
RESEARCH ARTICLE

Systematic analysis of the relationship

between fold-dependent flexibility and

artificial intelligence protein structure

prediction

Neshatul HaqueID
1, Jessica B. Wagenknecht1, Brian D. Ratnasinghe1, Michael

T. ZimmermannID
1,2,3*

1 Computational Structural Genomics Unit, Linda T. and John A. Mellowes Center for Genomic Sciences and

Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, United States of America, 2 Clinical and

Translational Sciences Institute, Medical College of Wisconsin, Milwaukee, WI, United States of America,

3 Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States of America

* mtzimmermann@mcw.edu

Abstract

Artificial Intelligence (AI)-based deep learning methods for predicting protein structures are

reshaping knowledge development and scientific discovery. Recent large-scale application

of AI models for protein structure prediction has changed perceptions about complicated

biological problems and empowered a new generation of structure-based hypothesis test-

ing. It is well-recognized that proteins have a modular organization according to archetypal

folds. However, it is yet to be determined if predicted structures are tuned to one conforma-

tion of flexible proteins or if they represent average conformations. Further, whether or not

the answer is protein fold-dependent. Therefore, in this study, we analyzed 2878 proteins

with at least ten distinct experimental structures available, from which we can estimate pro-

tein topological rigidity verses heterogeneity from experimental measurements. We found

that AlphaFold v2 (AF2) predictions consistently return one specific form to high accuracy,

with 99.68% of distinct folds (n = 623 out of 628) having an experimental structure within

2.5Å RMSD from a predicted structure. Yet, 27.70% and 10.82% of folds (174 and 68 out of

628 folds) have at least one experimental structure over 2.5Å and 5Å RMSD, respectively,

from their AI-predicted structure. This information is important for how researchers apply

and interpret the output of AF2 and similar tools. Additionally, it enabled us to score fold

types according to how homogeneous versus heterogeneous their conformations are.

Importantly, folds with high heterogeneity are enriched among proteins which regulate vital

biological processes including immune cell differentiation, immune activation, and metabo-

lism. This result demonstrates that a large amount of protein fold flexibility has already been

experimentally measured, is vital for critical cellular processes, and is currently unaccounted

for in structure prediction databases. Therefore, the structure-prediction revolution begets

the protein dynamics revolution!
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Introduction

Recent advances in protein structure prediction have significantly expanded the fraction of the

human proteome that can be modeled in high-resolution [1, 2]. Structural models enable

researchers to better contextualize human genomic variations, predict lead compounds against

previously un-characterizable active or allosteric sites, and more. This is a revolutionary step

forward for the field. However, proteins require flexibility for function [3–5]. Thus, we sought

to understand better the relationships among the multiple existing experimental structures for

the same protein, how frequently they capture different functional states, and their comparison

to predictions by AI algorithms. Specifically, we characterize how often AlphaFold2-generated

models favor one specific state versus returning conformational intermediates or functional

averages.

Large amounts of protein sequence and structural data are leveraged to drive AI-based

structure prediction. The latest algorithms have found a balance between features datamined

from evolutionary relationships apparent across protein multiple sequence alignments (MSAs)

and non-linear 3D interactions from existing 3D experimental structures [1, 2, 6–8]. Evolu-

tionary relationships include positions that co-evolve to preserve 3D contacts that underly

structural stability or enzymatic function [9–11]. Additional advancements have emerged in

the field, including large language models like MSA Transformer [12], EvoFormer [2], and

Evolutionary Scale Modeling [13]. These developments have significantly enhanced the extrac-

tion of coevolutionary relationships among residues, leading to notable improvements in the

prediction of 3D contact maps. Further, attempts have been made to reduce and randomize

the amount of information input to AI systems to estimate protein flexibilities [14–16]. Then,

experimental structural analyses determine crucial atomic details concerning amino acid pack-

ing, stability, biochemistry, and flexibility. Thus, there is critical information in both sequences

and structures, and their clever combinations have powered the recent revolution in protein

structure prediction.

