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Abstract

This research introduces novel concepts in sequence theory, including Bessel convergence,

Bessel boundedness, Bessel statistical convergence, and Bessel statistical Cauchy

sequences. These concepts establish new inclusion relations and related results within

mathematical analysis. Additionally, we extend the first and second Korovkin-type approxi-

mation theorems by incorporating Bessel statistical convergence, providing a more robust

and comprehensive framework than existing results. The practical implications of these the-

orems are demonstrated through examples involving the classical Bernstein operator and

Fejér convolution operators. This work contributes to the foundational understanding of

sequence behavior, with potential applications across various scientific disciplines.

1 Introduction

Statistical convergence is a natural extension of the traditional concept of convergence, broad-

ening its applicability in various mathematical contexts. This concept was introduced indepen-

dently by Fast [1] and Steinhaus [2] in 1951, marking a significant development in the study of

sequences. Shortly thereafter, Schoenberg [3] also presented the idea independently, further

solidifying its place in mathematical theory.

Over the years, statistical convergence has found numerous applications. Its usefulness has

grown, extending into numerous areas in recent times. Notable applications include approxi-

mation theory [4–6], summability theory [7–9], measure theory [10], time scale [11–13], Fou-

rier analysis [14] and Banach spaces [15, 16]. These diverse applications underscore the

versatility and importance of statistical convergence in modern mathematical research. For

additional information, refer to [17–20].

Statistical convergence relies on the concept of natural density for subsets of N. Let O be a

subset of N. The natural density of O, represented as Λ(O), is given by

L Oð Þ ¼ lim
u!1

1

u
jfi � u : i 2 Ogj;
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in case the limit exists, where |{ι� υ : ι 2 O}| denotes the count of elements in O that are less

than or equal to υ (see [21]).

A sequence ðT rÞ is said to be statistically convergent (or, S-convergent) to the value T ∗
if,

for every % > 0, the set fr � u : jT r � T ∗
j > %g has a natural density zero, that is,

lim
u!1

1

u
jfr � u : jT r � T ∗

j > %gj ¼ 0:

In this context, the statistical limit of the sequence ðT rÞ is denoted as T ∗
, written as

St � limT r ¼ T ∗
. Throughout this study, S represents the set of all S-convergent sequences.

In [22], the difference sequence spaces c0(Δ), c(Δ), and ℓ1(Δ) were introduced, defined as

follows:

c0ðDÞ ¼ fT ¼ ðT rÞ : DT 2 c0g;

cðDÞ ¼ fT ¼ ðT rÞ : DT 2 cg;

and

‘1ðDÞ ¼ fT ¼ ðT rÞ : DT 2 ‘1g;

where DT ¼ ðDT rÞ ¼ ðT r � T kþ1Þ and the symbols c0, c, and ℓ1 represent the spaces of null

sequences, convergent sequences and bounded sequences, respectively.

Mathematics provides a powerful tool for understanding and solving problems related to

circular and cylindrical shapes known as Bessel functions. These functions are named after the

German mathematician Friedrich Bessel [23] who first introduced them. In various branches

of mathematics, science, and engineering, Bessel functions have been extensively used and

applied due to their importance and widespread applicability. There is a rich tapestry of math-

ematical analysis involved in the study of Bessel functions, including their properties, asymp-

totic behavior, integral representations, and special cases. Furthermore, Bessel functions are

applicable beyond theoretical realms, with practical implications for engineering, physics, and

other fields of science. The Bessel function of the first kind J wðxÞ is defined by the following

series representation:

J w xð Þ ¼
X1

u¼0

ð� 1Þ
u

Gðuþ wþ 1Þu!

x

2

� �2uþw

;

where w is a real number known as the order of the Bessel function and Γ denotes the gamma

function (also called Euler’s integral) which is defined for ξ> 0 by

GðxÞ ¼

Z1

0

e� yyx� 1dy:

Further applications on of this principle are available in [24–28].

In the realm of sequence spaces and summability theory, significant advancements have

been made with traditional concepts of convergence and boundedness. However, the intro-

duction of new convergence methods remains a crucial area for exploration. Notably, Bessel

functions have not been previously integrated into these frameworks, presenting a distinct gap

in the literature. This research addresses this gap by introducing Bessel convergence, Bessel

boundedness, Bessel statistical convergence, and Bessel statistical Cauchy sequences. These
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concepts are developed to provide a more robust and comprehensive understanding of

sequence behavior, particularly within the context of Bessel functions. By pioneering the inte-

gration of Bessel functions into these concepts, our research not only fills a significant gap in

the existing literature but also paves the way for further studies and applications in mathemati-

cal analysis and approximation theory. We will now proceed to outline the primary sections of

the paper.

2 Bessel statistical convergence

In this section, we present the primary findings of our study. We introduce new definitions,

including Bessel statistical convergence, and establish key relationships. Additionally, we pro-

vide several theorems, supported by proofs, and discuss related work that underpins our

research.

The general sequence space J m
w ðX Þ is defined as follows:

J m
w ðX Þ ¼ fT ¼ ðT rÞ : J m

w ðT rÞ 2X g;

whereX is any sequence space,m 2 N, w is a real number and

J m
w T r

� �
¼
Xm

u¼0

ð� 1Þ
u

Gðuþ 1þ wÞu!

T rþu

2

 !2uþw

:

Given thatX is a linear space, it follows that J m
w ðX Þ will also be a linear space. Moreover,

ifX possesses the properties of a Banach space, then J m
w ðX Þ will similarly be a Banach space,

defined with an appropriate norm

kT kJ ¼
Xm

u¼1

jT uj þ kJ
m
w ðT Þk:

Theorem 2.1. IfX � Y , then J m
w ðX Þ � J m

w ðY Þ.

Proof. Straightforward.

Theorem 2.2. LetX be a Banach space, and letB be a closed subset ofX . Then, the space
J m

w ðBÞ remains closed in the space J m
w ðX Þ.

