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Abstract

This research introduces novel concepts in sequence theory, including Bessel convergence,
Bessel boundedness, Bessel statistical convergence, and Bessel statistical Cauchy
sequences. These concepts establish new inclusion relations and related results within
mathematical analysis. Additionally, we extend the first and second Korovkin-type approxi-
mation theorems by incorporating Bessel statistical convergence, providing a more robust
and comprehensive framework than existing results. The practical implications of these the-
orems are demonstrated through examples involving the classical Bernstein operator and
Fejér convolution operators. This work contributes to the foundational understanding of
sequence behavior, with potential applications across various scientific disciplines.

1 Introduction

Statistical convergence is a natural extension of the traditional concept of convergence, broad-
ening its applicability in various mathematical contexts. This concept was introduced indepen-
dently by Fast [1] and Steinhaus [2] in 1951, marking a significant development in the study of
sequences. Shortly thereafter, Schoenberg [3] also presented the idea independently, further
solidifying its place in mathematical theory.

Opver the years, statistical convergence has found numerous applications. Its usefulness has
grown, extending into numerous areas in recent times. Notable applications include approxi-
mation theory [4-6], summability theory [7-9], measure theory [10], time scale [11-13], Fou-
rier analysis [14] and Banach spaces [15, 16]. These diverse applications underscore the
versatility and importance of statistical convergence in modern mathematical research. For
additional information, refer to [17-20].

Statistical convergence relies on the concept of natural density for subsets of N. Let Q be a
subset of N. The natural density of Q, represented as A(£2), is given by

1
AQ) = Ulinfo El{l <v:1€Q},
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in case the limit exists, where |[{t < v:1 € Q}| denotes the count of elements in Q that are less
than or equal to v (see [21]).

A sequence (7 ) is said to be statistically convergent (or, S-convergent) to the value 7" if,

for every 0 > 0, theset {p < v : |7, —T"| > o} has a natural density zero, that s,

1 = .
lim;|{p§v:|Tp—T > o} =0.

V—00

In this context, the statistical limit of the sequence (7',) is denoted as 7", written as

St —lim 7/) = 7. Throughout this study, S represents the set of all S-convergent sequences.
In [22], the difference sequence spaces ¢y(A), c(A), and €,.(A) were introduced, defined as
follows:

CO(A> = {? = (?p) AT € Co}a

c(A) ={T =(T,) : AT e},
and

L (A ={T = (7/)) AT €4},

where AT = (AT ) = (TP — T ,,,) and the symbols ¢, ¢, and €., represent the spaces of null
sequences, convergent sequences and bounded sequences, respectively.

Mathematics provides a powerful tool for understanding and solving problems related to
circular and cylindrical shapes known as Bessel functions. These functions are named after the
German mathematician Friedrich Bessel [23] who first introduced them. In various branches
of mathematics, science, and engineering, Bessel functions have been extensively used and
applied due to their importance and widespread applicability. There is a rich tapestry of math-
ematical analysis involved in the study of Bessel functions, including their properties, asymp-
totic behavior, integral representations, and special cases. Furthermore, Bessel functions are
applicable beyond theoretical realms, with practical implications for engineering, physics, and
other fields of science. The Bessel function of the first kind 7, (&) is defined by the following

series representation:
B 00 (71)14 5 2utw
Tule) = ;F(u w+ Dul \2 ’

where w is a real number known as the order of the Bessel function and I" denotes the gamma
function (also called Euler’s integral) which is defined for £ > 0 by

00

) :/e’yy‘f’]dy.

0

Further applications on of this principle are available in [24-28].

In the realm of sequence spaces and summability theory, significant advancements have
been made with traditional concepts of convergence and boundedness. However, the intro-
duction of new convergence methods remains a crucial area for exploration. Notably, Bessel
functions have not been previously integrated into these frameworks, presenting a distinct gap
in the literature. This research addresses this gap by introducing Bessel convergence, Bessel
boundedness, Bessel statistical convergence, and Bessel statistical Cauchy sequences. These
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concepts are developed to provide a more robust and comprehensive understanding of
sequence behavior, particularly within the context of Bessel functions. By pioneering the inte-
gration of Bessel functions into these concepts, our research not only fills a significant gap in
the existing literature but also paves the way for further studies and applications in mathemati-
cal analysis and approximation theory. We will now proceed to outline the primary sections of
the paper.

