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Abstract

Background

Eupatilin, a flavone isolated from Artemisia species, exerts anti-inflammatory, anti-oxidative,

and anti-neoplastic activities. However, the effects of eupatilin on H. pylori-associated gas-

tritis remain unclear. Thus, this study aimed to investigate the anti-inflammatory effects of

eupatilin on gastric epithelial cells infected with cytotoxin-associated gene A (CagA)-positive

Helicobacter pylori.

Materials and methods

AGS human gastric carcinoma cells were infected with a CagA-positive H. pylori strain and

then treated with 10, 50, or 100 ng of eupatilin. After 24 h, the expression levels of CagA,

phosphoinositide 3-kinase 1 (PI3K), nuclear factor (NF)-κB, interleukin (IL)-1β, and tumor

necrosis factor (TNF)-α in the cell lysates were measured using western blotting, and the

mRNA levels of IL-6, IL-8, and monocyte chemoattractant protein (MCP)-1 were measured

using real-time polymerase chain reaction.

Results

CagA translocation into AGS cells resulted in an elongated cell morphology, which was sig-

nificantly suppressed by eupatilin treatment in a dose-dependent manner. Immunofluores-

cence staining for anti-CagA showed that eupatilin treatment dose-dependently inhibited

CagA expression in the H. pylori-infected AGS cells. H. pylori infection increased the levels

of pro-inflammatory cytokines including IL-1β, TNF-α, IL-6, IL-8, and MCP-1, and eupatilin

treatment significantly reduced the levels of these cytokines in a dose-dependent manner.

Additionally, eupatilin treatment dose-dependently suppressed the expression of PI3K and

NF-κB.
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Conclusions

Eupatilin treatment demonstrated anti-inflammatory effects on CagA-positive H. pylori-

infected gastric epithelial cells by inhibiting CagA translocation, thereby suppressing the

NF-κB signaling pathway. These results suggest that eupatilin plays a protective role

against CagA-positive H. pylori-induced gastritis.

Introduction

Helicobacter pylori (H. pylori) causes chronic inflammation of the gastric mucosa (gastritis),

which can progress to major gastric diseases, including peptic ulcer, gastric cancer, and gastric

mucosa-associated lymphoid tissue lymphoma [1]._ENREF_1 Cytotoxin-associated gene A

(CagA) is an important virulence factor of H. pylori, and CagA translocation into gastric epi-

thelial cells induces cellular transformation to an elongated shape, referred to as the humming-

bird phenotype, which is characterized by one or more protrusions on the cell membrane; this

phenotype causes a wide array of alterations in cellular signaling, which leads to the infiltration

of neutrophils and lymphocytes as well as the increment of pro-inflammatory cytokines [2].

CagA activates the nuclear factor (NF)-κB signaling pathway, which promotes the expression

of pro-inflammatory cytokines, such as interleukin (IL)-1β, IL-6, IL-8, and tumor necrosis fac-

tor (TNF)-α, ultimately causing persistent gastric inflammation [3]. H. pylori CagA-induced

chronic inflammatory response is a strong risk factor for developing peptic ulcer and gastric

cancer; therefore, inhibiting these inflammatory cascades is essential for managing H. pylori-
associated gastric diseases.

Eupatilin (5,7-dihydroxy-3,4,6-trimethoxyflavone, available as a commercial drug, Stil-

len1), a flavone isolated from Artemisia species, exerts anti-inflammatory, anti-oxidant, and

anti-cancer activities [4, 5]. Flavonoids, a class of polyphenolic compounds in various plants,

display bioactive properties in human cell lines [6]. Artemisia leaves have a rich history of tra-

ditional use in addressing inflammatory and ulcerogenic disorders in Korea [7]. Eupatilin is a

pharmacologically active compound isolated from Artemisia asiatica extract [8]. It reduces the

levels of pro-inflammatory cytokines TNF-ɑ, IL-6, and IL-1ß by suppressing the NF-κB-medi-

ated signaling pathway [9, 10]. In vitro studies reported that eupatilin protects gastric epithelial

cells from indomethacin-induced oxidative cellular damage [11] and ethanol-induced gastric

mucosal injury by inhibiting inflammation, enhancing gastric mucosal defense, and ameliorat-

ing oxidative stress [12].