Proof. SinceB �X , by Theorem 2.1, we have J m
w ðBÞ � J m

w ðX Þ. Our next step is to

establish that J m
w ðBÞ ¼ J m

w ðBÞ, where J m
w ðBÞ andB symbolize the closures of J m

w ðBÞ and

B, respectively. Let T ¼ ðT rÞ 2 J m
w ðBÞ: Consequently, a sequence ðT uÞ can be found in

J m
w ðBÞ such that

kT u � T kJ ! 0 as u!1:

This suggests that

kðT u

r
Þ � ðT rÞkJ ! 0 as u!1

in J m
w ðBÞ. So,

Xm

u¼1

jT u

u � T uj þ kJ
m
w ðT

u

r
Þ � J m

w ðT rÞkJ ! 0 as u!1

inB. That is, J m
w ðT Þ 2 B. Thus, T 2 J m

w ðBÞ. Conversely, suppose that T 2 J m
w ðBÞ. This
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implies that T 2 J m
w ðBÞ. We know thatB is closed, then J m

w ðBÞ ¼ J m
w ðBÞ. Therefore,

T 2 J m
w ðBÞ, which confirms that J m

w ðBÞ is a closed subset of J m
w ðX Þ.

From Theorem 2.2, we obtain the following result.

Corollary 2.1. IfX is a separable space, then J m
w ðBÞ is also separable.

Definition 2.1. A sequence ðT rÞ is called Bessel convergent (or, J
m
w -convergent) to a number

T ∗ if for every % > 0, there exists an integer no ¼ noð%Þ 2 N such that

jJ m
w ðT rÞ � T ∗

j < % for all r � no:

In this case, we write J m
w � limT r ¼ T ∗

. The class of all J m
w -convergent sequences is denoted by

c½J m
w �, defined as

c½J m
w � ¼ fðT rÞ : J m

w � limT r ¼ T ∗ for some number T ∗
g:

Definition 2.2. A sequence ðT rÞ is called Bessel bounded (or, J
m
w–bounded) if there exists a

positive constant M 2 Rþ such that

jJ m
w ðT rÞj � M for all r 2 N:

The class of all J m
w -bounded sequences is denoted by ‘1½J

m
w �, defined as

‘1½J
m
w � ¼ fðT rÞ : 9M 2 Rþ with jJ m

w ðT rÞj � M for all r 2 Ng:

Definition 2.3. A sequence ðT rÞ is called Bessel statistically convergent (or,
SðJ m

w Þ-convergent) to a number T
∗ if for every % > 0, the set fr � u : jJ m

w ðT rÞ � T ∗
j � %g has

natural density zero. In other words,

lim
u!1

1

u
jfr � u : jJ m

w T r

� �
� T ∗

j � %gj ¼ 0:

We denote this by StðJ m
w Þ � limT r ¼ T ∗

. The class of all SðJ m
w Þ-convergent sequences is

denoted by S½J m
w �, defined as

S½J m
w � ¼ T r

� �
: 8% > 0; lim

u!1

1

u
jfr � u : jJ m

w T r

� �
� T ∗

j � %gj ¼ 0 for some number T ∗
� �

:

Theorem 2.3. If a sequence ðT rÞ is J
m
w–convergent, then it is SðJ m

w Þ–convergent (to the same
limit); however, the converse does not have to be correct, in general.
Proof. Suppose that ðT rÞ is J m

w -convergent to T ∗
. Then, for every % > 0, there exists no 2 N

such that

jJmv ðT rÞ � T ∗
j < % 8r � no:

This indicates that the set fr � u : jJ m
w ðT rÞ � T ∗

j � %g is finite for every u 2 N, which con-

sequently entails that

lim
u!1

1

u
jfr � u : jJ m

w T r

� �
� T ∗

j � %gj ¼ 0:

Therefore, ðT rÞ is SðJ m
w Þ–convergent to T ∗

.
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For the converse part, let us consider a sequence ðT rÞ such that

J m
w T r

� �
¼

r if r ¼ u2

1 if r 6¼ u2
u 2 N:

(

Let % > 0 be given. For each u 2 N, we have

jfr � u : jJ m
w ðT rÞ � 1j � %gj �

ffiffiffi
u
p
:

This implies that

lim
u!1

1

u
jfr � u : jJ m

w T r

� �
� 1j � %gj � lim

u!1

1

u

ffiffiffi
u
p
¼ 0:

So, StðJ m
w Þ � limT r ¼ 1. However, ðT rÞ is not J m

w–convergent since ðT rÞ =2 ‘1½J
m
w �. As a

result, c½J m
w �⫋ S½J

m
w �.

Theorem 2.4. A sequence ðT rÞ is said to be SðJ
m
w Þ-convergent to a number T

∗ if and only if
there exists a set O � N such that Λ(O) = 0 and limr2NnO J m

w ðT rÞ ¼ T ∗
.

Proof. Let O
t
¼ fr 2 N : jJ m

w T r

� �
� T ∗

j > 1

tg for t 2 N. As ðT rÞ is SðJ m
w Þ–convergent to

T ∗
so that Λ(Ot) = 0. It is clear that Ot� Ot+1 for each t 2 N. We only need to prove the case

where some of the Ot
0

s are non-empty. Assume that O1 6¼ ϕ. Take any e1 2 O
1. Next, take e2 2

O2 such that e2 > e1 and

lim
u!1

1

u
r � u : jJ m

w T r

� �
� T ∗

j >
1

2

� ��
�
�
�

�
�
�
� <

1

2
;

for all υ� e2. As a result, we get e1 < e2 < e3 < . . . with et 2 Ot and

lim
u!1

1

u
r � u : jJ m

w T r

� �
� T ∗

j >
1

t

� ��
�
�
�

�
�
�
� <

1

t

for all υ� et. Now, consider O = ([et, et+1) \ Ot). Then, O � O
t

for some t and leads to

jOj

u
�
jO

t
j

u
¼

1

u
r � u : jJ m

w T r

� �
� T ∗

j >
1

t

� ��
�
�
�

�
�
�
�

�
1

t
:

To establish that Λ(O) = 0, we proceed as follows. Let % > 0 be given. We can select an integer

t 2 N such that 1

t < %. For any r 2 N n O with ρ� et, there exists an integer r� t such that er
� ρ� er+1, which implies that ρ =2 Or. Thus, we have

jJ m
w T r

� �
� T ∗

j <
1

r
�

1

t
< %:

This shows that limr2NnO J m
w ðT rÞ ¼ T ∗

.