2 Bessel statistical convergence

In this section, we present the primary findings of our study. We introduce new definitions,
including Bessel statistical convergence, and establish key relationships. Additionally, we pro-
vide several theorems, supported by proofs, and discuss related work that underpins our
research.

The general sequence space 7. (%) is defined as follows:

T Z)=AT =(T,): T\T,) € Z},

where & is any sequence space, m € N, w is a real number and
— 2u+w
ey (T,
T, = . .
70T, ;F(u T+wul\ 2

Given that £ is a linear space, it follows that 7' (.Z") will also be a linear space. Moreover,

if Z possesses the properties of a Banach space, then 77 (£") will similarly be a Banach space,
defined with an appropriate norm

TN, =D 1T+ 1T2T)I:
u=1

Theorem 2.1. If 2 C ¥, then T/(Z) C T (¥).

Proof. Straightforward.

Theorem 2.2. Let 2 be a Banach space, and let 98 be a closed subset of Z". Then, the space
J"(B) remains closed in the space T (Z).

Proof. Since 8 C &, by Theorem 2.1, we have 7" (£) C J(Z). Our next step is to
establish that J7'(#) = J" (%), where 7" (%) and % symbolize the closures of J" (%) and
B, respectively. Let T = (Tp) € J"(A). Consequently, a sequence (7 ") can be found in
J"(2B) such that

| 7" =TI, — 0 as v — cc.
This suggests that
ICT2) = (T )l — 0 as v — oo

in J7(#). So,

T2~ T, |+ | T(T%) — T(T,), — 0 as v — o0
1

u=

in . Thatis, 7" (T ) € &.Thus, T € J"(%). Conversely, suppose that 7 € J"(%). This
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implies that 7 € J7 (). We know that & is closed, then 7" (&) = J(%#). Therefore,

T € J7 (%), which confirms that J”(4) is a closed subset of 77 (Z").
From Theorem 2.2, we obtain the following result.
Corollary 2.1. If Z is a separable space, then J"(98) is also separable.

Definition 2.1. A sequence (7 ,) is called Bessel convergent (or, J,-convergent) to a number
T if for every o > 0, there exists an integer n, = n,(9) € N such that

\TM(T,) = T'| <o for all p >n,.

In this case, we write J, — lim?ﬂ = T". The class of all J"-convergent sequences is denoted by

[T, defined as

Tyl = {(?p) VA lim?l, =T for some number T"}.

Definition 2.2. A sequence (7 ,) is called Bessel bounded (or, J, -bounded) if there exists a
positive constant M € R" such that

| T (T )| <M for all p € N.
The class of all J"-bounded sequences is denoted by {__ [T "), defined as

0T ={(T,) : IM € R" with |T7(T,)| <M for all p € N}.

Definition 2.3. A sequence (?V) is called Bessel statistically convergent (or,
S(J")-convergent) to a number T if for every o > 0, the set {p < v : | T (7p) -7
natural density zero. In other words,

> 0} has

1 — .
lim ~[{p <v:|T0(T,) =T = o} = 0.

We denote this by St(J") — lim7p = T". The class of all S(J)-convergent sequences is
denoted by S[J "], defined as

_ 1 _
S[T" = {(Tp) : Vo > 0, lim E|{p <v:|JN(T,) —T'| > 0} =0 for some number T*}.

Theorem 2.3. If a sequence (T ) is J,,—convergent, then it is S(J,,)-convergent (to the same
limit); however, the converse does not have to be correct, in general.

Proof. Suppose that (T ,) is J,-convergent to 7 . Then, for every o > 0, there exists n, € N
such that

|]‘:n(?ﬁ) _T*l <o Vp=>mn,

This indicates that the set {p < v : | T (?p) — T7| > o} is finite for every v € N, which con-
sequently entails that

1 — .
lim —|{p <v:|T0(T,) -T

v—oo D

> o0} =0.

Therefore, (T ,) is S(J")-convergent to 7"
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For the converse part, let us consider a sequence (?p) such that

_ if p=1?
Jﬁ(T,,)Z{f .fp;é , VEN.
if p#£v

Let o > 0 be given. For each v € N, we have
{p <v:|TUT,) 1] = e} < V.