AI-based protein structure prediction has revolutionized structural bioinformatics. The

reliability of AI-predicted structures is now widely accepted [17, 18] and has rapidly changed

research in many areas. For example, AI-predicted structures have improved the understand-

ing of virus taxonomy [19], served as molecular replacement solutions where NMR-derived

structures failed [20], and helped to complete models of challenging proteins such as thyroid-

stimulating hormone receptor [21]. However, certain shortcomings of predicted structures

have been discussed related to regions involved in ligand binding, higher flexibility, point

mutations, post-translation modifications, and intrinsically disordered regions [18, 22, 23].

Bronstein et al. have shown that the role of extrinsic structural elements, like water, is some-

times indispensable for structural stability and is ignored in modeling [24]. Kaspers et.al.,
showed that the dynamics of multistate proteins are also ignored [25]. Jumper et al. noted that

less common structural features like long β-sheets can be predicted well but may failed to pro-

duce the correct angle [26]. Thus, these revolutionary algorithms are not the final solution to

the protein folding problem and do not capture protein dynamics. They should ideally be used

with an appropriate understanding of their relative strengths.

Many proteins require flexibility for function, often manifest as multiple conformations

across experimentally solved structures [27–29]. Consequently, each conformation may con-

tribute to evolutionary coupling in the MSAs and 3D contact data used to train AI systems.

Proteins are modular with their structures frequently constructed using archetypal folds.

Knowledge of the inherent flexibility of each fold type is important for understanding the bio-

logic function of proteins that contain each fold type. In this study, we seek to characterize the

experimentally derived flexibilities of each fold type by measure the intra-domain
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conformational differences and how they compare to the predicted structures generated by the

AI-based predictive tool Alphafold2. To achieve this goal and be precise in our evaluations, we

focus on 176,257 protein domain instances with multiple existing high-resolution experimen-

tal conformations. Multiple experimental structures of the same protein, derived from differ-

ent conditions, give a practical sampling (albeit incomplete) of the conformational diversity

necessary for function. Recent works have demonstrated that AI-generated structures are dis-

crepant from experiments in local details [30, 31]. Therefore, we took a next step from this

data to characterize whether AI-generated models favor specific conformations or return func-

tional averages that balance the 3D contacts and co-evolutionary constraints across conforma-

tions. We compared structures using four levels of resolution: individual experimentally

determined protein domain instances, sequence-based clusters subdivided within CATH

topologies (a.k.a. fold types; S1 Fig in S1 Text), all domains within the same CATH topology

(Fig 1A), and the CATH class that each topology is part of. Our analyses reveal that current

AI-based algorithms reproduce one specific state with high accuracy, on average, yet the pat-

tern depends on the protein fold type. These results are essential for interpreting AI-based pre-

dicted structures’ strengths and limitations in further research.

Methods

Harmonizing and characterizing experimentally derived protein structures

We gathered sets of experimentally derived protein structures. The multiple experimental

structures of the same protein in different conditions gives a sampling of the flexibility and

conformational diversity necessary for protein function. Mappings between the PDB [32],

CATH [33], and UniProt [34] were taken from the SIFTS [35] resource. We count unique

experimental structures by distinct PDB IDs, individual proteins by UniProt Accession num-

bers, and unique folds as different CATH topologies.

We focused on understanding the structural similarity of the domains with their AI-pre-

dicted counterparts. We selected 5,388 proteins from the PDB that each have at least ten dis-

tinct experimental structures. Then, we merged the dataset with CATH annotations, leaving

3,870 distinct proteins with defined structured domains. Next, 213 proteins (5.5%) were

excluded because no model was available from the AlphaFold2 (AF2) Protein Structure Data-

base (ebi.ac.uk), leaving 3,657 proteins. Because each protein may have multiple distinct

domains, this stage of the dataset contains 217,402 domain instances. A subset of domains’

sequences (defined by CATH) did not align well with their corresponding protein sequence

obtained from EBI (e.g. due to mutations, typically to increase solubility). Therefore, we

removed 37,721 domain instances with percentage sequence identity (PID) < 99, ignoring

gaps in PID calculation. We also removed domain instances with ten or fewer amino acids.