Conversely, assume there exists a subset O � N such that Λ(O) = 0 and

limr2NnO J m
w ðT rÞ ¼ T ∗

. Given any % > 0, there exists an integer n0ð%Þ 2 N such that

jJ m
w ðT rÞ � T ∗

j < % for all r � n0 and r =2O:

PLOS ONE Bessel statistical convergence: Concepts and applications

PLOS ONE | https://doi.org/10.1371/journal.pone.0313273 November 14, 2024 5 / 20

https://doi.org/10.1371/journal.pone.0313273


This implies that

fr 2 N : jJ m
w ðT rÞ � T ∗

j > %g � O [ f1; 2; . . . ; n0g:

Therefore,

lim
u!1

1

u
jfr � u : jJ m

w T r

� �
� T ∗

j � %gj ¼ 0:

Thus, ðT rÞ is SðJ m
w Þ–convergent to T ∗

.

Theorem 2.5. A sequence ðT rÞ is SðJ
m
w Þ-convergent to a number T

∗ if and only if there exists
a sequence ðYrÞ that is J

m
w -convergent to T ∗ and

Lðfr 2 N : J m
w ðT rÞ 6¼ J m

w ðYrÞgÞ ¼ 0:

Proof. Assume that the sequence ðT rÞ is SðJ m
w Þ–convergent to T ∗

. According to Theorem 2.4,

there exists a set O � N such that Λ(O) = 0 and limr2NnO J m
w ðT rÞ ¼ T ∗

. We define a new

sequence ðYrÞ such that

J m
w Yr

� �
¼

T ∗
; if r 2 O;

J m
w ðT rÞ; if r 2 N n O:

(

Then,

J m
w Yr

� �
� T ∗

¼
0; if r 2 O;

J m
w ðT rÞ � T ∗

; if r 2 N n O:

(

Since limr2NnO J m
w ðT rÞ ¼ T ∗

, the set fr 2 N : jJ m
w ðYrÞ � T ∗

j > %g is finite for every % > 0.

Therefore, there exists n0 2 N such that for all ρ> n0,

jJ m
w ðYrÞ � T ∗

j < %:

Thus, ðYrÞ is J m
w -convergent to T ∗

.

Next, since fr 2 N : J m
w ðT rÞ 6¼ J m

w ðYrÞg � O and Λ(O) = 0, it follows that

Lðfr 2 N : J m
w ðT rÞ 6¼ J m

w ðYrÞgÞ ¼ 0:

Conversely, for any % > 0, we have

fr 2 N : jJ m
w ðT rÞ � T ∗

j > %g

� fr 2 N : J m
w ðT rÞ 6¼ J m

w ðYrÞg [ fr 2 N : jJ m
w ðYrÞ � T ∗

j > %g:

Since ðYrÞ is J m
w -convergent to T ∗

, it follows from Theorem 2.3 that this set contains only

finitely many integers, say q = q(%). Consequently,

lim
u!1

1

u
jfr � u : jJ m

w T r

� �
� T ∗

j � %gj

� lim
u!1

1

u
jfr � u : J m

w T r

� �
6¼ J m

w Yr

� �
gj þ lim

u!1

1

u
q ¼ 0:
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Hence,

lim
u!1

1

u
jfr � u : jJ m

w T r

� �
� T ∗

j � %gj ¼ 0:

Therefore, ðT rÞ is SðJ m
w Þ-convergent to T ∗

.

Theorem 2.6. If ðT rÞ is SðJ
m
w Þ–convergent, then its SðJ

m
w Þ–limit is unique.

Proof. Suppose StðJ m
w Þ � limT r ¼ T ∗

and StðJ m
w Þ � limT r ¼ T ∗∗

. Then, for any % > 0,

lim
u!1

1

u
r � u : jJ m

w T r

� �
� T ∗

j �
%

2

n o�
�
�

�
�
� ¼ 0

and

lim
u!1

1

u
r � u : jJ m

w T r

� �
� T ∗∗

j �
%

2

n o�
�
�

�
�
� ¼ 0:

Let us define the setO(%) as

O %ð Þ ¼ r � u : jJ m
w T r

� �
� T ∗

j �
%

2

n o
[ r � u : jJ m

w T r

� �
� T ∗∗

j �
%

2

n o
:

Then, Λ(O(%)) = 0. So that N n Oð%Þ 6¼ �. Thus, for any r 2 N n Oð%Þ, we may write

jT ∗
� T ∗∗

j � jT ∗
� J m

w T r

� �
j þ jJ m

w T r

� �
� T ∗∗

j <
%

2
þ
%

2
¼ %:

Since % > 0 was arbitrary, we get jT ∗
� T ∗∗

j ¼ 0, that is, T ∗
¼ T ∗∗

.

Definition 2.4. A sequence ðT rÞ is called Bessel statistically Cauchy (or, SðJ
m
w Þ–Cauchy) if

for every % > 0, there exists r0 ¼ r0ð%Þ 2 N such that

lim
u!1

1

u
jfr � u : jJ m

w T r

� �
� J m

w T r0

� �
j � %gj ¼ 0:

Theorem 2.7. A sequence T ¼ ðT rÞ is SðJ
m
w Þ–convergent if and only if ðT rÞ is SðJ

m
w Þ–

Cauchy.
Proof. Suppose that T ¼ ðT rÞ is SðJ m

w Þ–convergent to T ∗
. Then, for every % > 0,

lim
u!1

1

u
r � u : jJ m

w T r

� �
� T ∗

j �
%

2

n o�
�
�

�
�
� ¼ 0:

Choose a positive integer ρ0 such that jJ m
w ðT r0

Þ � T ∗
j � %. Now, for every u 2 N, we may

write

1

u
r � u : jJ m

w T r

� �
� J m

w T r0

� �
j �

%

2

n o�
�
�

�
�
� �

1

u
r � u : jJ m

w T r

� �
� T ∗

j �
%

2

n o�
�
�

�
�
�

þ
1

u
r0 � u : jJ m

w T r0

� �
� T ∗

j �
%

2

n o�
�
�

�
�
�:

By taking the limits on both sides in the above inequality, we obtain that

lim
u!1

1

u
r � u : jJ m

w T r

� �
� J m

w T r0

� �
j �

%

2

n o�
�
�

�
�
� ¼ 0:

Thus, ðT rÞ is SðJ m
w Þ–Cauchy.
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Conversely, suppose that ðT rÞ is SðJ m
w Þ–Cauchy. So, for every % > 0, there existsM0 2 N

such that Lðfr 2 N : jJ m
w ðT rÞ � J m

w ðT M0
Þj < %gÞ ¼ 1. That is,

Lðfr 2 N : J m
w ðT rÞ < J m

w ðT M0
Þ þ %gÞ ¼ 1

and

Lðfr 2 N : J m
w ðT M0

Þ � % < J m
w ðT rÞgÞ ¼ 1:

Now, let us define the sets O1(%) and O2(%) as follows:

O1ð%Þ ¼ fi 2 R : Lðfr 2 N : J m
w ðT rÞ < igÞ ¼ 1g

and

O2ð%Þ ¼ fj 2 R : Lðfr 2 N : J m
w ðT rÞ > jgÞ ¼ 1g:

Then, ðJ m
w ðT M0

Þ þ %Þ 2 O1ð%Þ and ðJ m
w ðT M0

Þ � %Þ 2 O2ð%Þ. Let i 2 O1(%) and j 2 O2(%) so

that

Lðfr 2 N : J m
w ðT rÞ < igÞ ¼ 1 and Lðfr 2 N : J m

w ðT rÞ > jgÞ ¼ 1:

Therefore, we get Lðfr 2 N : j < J m
w ðT rÞ < igÞ ¼ 1. This implies j< i. So,

J m
w ðT M0

Þ � % � supO2 � inf O1 � J m
w ðT M0

Þ þ %:

Since % was arbitrary, we get supO2 ð%Þ ¼ inf O1ð%Þ � T ∗
. Now, there exist i 2 O1 (%) and

j 2 O2 (%) such that T ∗
� % < j < i < T ∗

þ %. From the definitions of O1 (%) and O2 (%), we

have

Lðfr 2 N : T ∗
� % < J m

w ðT rÞ < T ∗
þ %gÞ ¼ 1:

Therefore, Lðfr 2 N : jJ m
w ðT rÞ � T ∗

j � %gÞ ¼ 0. This means that ðT rÞ is SðJ m
w Þ–

convergent.

3 Applications of Bessel statistical convergence

In this section, we extend Korovkin’s first and second theorems using Bessel statistical conver-

gence. This approach generalizes the classical results to accommodate Bessel statistical conver-

gence, providing a broader perspective on approximation properties. We work within the

Banach space C½u1; u2� of real-valued continuous functions on [u1, u2], equipped with the

supremum norm

kgkC½u1 ;u2 �
¼ sup

x2R
jgðxÞj

for g 2 CðRÞ. Now, we provide Bessel statistical analog of Korovkin first theorem, which is a

new version of Korovkin first theorem of [29]. Additionally, we will demonstrate that our new

theorem is significantly stronger.

Theorem 3.1. Let ðBrÞ be a sequence of positive linear operators from C½u1; u2� into itself.
Then, for all g 2 C½u1; u2�,

StðJ m
w Þ � limkBrðg; xÞ � gðxÞkC½u1 ;u2 �

¼ 0 ð1Þ
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if and only if

StðJ m
w Þ � limkBrð1; xÞ � 1kC½u1 ;u2 �

¼ 0; ð2Þ

StðJ m
w Þ � limkBrðx; xÞ � xkC½u1 ;u2 �

¼ 0; ð3Þ

and

StðJ m
w Þ � limkBrðx

2
; xÞ � x

2
kC½u1 ;u2 �

¼ 0: ð4Þ

Proof. Obviously, each of the functions g0ðxÞ ¼ 1, g1ðxÞ ¼ x and g2ðxÞ ¼ x
2

is continuous and

belongs to C½u1; u2�, the implication given by (1) implies (2) to (4) is clear. Now, assume that

the conditions (2) to (4) hold. To show that (1) holds. Suppose that g 2 C½u1; u2�. Since the

function g is bounded on the whole real axis so that there exists a real numberM> 0 such that

jgðxÞj � M for all x 2 R. That is, for all z; x 2 R,

jgðzÞ � gðxÞj � 2M: ð5Þ

Since, g is continuous, then for each % > 0, there exists δ> 0 such that

jgðzÞ � gðxÞj � % ð6Þ

whenever |ξ − z| < δ for all z and ξ. Taking ψ(z, ξ) = (z − ξ)2. If |ξ − z|� δ, we obtain

jg zð Þ � g xð Þj <
2M
d

2
c z; xð Þ: ð7Þ

From the inequalities (6) and (7), we get

jg zð Þ � g xð Þj < %þ
2M
d

2
c z; xð Þ:

That is,

� % �
2M
d

2
c z; xð Þ � g zð Þ � g xð Þ � %þ

2M
d

2
c z; xð Þ: ð8Þ

By linearity and monotonicity of the linear operator Brðg; xÞ, the inequality (8) implies that

� % �
2M
d

2
c z; xð Þ

� �

Br 1; xð Þ � g zð Þ � g xð Þð ÞBr 1; xð Þ � %þ
2M
d

2
c z; xð Þ

� �

Br 1; xð Þ:

Since ξ is fixed, then gðxÞ is constant. Accordingly,

� %Br 1; xð Þ �
2M
d

2
Br c; xð Þ � Brðg; xÞ � gðxÞBrð1; xÞ

� %Br 1; xð Þ þ
2M
d

2
Br c; xð Þ:

ð9Þ

It is known that

Brðg; xÞ � gðxÞ ¼ ðBrðg; xÞ � gðxÞBrð1; xÞÞ þ gðxÞðBrð1; xÞ � 1Þ: ð10Þ
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So, by using (9) and (10), we have