This implies that

lim <Hp < v:\T2T,) =112 o} < fim V=0,
So, St(J0) — lim?p = 1. However, (Tp) is not J''—convergent since (Tp) ¢l [T Asa
result, ([T € S[T ]

Theorem 2.4. A sequence (TP) is said to be S(J"")-convergent to a number T if and only if
there exists a set QO C N such that A(Q) = 0 and lim .o T, (?p) =T

Proof.LetQ' = {p e N: |J"(T,) — T'| > 1} fort € N. As (T ,) is S(J')-convergent to
T so that A(Q') = 0. It is clear that Q C Q" for each t € N. We only need to prove the case
where some of the Q's are non-empty. Assume that Q' # ¢. Take any e, € Q'. Next, take e, €
Q? such that e, > e; and

1 . Lo 1
{p§0:|jw(’]’p)7’ >§}‘<§,

forall v > e,. Asaresult, we gete; < e, < e3 < ... with e, € Q" and
1 — . 1 1
lim —Hp <v:|JNT,) - T >—}’ <=
v—oo D t t
for all v > e,. Now, consider Q = ([e,, e,,1) N QY. Then, Q C Q' for some t and leads to

1o
v D

{p <v: |j$(7p) -7 >%H

<

~ | = <=

To establish that A(Q2) = 0, we proceed as follows. Let ¢ > 0 be given. We can select an integer
t € Nsuch that < o. For any p € N\ Q with p > e,, there exists an integer r > t such that e,
< p < e,41, which implies that p ¢ Q". Thus, we have

<-<-<op.

— 1
70T, - T <

~ | =

This shows that lim o J7(7,) = T".
Conversely, assume there exists a subset Q C N such that A(Q2) =0 and
lim, o T, (?p) = T". Given any p > 0, there exists an integer 7,(9) € N such that

|T"(T,)—T'| <oforall p>n,and p¢Q.
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This implies that

{peN:|T(T,) T

>0} CQU{L,2,...,n,}.
Therefore,

1 _
lim EHP <v:|JNT,)-T

V—00

> o} =0.

Thus, (7 ,) is S(J")-convergent to 7.

Theorem 2.5. A sequence (Tp) is S(J™)-convergent to a number T~ if and only if there exists

a sequence () ,) that is J',-convergent to T~ and

Afp eN:TUT,) # T2(V,)}) =0.

Proof. Assume that the sequence (7, ) is S(J, )—convergent to 7. According to Theorem 2.4,
there exists a set (0 C N such that A(Q) = 0 and lim o J, (T ,) =T . We define a new

sequence ()/,) such that

T,) =

7", if peQ,
JNT,), if peN\Q

Then,

0, if peqQ,
JNT,)-T, if pe N\Q

@) -T = {

Since lim,, . o JS(?‘)) =T ,theset{p e N: [J(Y,) — T"| > o} is finite for every o > 0.
Therefore, there exists n, € N such that for all p > #ny,

T2(,) - T <e

Thus, (Y,) is J,-convergent to 7 .
Next, since {p € N: J(T ,) # J7(Y,)} C Qand A(Q) =0, it follows that

P

A{p eN:TUT,) # Tu(,)}) =0.
Conversely, for any g > 0, we have

{peN:|TUT,) - T'|> o}
C{peN:TNT,) #T0(I )} u{p eN:|TND,) —T'| > o}.

Since (Y p) is J-convergent to 77, it follows from Theorem 2.3 that this set contains only
finitely many integers, say q = q(0). Consequently,

. 1 m (1 *
lim ~[{p <v:|TT,) = T'| = o}

D—00

1 — — 1
<lim ~|{p<v: TU(T,) # T2T)H +lim ~q=0.
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Hence,

1 = N
lim —|{p <v:|T0(T,) —T

v—oo D

> 0} =0.
Therefore, (T ,) is S(J7)-convergent to 7"
Theorem 2.6. If(?p) is S(J7)-convergent, then its S(J, )-limit is unique.
Proof. Suppose St(J") — limTp =T and St(J") — lim7p = 77" Then, for any ¢ > 0,

b Yo 2m) 12 -0
and
g o 01727 -7 28|

Let us define the set Q(p) as

Qo) = {p<v:1T3(T,) - T

> u{p<o:|7u(T,) -T2 3}

Then, A(Q(p)) = 0. So that N \ Q(p) # ¢. Thus, for any p € N\ Q(p), we may write

T -7

SIT = TUT )|+ 1TUT,) - T <5 +5 =0

Since ¢ > 0 was arbitrary, we get |7" — 77| = 0, thatis, 7" =7
Definition 2.4. A sequence (?p) is called Bessel statistically Cauchy (or, S(J)-Cauchy) if
for every o > 0, there exists p, = p,(0) € N such that