We further eliminated structures with extended N- or C-terminals and structures with lower

resolution (>3Å). Our analyses were performed on a final dataset comprised of 2,878 proteins

that contain 118,826 domain instances. This resource contains proteins from multiple organ-

isms, with the human subset containing 1,288 (44.7% of the dataset) proteins. Sequence align-

ment was performed using BLOSUM62 substitution matrix, gap opening penalty of 10, gap

extension penalty of 0.2, and the local-global hybrid algorithm of Needleman-Wunsch and

Smith-Waterman algorithms as implemented in the pairwise Alignment function of the Bio-

strings R package [36]. A schematic illustration provides a succinct overview of our data filtra-

tion process (Fig 1A). Stringent data curation measures were implemented to minimize

undesired features. To further mitigate the risk of overrepresentation of highly populated

members, which could potentially distort data distribution and introduce bias in interpreta-

tion, two additional datasets were derived from our main dataset. The first additional dataset
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Fig 1. CATH data curation and the class characteristics. A) Depicts gross outline of data curation and grouping at domain and fold level. B) shows the

fraction of i) Helix, ii) Sheet, and iii) Helix and Sheet combined across CATH classes. The secondary structures distribution was obtained from data

(118,826 domain instances) before grouping. The grouping of data was performed at domain level (Class, Architecture, Topology/fold, and Homologous

superfamily), returning 8,094 domain groups. At the fold level (Class, Architecture, Topology/fold) 628 groups were obtained.

https://doi.org/10.1371/journal.pone.0313308.g001
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involved grouping similar domains from the same segment of a protein, represented by the

median values of metrics such as RMSD, surface area ratio, and the ratio of buried and exposed

residues. The second additional dataset was generated by grouping similar folds, defined by

specific patterns and content of secondary structures as classified by CATH topologies, and is

again represented by median metric values (see S2 Fig in S1 Text for additional details).

Extracting domain instances from AI-predicted structures

Domains are typically the structural and functional units of proteins. An ideal canonical

domain has a modular and specific shape, defined by the spatial orientation of secondary

structure elements. The inter-domain regions of proteins are often more flexible than the

domains. AF2 provides a full-length predicted model of each protein. The domain boundary

definition provided with CATH is consistent with the PDB sequence but sometimes not with

the UniProt reference sequence. We first extracted each sequence from the CATH domain to

harmonize domain sequences. Then, we aligned each with the corresponding sequence of the

AF2 full-length protein (by definition, also the UniProt canonical protein reference sequence).

After alignment, we extracted all the residue segments from predicted structures, which

aligned one-on-one with each protein’s reference sequence, producing the specific AF2-pre-

dicted domain conformation for each CATH domain. We use this dataset to calculate the

RMSD, normalized RMSD100 [37], and FATCAT RMSD (S2-S4 Figs in S1 Text) between

experimentally solved and AI-predicted domain conformations.

During our analysis, we observed high RMSD values for some domains due only to

extended N-terminal or C-terminal regions despite virtually perfect structural alignment of

the domain core. Therefore, we determined domain structures with extended N- and C-termi-

nus and eliminated them from our dataset (see S1 Text for more details). We also observed

limitations regarding the specific sequence-level differences in how domains are annotated to

proteins, that complicated structure-based comparisons. Therefore, we made further domain

subdivisions which go beyond the CATH ontology (see S1 Fig in S1 Text). Briefly, we defined

topology sub-clusters that uniformly correspond to the same sequences: 1) when the same

region of a protein was simultaneously annotated to multiple topologies, each is its own sub-

cluster and 2) when a topology is annotated to a region of a protein, but different experiments

resolved different windows of amino acids, each is its own sub-cluster.

Structural metric values of the experimental domains

We calculated structural properties, including surface area to volume ratio (AVratio), buried

residue to exposed residue ratio (BEratio), count of residues in contact with metal ions (nMet),

count of residues in contact with ligands (nLig), and secondary structure content of the experi-

mental and predicted models. We then used distributional comparisons to understand how

these properties relate to structural deviations between experimentally solved and AF2-pre-

dicted structures (see S1 Text for more details).