Despite substantial evidence regarding the anti-inflammatory effects of eupatilin, little is

known about the effects of this compound on H. pylori-associated gastric inflammation. There-

fore, we aimed to investigate the effects of eupatilin on the production of pro-inflammatory

cytokines and signaling pathways in gastric epithelial cells infected with CagA-positive H. pylori.

Materials on methods

H. pylori strain and culture

H. pylori ATCC 43504 strain (CagA-positive and vacA s1-m1 type strain) was obtained from

the American Type Culture Collection (ATCC; Rockville, MD, USA). H. pylori was cultured

under microaerophilic conditions (5% O2, 10% CO2, and 85% N2) on a chocolate agar plate

(Synergy Innovation, Korea) at 37˚C for 3 days. After incubation for 3 days, 200 μL of brain
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heart infusion supplemented with 5% fetal bovine serum (FBS; Gibco, Grand Island, NY,

USA) was added to the desired amount of chocolate agar in a 1.5 ml Eppendorf tube.

Cell culture and H. pylori infection

AGS human gastric carcinoma cells (ATCC CRL-1739) were purchased from the ATCC

(Rockville). AGS cells were seeded in Roswell Park Memorial Institute 1640 medium (Gibco,

Grand Island, NY, USA) supplemented with 10% inactivated FBS and 1% penicillin (Sigma,

Burlington, MA, USA), and then cultured in a humidified atmosphere containing 5% CO2 at

37˚C. Upon reaching 70% confluence, the cells were incubated in serum-free medium for 24 h

and then infected with H. pylori at a multiplicity of infection of 200:1.

Drug treatment

Eupatilin supplied by Dong-A Pharmaceutical Co. Ltd. (Seoul, Korea) was dissolved in 10%

dimethyl sulfoxide. AGS cells were treated with 10, 50, and 100 ng of eupatilin within 24 h of

H. pylori infection.

Cell viability (cytotoxicity assay)

AGS cells were seeded at 1 × 103 cells/well in 96-well plates and then treated with 10, 50, and

100 ng of eupatilin for 24 h. Cell viability was measured using a Cell Counting Kit-8 assay

(CCK-8; Enzo Life Science, NY, USA) in accordance with the manufacturer’s instructions.

The plate was added with 10 μL of the CCK-8 reagent and then incubated at 37˚C for 2 h. The

absorbance at 450 nm was measured using a microplate reader (JSBIO, Seoul, Korea). Cell via-

bility was expressed as the relative absorbance of the treated AGS cells to the untreated cells

(control).

Morphological changes after H. pylori infection

Morphological changes in AGS cells were examined after 24 h of H. pylori infection and after

eupatilin treatment. Cells showing an elongated hummingbird phenotype were counted in five

fields in three dishes.

Immunofluorescence staining

Immunofluorescence staining was performed to identify CagA-positive AGS cells after H.

pylori infection. Briefly, AGS cells were seeded at 1 × 104 cells/well onto a 12 mm coverslip

glass at the bottom of 24-well transwell plates. After H. pylori stimulation, the cells were treated

with 10, 50, and 100 ng of eupatilin for 24 h. The cells were washed with phosphate-buffered

saline (PBS), fixed with 4% formaldehyde for 20 min at 4˚C, and then permeabilized with 0.1%

Triton X-100 for 15 min at room temperature. Subsequently, they were blocked for 30 min in

a blocking solution and then incubated for 1.5 h with the primary antibody against CagA (San-

tacruz, Dallas, USA). Finally, the cells were washed with PBS, incubated with Alexa Fluor

594-conjugated anti-mouse secondary antibody (Invitrogen, Carlsbad, CA, USA), and then

stained with 0.5 μg/ml DAPI solution (Abcam, Cambridge, UK) for nuclear staining. Cell

images were taken in 4–6 fields in three wells and evaluated using an Eclipse Ti-E fluorescence

microscope (Nikon, Tokyo, Japan) at 20× magnification.