1 N —
lim e <v:|TUT,) = (T, )12 e}l =0,

Theorem 2.7. A sequence T = (T ,) is S(J")—convergent if and only if (T ,) is S(J")-
Cauchy.
Proof. Suppose that 7 = (Tp) is S(J")-convergent to 7. Then, for every o > 0,

1 0
>=l—0.
>3} =0

lim pr <v:|JNT,)-T

v—oo D

Choose a positive integer p, such that | 7" (7110) —T7| > o. Now, for every v € N, we may

>3}
2

riltnseaz(r) 7123

write

c |~

o <veizm) - 2T 28 < o <o) -

By taking the limits on both sides in the above inequality, we obtain that

lim 1‘{,0 <v:l73(T,) - 72(T, )1 = 2} =0,

v—oo D _2

Thus, (T ,) is S(J")-Cauchy.

PLOS ONE | https://doi.org/10.1371/journal.pone.0313273 November 14, 2024 7120


https://doi.org/10.1371/journal.pone.0313273

PLOS ONE

Bessel statistical convergence: Concepts and applications

Conversely, suppose that (7 ) is (7, )-Cauchy. So, for every ¢ > 0, there exists M, € N
such that A({p € N : |J$(7p) - jZ(?MOH < p}) = 1. That s,

A{p eN:TU(T,) < TN(T,) +0}) =1
and
A{p €N:T(T,) — o< THT,)}) = 1.
Now, let us define the sets Q;(p) and Q,(0) as follows:
Q) ={ieR:A({peN: JI(T,) < i}) =1}
and

Q0) ={ieR:A{p eN: T}(T,) > j}) = 1}.

Then, (J,(T ) + o) € Q,(¢) and (jf:(TMO) —0) € Q,(p). Leti € Qy(p) and j € Q,(p) so
that

AfpeN:TNT,) <i})=1land A{peN: T(T,) >j}) = 1.

Therefore, we get A({p € N:j < J7(T,) < i}) = 1. This implies j < i. So,

Jﬁ(TMU) —o0<supQ, <infQ, < jﬂ(TMU) + o.

Since o was arbitrary, we get sup Q, (¢) = inf Q,(0) — 7. Now, there exist i € Q; (p) and
j€Qy(g)suchthat 7™ — o < j<i< 7 + p.From the definitions of Q, (p) and Q, (o), we
have

A{peN:T —o< TNT,)<T +o}) =1

Therefore, A({p € N: |T2(T,) = T"

convergent.

> p}) = 0. This means that (7 ,) is S(J7)-

3 Applications of Bessel statistical convergence

In this section, we extend Korovkin’s first and second theorems using Bessel statistical conver-
gence. This approach generalizes the classical results to accommodate Bessel statistical conver-
gence, providing a broader perspective on approximation properties. We work within the
Banach space C[u,, u,] of real-valued continuous functions on [u;, u,], equipped with the
supremum norm

Hg”C[ul,uQ] = Ssup ‘g(é)
EeR

for g € C(R). Now, we provide Bessel statistical analog of Korovkin first theorem, which is a
new version of Korovkin first theorem of [29]. Additionally, we will demonstrate that our new
theorem is significantly stronger.

Theorem 3.1. Let (B,) be a sequence of positive linear operators from Clu,, u,] into itself.
Then, for all g € Clu,, u,),

SHT™) — lim][B(8,) — 8(&) gy = O a
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if and only if
SH(T) — lim|[B, (1, €) = gy, ) = 0, (2)
St(J7) = lim|[B, (&, &) = Ellety, 1) = 0, (3)
and
SH(T) — lim||B, (&%, &) = &Iy, = 0- (4)

Proof. Obviously, each of the functions g,(¢) = 1, g,(¢) = & and g,(¢) = & is continuous and
belongs to C[u,, u,], the implication given by (1) implies (2) to (4) is clear. Now, assume that
the conditions (2) to (4) hold. To show that (1) holds. Suppose that g € C[u,, u,]. Since the
function g is bounded on the whole real axis so that there exists a real number M > 0 such that
[g(&)| < Mforall ¢ € R. Thatis, forall{, & € R,

9(0) — 9(&)] < 2M. (5)

Since, g is continuous, then for each p > 0, there exists § > 0 such that

l9(0) —a(d) <o (6)

whenever | - {| < & for all { and £ Taking w((, &) = ({ — ©) If |£ - {| > 6, we obtain