Results

Domain classes have high variation in composition

Secondary structure diversity within domain classes. The domain class is the first orga-

nizational layer in CATH, which classifies proteins based on their secondary structures and

how those secondary structures are spatially arranged. CATH defines six domain classes with a

semi-definite proportion of secondary structure types. Analysis of our dataset suggests a more

diverse balance of secondary structure content within each domain class. Class 1 is defined as
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mainly α-helix content, while 28.6% of the domains in this class have <50% α-helix content

(Fig 1Bi). Similarly, Class 2 is defined as mainly containing β-sheet structures, yet we observe

that 73.3% of the domains in this class have <50% β-sheet content (Fig 1Bii). Class 3 is mixed

α/β, and 33.6% of domains have <50% of classic secondary structures, while Classes 4

(unstructured) and 6 (non-globular) have 32.8% and 5.7% of the domains with<25% second-

ary structures (Fig 1Biii). The proportion of domains in each class with low and varied sec-

ondary structures impacts how the individual domains are compared.

Differences in secondary structure content between AAF2-predicted and experimental

structures. AF2 is a robust algorithm for protein structure prediction from merely the

sequence; it produces an accurate structure of near experimental resolution. However, during

the multistep process it has been known to overestimate the secondary structure content of the

model [38]. Therefore, we computed the fraction of α-Helix and β-Sheet differences between

experimental structures and their AF2-generated models in the current dataset. We observe

more residues within secondary structure for predicted structures with high confidence (AF2

dataset filtered to structures with 90% of residues with pLDDT > 80). At least 64.80%, 40.70%,

25.50%, and 10.30% of domains have more than 1, 2, 4, and 8 additional residues in α-Helices

or β-Sheets, respectively (Fig 2A). Yet, there are few instances of lower secondary structure

content. Thus, the AF2-predicted structures may predict more secondary structure content

compared to experiments, suggesting overestimation of local interaction prediction by the

models.

Global distribution of fold-specific conformational variation

Folds of most proteins are predicted to high accuracy. While the high accuracy of

AlphaFold2 (AF2) predictions is well-established, the performance of AF2 in predicting

dynamic domains has yet to be assessed. We quantify the extent of agreement between experi-

mentally determined domain structures and their corresponding AF2-predicted structures

using RMSD-based calculations. The predicted structures are within 2.5Å RMSD for 92.04%

of domain instances. Nearly 97.67% of the domains have structural deviations below 5Å (Fig

2B). RMSD100 is normalized by protein length, (see S1 Text); it has similar global distribution

to standard RMSD in our dataset. The domains with high RMSD are distributed among all

domain topologies, folds, and even protein-specific domain group. The distribution shape is

robust to accounting for and filtering out hinge-like motions, yet some of the largest confor-

mational differences are hinge-like (S3 Fig). Thus, AF2-predicted structures are in good agree-

ment with most experimental structures, yet with a considerable degree of intra-domain

flexibility not represented.

The extent of conformational variation is fold-specific. Biologic systems use each fold

to different extents, reflected in the current dataset. The dataset contains representatives from

628 distinct folds or domain topologies and 118826 individual domains, where 99.20%

(n = 623out of 628) and 99.68% (n = 626 out of 628) of the folds have�2.5Å and�5.0Å
RMSD for at least one member of the fold, respectively. The most populated folds are Rossman

and immunoglobulin, with 14785 and 8052 instances, respectively (S1 Table). These two folds

have as many experimental structures (19.21% of the dataset) as the 525 rarest folds together.

Most folds with the highest median RMSD to predicted structures have few individual

domains in the dataset. For example, of the 11 folds with median RMSD> 2.5Å, only two

have at least 100 domain instances, and of the 37 folds with median RMSD > 1.5Å, only 6

have at least 100 domain instances (S1 Table). Yet, well-populated folds are among the most

variable. For example, the HSP90 fold has 265 domain instances with median ± MAD RMSD

of 6.49 ± 3.1Å, the Retinoid X Receptor domain has 1493 cases with 0.95±0.28Å, and the
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Zincin-like fold has 55 cases with 1.90±1.28Å. These examples underscore that certain folds,

delineated by their topological architectures and classified within the same fold type, exhibit

disparate responses to the AF2 algorithm. This observation suggests that the sequences within

such folds possess the propensity to adopt divergent conformations.

