOv5 and YOLOv5-seg models were

0.00348 and 0.00209, respectively. For the YOLOv5 model, Lcls ranged from 0.00183–0.00679

after the 100th epoch, after which it stopped decreasing. For the YOLOv5-seg model, Lcls ran-

ged from 0.00159 to 0.00637 after the 100th epoch. Lobj of the YOLOv5-seg model was also

lower and more stable than that of the YOLOv5 model (Fig 2B), and the Lobj values of the best

epoch of the YOLOv5 and YOLOv5-seg models were 0.00277 and 0.00256, respectively. For

the YOLOv5 model, Lobj decreased and remained stable despite a slight increase during the

306th and 307th epochs. By contrast, Lobj of the YOLOv5-seg model remained highly stable

after it stopped decreasing. Regarding LCIoU, the differences between the two models were

much higher than those for the other two loss metrics (Fig 2C). The convergence of LCIoU of

YOLOv5-seg was faster than that of YOLOv5, and LCIoU of the best epoch of the YOLOv5-seg

model was 0.00480, versus 0.00712 for the YOLOv5 model.

Comparison model performance after training completion

The precision, recall, and mAP of the YOLOv5 and YOLOv5-seg models are presented in

Table 2. The precision values of the two models were 0.818 and 0.894, respectively. For the

YOLOv5 model, the precision ranged from 0. 545 for Lepidochelys kempii to 0.963 for Chelonia
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mydas. For the YOLOv5-seg model, the precision ranged from 0.754 for Lepidochelys olivacea
to 1.000 for Caretta caretta. For all seven sea turtle species, the precision was higher for the

YOLOv5-seg model than for the YOLOv5 model. Next, the recall was 0.900 for the YOLOv5

model, compared to 0.869 for the YOLOv5-seg model. The lowest recall among the seven spe-

cies was 0.750 for Lepidochelys olivacea in the YOLOv5 model and 0.615 for Lepidochelys kem-
pii in the YOLOv5-seg model. By contrast, the highest recall values of the examined species

were 0.980 and 1.000 (both for Dermochelys coriacea) for the YOLOv5 and YOLOv5-seg mod-

els, respectively. Next, the precision–recall curves used to calculate mAP for both models are

presented in S1 Fig. The calculated mAP0.5 of the YOLOv5-seg model was 0.918 versus 0.885

for the YOLOv5 model. For the YOLOv5 model, AP0.5 ranged from 0.607 for Lepidochelys
kempii to 0.984 for Chelonia mydas. By contrast, for the YOLOv5-seg model, AP0.5 ranged

from 0.751 for Lepidochelys kempii to 0.994 for Dermochelys coriacea. Furthermore, mAP0.5–

0.95 was 0.831 for the YOLOv5-seg model, compared to 0.795 for the YOLOv5 model. For the

Fig 2. Loss function analysis during the training epochs of the examined models. Shown are the model: (A) Classes

loss, (B) Objectness loss, (C) Complete Intersection over Union (CIoU) loss.

https://doi.org/10.1371/journal.pone.0313323.g002

Table 2. Precision, recall, and mean Average Precision (mAP) for the examined models.

Species Precision Recall mAP0.5 mAP0.5:0.95

YOLOv5 YOLOv5-seg YOLOv5 YOLOv5-seg YOLOv5 YOLOv5-seg YOLOv5 YOLOv5-seg

Caretta caretta 0.933 1.000 0.922 0.892 0.982 0.987 0.842 0.926

Lepidochelys kempii 0.545 0.789 0.846 0.615 0.607 0.751 0.557 0.571

Lepidochelys olivacea 0.741 0.754 0.750 0.800 0.836 0.815 0.720 0.745

Chelonia mydas 0.963 0.968 0.972 0.952 0.984 0.989 0.925 0.915

Eretmochelys imbricate 0.871 0.900 0.957 0.961 0.958 0.965 0.896 0.897

Natator depressus 0.766 0.866 0.874 0.864 0.849 0.924 0.731 0.856

Dermochelys coriacea 0.905 0.978 0.980 1.000 0.979 0.994 0.891 0.909

Average 0.818 0.894 0.900 0.869 0.885 0.918 0.795 0.831

https://doi.org/10.1371/journal.pone.0313323.t002
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YOLOv5 model, AP0.5–0.95 ranged from 0.557 for Lepidochelys kempii to 0.925 for Chelonia
mydas, whereas for the YOLOv5-seg model, this variable ranged from 0.571 for Lepidochelys
kempii to 0.926 for Caretta caretta.