80) — 8(0)] < S0 9) )
From the inequalities (6) and (7), we get

80) — 8(6)] < 0 + S UL, &)
That is,

o= WD <0 — 0 < o+ L), (®
By linearity and monotonicity of the linear operator B, (g, ), the inequality (8) implies that
(~e- 200800 < a0 - 80)B,1.9) < o+ 5100 )B,0.0)

Since £ is fixed, then g(&) is constant. Accordingly,

~0B,(1,8) - S0B,08) < B,(0.8) — 8(2)B,(1,9)

_ 2M ®)
< 0B,(1,8) + B, ( ©)-
It is known that
E;}(Q? 5) - g(é) = (E/)(g7 é) - 9(6>Ep(17 é)) + g(é)(gp(lv é) - 1) (10)
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So, by using (9) and (10), we have

B,(9,¢) — 9(¢) < 0B,(1,8) +—5 B, (¥, &) + a(&)(B,(1,8) — 1). (11)
By estimating B, (i, &), we may write
B,(y,¢) =B, -2+,
=B,(L%¢) — 2EB,((, &) + &'B,(1,¢) (12)

(B,(,&) — &) — 2¢(B,(L,&) — &) + E(B,(1,8) — 1).
Using (11) and (12), we obtain

B0.8) —o(8) < oB,(1,8) + (B, () — &) - 2(B,(.0) — &)
L EB, (L) - 1)+ a()(B,(1.8) — 1)

(@+—¢+g<s>)< (18 —1)+ 2B, (2¢) - &)

52
- BB -9 o
Thus, we have

— 2M —
1B, 0:8) = 80y < 0 (o404 M) 18,00 1l

M aIM
+ ? ||B/)(527 6) - éZHC[ulAuz] + ? ||B/)(C7 é) - 6||C[u1,uz]

< 0+ K(IB, (1, €) = Ulegy g + 1B,(E8) = E ey
+ ||§p((7 é) - é”c[ul.uz])?

when K = max {o + 2/ + M, %} Hence,

& (_1)” §p+u(g75) o

;;mnu+w+n< 2 ) 7ﬂ®c[¢
m (_1)14 §p+u(1’ 5) 2u+w

§9+K<;;mnu+w+n< 2 ) -1

- (_1)14 E{)+u(c27 5) o 2

+ ;u!l"(bﬂ—w—i-l)( 2 ) —¢ v
m (_1)14 EVJru(CHf) 2u+tw
;u!l"(u+w+1)< 2 ) _éc[ ]>'

1T (B,(8:€)) = ()l ey

< 0+ K(I73(B,(1,8)) = Uley,uy + 170 B, 8) = Ell g (13)
+1T0 B, E) = Elepyu)-

Cluy,uy)

+
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For any ¢ > 0, we may choose p > 0 such that p < ¢'. From (13), we have

{peN:|T7(B,(8:€) = 8oy = 0}
CH{p €N T0(B,(1,6) = Ulgyy uy + 1708, (L)) = Ellery, (14)

1T, (€)= E ey = 2

Now, let us take

Q ={peN:[|TB,1,) = Uy + 1T B,(E ) = &l u

HITIBE ) =l > T,

Q,

d-0
{p e 1726,0.0) - U 2 222},

0, = {p €N 1B, 0) - el 2 £22)

and

ng{PeN 172 (B, (& 5))—62llc[ul.m2Q3;<Q}‘

Clearly, we have Q C Q; U Q, U Q3. So that (14) implies

l

pEN:|TL(E,(8,) — 88y = 0}

< | =

/

p €N T2, (0.9 - Uy = S22

S

C|H —
Sl <=~

/

{peN 128,65 8) = Ellenuy = T }'

s}
rQ

+

/

(o ens1am, @) -l > 522

_|_

By taking the limits as v — oo and using the above assumption for the implications (2) to (4),

we obtain that

=0.

1
lim —Hp <v:||J0(B ,](gaf)) - 9(6)||C[u1»uz] = Q/}

v—oo D
Therefore,

St(Ty) — lim|[B, (9, €) = (&)l ey, = O-

This completes the proof.