Domain level grouping demarcates clear boundaries among domains of different nature

and sizes. We identified a common challenge in RMSD calculations: unresolved residues in

experiments and overlapping domain segments made ambiguity in precisely which amino

acids are comparable. To solve this challenge, we first clustered intra-domain sequences at

95% identity using CD-HIT [39] and obtained 6087 distinct clusters of the 118826 input

domains. Therefore, instances of the same domain topology in different clusters will have

Fig 2. Domain group-wise distributions reveal geometric patterns. A) The distribution of SSE (secondary structure elements of helix and sheet) count

difference with increasing difference cut off between experimental (CATH) and predicted (AF2) structures. B) Domain group distribution with respect to the

median RMSD and median RMSD100 (shown as R100) of the group. C) The distribution of the median ratio of buried to exposed residues is consistent across

the range of conformational differences. D) Interestingly, the median ratio of surface area to volume is consistent across the lower range of conformational

differences, yet for the highest tier the conformations more frequently have a high ratio.

https://doi.org/10.1371/journal.pone.0313308.g002
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sequence differences (Fig 1A & S1 Fig in S1 Text). Second, we identified that sequences within

a cluster had variable lengths and could belong to other (often overlapping in sequence)

domain topologies (See S3 Fig in S1 Text). Thus, the members of sequence-based clusters

were further clustered using a hierarchical method to resolve both features, producing 8094

sub-clusters. Each sub-cluster comprises domain instances of a specific topology and resolved

sequence length with mutually�95% identity (S1 Fig in S1 Text).

The number of individual domain instances in each sub-cluster ranged from one to 628.

The AF2 predicted model of each domain is�2.5Å RMSD for at least one experimental struc-

ture in 95.35% of the domain sub-clusters (n = 7718 out of 8094), and under 5Å RMSD in

98.78% (n = 7996 out of 8094) of domain sub-clusters. However, a large subset (89.10%,

n = 7211 out of 8064) of the sub-clusters have all their members under 2.5 Å RMSD. Thus,

10.91% of the domain sub-clusters have a large conformational heterogeneity which produces

variations between predicted and experimental structures for all their members. This strongly

suggests a non-rigid and dynamic nature for these domain types.

Conformational heterogeneity produces differences in geometric

properties

Proteins belonging to the same fold can have different structural properties, including their

enclosed molecular volume and surface area. Therefore, we analyzed each fold type’s relation-

ships among structural variations and molecular geometric properties. The fraction of buried

versus exposed amino acids (BE) ratio is high for folds with median RMSD within 2.5Å from

AF2 structures and lower for higher median RMSD values (Fig 2C). This indicates that com-

pact globular folds have more of their experimental structures in close agreement with predic-

tions compared to more extended folds. A similar monotonic trend was found for the surface

area-to-volume (AV) ratio, where a high AV ratio occurs with high median RMSD values and

vice versa (Fig 2D). These observations are both robust to accounting for hinge-like motions

(S4 Fig in S1 Text), which can explain only a small fraction of the inter-domain motions in

our dataset. Interestingly, the presence of interacting metal ions and ligands did not follow a

systematic pattern (S1 Text). This suggests a clear yet fold-dependent relationship between

domain compactness and the apparent agreement with predictions.

AI-predicted protein structures are highly specific to a single experimental

state

We next characterized the fold-specific heterogeneity across all domain topologies and then

highlight details of two supporting examples of specific domain topologies.

Each domain topology has a specific distribution of conformations that define a hetero-

geneous spectrum. Next, we define the spectrum of fold-dependent and experimentally

derived conformational variation. Especially for heterogeneous folds, any individual predicted

structure will always be a functional snapshot. We summarized the entire dataset by fold type

as a census of the fold-dependent heterogeneity already captured by experimentally solved

structures (Fig 3A), and which we anticipate reflects biologically relevant flexibility. We found

that variation within a fold is mainly independent of the fold having a conformation that is

predicted to have ultra-high accuracy (Fig 3B). However, a significant fraction (8.60%) of folds

have more than 10% of their members� 2.5Å RMSD from the predicted structure (Fig 3C).