Western blot

After being treated with eupatilin for 24 h, AGS cells were harvested and lysed in lysis buffer

[pH 7.6, 4 mM 4-(2-aminoethyl) benzenesulfonyl fluoride hydrochloride, 2 mM benzamidine,
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10 μM leupeptin, 10 μM pepstatin A, 1 mM EDTA, 10 μM EGTA, and phosphate inhibitors

(Translab, Daejeon, Korea)]. The cells were analyzed using a BCA protein assay kit (Thermo

Fisher Scientific, Waltham, MA, USA). Samples containing the same amount of protein

(50 μg) were separated by 4%–15% sodium dodecyl sulfate-polyacrylamide gel electrophoresis

and transferred onto a polyvinylidene fluoride (PVDF) membrane. The PVDF membrane was

blocked with 1% bovine serum albumin solution at 15˚C for 1.5 h and then incubated over-

night at 4˚C with one of the following primary antibodies: Cag A (1:1000; Santacruz), phos-

phoinositide 3-kinase (PI3K; 1:1000; Santacruz), NF-κB (1:1000; Cell Signaling, Danvers,

USA), TNF-ɑ (1:1000; Abcam, Cambridge, UK), IL-1ß (1:1,000; Cell Signaling), and glyceral-

dehyde-3-phosphate dehydrogenase (GAPDH; 1:1000; Santacruz) as an internal control. The

following day, the membrane was placed in tris buffered saline-tween20 solution, washed at

15˚C for 1.5 h, and then incubated at 15˚C for 2 h with a secondary antibody (mouse anti-rab-

bit IgG-HRP, anti-mouse IgG-HRP, Santa Cruz). Finally, an enhanced chemiluminescence

western blotting kit (SmartGene ECL High Femto Solution; SmartGene Soft, Daejeon, Korea)

was used to detect the markers. The optical density of the protein bands was determined using

ImageJ 1.52 software. All proteins were quantified relative to GAPDH, and the quantified val-

ues were presented in a bar graph.

Analysis of mRNA expression

Total cellular RNA was extracted from the eupatilin-treated AGS cells through reverse tran-

scription polymerase chain reaction (RT-PCR) using a RNeasy plus mini kit (QIAGEN, Hil-

den, Germany) in accordance with the manufacturer’s protocols. Briefly, 2 μg of total RNA

was mixed with 1 μg of oligo dT (Promega, Wisconsin, USA) in a total volume of<15 μL, and

the mixture was heated at 70˚C for 5 min. Subsequently, 1.25 μl of dNTP (Promega) and

M-MLV reverse transcriptase (Promega) were added to the heated mixture in a total volume

of 20 μL. cDNA was synthesized by reverse transcription at 42˚C for 60 min and at 95˚C for 5

min. The PCR primer sequences used were as follows IL-6 (5ʹ-TCGTGGAAATGAGAAAAGAG
TTG-3ʹ; 5ʹ-GACCACAGTGAGGAATGTCCAC-3ʹ) [13], IL-8 (5ʹ-AGGGTTGCCAGATGCAA
TAC-3ʹ; 5ʹ-AAACCA AGGCACAGTGGAAC-3ʹ)[14], and MCP-1 (5ʹ-CCAAAGAAGCTGT
AGTTTTTGTC-3ʹ; 5ʹ-GCATTAGCTTCAGATTTACGG-3ʹ) [13]. GAPDH (5ʹ-CACCTTCTG

CAAAATTATGGCG-3ʹ; 5ʹ-ACCTTTGCCAAGTCTAACTGTTAA-3ʹ) [15] was used as the

internal control. Real-time PCR was performed using 12.5 μL of 2X TOPsimpleTM DyeMIX--

Tenuto (Enzynomics, Korea) and 2 μL of cDNA template in a final volume of 25 μL. The mix-

ture was incubated at 94˚C for 4 min, followed by 32 cycles of PCR amplification. The PCR

program was as follows: denaturation at 95˚C for 30 s; annealing at a transitional temperature

range of 54–59˚C, with an increase of 0.5˚C per cycle; and an extension at 72˚C for 30 s. A

final extension was performed at 72˚C for 30 s, followed by an additional 7 min at 72˚C after

each cycle. After the final cycle, melting-point analysis of the samples was performed at 54–

94˚C. The optical density of the RNA bands was determined using ImageJ 1.52 software. All

mRNAs were quantified relative to GAPDH, and the quantified values were presented in a bar

graph.