As illustrated in the forthcoming example, it is feasible to construct a sequence of positive
linear operators that meets the criteria of Theorem 3.1 but fails to satisfy the requirements of
the classical Korovkin approximation theorem, as detailed in [29]. This approach highlights
that our result offers a broader scope than the classical results.
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Example 3.1. Consider the sequence of Bernstein operators

v

B,0.9)=>9(5) <;>a’(1 —&), ce o).

p=0

Define the sequence (T ) such that St(J") — limT | = 0 and J" — limT, # 0 (this condition
is permissible as indicated by Theorem 2.3), and define the sequence of linear operators W, :
clo,1] — €[0,1] by

W,(8,8) = (1+T(T,)B, (9, ).

It is established (refer to [29]) that

B(LO) =1 B0 = LB (.0 = £+
That is,
W,(1,8) = (1+ TU(T,)B,(1,9),
W,(6.8) = (L4 T2T)B,(6.9),
and
W,(,8) = (14 TUT)B,(,).
This implies that
SHTT) — B[ W, (1,€) = 1l =0,
SHT) = B[ W,(6,6) = Eleyy = 0
and

SH(T) = liml|[W (£, &) = Elog,y = O-
Therefore, according to Theorem 3.1, we get

St(T) — lim|[W (g, ) = 8()llopuy ) = O
On the other hand, we have

lim||W,(1,¢) — 1| = lim||1 + T(T,) = 1|| = lim| T2(T ,)|| = lim| T7(T )| # 0.
This implies that the sequence (W) does not fulfill the conditions of the classical Korovkin
theorem.

We now present a Bessel statistical version of Korovkin’s second theorem. Let C,, (R) repre-
sent the space of all 27-periodic functions g € C(R), which forms a Banach space with the
norm given by |gl,, = sup [3(¢)], where g € C,,(F).

¢eR

Theorem 3.2. Consider a sequence of positive linear operators (B,) such that
B, : C,,(R) — C,,(R). Then, for every g € C,,(R),

St(T) — lim|[B, (g, &) — a(&)ll, =0 (15)
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if and only if
St(J) — lim||B,(1,&) — 1|, = 0, (16)
St(T) — lim||B,(cos {, &) — cos &[], =0, (17)
and
St(J) — lim||B,(sin {, &) — sin &[], = 0. (18)

Proof. Conditions (16) to (18) hold immediately from (15) since the functions
1,sin & cos & € C, (R).

Conversely, assume that the conditions (16) to (18) hold. We shall prove that (15) holds.
For this, let us take g € C,_(R). To prove

St(J,) — lim||B,(g, &) — a(&)l,, = 0.

Let’s consider U = (§ - 8, 27 + £ — 6] of the length 271 of R and & € U is fixed. Since the function
gisbounded on R, for all { € R,

9(0) — a()| < 2([g]l,.. (19)
Also, since g is continuous at &, for each p > 0, there exists § > 0 such that

l9(0) —a(&)] <o (20)

whenever { € R and [¢ - {| < 8. Now, take ({) = sin’ % By using (19) and (20), for all
{ € U, we may write

90— 0(9)] < 0+ 8ley 1) @
That is, forall { € U,
0= 20 <o)~ 0 < 0+ ZEEYD). )

By linearity and positivity of B, (g, &), the inequality (22) can be written as

o8, (1,8~ Melecg o < B (g6~ B,(9(0). )

sin” 2
2/, .
< B,(1.E) + ¥ B, 009
Since & is fixed, so that g(£) is a constant number. That is, (23) implies
~o8,(1.6) 0B, 0.) <B,(0.0) =B, (0. 0900
2l 2
< 0B,(1,¢) + mi =B (), ).
On the other hand,
B,(9,¢) —a(&) = B,(9,¢) — a(&)B,(1,8) +9(&)(B,(1,£) — 1). (25)

PLOS ONE | https://doi.org/10.1371/journal.pone.0313273 November 14, 2024 13/20


https://doi.org/10.1371/journal.pone.0313273

PLOS ONE Bessel statistical convergence: Concepts and applications

From the inequality (24) and the equality (25), we get

B,(6.6) ~ 0(6) < 0B,(1,8) + W0y ) 4 g(c) (B,(1,6) 1), (26)

2

Now,
Bo =5, (w55 )

_Ep@(l —cos{cosé — sinCsinf),i)

_ % Ep(l’ &) —1—cos f(gp(cos {, &) —cos é) — sin f(ﬁp(sin {, &) — sin f)]

Using B, (i, &) in (26), we may write

B,(g,¢) —a(é) < 0B,(1,&) + ||gn||2" [B,(1,&) — 1 —cos é(Ep(cos {,&) — cos¢)

d

—sin¢(B,(sin{, &) — sin &)] + g(&)(B,(1,¢) — 1)

