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Abstract

Autophagy-dependent survival relies on a crucial oscillatory response during cellular stress.
Although oscillatory behaviour is typically associated with processes like the cell cycle or cir-
cadian rhythm, emerging experimental and theoretical evidence suggests that such periodic
dynamics may explain conflicting experimental results in autophagy research. In this study,
we demonstrate that oscillatory behaviour in the regulation of the non-selective, stress-
induced macroautophagy arises from a series of interlinked negative and positive feedback
loops within the mTORC1-AMPK-ULK1 regulatory triangle. While many of these interac-
tions have been known for decades, recent discoveries have revealed how mTORC1,
AMPK, and ULK1 are truly interconnected. Although these new findings initially appeared
contradictory to established models, additional experiments and our systems biology analy-
sis clarify the updated regulatory structure. Through computational modelling of the autop-
hagy oscillatory response, we show how this regulatory network governs autophagy
induction. Our results not only reconcile previous conflicting experimental observations but
also offer insights for refining autophagy regulation and advancing understanding of its
mechanisms of action.

Introduction

A fundamental property of cellular systems is their ability to form proper answers to external
and internal stimuli. Answers can be reversible, irreversible or even periodically repeating
according to the stimuli. If the cell is able to return into its original homeostatic state the stimu-
lus is reversible, however if it goes to a new stable state the response is called irreversible [1].
The circadian rhythm and the cell cycle regulatory network can even generate a periodic char-
acteristic of the response mechanism due to the presence of a negative feedback loop in the con-
trol network [2-4]. Choosing between life and death is traditionally known as an irreversible
response providing a clear directionality of the process. For example, excessive level of cellular
stress turns on the suicide cascade of apoptotic cell death. Interestingly, autophagy-dependent
self-cannibalism of a cell has also been introduced as a kind of cell death process [1, 5].
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However, in the last decades it became evident that it has an important role in cell survival by
degrading the damaged or unnecessary components of the cell during cellular stress [6, 7].

Cellular homeostasis is tightly controlled by both mammalian target of rapamycin complex
1 (mTORC1) and 5" adenosine monophosphate-activated protein kinase (AMPK) [8-12].
While mTORCI is the master regulator of cellular growth and metabolism [9], AMPK is cru-
cial to sense the proper AMP/ATP ratio in the cell [8]. Both have a key role in regulating the
induction of the early stage of non-selective stress induced macroautophagy/autophagy via
one of the most important elements of the autophagy induction complex, called unc-51-like
kinase 1 (ULK1) [13, 14]. While mTORCI1 is able to down-regulate ULK1 under physiological
conditions, AMPK has a positive effect on ULK1 upon various stress events (such as food dep-
rivation) [13].

Although traditionally AMPK-dependent phosphorylation sites on ULK1 were thought to
be generating a positive effect on ULKI1 (see S1 Table), Ji-Man Park et al. have redefined the
role of AMPK in autophagy induction by claiming that AMPK has a negative effect on ULK1
via phosphorylating it on its Ser556 residue [15]. Besides, Kazyken et al. have also shown that
absence of AMPK increased ULK1 signaling, while mTORC1 activity positively controlled the
ability of AMPXK to phosphorylate the Ser556 residue of ULKI further confirming that AMPK
has a direct negative effect on ULK1 [16]. A recent publication by Yu-Lin Li has also suggested
that AMPK is able to inhibit autophagy supposing that the dual role of AMPK during activa-
tion of autophagy [17].

Consequently, it has become kinetically doubtful that autophagy induction itself is an irre-
versible stress response. Using previous scientific results, we show here that autophagy is
indeed a periodically inducible process and that helps cell survival. Here, we also explain
recently published, often contradictory results found in the literature, and clarify their contra-
dictions using systems biology modelling.

Mathematical models and methods
Mathematical modelling

Ordinary differential equations (ODEs) are used to describe the temporal variation of biologi-
cal control networks. The equation of the members of the network consists of two parts: an
activation (e.g. post-translational modification) and the inactivation of the protein. Mass
action kinetics or Michaelis-Menten kinetics are used to describe protein activation and inacti-
vation. Once the set of non-linear ODEs is solved, relative protein concentrations/activities
(time courses) can be monitored over time. The qualitative features of the dynamic system
were investigated by generating signal-response curves.