Br g; xð Þ � g xð Þ < %Br 1; xð Þ þ
2M
d

2
Br c; xð Þ þ g xð Þ Br 1; xð Þ � 1

� �
: ð11Þ

By estimating Brðc; xÞ, we may write

Brðc; xÞ ¼ Brðz
2
� 2zxþ x

2
; xÞ

¼ Brðz
2
; xÞ � 2xBrðz; xÞ þ x

2Brð1; xÞ

¼ ðBrðz
2
; xÞ � x

2
Þ � 2xðBrðz; xÞ � xÞ þ x

2
ðBrð1; xÞ � 1Þ:

ð12Þ

Using (11) and (12), we obtain

Brðg; xÞ � g xð Þ < %Br 1; xð Þ þ
2M
d

2
½ Br z

2
; x

� �
� x

2
� �

� 2x Br z; xð Þ � x
� �

þ x
2
ðBrð1; xÞ � 1Þ� þ gðxÞðBrð1; xÞ � 1Þ

¼ %þ
2M
d

2
x

2
þ g xð Þ

� �

Br 1; xð Þ � 1
� �

þ
2M
d

2
Br z

2
; x

� �
� x

2
� �

�
4M
d

2
x Br z; xð Þ � x
� �

þ %:

Thus, we have

kBrðg; xÞ � gðxÞkC½u1 ;u2 �
� %þ %þ

2M
d

2
þM

� �

kBrð1; xÞ � 1kC½u1 ;u2 �

þ
2M
d

2
kBrðz

2
; xÞ � x

2
kC½u1 ;u2 �

þ
4M
d

2
kBrðz; xÞ � xkC½u1 ;u2 �

� %þ KðkBrð1; xÞ � 1kC½u1 ;u2 �
þ kBrðz

2
; xÞ � x

2
kC½u1 ;u2 �

þ kBrðz; xÞ � xkC½u1 ;u2 �
Þ;

when K ¼ max f%þ 2M
d2 þM; 2M

d2 ;
4M
d2 g. Hence,

Xm

u¼0

ð� 1Þ
u

u!Gðuþ wþ 1Þ

Brþuðg; xÞ
2

 !2uþw

� g xð Þ

�
�
�
�
�

�
�
�
�
�

C½u1 ;u2 �

� %þ K

 �
�
�
�
�

Xm

u¼0

ð� 1Þ
u

u!Gðuþ wþ 1Þ

Brþuð1; xÞ
2

 !2uþw

� 1

�
�
�
�
�

C½u1 ;u2 �

þ
Xm

u¼0

ð� 1Þ
u

u!Gðuþ wþ 1Þ

Brþuðz
2
; xÞ

2

 !2uþw

� x
2

�
�
�
�
�

�
�
�
�
�

C½u1 ;u2 �

þ
Xm

u¼0

ð� 1Þ
u

u!Gðuþ wþ 1Þ

Brþuðz; xÞ
2

 !2uþw

� x

�
�
�
�
�

�
�
�
�
�

C½u1 ;u2 �

!

:

Or,

kJ m
w ðBrðg; xÞÞ � gðxÞkC½u1 ;u2 �

� %þ KðkJ m
w ðBrð1; xÞÞ � 1kC½u1 ;u2 �

þ kJ m
w ðBrðz

2
; xÞÞ � x

2
kC½u1 ;u2 �

þ kJ m
w ðBrðz; xÞÞ � xkC½u1 ;u2 �

Þ:

ð13Þ
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For any %0 > 0, we may choose % > 0 such that % < %0. From (13), we have

fr 2 N : kJ m
w ðBrðg; xÞÞ � gðxÞkC½u1 ;u2 �

� %0g

� fr 2 N : kJ m
w ðBrð1; xÞÞ � 1kC½u1 ;u2 �

þ kJ m
w ðBrðz; xÞÞ � xkC½u1 ;u2 �

þ kJ m
w ðBrðz

2
; xÞÞ � x

2
kC½u1 ;u2 �

�
%0 � %

K
g:

ð14Þ

Now, let us take

O ¼ fr 2 N : kJ m
w ðBrð1; xÞÞ � 1kC½u1 ;u2 �

þ kJ m
w ðBrðz; xÞÞ � xkC½u1 ;u2 �

þkJ m
w ðBrðz

2
; xÞÞ � x

2
kC½u1 ;u2 �

�
%0 � %

K
g;

O1 ¼ r 2 N : kJ m
w ðBrð1; xÞÞ � 1kC½u1;u2�

�
%0 � %

3K

� �

;

O2 ¼ r 2 N : kJ m
w ðBrðz; xÞÞ � xkC½u1 ;u2 �

�
%0 � %

3K

� �

;

and

O3 ¼ r 2 N : kJ m
w ðBrðz

2
; xÞÞ � x

2
kC½u1 ;u2 �

�
%0 � %

3K

� �

:

Clearly, we have O� O1 [ O2 [ O3. So that (14) implies

1

u
r 2 N : kJ m

w ðBrðg; xÞÞ � gðxÞkC½u1 ;u2 �
� %0

n o�
�
�

�
�
�

�
1

u
r 2 N : kJ m

w ðBrð1; xÞÞ � 1kC½u1 ;u2 �
�
%0 � %

3K

� ��
�
�
�

�
�
�
�

þ
1

u
r 2 N : kJ m

w ðBrðz; xÞÞ � xkC½u1 ;u2 �
�
%0 � %

3K

� ��
�
�
�

�
�
�
�

þ
1

u
r 2 N : kJ m

w ðBrðz
2
; xÞÞ � x

2
kC½u1 ;u2 �

�
%0 � %

3K

� ��
�
�
�

�
�
�
�:

By taking the limits as υ!1 and using the above assumption for the implications (2) to (4),

we obtain that

lim
u!1

1

u
r � u : kJ m

w ðBrðg; xÞÞ � gðxÞkC½u1 ;u2 �
� %0

n o�
�
�

�
�
� ¼ 0:

Therefore,

StðJ m
w Þ � limkBrðg; xÞ � gðxÞkC½u1 ;u2 �

¼ 0:

This completes the proof.