The classification results of seven sea turtle species as determined by the YOLOv5 and

YOLOv5-seg models are presented as a confusion matrix (Fig 3). The average correct classifi-

cation rates of the seven species for the aforementioned models were 84.3% and 86.1%, respec-

tively. For the YOLOv5 model, the lowest correct classification rate was 69.2% for Lepidochelys
kempii, and the highest rate was 98.0% for Dermochelys coriacea (Fig 3A). Caretta caretta was

most commonly misclassified as Chelonia mydas (6.7%). Lepidochelys kempii, which had the

lowest correct classification rate, was most mainly misclassified as two species, Lepidochelys oli-
vacea, and Natator depressus, at a rate of 15.4% each. Lepidochelys olivacea was most com-

monly misclassified as Lepidochelys kempii (20.0%). Chelonia mydas and Eretmochelys
imbricata were most frequently misclassified as each other at rates of 1.9% and 4.3%, respec-

tively. Natator depressus was most mainly misclassified as background FN (13.3%). Dermo-
chelys coriacea, which had the highest correct classification rate, was most frequently

misclassified as Lepidochelys olivacea (2.0%). For the YOLOv5-seg model, the correct classifi-

cation rate ranged from 53.8% for Lepidochelys kempii to 98.0% for Dermochelys coriacea
(Fig 3B). The species for which Caretta caretta, Lepidochelys olivacea, Chelonia mydas, and

Eretmochelys imbricata were most frequently misclassified the same in both models. The rates

at which Caretta caretta was misclassified as Chelonia mydas and Chelonia mydas was misclas-

sified as Eretmochelys imbricata (10.0% and 4.4%, respectively) were higher than those of the

YOLOv5. Conversely, the rate at which Lepidochelys olivacea was most commonly misclassi-

fied as Lepidochelys kempii (15.0%) was lower than that for the YOLOv5 model. Lepidochelys
kempii was most mainly misclassified as Lepidochelys olivacea (30.8%). Eretmochelys imbricata
was most commonly misclassified as Chelonia mydas and background FN (2.1% each). Natator
depressus and Dermochelys coriacea were most frequently misclassified as each other (6.7% and

2.0%, respectively). The correct classification rate for Natator depressus differed the most

Fig 3. Confusion matrix of the examined models when used to classify sea turtles. (A) Confusion matrix of the

YOLOv5 model, (B) Confusion matrix of the YOLOv5-seg model. Cc, Caretta caretta; Lk, Lepidochelys kempii; Lo,

Lepidochelys olivacea; Cm, Chelonia mydas; Ei, Eretmochelys imbricata; Nd, Natator depressus; Dc, Dermochelys
coriacea.

https://doi.org/10.1371/journal.pone.0313323.g003
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strongly between the two models examined, being 73.3% for YOLOv5 and 98.3% for

YOLOv5-seg (Fig 3). This was attributable to differences in the background FN rates of the

species predicted by the models. Background FN refers to the probability of identifying the

background as the corresponding sea turtles, thereby falsely detecting objects that were not

originally present. The background FN rates of Natator depressus for the YOLOv5 and

YOLOv5-seg models were 13.3% and 0.0%, respectively. In addition, the background FN rate

of Chelonia mydas was 1.2% for the YOLO5 model versus 0.6% for YOLOv5-seg. Background

FP refers to the probability of mistakenly treating sea turtle bodies as the background. This

results in failed sea turtle detection events. Using the YOLOv5 model, background FP occurred

in 5.9% of detection events for Caretta caretta and Dermochelys coriacea, compared to 29.4%

of events for Lepidochelys kempii. In comparison, the same values for the YOLOv5-seg model

ranged from 5.9% for Caretta caretta to 29.4% for Lepidochelys olivacea and Chelonia mydas.

Discussion

Over the past several years, the potential of object detection models, particularly YOLOv5, for

classifying various organisms has been proven [25–27]. Although these models have been suc-

cessfully applied for this purpose, detecting objects in images with complex backgrounds,

including underwater images, remains a challenge [36, 46]. Moreover, detecting objects using

a bounding box involves many situations where either object information is omitted, or back-

ground information is added to the detection process [47]. Instance segmentation models

detect objects using a bounding box (in the same way as object detection models) and a poly-

gon to further segment the pixels of objects based on the object detection results [48]. There-

fore, instance segmentation enhances the model performance relative to extant object

detection models by improving the separation between the object and background through

further object segmentation in complex images [35]. Our study is the first to apply object

detection and instance segmentation models to classify sea turtles for conservation.

According to loss function analysis, the three loss functions characterizing the YOLOv5

and YOLOv5-seg models did not show significant overfitting after the loss values stopped

decreasing (Fig 2). In addition, both models studied here were robust enough to realize the

effective prediction of the model since the convergence position of each loss function was less

than 0.05 [49]. Moreover, the YOLOv5-seg model showed a lower and more stable value in all

three losses than the YOLOv5 model (Fig 2). This means that this was probably closer to the

true value [50]. According to the LCIoU value, the YOLOv5-seg model showed improved per-

formance in detecting sea turtles compared to the YOLOv5 model during the model training

process. Although all losses converged at less than 0.05, the Lcls values were generally less stable

than the Lobj and LCIoU values for both models (Fig 2). This suggests that the classification task

was less stable for detecting objects during the training process using either model.

