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Abstract

In Zanzibar City - the capital of the Zanzibar archipelago in Tanzania - the incidence
of malaria has decreased over the past few decades due to standardized treatment
protocols and public health interventions targeting adult mosquitoes. However, the
incidence remains between 1-2%, and case numbers have increased over the past
few years because of a continued influx of Plasmodium spp. from other malaria-
endemic areas (including mainland Tanzania). Larviciding is a powerful tool to target
mosquito populations and reduce the incidence of malaria. However, larvicidal strat-
egies rely on knowledge of the breeding patterns of malaria vector mosquitoes. In
Zanzibar City, no larval surveys have been done in the last few years. Our aim was to
characterize Anopheles spp. breeding sites in Zanzibar City during the rainy season.
We first conducted systematic larval surveys across 16 semi-permanent/permanent
water bodies and 30 temporary water bodies. Then, we used principal component
analysis and logistic regression to model the effects of physical/chemical parameters
and rainfall on Anopheles presence. We found that Anopheles spp. prefer concrete,
semi-permanent breeding sites with high levels of dissolved oxygen but are also
found in natural sites after heavy rains. Our logistic regression model successfully
predicted the presence of Anopheles larvae, achieving a positive predictive power of
65.7% and a negative predictive power of 88.8%. The data from our study suggest
that Anopheles spp. have not yet adapted to more polluted breeding sites in Zanzibar
City (as they have in some mainland locations). These results can inform targeted
larvicidal strategies in Zanzibar City.

Introduction

Malaria is a vector-borne disease caused by parasites of the genus Plasmodium that
results in over 500,000 deaths annually [1]. Malaria is transmitted by female Anoph-
eles spp. mosquitoes. Throughout Tanzania, malaria is one of the most wide-spread
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mosquito-borne diseases, with at least 2.5 million cases reported in 2022 [1-3]. Tan-
zania contributes to 4% of the total malaria deaths worldwide [1].

Amid changing climate conditions and an increase in tourism, Zanzibar City - the
largest city of the Zanzibar archipelago that includes Stone Town - has experienced
a recent increase in malaria cases. In 2009, the Zanzibar Ministry of Health initi-
ated a set of policies to eliminate malaria on the archipelago, including increased
indoor spraying, a systematic distribution of insecticidal nets, and a surveillance and
case-detection system [4,5]. Zanzibar has therefore been able to reduce malaria
transmission between 2005 and 2015 [6]. However, the yearly malaria incidence rate
of 2.7 cases per 1,000 people reported in 2017 had increased to 3.6 by 2021 [5,7].
The increase in cases is thought to be due to an expansion of tourism and a greater
influx of people infected with Plasmodium from mainland Tanzania, inadvertently
providing blood meals for the local mosquitoes [8,9]. Additional vector control inter-
ventions are needed to reduce the resident mosquito population and help to eliminate
malaria. Understanding the local ecology of the Anopheles mosquitoes is crucial to
inform such control strategies. Due to their low mobility and fully-aquatic nature, mos-
quito larvae that develop in freshwater bodies are effective targets for reducing the
abundance of adult vector mosquitoes and overall malaria transmission [10]. How-
ever, the breeding habits of Anopheles mosquitoes in Zanzibar City have not been
characterized.

While urbanization was originally thought to decrease the incidence of malaria,
unplanned, rapid urbanization in sub-Saharan Africa has been accompanied by
sustained malaria transmission [11—-14]. Zanzibar City has expanded 3.8% geograph-
ically per year since 2004, leading to unplanned urbanization with poor integration of
water drainage into the city infrastructure, potentially increasing mosquito breeding
sites [15]. Therefore, urbanization has likely contributed to enhanced malaria trans-
mission in recent years [16]. With a population of 800,010 people in 2023, and a
population growth rate of 4.48%, this trend is likely to continue [17].