Our model is based on the relationships between mTORC1, autophagy and autophagy
inducers (ULK1 and AMPK). An extra protein (PROT) has been added to the model to ensure
that living systems are described as accurately as possible. The parameter values and the
detailed system of equations can be found in the Appendices A (Tables Al and A2) and B
(Tables Bl and B2) in S1 File.

In this work, the time course and signal response curves were computed numerically using
XPP-AUT (freely available from https://sites.pitt.edu/~phase/bard/bardware/xpp/xpp.html).
The rate constants (k) have the dimension of relative (time unit) ™' and Michaelis constants (J)
are dimensionless. The protein activities are given in arbitrary units (a.u).

Network analysis methods

Core, direct and additional protein regulatory layers were downloaded from the Autophagy-
Net database https://autophagynet.org accessed on 14 March 2024 [18]. From this dataset,
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interactors were selected that met the defined criteria: (1) getting induced by ULK1 and (2)
having a positive effect on AMPK.

Results and discussion
A mechanical model of the dynamic characteristic of autophagy induction

To illustrate the idea behind the periodic regulation of autophagy induction, let us use a simple
mechanical metaphor built from a human-powered swing and a footstool (Fig 1A). The two
legs of the swing stand represent the normal and stressed stated (red and green legs), respec-
tively. The autophagy induced by AMPK and ULK1 in this metaphor is a little bell waiting to
be rung by the rocking person, and this is the signal for the activation of the process. However,
the presence of a footstool denotes the high mTORCI level in the cell, which ensures that the
rocker cannot swing. As a result, the rocker does not reach the bell thus preventing the autop-
hagy process from being triggered under normal conditions (Fig 1A, upper panel). Cellular
stress is symbolized by the rocker stretching its legs and pushing the footstool. Thus, the foot-
stool falls down (decreasing mTORCI1 level) and it can no longer prevent swinging the swing
to the stressed state in which the rocker can ring the bell referring to the induction of AMPK
and ULK1-dependent autophagy. Although the rocker swings out into the stressed state, but
does not stay there, as it swings back and forth between the two states (i.e. stressed and normal
state). This movement of the rocker generates an oscillatory motion in the system which
means that the autophagy bell will only ring periodically and not continuously. The amount of
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Fig 1. Re-wiring the control network of mMTORC1-AMPK-ULKI1 regulatory triangle. (A) A human-powered swing
is a good metaphor of the oscillatory characteristic of cellular stress-induced autophagy. (panel left) At normal
conditions the swing cannot move because the human is propped up on the footstool with their legs (representing the
presence of mMTORC1). (middle panel) Upon cellular stress, the human leg is pulled up so that mTORCI can no
longer prevent the swing from starting. AMPK and ULK1 get activated, and if both are present (the swing is fully out
of position), the bell rings symbolizing the induction of autophagy. Since the swing cannot stop in the autophagy state,
it starts to oscillate. (panel right) At rapamycin treatment the footstool disappears (as there is no mTORC1), the
person can no longer support himself with his legs and the swing swings out to the autophagy position, and the system
starts to oscillate. (B) The simple wiring diagram of autophagy induction upon cellular stress. Dashed lines show how
the molecules can influence each other. Blocked end lines denote inhibition. Numbers refer to the negative and double
negative feedback loops of the control network. (C) The temporal dynamics is simulated (panel left) upon cellular
stress (stress1 = 0.25, stress = 0.75) or (panel right) rapamycin treatment (nTORCIT = 0.4). The relative activity of
mTOR, AMPK, ULK1 and autophagy markers is shown.

https://doi.org/10.1371/journal.pone.0313302.g001
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mTORCI never increases back enough to stop the oscillation of autophagy (Fig 1A, middle
panel). In the mechanical metaphor, if someone destroys the footstool with a hammer, it is
equivalent to being under mTORCI1 inhibition (e.g. during rapamycin treatment). In this case,
the rocker does not need to kick up the stool, but easily swings off the swing and oscillates
between the stressed and normal states resulting the repetitive ringing of the bell symbolizing
the periodic activation of autophagy induction (Fig 1A, lower panel). Until someone puts a
stool back to its original position (i.e. mTORCI is inactive again), the swing will remain in
periodic repetitive motion. However, if the rocker does not propel itself on the swing, the
movement of the swing will eventually decelerate and then stop, which corresponds to a state
of cell death.