The mAP values, which reflect precision and recall and therefore indicate model perfor-

mance, were found to be higher in the YOLOv5-seg model than in the YOLOv5 model

(Table 2). The higher mAP values indicated better model performance after training. In both

models, the mAP value for two Lepidochelys species and Natator depressus was relatively lower

than those of other species. This may have been due to the fact that relatively few images of

these three species were used to train both models [36, 51, 52]. In addition, the similar mor-

phology between the two Lepidochelys species may explain the relatively lower mAP value for

these species [39–41]. Indeed, for both models, Lepidochelys kempii, which showed the lowest

correct classification rate, was mostly misclassified as Lepidochelys olivacea or Natator depres-
sus (Fig 3). Although Lepidochelys kempii and Lepidochelys olivacea have different numbers of

costal scutes (i.e., five and more than six, respectively), these species can be difficult to
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distinguish due to their similar morphological characteristics, including a wide and almost cir-

cular carapace and first costal scute reaching the nuchal [39–41]. In contrast, Lepidochelys
kempii and Natator depressus can be easily classified using the morphological characteristics of

their carapace edges, while the carapace edge of Natator depressus is upturned, Lepidochelys
kempii has a flat carapace edge [39–41]. Moreover, the misclassification of this species may

have been due to the relatively low number of images of Lepidochelys kempii used to train the

model relative to other species [36, 51]. Therefore, to increase the classification accuracy for

Lepidochelys kempii, images that showed the costal scutes should be added to the model’s train-

ing set. Although the correct classification rates of the two models were similar (84.3% for the

YOLOv5 model and 86.1% for the YOLOv5-seg model on average), the YOLOv5-seg model

showed better performance in detecting objects by separating them from the background. The

misclassification rate of Natator depressus as background FN using the YOLOv5-seg model

was lower than that using the YOLOv5 model. This might be due to the detection head archi-

tecture of the YOLOv5-seg model, which generates pixel-by-pixel classification prediction and

binary masks for the objects [23].

Overall, the comparisons of model performance revealed that the YOLOv5-seg model

showed improved performance in detecting rather than classifying sea turtles relative to the

YOLOv5 model. Accurate wildlife detection is vital for monitoring wildlife distribution [53,

54], density [55], and populations [56] to conserve vulnerable species. Therefore, the higher

performance of the YOLOv5-seg relative to the YOLOv5 model regarding sea turtle detection

may facilitate improved monitoring of sea turtles. In future studies, additional images of sea

turtles, particularly images of Lepidochelys and Natator depressus, should be collected to

enhance the model performance. In addition, various recently developed object detection and

instance segmentation models should be applied and compared to improve the detection and

classification of sea turtles. The YOLOv5 model employs the anchor box method to represents

predicted objects with bounding boxes [23]. This approach offers several benefits, including

high detection accuracy, rapid detection, and minimal computational resource requirements

[57]. However, the model performance can degrade if the anchor box sizes are not optimally

tailored to the custom dataset [58]. To mitigate this issue, the YOLOv8 model employs an

anchor-free method known as Fully Convolved One-Stage [59]. Consequently, future studies

should focus on comparing these recently developed models to enhance the performance in

detecting and classifying sea turtles. Moreover, hierarchical classification has recently been

applied to increase the performance of models when available image data is insufficient [60,

61]. Future studies should also employ this method to enhance the model performance for sea

turtle classification. Furthermore, to enhance the accuracy of detecting and classifying sea tur-

tles, future studies will involve developing an improved YOLO model by modifying the archi-

tecture of the YOLOv5 model and performing an ablation study. Finally, the models

developed in this study will be supplied as a mobile application to support the monitoring of

sea turtles. This might be helpful in visual surveys using ships or aerials conducted by research-

ers or in beach surveys by citizen scientists.

In conclusion, this study employed an object detection model (YOLOv5) and an instance

segmentation model (YOLOv5-seg) to detect and classify seven sea turtle species. The loss

function results revealed that the YOLOv5-seg model demonstrated a lower error rate in

detecting, rather than classifying, sea turtles compared to the YOLOv5 model. In addition, the

YOLOv5-seg model exhibited superior performance, with a mAP of 0.918 compared to 0.885

for the YOLOv5 model. Although the correct classification rate of the two models was similar,

the YOLOv5-seg model showed superior performance in detecting objects by segmenting

these from the background. According to the model performance results assessed during and

after the training process, the YOLOv5-seg model showed superior performance in detecting
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rather than classifying sea turtles compared to the YOLOv5 model. This is the first study to

employ and compare object detection and instance segmentation models for the detection and

classification of sea turtles, and these models may help in the monitoring of wild sea turtle spe-

cies. Moreover, the ongoing development of DL model for detecting and classifying sea turtles

will constitute a significant step toward establishing a reliable and accurate automated moni-

toring system for these species.
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