As illustrated in the forthcoming example, it is feasible to construct a sequence of positive

linear operators that meets the criteria of Theorem 3.1 but fails to satisfy the requirements of

the classical Korovkin approximation theorem, as detailed in [29]. This approach highlights

that our result offers a broader scope than the classical results.
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Example 3.1. Consider the sequence of Bernstein operators

Bu g; xð Þ ¼
Xu

r¼0

g
r

u

� � u

r

 !

x
r
ð1 � xÞ

u� r
; x 2 0; 1½ �:

Define the sequence ðT uÞ such that StðJ
m
w Þ � limT u ¼ 0 and J m

w � limT u 6¼ 0 (this condition
is permissible as indicated by Theorem 2.3), and define the sequence of linear operators W u :

C½0; 1� ! C½0; 1� by

W uðg; xÞ ¼ ð1þ J m
w ðT uÞÞBuðg; xÞ:

It is established (refer to [29]) that

Bu 1; xð Þ ¼ 1; Bu x; xð Þ ¼ x;Bu x
2
; x

� �
¼ x

2
þ
x � x

2

u
:

That is,

W uð1; xÞ ¼ ð1þ J m
w ðT uÞÞBuð1; xÞ;

W uðx; xÞ ¼ ð1þ J m
w ðT uÞÞBuðx; xÞ;

and

W uðx
2
; xÞ ¼ ð1þ J m

w ðT uÞÞBuðx
2
; xÞ:

This implies that

StðJ m
w Þ � limkW uð1; xÞ � 1kC½u1 ;u2 �

¼ 0;

StðJ m
w Þ � limkW uðx; xÞ � xkC½u1 ;u2 �

¼ 0;

and

StðJ m
w Þ � limkW uðx

2
; xÞ � x

2
kC½u1 ;u2 �

¼ 0:

Therefore, according to Theorem 3.1, we get

StðJ m
w Þ � limkW uðg; xÞ � gðxÞkC½u1 ;u2 �

¼ 0:

On the other hand, we have

limkW uð1; xÞ � 1k ¼ limk1þ J m
w ðT uÞ � 1k ¼ limkJ m

w ðT uÞk ¼ limjJ
m
w ðT uÞj 6¼ 0:

This implies that the sequence ðW uÞ does not fulfill the conditions of the classical Korovkin
theorem.

We now present a Bessel statistical version of Korovkin’s second theorem. Let C2pðRÞ repre-

sent the space of all 2π-periodic functions g 2 CðRÞ, which forms a Banach space with the

norm given by kgk
2p
¼ sup

x2R
jgðxÞj, where g 2 C2pðRÞ.

Theorem 3.2. Consider a sequence of positive linear operators ðBrÞ such that
Br : C2pðRÞ ! C2pðRÞ. Then, for every g 2 C2pðRÞ,

StðJ m
w Þ � limkBrðg; xÞ � gðxÞk2p ¼ 0 ð15Þ
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if and only if

StðJ m
w Þ � limkBrð1; xÞ � 1k

2p
¼ 0; ð16Þ

StðJ m
w Þ � limkBrðcos z; xÞ � cos xk

2p
¼ 0; ð17Þ

and

StðJ m
w Þ � limkBrðsin z; xÞ � sin xk

2p
¼ 0: ð18Þ

Proof. Conditions (16) to (18) hold immediately from (15) since the functions

1; sin x; cos x 2 C2pðRÞ.
Conversely, assume that the conditions (16) to (18) hold. We shall prove that (15) holds.

For this, let us take g 2 C2pðRÞ. To prove

StðJ m
w Þ � limkBrðg; xÞ � gðxÞk2p

¼ 0:

Let’s consider U = (ξ − δ, 2π + ξ − δ] of the length 2π of R and ξ 2 U is fixed. Since the function

g is bounded on R, for all z 2 R,

jgðzÞ � gðxÞj < 2kgk2p: ð19Þ

Also, since g is continuous at ξ, for each % > 0, there exists δ> 0 such that

jgðzÞ � gðxÞj � %: ð20Þ

whenever z 2 R and |ξ − z|< δ. Now, take c zð Þ ¼ sin2 ðz� xÞ

2
. By using (19) and (20), for all

z 2 U, we may write

jg zð Þ � g xð Þj < %þ
2kgk2p

sin2 d

2

c zð Þ: ð21Þ

That is, for all z 2 U,

� % �
2kgk

2p

sin2 d

2

c zð Þ < g zð Þ � g xð Þ < %þ
2kgk

2p

sin2 d

2

c zð Þ: ð22Þ

By linearity and positivity of Brðg; xÞ, the inequality (22) can be written as

� %Br 1; xð Þ �
2kgk2p

sin2 d

2

Br c; xð Þ < Brðg; xÞ � BrðgðxÞ; xÞ

< %Br 1; xð Þ þ
2kgk2p

sin2 d

2

Br c; xð Þ:

ð23Þ

Since ξ is fixed, so that gðxÞ is a constant number. That is, (23) implies

� %Br 1; xð Þ �
2kgk2p

sin2 d

2

Br c; xð Þ < Brðg; xÞ � Brð1; xÞgðxÞ

< %Br 1; xð Þ þ
2kgk

2p

sin2 d

2

Br c; xð Þ:

ð24Þ

On the other hand,

Brðg; xÞ � gðxÞ ¼ Brðg; xÞ � gðxÞBrð1; xÞ þ gðxÞðBrð1; xÞ � 1Þ: ð25Þ
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From the inequality (24) and the equality (25), we get

Br g; xð Þ � g xð Þ < %Br 1; xð Þ þ
2kgk

2p

sin2 d

2

Br c; xð Þ þ g xð Þ Br 1; xð Þ � 1
� �

: ð26Þ

Now,

Brðc; xÞ ¼ Br sin2 ðz � xÞ

2
; x

� �

¼ Br
1

2
1 � cos z cos x � sin z sin xð Þ; x

� �

¼
1

2
Br 1; xð Þ � 1 � cos x Br cos z; xð Þ � cos x

� �
� sin x Br sin z; xð Þ � sin x

� �� �
:

Using Brðc; xÞ in (26), we may write

Brðg; xÞ � gðxÞ < %Br 1; xð Þ þ
kgk2p

sin2 d

2

½Br 1; xð Þ � 1 � cos x Br cos z; xð Þ � cos x
� �

� sin xðBrðsin z; xÞ � sin xÞ� þ gðxÞðBrð1; xÞ � 1Þ

¼ %þ
kgk

2p

sin2 d

2

þ g xð Þ

 !