Re-wiring the control network of mTORC1-AMPK-ULK]1 regulatory
triangle

In order to build up a network to periodically regulate autophagy induction, we compiled
experimentally determined published data on the possible connections between mTORCI,
AMPK and ULK1 and their sign (positive or negative). A detailed table is attached to the
study, which includes both the cells and cell lines used, the stressors used, the treatment times
and concentrations and their outcomes (S1 Table).

Based on the literature, we were able to generate a novel regulatory triangle of AMPK-
mTORC1-ULK1 (Fig 1B). We claim that AMPK can inhibit mTORC1, meanwhile mTORCI1
also has a negative effect on it generating a double negative feedback loop in the control net-
work (see “number 17 in Fig 1B). Besides, a mutual antagonism between ULK1 and mTORC1
is also observed in the control network (see “number 2” in Fig 1B). Due to several identified
AMPK targets (called “extra protein” in Fig 1B), we assume that AMPK has a delayed positive
effect on ULKI. It is well-known that ULK1 has a negative effect on AMPK, resulting in a
ULK1 -| AMPK -> ULKI1 negative feedback loop (see “number 3” in Fig 1B). These connec-
tions confirm that for autophagy induction, both ULK1 and AMPK are essential, meanwhile
mTORCI inhibits the process.

Taking into account the novel scientific data of Ji-Man Park et al. [15], AMPK is not only
able to promote autophagy induction, but it also has a negative effect on the process. Mean-
while the effect of ULK1 kinase is also dual on the self-cannibalism, as it not only directly
inhibits AMPK, but also positively affects it via mTORCI (Fig 1B). These regulatory connec-
tions suggest that both ULK1 and AMPK have a dual role, and that this is the key to fine-tun-
ing autophagy induction. When AMPK directly inhibits ULK1, due to the already present
ULK1-| AMPK connection a mutual antagonism gets formed between ULK1 and AMPK in
the control system. This double negative feedback loop combined with the delayed AMP-
K-ULK]1 negative feedback loop results in a so-called amplified negative feedback loop (see
“number 3” in Fig 1B). Our network motif consists of a three-component negative feedback
loop (AMPK -> extra protein -> ULK1 -| AMPK) suggesting an oscillatory characteristic,
meanwhile the ULK1 -| AMPK-| ULK1 double negative feedback loop is able to “amplify” it.
It is well known that this network motif is essential for a powerful mechanism for generating
bistability and oscillation in a control network [19].

Although mTORCI is a well-known autophagy inhibitor under physiological conditions
the mTORC1 -| AMPK-| ULK1 and mTORC1 -| ULK1 -| AMPK regulatory connections
assume that mTORCI might have positive effects on autophagy induction. Recently Ganley
et al. has shown that mTORC1 helps to maintain lysosome identity by promoting autophagic
lysosome reformation (ALR). ALR-induced lysosomal tubulation is essential for the reforma-
tion of lysosomes from autolysosome upon long-term starvation. It has been confirmed that
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mTORCI promotes both tubule initiation and tubule maintenance via phosphorylation of
autophagy genes (such as UVRAG and VPS34) [20].

By doing computer simulations we suggest that the dynamical characteristic of autophagy
induction gets periodically repeated both upon cellular stress (such as food deprivation) and in
case of mTORCI inhibition (mimicking e.g. rapamycin treatment) (Fig 1C). We hypothesize
that the periodic activation-inactivation of ULK1 and AMPK under cellular stress or during
mTORCI inhibition explains the variance in experimental results found in the literature (such
as ULK1 and AMPK gets activated or not during the given treatment [13, 21-25]) when the
activity of key proteins was not monitored over time by multiple sampling, but only at a spe-
cific time point (see black dotted lines on Fig 1C, which could be our possible sampling points
with different results).