Statistical analysis

Data are expressed as the mean ± standard deviation, and statistical analyses were performed

using Student’s t-test, with a significance threshold set at a probability level of 0.05.
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Results

Effects of eupatilin on CagA translocation into AGS cells and

CagA-induced morphologic changes

The effect of eupatilin on cell viability was evaluated first. Eupatilin treatment results in a sur-

vival rate of>90% in the CCK-8 assay and did not show significant cytotoxicity even at a high

concentration of 100 ng (Fig 1). CagA translocation into the AGS cells induced the elongated

hummingbird phenotype (Fig 2A), which is a distinctive morphologic changes induced by

CagA through several references [16, 17]. Eupatilin treatment significantly suppressed the pro-

duction of hummingbird cells in a dose-dependent manner (Fig 2A and 2B). Immunofluores-

cence staining for anti-CagA also showed that eupatilin treatment dose-dependently inhibited

CagA expression in the H. pylori-infected AGS cells (Fig 3).

Anti-inflammatory effects of eupatilin on H. pylori CagA-infected AGS

cells

Western blot results on the protein expression of IL-1β and TNF-α in the H. pylori-infected

AGS cells before and after eupatilin treatment are shown in Fig 4A. RT-PCR results on the

mRNA levels of IL-6, IL-8, and MCP-1 in the H. pylori-infected AGS cells before and after

eupatilin treatment are shown in Fig 4B. H. pylori infection increased the levels of pro-inflam-

matory cytokines IL-1β, TNF-α, IL-6, IL-8, and MCP-1, and eupatilin treatment significantly

Fig 1. Cytotoxicity of eupatilin on human AGS gastric carcinoma cells. AGS cells were treated with eupatilin (10, 50, or 100 ng) for 24 h, and their viability was

determined using a Cell Counting Kit-8 assay (Enzo Life Science, NY, USA). HP = Helicobacter pylori.

https://doi.org/10.1371/journal.pone.0313251.g001
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reduced the levels of these inflammatory markers in a dose-dependent manner (Fig 4C–4G).

These findings suggest that eupatilin exhibits anti-inflammatory effects by effectively suppress-

ing the expression and production of pro-inflammatory cytokines in H. pylori-infected gastric

epithelial cells.

Fig 2. Morphologic changes (hummingbird cells) induced by Helicobacter pylori CagA translocation. (A) CagA translocation into AGS cells increased the number of

hummingbird cells (red arrows), and treatment with eupatilin (100 ng) inhibited the production of hummingbird cells. (B) Eupatilin reduced the number of hummingbird

cells in a dose-dependent manner. HP = Helicobacter pylori.

https://doi.org/10.1371/journal.pone.0313251.g002

Fig 3. Immunofluorescence staining with anti-CagA antibody and DNA counterstaining with DAPI (blue). Eupatilin showed dose-dependent inhibitory effects on

CagA expression in Helicobacter pylori-infected AGS cells (magnification, 20×). HP = Helicobacter pylori.

https://doi.org/10.1371/journal.pone.0313251.g003
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Anti-inflammatory effects of eupatilin through inhibiting H. pylori
CagA-induced NF-κB signaling pathway in AGS cells

CagA was not expressed in the AGS cells without H. pylori infection. CagA expression

increased in the cells with H. pylori infection, but this expression dose-dependently decreased

in the infected cells after eupatilin treatment (Fig 5A and 5B). Additionally, eupatilin treatment

dose-dependently suppressed the expression of PI3K and NF-κB (Fig 5C and 5D). These

results suggest that eupatilin inhibits H. pylori-induced inflammatory responses by inhibiting

the CagA/PI3K/NF-kB signaling pathway.

Discussion

H. pylori infection is an important cause of chronic gastritis, which can progress to peptic

ulcer disease or gastric malignancies, including adenocarcinoma and mucosa-associated lym-

phoid tissue lymphoma [18]. In particular, H. pylori-induced chronic gastritis is the first step

in the multistep cascade of gastric adenocarcinoma [19]. CagA is the most important virulence

factor of H. pylori because it determines the severity of gastric inflammation and the outcomes

of infection. CagA translocation from bacteria into gastric epithelial cells through a type IV

secretion system activates NF-κB, a major pro-inflammatory signaling pathway that promotes

the release of pro-inflammatory cytokines involved in proliferation, angiogenesis, invasion,

and blockade of apoptosis [20]. CagA also triggers inflammation and oxidative stress via vari-

ous pathways, including IL-11/signal transducer and activator of transcription (STAT)-3/