= <@+%+9<6>> (B,(1,6) —1) - 's'fn””f cos [B,(cos {, &) — cos ¢]

S 2

IIGII%
sin’

smf[ ,(sind, &) fsiné} + 0

So, from the above inequality, we have

IB,(6.9) — a(2)l s<g 'S'f‘rl'%+||g||%>||3 (18~ + L2 I cos ) — s,

2

Hg||2n HB (sin{, &) —siné||,, + o

< K(||E,,(1a &) =1, + 1B, (cos ¢, &) — cos &,
+ Hﬁp(sin (, &) —sinéll,,) + o,

where K = max {o + ”9”2 + 119l 'g”“} Hence,

sin? sin?

- (_1)u Ep+u(g7é) o
Zu'l“(quw+1)< 2 ) — ()

u=0 "

<x(

+

2n

m (_1)14 §p+u(1 5) 2u+w
Zu'r(u—i—w—l—l)( ) 712

'” B, (cos{, &) e
Zu'Fu+w+1 ( > ~cos¢

m B C é 2u+w
(sin
Z A —sin &
MFu+w+1

2n

>+Q.
2n

PLOS ONE | https://doi.org/10.1371/journal.pone.0313273 November 14, 2024 14/20

_|_



https://doi.org/10.1371/journal.pone.0313273

PLOS ONE Bessel statistical convergence: Concepts and applications

This means,

172 (B,(9,£)) = 8(E) ..

< K(|77(B,(1,8)) = 1|, + [T (B, (cos , &) — cos &L,

)
+77(B,(sin £, &) — sin &]|,,,) + e

For any ¢ > 0, choose g > 0 such that p < ¢'. Now, from the inequality (27), we get

{p <v:llT0(B,(8,9) — a(&)ll

> M <Hp <v: |T0(B,(1,8) =1y, + | T3 (B, (cos £, €)) — cos ],

T2, (snt,0)) ~ sincll, > L2y

Define the following sets

Q={peN:|T7(B,(g:¢) — 8l > ¢},

_ TR _ o—o
2, = {p e 1726,0.0) - 11, > £ 22},

0, = {p & N T2(B (cos . £) — coscl = 2,

0, = {p €N: |T(B,(sin, &) = sin¢ll, 2 %}

It is clear that Q C Q; U Q, U Q5. Thus, we may write

< | =

{p <v: |77(B,(8,6)) = (Ol = ¢}

<

< | =

S| = —

p<v:||T0B,(1,8) ~ 1l > le}g}'

+

{p <0 |[T0(B,(cos £, ) — cos &, > _9,3;9}‘

+in <v: || 7B, (sing, €)) —sin ], > 9/3;9}’.

(28)

Given that (16) through (18) are satisfied, by allowing v — oo and applying this limit to both

sides of the inequality in (28), we derive

St(T,) — lim||B,(g, &) — a(&)l,, = 0.

The subsequent example illustrates the existence of a sequence of positive linear operators
that meet the criteria of Theorem 3.2, yet fail to satisfy the requirements of the classical second

Korovkin theorem as presented in [29]. This indicates that our result is significantly more

robust.
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Example 3.2. Forv € N, &, (g) denote the v™—partial sum of the Fourier series of a function
g, i.e.,

S,(9,¢) **ao +Za ) cos p¢ + b, (g) sin p&.

Consider the sequence of linear operators D, : C, (R) — C,,(R) defined by
50(97 é) = (1 + ?p)%u(g? 5)7

where (T ) is the sequence of scalars that is S(J"")-convergent to zero but not J"—convergent
to zero, () ", is the sequence of Fejér convolution operators defined by

T

5.0.9 =5, [ 900~ i

and (¢,)", is a positive kernal which is called Fejér kernal defined by

v+ 1, if & is a multiple of 2m,

Ué = (v+1)(
?,(¢) in? (¢ _)

m, lf 5 is not multlple Of 27,

Now, we have D (1,&) = 1, D, (sin{, &) = ~=sin & and D, (cos {, &) = -5 cos &. That is, the
sequence (D) satisfies the conditions (16) to (18). So that

St(T,) — lim|D, (g, &) — a(&)]],, = 0.
On the other hand, we have
D,(1,8) = (T +,)8,(1,8) = (T +o,),
This implies that
lim|[D,(1,€) = 1], = lim|[T, + 1 — 1] = lim|[T|| = lim[T,| #0.