Most folds show a continuous spectrum of RMSD (Fig 3D), ranging from ultra-high consis-

tency (e.g.,< 1Å RMSD) to extremely divergent conformations (e.g.,> 10Å RMSD). Interest-

ingly, the database is almost equally split between liganded (49.6%) and un-liganded protein

domains; 0.98% of the domains are derived using NMR, the average crystallographic
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Fig 3. Protein folds exhibit a spectrum from conformationally homogeneous to highly heterogeneous. At the same time,

AF2-generated structures represent specific structural conformations. We quantified the distribution of RMSDs to AF2-generated protein

structure prediction on a per-fold basis. A and B) are ordered distribution of domain in fold, by median and MAD, a robust standard

deviation, respectively. Each horizontal arrangement of dots is the box plot representation domains RMSD distribution where each dot

represents domain RMSD. A is ordered by median and B is ordered by MAD values. The color of the horizontal dots, in the box plot, on the

other hand shows inter quantile range (IQR) of the box plot (1*IQR purple, 1.5*IQR black), such representation makes it visually evident

that even the most variable folds have a small number of instances that closely match experimental structures. C) Each fold has a robust
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resolution is 2.3Å, and 15.6% of domains are comprised of more than one linear sequence seg-

ment; these features are independent of the fraction of domains that are�2.5Å RMSD from

AI predictions (not shown). Thus, there is a broad need for interpreting the functional flexibil-

ities of domain types, yet the existing experimental structures can provide a fold-dependent

baseline.

RAS GTPases as exemplars for conformational heterogeneity focused to functional

movements. We now focus on a specific example of a critical disease gene and RAS family

GTPase, KRAS, that is comprised of a single fold type. KRAS oscillates between open and

closed states at two switch regions. These switch regions depend on thermodynamic stability

and ligand (GTP or GDP) binding. When the switches are folded against the protein, KRAS

can bind to effector proteins and propagate cellular signaling cascades. Being a key signaling

protein in cancer, we investigated how the many existing experimental KRAS structures com-

pared to AI predictions, and how conformational heterogeneity within an individual fold type

can drive biological phenomena.

To better understand KRAS conformational heterogeneity, we studied its 253 existing

experimental structures. Owing to its flexibility, both the switch regions (Fig 4A) are partially

missing from 23 structures. We calculated RMSD values to the AF2-predicted model for

switch I (residues 26–46) and switch II (residues 51–78) regions. The AF2 model has both

switches in closed conformations where they form clear secondary structures. We observed

diverse switch conformations sampled by experiments, while non-switch regions are more

homogeneous (Fig 4A). We clustered the switch RMSD values for all 252 structures and iden-

tified six patterns (Fig 4B). Three of these patterns maintain switch-I in a close position, with

three levels of switch-II movement. Two patterns have switch-I-in with switch-II-out and vice

versa; the final pattern positions both switches out and lacks secondary structures. Nearly

14.62% of structures were under 1Å RMSD to the AI-predicted structure, and 75.5% were

under 2.5Å of RSMD for both switches. Only 24.5% of the structures were above 2.5 Å of

RSMD, and only one was above 5 Å of RSMD (Fig 4B). Thus, results suggest that the predicted

structure of KRAS is in remarkable agreement with the experimental structures and represents

the active conformation for cellular signaling. However, one-fourth of experimental conforma-

tions are divergent from the AI-predicted structure. These conformations are essential for the

regulation of KRAS cellular signaling. Thus, well-predicted and well-characterized fold types

like small GTPases are among the conformational heterogeneous folds, with their flexibility

focused on critical regulatory motions.

Small molecule transporter domain examples predicted as functional intermediates.

Having characterized KRAS, a small single-domain protein, we next sought a specific example

for a multi-domain protein. We chose ATP Binding Cassette (ABC) protein B1 (ABCB1, also

known as P-glycoprotein) as an example because of its impact on the pharmacokinetics of

many drugs, including many cancer treatments, and because many experimental structures

exist for its mouse ortholog, Abcb1a (Fig 5A). Additionally, despite how ubiquitous ABC pro-

teins are and their significant pharmacokinetic impacts, many family members lack experi-

mental structures. Therefore, predicted structures are of high value for supporting research in

ABC transporters.