Every year, particularly during the long rains between March and May, the pooling
of stagnant freshwater in the urban environment creates breeding sites, thus contrib-
uting to greater numbers of disease vectors. Despite some existing drainage of the
streets of Zanzibar City, excess water runoff often leads to the expansion or flooding
of natural water pools (see S1 Fig). Additionally, Zanzibar City, as a tourist destina-
tion, features aesthetic ponds and nonfunctional fountains that often contain stagnant
water, creating breeding sites for mosquitoes (particularly within historic Stone Town).
Over recent years, climate change has resulted in shorter but heavier rains during the
March-May rainy season, likely increasing the number of potential urban mosquito
breeding sites in Zanzibar City [18,19]. For larvicidal strategies to be most effective
against Anopheles mosquitoes, knowledge of the defining characteristics of Anoph-
eles breeding sites is important. However, Anopheles breeding habits vary by geo-
graphical location and season, making it difficult to rely solely on studies conducted in
other areas or at other times [20-22].

Currently, larvicidal strategies are rarely used in Africa [23,24]. However, larvicidal
strategies may complement existing vector control measures in Zanzibar City as indoor
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residual spraying (IRS) and bednets lose effectiveness. This decrease in effectiveness is due to a shift in the malaria vector
population from mainly Anopheles gambiae to the more adaptable Anopheles arabiensis [25]. The latter commonly bites
humans outdoors, thereby avoiding bed nets and IRS [26]. Additionally, Anopheles arabiensis is becoming increasingly resis-
tant to pyrethroid insecticides [27,28]. Notably, an Aedes aegypti-focused larval survey was conducted in Zanzibar City in
2018, which did not report any Anopheles larvae [29]. However, the study focused on artificial, temporary breeding site types
known to harbor Aedes larvae [30]. To our knowledge, no preexisting data regarding Anopheles breeding sites in Zanzibar
City are publicly available. We set out to address the lack of data by conducting larval surveys and breeding site characteri-
zations for Anopheles larvae in Zanzibar City during the long rainy season. We assessed whether physicochemical param-
eters, hydro-period, and predator presence could be used to predict whether a water body contained Anopheles larvae. We
found consistently high Anopheles larvae abundance in concrete, semi-permanent structures with high dissolved oxygen
levels. Additionally, we found high Anopheles larvae abundance in natural semi-permanent areas with high dissolved oxygen
levels after heavier rains. Our findings suggest that Anopheles mosquito breeding sites can be identified using specific char-
acteristics in Zanzibar City, allowing for targeted larviciding as a strategy to reduce malaria transmission.

Methods
Study site

Zanzibar City (locally known as Stone Town) is a popular tourist destination located on the Western coast of Unguja, the
largest island of the Zanzibar archipelago (1,666 km?) off the coast of East Africa. The city is located at approximately
6°10’ S 39°12’ E at sea-level. The climate is tropical, with an average annual rainfall of approximately 1,521mm [31]. Zan-
zibar City (and the entire Zanzibar archipelago) experiences two rainy seasons: short rains in October-December and long
rains from March-May. As of 2023, Zanzibar City has a population of 800,010 people, which represents approximately
44% of the total population of the Zanzibar archipelago (1.8076 million people) [32].

Sampling locations

Between April 11, 2024, and May 1, 2024, 16 permanent or semi-permanent sites and 30 temporary sites were sampled
for Anopheles mosquito larvae (Fig 1A). Sites were initially found through reconnaissance or asking community members
during the first week of the study. Because only publicly available water bodies were surveyed (and few such water bodies
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Fig 1. Map of Zanzibar City, Tanzania, showing sites sampled for mosquito larvae. Map generated using a shapefile provided by GADM under a
CC BY license. The shapefile can be found at https://gadm.org/download_country.html.