Br 1; xð Þ � 1
� �

�
kgk

2p

sin2 d

2

cos x Br cos z; xð Þ � cos x
� �

�
kgk

2p

sin2 d

2

sin x Br sin z; xð Þ � sin x
� �

þ %:

So, from the above inequality, we have

kBrðg; xÞ � gðxÞk2p
� %þ

kgk
2p

sin2 d

2

þ kgk
2p

 !

kBr 1; xð Þ � 1k þ
kgk

2p

sin2 d

2

kBrðcos z; xÞ � cos xk
2p

þ
kgk

2p

sin2 d

2

kBrðsin z; xÞ � sin xk
2p
þ %

� KðkBrð1; xÞ � 1k2p þ kBrðcos z; xÞ � cos xk2p

þ kBrðsin z; xÞ � sin xk2pÞ þ %;

where K ¼ max f%þ kgk2p
sin2d

2

þ kgk
2p
;
kgk2p
sin2d

2

g. Hence,

�
�
�
�
�

Xm

u¼0

ð� 1Þ
u

u!Gðuþ wþ 1Þ

Brþuðg; xÞ
2

 !2uþw

� g xð Þ

�
�
�
�
�

2p

� K

 �
�
�
�
�

Xm

u¼0

ð� 1Þ
u

u!Gðuþ wþ 1Þ

Brþuð1; xÞ
2

 !2uþw

� 1

�
�
�
�
�

2p

þ

�
�
�
�
�

Xm

u¼0

ð� 1Þ
u

u!Gðuþ wþ 1Þ

Brþuðcos z; xÞ
2

 !2uþw

� cos x

�
�
�
�
�

2p

þ

�
�
�
�
�

Xm

u¼0

ð� 1Þ
u

u!Gðuþ wþ 1Þ

Brþuðsin z; xÞ
2

 !2uþw

� sin x

�
�
�
�
�

2p

!

þ %:

ð27Þ
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This means,

kJ m
w ðBrðg; xÞÞ � gðxÞk2p

� KðkJ m
w ðBrð1; xÞÞ � 1k

2p
þ kJ m

w ðBrðcos z; xÞÞ � cos xk
2p

þkJ m
w ðBrðsin z; xÞÞ � sin xk

2p
Þ þ %:

For any %0 > 0, choose % > 0 such that % < %0. Now, from the inequality (27), we get

jfr � u : kJ m
w ðBrðg; xÞÞ � gðxÞk2p

� %0gj � jfr � u : kJ m
w ðBrð1; xÞÞ � 1k

2p
þ kJ m

w ðBrðcos z; xÞÞ � cos xk
2p

þ kJ m
w ðBrðsin z; xÞÞ � sin xk

2p
�
%0 � %

K
gj:

Define the following sets

O ¼ fr 2 N : kJ m
w ðBrðg; xÞÞ � gðxÞk2p � %

0g;

O1 ¼ r 2 N : kJ m
w ðBrð1; xÞÞ � 1k

2p
�
%0 � %

3K

� �

;

O2 ¼ r 2 N : kJ m
w ðBrðcos z; xÞÞ � cos xk2p �

%0 � %

3K

� �

;

O3 ¼ r 2 N : kJ m
w ðBrðsin z; xÞÞ � sin xk

2p
�
%0 � %

3K

� �

:

It is clear that O� O1 [ O2 [ O3. Thus, we may write

1

u
jfr � u : kJ m

w ðBrðg; xÞÞ � gðxÞk2p
� %0gj

�
1

u
r � u : kJ m

w ðBrð1; xÞÞ � 1k2p �
%0 � %

3K

� ��
�
�
�

�
�
�
�

þ
1

u
r � u : kJ m

w ðBrðcos z; xÞÞ � cos xk
2p
�
%0 � %

3K

� ��
�
�
�

�
�
�
�

þ
1

u
r � u : kJ m

w ðBrðsin z; xÞÞ � sin xk2p �
%0 � %

3K

� ��
�
�
�

�
�
�
�:

ð28Þ

Given that (16) through (18) are satisfied, by allowing υ!1 and applying this limit to both

sides of the inequality in (28), we derive

StðJ m
w Þ � limkBrðg; xÞ � gðxÞk2p

¼ 0:

The subsequent example illustrates the existence of a sequence of positive linear operators

that meet the criteria of Theorem 3.2, yet fail to satisfy the requirements of the classical second

Korovkin theorem as presented in [29]. This indicates that our result is significantly more

robust.
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Example 3.2. For u 2 N,SuðgÞ denote the υ
th–partial sum of the Fourier series of a function

g, i.e.,

Su g; xð Þ ¼
1

2
a0 gð Þ þ

Xu

r¼0

arðgÞ cos rxþ br gð Þ sin rx:

Consider the sequence of linear operators Du : C2pðRÞ ! C2pðRÞ defined by

Duðg; xÞ ¼ ð1þ T uÞFuðg; xÞ;

where ðT uÞ is the sequence of scalars that is SðJ
m
w Þ–convergent to zero but not J

m
w–convergent

to zero, ðFuÞ
1

r¼1
is the sequence of Fejér convolution operators defined by

Fu g; xð Þ ¼
1

2p

Zp

� p

gðzÞφ
u
x � zð Þdt;

and ðφ
u
Þ
1

r¼1
is a positive kernal which is called Fejér kernal defined by

φ
u
xð Þ ¼

uþ 1; if x is a multiple of 2p;

sin2 ðuþ1Þðx� zÞ

2

� �

ðuþ 1Þsin2 x� z

2

� � ; if x is not multiple of 2p:

8
>>>><

>>>>:

Now, we have Duð1; xÞ ¼ 1, Du sin z; xð Þ ¼ u

uþ1
sin x and Du cos z; xð Þ ¼ u

uþ1
cos x. That is, the

sequence ðDuÞ satisfies the conditions (16) to (18). So that

StðJ m
w Þ � limkDuðg; xÞ � gðxÞk2p ¼ 0:

On the other hand, we have

Duð1; xÞ ¼ ðT þ∞uÞFuð1; xÞ ¼ ðT þ∞uÞ;

This implies that

limkDuð1; xÞ � 1k2p ¼ limkT u þ 1 � 1k ¼ limkT uk ¼ limjT uj 6¼ 0:

As a result, it follows that the sequence ðDuÞ does not fulfill the conditions of the classical Korov-
kin second theorem of [29].