ABC family proteins transport substrates across membranes, facilitated by ATP binding

and hydrolysis. Each of these functions is performed by a different fold type. The transmem-

brane domain (TMD) spans the plasma membrane and facilitates substrate transport. One

average along a spectrum that loosely correlates with their level of variation. D) Each individual experimentally solved protein domain is

shown as a point along the corresponding fold’s MAD to show conformational diversity in more detail.

https://doi.org/10.1371/journal.pone.0313308.g003
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nucleotide-binding domain (NBD) is attached to each end of the intracellular TMD. Many

ABC proteins encode all three domains in one monomer, but some family members form

from homodimers [40]. In either case, the resting state (State 1) is typically open to the intra-

cellular side. When a ligand binds in the pocket within the TMD, it brings both NBD pairs

together through TMD hinge motions (State 2). ATP binding between both NBDs further

brings the TMD sides together to form the outward-facing conformation (State 3) and to com-

plete ligand transport. ATP hydrolysis releases the outward-facing conformation and resets

the process [41].

Fig 4. RAS experimental structures span a diverse range of switch conformations. A) Seven representative human

KRAS structures, one from each cluster, are shown with important structural components highlighted. The predicted

structure is shown in grey cartoon representation. Experimental confirmations are displayed in ribbon. The p-loop is

colored red; Switch 1 is colored pink, and Switch 2 is colored yellow. B) Two-dimensional RMSD values of switch I

and switch II, with respect to its corresponding AF2 aligned and subsequently extracted structures, clustering of

experimental KRAS structures, represented by CATH 3D model. The clustering is described as a heatmap where the

left and right columns correspond to switch I and II. Almost all the RMSD values are spread between 0.28 and 4.43Å.

The heatmap was annotated with upward and downward-facing arrows to show the similarity of switch conformations

of each cluster with respect to AF2. In the legend, we show a scale break to the single “far out” conformation (6BOF;

8.95Å RMSD for switch I and 3.83Å for switch II).

https://doi.org/10.1371/journal.pone.0313308.g004
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Upon visually inspecting the 21 TMD experimental structures and 42 NBD structures, we

noticed that the experimental TMD structures had a large range of conformations, with some

resembling State 1 (average RMSD of 1.2Å to AF2) and others resembling State 3 (average

RMSD of 3.2 to AF2). However, the experimental NBD structures were all quite similar to

each other (average RMSD of 0.7Å to AF2; Fig 5B). This difference is likely because the TMDs

perform most of the functional motion between conformations, moving like levers to draw the

two NBDs together for ATP binding and subsequent hydrolysis. While the focus of this work

is on domains and folds, we used whole Abcb1a structures to quantify how each fold type’s

conformational heterogeneity combine to yield whole-protein RMSDs that are considerably

higher than each domain (median of 5.9Å; Fig 5C). Therefore, investigating the structural sim-

ilarities of proteins through their domains can partition RMSD differences to their root causes

in domain dynamics, improving the mechanical understanding of protein functional motions.

Folds exhibiting high conformational heterogeneity compared to high

conformational Consistency are used differently across biological processes

Protein domains are typically modular components of larger molecular machines. Thus, each

modular component has a classical function reused in different contexts. We quantified how

protein folds distribute across biological processes and the intersection with our census of fold

type flexibility. Surprisingly, we observed specific categories of gene ontology terms more fre-

quently for proteins that contain fold types with high conformational consistency compared to

proteins that contain fold types with high conformational heterogeneity. This finding clarifies

that conformational regulation is more prevalent in certain biological processes than in others

(S5 Fig in S1 Text). Specifically, we compared the 33 proteins that contain a domain with

Fig 5. ABC family proteins’ ATPase domains have high conformational consistency while transmembrane domains have high heterogeneity to facilitate

transport. A) One experimental structure of Abcb1a, the mouse P-glycoprotein (PDB ID: 5KPJ), is shown with the nucleotide binding domains (NBDs; CATH

3.40.50.300) colored pink and transmembrane domains (TMDs; CATH 1.20.1560.10) colored cyan. B) All experimental domain structures are shown aligned

with their respective AF2 structures, shown in yellow. There’s a range of conformations shown in the experimental TMD structures, as the protein

physiologically opens and closes to facilitate ligand transport. C) Whole protein RMSD is higher than RMSD of domains. NBD RMSD is extremely low, but

some experimental TMD structures have higher RMSD from the AF2 structure due to their wider conformation. However, whole protein RMSD is much

higher than that of either domain, demonstrating the accuracy gained by using domain structures rather than whole protein structures.