CDX2, c-Myc/p21/extracellular signal regulated kinase (ERK)-mitogen-activated protein

kinase (MAPK), toll-like receptor, and reactive oxygen species/apoptosis signal regulating

kinase-1/c-Jun N-terminal kinase signaling [21], which leads to DNA damage and genomic

instability, ultimately increasing the risk of gastric cancer development. Vacuolating cytotoxin

A, urease, flagellum, catalase, and superoxidase dismutase are other H. pylori virulence factors

that facilitate carcinogenesis and enable colonization and proliferation. These factors not only

induce inflammatory responses but also control and regulate these responses, maintaining

chronic inflammation and ultimately inducing malignant alteration [22]. Antibiotic therapies

Fig 4. Eupatilin inhibited pro-inflammatory cytokines in Helicobacter pylori-infected AGS cells. The protein levels of IL-1β and TNF-α were determined by western

blot (A), and the mRNA expression of IL-6, IL-8, and MCP-1 was determined using RT-PCR (B). GAPDH was used as an internal control. Statistical significance of IL-1 β
(C), TNF-α (D), IL-6 (E), IL-8 (F), and MCP-1 (G) was analyzed using Student’s t-test. * p< 0.05. HP = Helicobacter pylori.

https://doi.org/10.1371/journal.pone.0313251.g004
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are the primary treatment for H. pylori infection. However, persistent increase in antibiotic

resistance worldwide and a possible gastric or gut dysbiosis after H. pylori eradication compli-

cate the treatment of H. pylori infection. Furthermore, some individuals are intolerant to anti-

biotics, and chronic inflammation and long-term tissue damage may persist even after H.

pylori eradication. These findings highlight the need for protective agents against H. pylori-
induced gastritis. In the present study, eupatilin exhibited anti-inflammatory properties in

CagA-positive H. pylori-infected gastric epithelial cells. This study suggests a safe and effective

alternative therapeutic approach that employs a natural compound to treat H. pylori-induced

gastritis.

Eupatilin prevents tissue damage through its anti-inflammatory, anti-oxidant, anti-cancer,

and anti-microbial activities. It also reduces TNF-α-induced IL-8 and chemokine (C-C motif)

ligand 20 (CCL20) production by blocking the p38 kinase and NF-κB pathways in human

Fig 5. Eupatilin exerted anti-inflammatory effects by inhibiting the CagA/PI3K/NF-kB signaling pathway in Helicobacter pylori-infected AGS cells. The protein

expression of CagA, PI3K, and NF-kB was determined using western blot (A). GADPH was used as an internal control. Statistical significances of CagA (B), PI3K (C), and

NF-kB (D) were analyzed using Student’s t-test. * p< 0.05. HP = Helicobacter pylori.

https://doi.org/10.1371/journal.pone.0313251.g005
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gastric epithelial AGS cells, suggesting that the gastroprotective effect of eupatilin might be

linked to the NF-κB signaling pathway [23]. In a rat animal model, eupatilin effectively amelio-

rates ethanol-induced gastro-hemorrhagic lesions by suppressing gastric lipid peroxidation

and xanthine oxidase activity up to normal levels, implying that the major anti-gastritis mecha-

nism of eupatilin is radical scavenging [24]. In addition, high-dose eupatilin treatment

improves chronic erosive gastritis in Sprague–Dawley rats by decreasing erosion length, reduc-

ing taurocholate-induced intestinal fibrosis, and increasing glutathione content in a dose-

dependent manner [25, 26]. Subsequent clinical studies showed that eupatilin has better effi-

cacy and safety than misoprostol for the treatment of nonsteroidal anti-inflammatory drug-

associated gastroduodenal injury [27, 28]. Another clinical trial compared the efficacy and

safety of eupatilin and cetraxate in 512 patients with erosive gastritis and obtained significantly

higher cure rates without significant serious adverse events in eupatilin-treated patients than

in cetraxate-treated patients [29].