Definition 3.1. Let 0< μ< 1. Then, a sequence ðT rÞ is called Bessel statistically convergent
with degree μ (or briefly, SðJ mð1� mÞ

w Þ–convergent) to a number T ∗ if for every % > 0,

lim
u!1

1

u1� m
jfr � u : jJ m

w T r

� �
� T ∗

j � %gj ¼ 0:

In this case, we write StðJ mð1� mÞ
w Þ � limT r ¼ T ∗

. Throughout the study, the class of all
SðJ mð1� mÞ

w Þ–convergent sequences is denoted by S½J mð1� mÞ
w �.

Theorem 3.3. Let μ1, μ2 2 (0, 1). If ðT rÞ and ðYrÞ are two sequences such that
StðJ mð1� m1Þ

w Þ � limT r ¼ T ∗ and StðJ mð1� m2Þ

w Þ � limYr ¼ Y∗
. Then:

1. StðJ mð1� m1Þ

w Þ � limðT r þ YrÞ ¼ T ∗
þ Y∗

, where μ = min {μ1, μ2}.

2. StðJ mð1� m1Þ

w Þ � limcT r ¼ cT
∗ for any number c.
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Proof. Straightforward.

Theorem 3.4. Let μ 2 (0, 1). If a sequence ðT rÞ is SðJ
mð1� mÞ
w Þ–convergent, then it is SðJ m

w Þ–

convergent.
Proof. Straightforward.

Theorem 3.5. Let μ1, μ2, μ3 2 (0, 1), and let ðBrÞ be a sequence of positive linear operators
from C½u1; u2� into itself such that

StðJ mð1� m1Þ

w Þ � limkBrð1; xÞ � 1kC½u1 ;u2 �
¼ 0; ð29Þ

StðJ mð1� m2Þ

w Þ � limkBrðx; xÞ � xkC½u1 ;u2 �
¼ 0; ð30Þ

and

StðJ mð1� m3Þ

w Þ � limkBrðx
2
; xÞ � x

2
kC½u1 ;u2 �

¼ 0: ð31Þ

Then, for all g 2 C½u1; u2�,

StðJ mð1� mÞ
w Þ � limkBrðg; xÞ � gðxÞkC½u1 ;u2 �

¼ 0;

where μ = min {μ1, μ2, μ3}.

Proof. By using the same techniques of Theorem 3.1, for each u 2 N, we get

1

u1� m
r � u : kJ m

w ðBðg; xÞÞ � gðxÞkC½u1 ;u2 �
� %0

n o�
�
�

�
�
�

�
1

u1� m
r � u : kJ m

w ðBð1; xÞÞ � 1kC½u1 ;u2 �
�
%0 � %

3K

� ��
�
�
�

�
�
�
�

þ
1

u1� m
r � u : kJ m

w ðBðz; xÞÞ � xkC½u1 ;u2 �
�
%0 � %

3K

� ��
�
�
�

�
�
�
�

þ
1

u1� m
r � u : kJ m

w ðBðz
2
; xÞÞ � x

2
kC½u1 ;u2 �

�
%0 � %

3K

� ��
�
�
�

�
�
�
�:

This implies that

1

u1� m
r � u : kJ m

w ðBðg; xÞÞ � gðxÞkC½u1 ;u2 �
� %0

n o�
�
�

�
�
�

�
1

u1� m1
r � u : kJ m

w ðBð1; xÞÞ � 1kC½u1 ;u2 �
�
%0 � %

3K

� ��
�
�
�

�
�
�
�
u1� m1

u1� m

� �

þ
1

u1� m2
r � u : kJ m

w ðBðz; xÞÞ � xkC½u1 ;u2 �
�
%0 � %

3K

� ��
�
�
�

�
�
�
�
u1� m2

u1� m

� �

þ
1

u1� m3
r � u : kJ m

w ðBðz
2
; xÞÞ � x

2
kC½u1 ;u2�

�
%0 � %

3K

� ��
�
�
�

�
�
�
�
u1� m3

u1� m

� �

:

By using the conditions (29) to (31), we obtain

StðJ mð1� mÞ
w Þ � limkBrðg; xÞ � gðxÞkC½u1 ;u2 �

¼ 0:

4 Conclusions and suggestions for further studies

In this research paper, we have introduced the concepts of Bessel convergence, Bessel bound-

edness, Bessel statistical convergence, and Bessel statistical Cauchy. And, we have provided
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some theorems related to these concepts. We established key inclusion relations and related

results that highlight the interconnections among these new concepts. Additionally, our intro-

duction of revised versions of the first and second Korovkin-type approximation theorems,

based on Bessel statistical convergence, represents a significant advancement in approximation

theory. The empirical validation of our theorems through examples utilizing the classical Bern-

stein operator and Fejér convolution operators underscores the robustness and applicability of

our proposed framework. Overall, our findings provide a more comprehensive and nuanced

understanding of sequence behavior compared to existing theories.

The advancements detailed in this paper pave the way for further research and development

in the field, offering a solid foundation for future investigations into Bessel-type convergence

and approximation methods. For further studies, we suggest that some research papers can be

prepared using our results; for instance:

• In recent years several versions of approximation theorems have been presented by several

authors, for instance, in [30, 31], the authors proposed the notions of statistical convergence

using deferred Nörlund means. These versions can be further expanded by applying the con-

cepts of our study. As a result, new versions of approximation theorems can be introduced

using deferred Nörlund Bessel statistical convergence.

• To explore additional new papers utilizing Bessel statistical convergence, we encourage readers

to review various versions of approximation theorems found in [32–35]. This integration may

yield refined results that not only extend the current understanding of approximation theorems

but also open new avenues for research in mathematical analysis and its related disciplines.

• In [36], the authors presented the notion of summability means of Fourier series of arbitrary

periodic functions, whereas in [37], the authors presented the notion of uniform conver-

gence of Fourier series. We propose extending these concepts by incorporating the Bessel

function within the framework of Fourier series.
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