Kazyken et al. also showed that AMPK promoted the reactivation of mMTORC1, while being
able to suppress ULK1-dependent autophagy induction in the presence of prolonged amino
acid starvation [16]. We hypothesize that if amino acid starvation had been monitored for lon-
ger, nTORCI1 would have been inactivated again and cell autophagy would have been
induced. We have previously experimentally demonstrated by using multiple sampling points
over a much longer time period that autophagy got an oscillatory characteristic both during
glucose deprivation and during rapamycin treatment in HEK293 cells [26].

We suggest that the role of periodic repetitive autophagy in various cellular stresses is to
allow the cell to use up damaged or unnecessary components generated during autophagy-
dependent digestion. We claim that over time the amplitude of the autophagy oscillation
decays and if conditions do not improve, the cell will somehow commit suicide. Ganley et al.
has shown that some reactivation of mMTORCI is required for ALR to occur and thus new
autophagosomes to form for a subsequent round of autophagy [20], further supporting the
hypothesis that delayed negative feedback loops in autophagy regulation helps cell survival by
generating a periodic activation during prolonged starvation. Recently, Mukhopadhyay et al.
has observed two peaks of autophagy induction upon serum starvation in various cell types
(such as HeLa, MDA-MB-231 and FaDu cells) assuming the oscillatory characteristic of autop-
hagy induction, however prolonged food deprivation resulted in autophagy-dependent cell
death [27].

The importance of ULK1 -| AMPK connection in the periodic repeat of
autophagy induction

To further confirm the importance of amplified negative feedback loop between AMPK and
ULK1, we plot the phase plane diagram of AMPK and ULK1 nullclines (Fig 2A-2F). The
AMPK nullcline (green curve) and ULK1 nullcline (purple curve) refers to those points where
the rate of activation is exactly balanced by the rate of inactivation, respectively. Along the
AMPK nullcline, JAMPK/dt = 0 and trajectories move horizontally (i.e. there is no change in
in the X direction but there may be change in the Y direction), meanwhile the ULK1 nullcline,
dULK1/dt = 1 and trajectories move vertically (i.e. there is no change in the Y direction but
there may be change in the X direction). By definition, when the nullclines intersect the system
might have real biological states, which can be stable or unstable.

In the case where a delayed negative feedback loop between AMPK and ULK1 is comple-
mented by a double negative feedback loop, the nullclines have one unstable intersection,
which around the control network repeatedly overshoot and undershoot (see the grey trajecto-
ries on Fig 2A) generating a sustained oscillation of ULK1 and AMPK activity. The wider the
trajectories run on the phase diagram, the more it is ensured that ULK1 and AMPK are prop-
erly turned on and off during oscillation.
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Fig 2. Confirming the role of the regulatory connections of autophagy induction. The (upper panel) simple wiring
diagram of AMPK-ULKI1 connection and the (lower panel) phase plane diagrams are plotted upon cellular stress
when (A) amplified negative feedback loop, (B) simple feedback loop, (C) counter-operating negative feedback loop,
(D) both amplified and counter-operating negative feedback loops, (E) amplified + same-direction operating negative
feedback loops or (F) amplified negative feedback + positive feedback loops are present. On the wiring diagram dashed
lines show how the molecules can influence each other, while locked end lines denote inhibition. On the phase plane
diagram, the balance curves of ULK1 (green) and AMPK (orange) are plotted. Intersections of nullclines represent
unstable (unfilled circle) steady state. Trajectories are depicted with dotted grey lines. (G) The wiring diagram of
autophagy induction upon cellular stress completed with the possible ‘extra proteins’. Dashed lines show how the
molecules can influence each other. Blocked end lines denote inhibition. Numbers refer to the negative and double
negative feedback loops of the control network.

https://doi.org/10.1371/journal.pone.0313302.g002

If the double negative feedback loop between AMPK and ULK1 is removed, we assume
only a simple delayed negative feedback loop (light grey dotted connection represents the
absence of AMPK -| ULK1 connection form the wiring diagram on Fig 2B) in the regulatory
network. In this case autophagy induction still has its oscillatory characteristic, but the ampli-
tude of periodic repeat of both AMPK and ULK1 gets drastically reduced (Fig 2B). If the net-
work motif is extended with a direct AMPK -> ULKI regulatory connection (see red dotted
arrow on Fig 2C) generating a counter-operating negative feedback loop in the control net-
work the amplitude of autophagy oscillation gets decreased. Although some experimental data
have suggested that AMPK is directly promotes the activation of ULK1 via phosphorylation,
our theoretical analysis suggest that the presence of the amplified feedback loop cannot stabi-
lize the oscillation of AMPK and ULK1 even if the counter-operating feedback loop is also
present in the control network (Fig 2D).