Despite substantial evidence regarding the anti-inflammatory effects of eupatilin, little is

known about the effects of this compound on H. pylori-associated gastritis. Ko et al.

reported that eupatilin derivative 7-carboxymethyloxy-3ʹ,4ʹ,5-trimethoxy flavone exerts

anti-inflammatory activity in H. pylori-infected gastric epithelial cells by inducing the disso-

ciation of the IKK-γ–Hsp90 complex and suppression of NF-κB signaling [30]. H. pylori
CagA promotes NF-κB through multiple signaling pathways via activating Ras/Raf,

P21-activated kinase 1, PI3K, or TNF-α-associated factor 6/transforming growth factor-β-

activated kinase 1 [31]. Moreover, eupatilin can inhibit the NF-κB-mediated inflammatory

response and suppress cytokine production, including IL-6 and IL-1β, in response to lipo-

polysaccharide [23]. In the present study, we determined the inhibitory effect of eupatilin

on H. pylori CagA-induced gastritis, focusing on the CagA/PI3K/NF-κB signaling pathway.

CagA stimulates PI3K signaling that affects Akt, and then Akt activates NF-κB through the

activation of IκB kinase, finally promoting the transcription of pro-inflammatory cytokines.

We initially identified morphological changes associated with CagA-induced inflammation

in gastric epithelial cells. Results showed that eupatilin treatment reversed the H. pylori
CagA-induced cellular elongation (hummingbird cells) by alleviating CagA translocation

from H. pylori into AGS cells. In addition, eupatilin dose-dependently suppressed the

expression of pro-inflammatory cytokines, such as TNF-α, IL-1β, IL-6, IL-8, and MCP-1, by

downregulating the PI3K/NF-κB-mediated inflammatory pathway. These findings suggest

that eupatilin effectively mitigates H. pylori CagA-induced gastritis by inhibiting the pro-

duction of pro-inflammatory cytokines and suppressing CagA/PI3K/NF-κB signaling.

This study has some limitations. We employed AGS human gastric carcinoma cell line

instead of using normal gastric cell line, though AGS cells already could possess a heightened

level of inflammation before H. pylori infection. Nevertheless, AGS cells have strong cell viabil-

ity and have been extensively employed to understand the consequences of infection on epi-

thelial cells, particularly in experiments on the response to H. pylori [16]. Therefore, we

thought that AGS cells can serve as an alternative model for normal gastric epithelial cell in

this research. Next, despite convincing in vitro evidence of the anti-inflammatory effects of

eupatilin on H. pylori CagA-infected gastric epithelial cells, the exact mechanisms of action of

eupatilin in vivo remain unclear. The interaction of H. pylori with the host involves complex

host–environment factors that could not be fully replicated in in vitro studies. Thus, further in
vivo studies are needed to determine the safe and effective dose of eupatilin to exert anti-

inflammatory effects against H. pylori-induced gastritis. Moreover, we did not confirm the

direct effect of eupatilin on PI3K/NF-κB signaling. We initially focused on the inhibitory effect

of eupatilin on H. pylori CagA, a factor known to activate the PI3K/NF-κB signaling pathway,

rather than on its direct activity on PI3K/NF-κB pathways. We determined that eupatilin
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treatment dose-dependently inhibited CagA expression, which could sufficiently suppress

CagA-induced PI3K/ NF-κB pathways. Furthermore, in addition to the NF-κB signaling path-

way, other signaling pathways, including ERK/MAPK and Janus kinase/STAT, are involved in

gastritis and carcinogenesis induced by H. pylori infection. Future research should be con-

ducted to reveal other anti-inflammatory pathways of eupatilin and identify whether it exerts a

direct anti-tumor activity in preventing or treating gastric cancer. Finally, AGS, a gastric epi-

thelial cell line derived from a patient with gastric adenocarcinoma, was used in this study.

This is an important consideration because the metabolome of AGS cells, which are trans-

formed cells isolated from cancer cells, may not accurately reflect the metabolome of normal

gastric epithelial cells. Nevertheless, H. pylori-infected AGS cells can serve as a model for nor-

mal gastric epithelial cells exposed to H. pylori, given that AGS cells have been extensively

employed in experiments on the response to H. pylori.
In conclusion, eupatilin exerts anti-inflammatory activities in CagA-positive H. pylori-

infected gastric epithelial cells by inhibiting CagA translocation, thereby suppressing the NF-

κB signaling pathway. These results suggest that eupatilin plays a protective role against CagA-

positive H. pylori-induced gastritis.
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