https://doi.org/10.1371/journal.pone.0313308.g005
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median RMSD > 2.5Å to AF2 references, to the 131 proteins that contain a domain from the

lowest 10% of median RMSD. We found, for example, the proteins with heterogeneous

domain are more frequently (15–33 more proteins) part of the enzymes that make post-trans-

lational modifications, regulate chromatin structure and remodeling, form multi-protein com-

plexes, and participate in signal transduction processes. On the other hand, proteins with the

lower decile domains are more frequently (25–100 more proteins) involved in immune system

development and responses, and metabolism. Most count differences of at least six are statisti-

cally significant (p< 1×10−3 using the hypergeometric test). One specific instance is T-cell

activation (p = 4.7×10−7). Thus, accounting for fold-specific flexibilities directly impacts

research into these critical biological and cellular signaling processes.

Discussion

We have leveraged large-scale structural databases to characterize experimentally-measured

and fold-specific conformational heterogeneity and characterize how AI-based algorithms

behave across this spectrum. This spectrum reveals biological insights because homogeneous

folds versus heterogeneous folds are used by different types of proteins that drive immune and

metabolic biology. Additionally, this spectrum informs about how to use the individual predic-

tions returned by AI-based algorithms. Our study clarifies that gaining more significant bio-

logical inference from protein structures will require dynamic models or multiple models that

span functional mechanisms.

To better understand the strengths and limitations of AI-predicted structures, we carried

out domain-level comparisons with 176,257 experimentally determined protein domain struc-

tures. Comparison on such a large and heterogeneous dataset becomes necessary for a clear

demonstration of the prediction characteristics of the tool. In addition, we minimized the

potential disagreement between the predicted and experimental structures by considering the

domains and not the whole proteins, which would otherwise have accounted for larger fluctua-

tion because of the flexible inter-domain regions. AI-predicted structures are very accurate for

most of the experimentally solved domains. Differences between experiments and predictions

are partly because training data covers conditions that are amenable to crystallography, which

is likely a subset of the biologic protein structural diversity. In the few cases where predictions

ultimately failed to match experiments, one reason could be due to the lack of similar proteins

in the training data. We found that the AI-predicted structures that most closely resemble

experimental results have low surface area-to-volume ratios and high buried-to-exposed ratios,

indicating a strong trend for predictions to be compact and globular. Current methods for pre-

dicting more extended and flexible conformations are more divergent from experimental

results.

From their first uses, deep-learning architectures overestimated local interactions com-

pared to predicting global architectures [42]. For example, the overrepresentation of secondary

structure in the predicted model raises questions about how the coevolution of paired residues

is used in contact map generation. Even though AF2 tried to minimize the overrepresentation

of local interactions by using large MSAs for feature extraction and contact map generation,

the secondary structure is still overestimated in our analysis. Thus, sequence-extrinsic features

such as other molecules, metals, ions, ligands, or hydration water have major roles in fine-tun-

ing secondary structure content. Also, we focused on differences in domain topology irrespec-

tive of sidechain position differences, which will also differ by environment. The CATH

database hosts half a million domains, and we used 118826 that represent proteins with at least

ten distinct experimental structures solved, so that we have a robust comparison of apparent

protein dynamics. Considering these limitations is essential to successfully obtain a better
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estimate of the conformational heterogeneity of each protein domain and compared to their

diverse experimental structural states. Accounting for molecular environment enables more

flexible and extended conformations to be predicted that go beyond the one-sequence-one-

model paradigm.

Conclusions

In this work, we have calculated the spectrum of fold-dependent conformational heterogeneity

and used AI-generated protein structure predictions as an objective and consistent bench-

mark. We found that predictions are close to experimental structures in most cases, yet diver-

gent in others, identifying how best to interpret AI-generated structures in the context of

protein form, flexibility, and function. We find that structure prediction algorithms have

homed in on one specific conformation for each protein, rather than conformational averages,

that closely matches experiments for most proteins and across protein folds. This accuracy

simultaneously means they do not inform about the flexibility required for function. More sig-

nificant biological inference will require dynamic models or multiple models that span func-

tional mechanisms. This observation is consistent across protein folds, sequence lengths,

liganded and non-liganded proteins, and more. Thus, it is a general feature at the intersection

of current AI systems and protein fold knowledge, that must be considered when using data

from these revolutionary algorithms.
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