It is much better for the dynamic behavior of the regulator system if AMPK does not act as
an activator of the ULKI, but vice versa, i.e. ULK1 -> AMPK is combined with the amplified
negative feedback loop (Fig 2E). In this case a sustained oscillation of autophagy is generated
with the widest amplitude of AMPK and ULK1 during the cycles. This is entirely consistent
with those very recent experimental results, where Yanagi et al. suggests that ULK1 can directly
promote AMP sensitivity of AMPK by phosphorylation of AMPKy1 at Ser260/Thr262 [28,
29]. Besides, the ULK1 -> AMPK link, which has been experimentally confirmed for many
years, is also present in the regulatory system, but it is indirectly via the ULK1 -| mTOR-|
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AMPK pathway. It is important to note that when the ULK -> AMPK connection is combined
with the AMPK -> ULK1 connection, a positive feedback loop is created. If we add this feed-
back loop to our amplified negative feedback loop we can get two results, depending on how
strong the AMPK -> ULK1 connection is (Fig 2F). While a weaker ULK1 -> AMPK connec-
tion can increase the amplitude of autophagy oscillation (see nullclines and grey trajectories
labelled “o” on Fig 2F), a larger value drastically decreases it (see black trajectories labelled “p”
on Fig 2F).

We theorize that the dynamic behavior of the system is the most favorable when both
amplified negative feedback loop and a positive feedback loop are present in the control system
(Fig 2F). We assume that this scenario is the best for the control network to generate a sus-
tained oscillation of autophagy with the widest amplitude and with the more robust answer,
but this needs to be experimentally verified in the near future.

Confirming the sign of regulatory components using bioinformatics
methods

We hypothesize that not only AMPK and ULKI1 fit into the above-mentioned regulatory net-
work, but that other regulatory components with the same connections and their correspond-
ing sign (such as positive or negative) may also play a role in the regulation of autophagy
induction. All proteins that follow AMPK kinetics were named autophagy inducers, while
components with ULK1 characteristics were named autophagy controllers (Fig 2G). This was
followed by a systematic search for potential candidates using AutophagyNet—a network data-
base of autophagy regulation [18]. By collecting protein-protein interactions from the core,
direct regulator and further regulators layers, we defined a set of proteins that satisfy the
requirements for the ‘extra protein’. Our results show that 16 proteins could fit the role of the
‘extra protein’ (Fig 2G).

Conclusions

As we can see here the oscillatory characteristic of autophagy induction is crucial for the
proper cellular response to stimuli. Taking into consideration newly available experimental
data, our theoretical analysis has revealed that the presence of both amplified negative and pos-
itive feedback loops are essential to guarantee the periodic repeat of autophagy induction upon
various cellular stresses. We argue that understanding the dynamical behavior of a process is
greatly supported by approaching it from a systems biology perspective, and thus this analysis
can greatly contribute to a much more precise study of the process experimentally. Therefore,
the results presented here can greatly contribute to a more thorough understanding of how
autophagy works.

Supporting information

§1 Table. Collection of data from literature on proven regulatory links in the ULK1-
AMPK-mTORCI1 regulatory network. Arrows indicate activation, while blocked end lines
indicate inhibition between the members (ULK1, AMPK, mTORCI1 and “autophagy”) of the
network. “Autophagy” refers to the process by which autophagy actually takes place success-
fully in the cell. The asterisks refer to direct phosphorylation at a given site on the controlled
protein. The numbers in the black boxes show the numbered connections in the regulatory
network on Fig 1A [13, 15-17, 21, 28-62].

(XLSX)
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