As a result, it follows that the sequence (D,) does not fulfill the conditions of the classical Korov-
kin second theorem of [29].

Definition 3.1. Let 0 < y < 1. Then, a sequence (?p) is called Bessel statistically convergent
with degree y (or briefly, S(jﬁ(lf“))—convergent) to a number T" if for every o0 > 0,

=0.

{p <v:|70(T,) -

)—00 [)1 H

In this case, we write St(J"" ™) — lim? = T". Throughout the study, the class of all
S(Jm M) ~convergent sequences is denoted by S[T"" ).
Theorem 3.3. Let iy, y, € (0, 1). If (T ,) and (Y,) are two sequences such that

St(jw( ) lzm’T =T and St(] “2)) limyp =Y. Then:
1L St(grtm)y — lim(?p +Y,) =T + V', where = min {u;, uo}.

2. SH(T ) — limeT , = ¢T" for any number c.
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Proof. Straightforward.

Theorem 3.4. Let y € (0, 1). If a sequence (7 ) is S(T"" ") ~convergent, then it is S(J™")-
convergent.

Proof. Straightforward.

Theorem 3.5. Let 1, pia, 3 € (0, 1), and let (B,) be a sequence of positive linear operators
from Clu,, u,) into itself such that

ST ) — lim|[B, (1, &) = gy, 0y =0, (29)

ST ) — lim|[B, (&, ) = €l uy = 0, (30)
and

St(T ) — lim||B, (%, &) = &l gy = O- (31)

Then, for all g € Cluy, u,),
St ) — lim|[B,(9,) = 8(E)llep, .y = 0,

where y = min {y;, y,, 4s}.
Proof. By using the same techniques of Theorem 3.1, for each v € N, we get

{p <o [|T0(B(8.€) = 8(E) ey = Ql}‘

{p<u:||f;<E< &) ~ g 2 3KQH

Dl—ﬂ

1
< —
— pl#

1
4+ —

vi-H

{p<u IT2(BE ) =l 2 3KQH

{pgu:w::(F(C g) — éllculm—gsKgH

1
+

Ul—u

This implies that

Ulf;t

{p <v:||J"(B(g,¢)) — EI(f)”c[ul,uQ = Ql}

{P S L Hj::(g(Lé)) 1||Cu1 147] — 3KQ}‘<01 ;41)

1 o pl ke
toe|fr <0 192@ @) - el 2 K"H( )
— 0

vi-
(Ul H3>

1
<
— pl-m

017;13

{pgvzlljﬁ(B(C R H

By using the conditions (29) to (31), we obtain
St (T ) — 1im||B (8, &) — 8(E)ll e,y = O-

4 Conclusions and suggestions for further studies

In this research paper, we have introduced the concepts of Bessel convergence, Bessel bound-
edness, Bessel statistical convergence, and Bessel statistical Cauchy. And, we have provided
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some theorems related to these concepts. We established key inclusion relations and related
results that highlight the interconnections among these new concepts. Additionally, our intro-
duction of revised versions of the first and second Korovkin-type approximation theorems,
based on Bessel statistical convergence, represents a significant advancement in approximation
theory. The empirical validation of our theorems through examples utilizing the classical Bern-
stein operator and Fejér convolution operators underscores the robustness and applicability of
our proposed framework. Overall, our findings provide a more comprehensive and nuanced
understanding of sequence behavior compared to existing theories.

The advancements detailed in this paper pave the way for further research and development
in the field, offering a solid foundation for future investigations into Bessel-type convergence
and approximation methods. For further studies, we suggest that some research papers can be
prepared using our results; for instance:

o Inrecent years several versions of approximation theorems have been presented by several
authors, for instance, in [30, 31], the authors proposed the notions of statistical convergence
using deferred Norlund means. These versions can be further expanded by applying the con-
cepts of our study. As a result, new versions of approximation theorems can be introduced
using deferred N6rlund Bessel statistical convergence.

o To explore additional new papers utilizing Bessel statistical convergence, we encourage readers
to review various versions of approximation theorems found in [32-35]. This integration may
yield refined results that not only extend the current understanding of approximation theorems
but also open new avenues for research in mathematical analysis and its related disciplines.

In [36], the authors presented the notion of summability means of Fourier series of arbitrary
periodic functions, whereas in [37], the authors presented the notion of uniform conver-
gence of Fourier series. We propose extending these concepts by incorporating the Bessel
function within the framework of Fourier series.
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