https://doi.org/10.1371/journal.pone.0313248.9001
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were found in the city’s Eastern sprawl), most study sites were near the more developed Stone Town and the densely
populated neighborhoods nearby. Semi-permanent sites were defined as permanent structures that are occasionally
drained (but rarely during the rainy season), while permanent sites were defined as structures that contain water continu-
ously throughout the year. Semi-permanent and permanent sites sampled included unfinished or nonfunctional fountains
(n=3), artificial ponds (n=4), roadside ditches (n=3), and wetlands (n=5) (S1 Fig). Temporary sites included tires (n=10),
plastic water containers (n=18), and small concrete wash basins (n=2). Each permanent or semi-permanent site larger
than 4m in perimeter was divided into semi-randomized 0.5m x 0.5m subsites. A random number was generated that
indicated the 0.5m x 0.5m site to sample. Before sampling, however, the 0.5m x 0.5m subsite was inspected to ensure
that it could physically house mosquito larvae (e.g., adequate, stagnant water present), and that it was accessible with a
larval dipper. If a randomly generated subsite could not be sampled, the nearest possible subsite was sampled instead.
Once the subsite was identified, a 0.5m x 0.5m quadrat was placed into the water. At each site, data was collected at five
subsites unless the site was smaller than five 0.5m x 0.5m quadrats (referred to herein as “subsite”). Because mosquito
larvae distribution is not evenly distributed across larger habitats [33], each subsite was treated independently during
analysis. Notably, all Anopheles species on Unguja are capable of transmitting P. falciparum [9,34], so mosquito larvae
were identified to genus level. Mosquito genera on Unguja also include Culex and Aedes [35].

Collection and identification of mosquito larvae

Mosquito larvae were sampled using a 500mL or 80mL dipper (depending on the size of the water body) and a white
inspection tray. Five dips were conducted per 0.5m x 0.5m subsite, and the percentage of dips containing larvae of each
mosquito genus was calculated. Dipping was performed by the same individual at all sites and visits. Other data collected
for each dip included the number of mosquito larvae of each genus found per dip, and the number and name of other
macroinvertebrates. Predators of mosquito larvae at the dipping site were also recorded.

Mosquito larvae were identified to the genus-level using a hand lens and identification keys [36,37]. Pupae were not
recorded. If a particular larva could not be identified using a hand lens, the specimen was transferred to the laboratory for
examination using an XSZ-107BN Series light microscope.

Measurements of physical parameters

All physical parameters were measured within each 0.5m x 0.5m subsite before larvae were sampled. Coordinates were
taken using the iPhone 11 compass. Outdoor and water temperature were both measured using a standard glass lab-
oratory thermometer. Percentage vegetation cover was estimated by eye and included all living plants emerging at the
surface of the subsite (e.g., patches of grass emerging from the water in a shallower subsite). Depth was measured within
the subsite using either a metal measuring tape or a measuring tape with a weighted end. Other binary (yes or no) phys-
ical parameters recorded were: trash within 3m of the subsite, large dump (> 10 pieces of trash) within 3m of the subsite,
semi-permanence of dipping site, and whether the dipping site was constructed out of concrete, plastic/rubber, or natural.
Additionally, the perimeter was estimated and placed into one of five categories (1=<1m, 2=1-5m, 3=5-10m, 4=10-20m,
5=>20m). All daily precipitation data was obtained from the Visual Crossing website (accessed April 27, 2024), which
compiles data collected at the HTZA weather station (-6.22, 39.22) and the Abeid Amani Karume International Airport
weather station (-6.22, 39.23) approximately 5km from Zanzibar City [38].

Measurements of chemical parameters

Dissolved oxygen concentration, dissolved oxygen saturation, pH, relative turbidity, and relative chlorophyll content were
measured in each subsite on at least one of the visits for each site. Dissolved oxygen was measured on-site using a Eco-
sense DO200A within each 0.5m x 0.5m subsite before larvae were sampled. The instrument was calibrated before the first
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use using the manufacturer’s protocol. Both dissolved oxygen in parts per million (ppm) and percentage saturation were
recorded. For the remaining chemical parameters, a water sample was collected in a cup (after first rinsing the cup in water
from that subsite) and transported to the laboratory for immediate analysis. pH was measured using a Hanna HI991001 pH
probe. In between measurements, the probe was briefly rinsed in deionized (DI) water and wiped off. The pH meter was
calibrated before the first use using the manufacturer’s protocol. Salinity was measured using a MarineDepot refractom-
eter that was calibrated daily using DI water. Values for relative turbidity and chlorophyll content were obtained by taking
photos of the water inside a clear cup using an iPhone 11 camera (with flash) and analyzing the color distribution using the
color histogram function on Fiji ImageJ2 (2.14.0) [39]. The type of cup and the white background were kept constant across
all photos. The mean color intensity for the red, green, and blue color channels in a selected area inside the cup were
recorded and normalized to the mean values for a sample of DI water. The relative turbidity was calculated by adding the
normalized mean intensities for the red, green, and blue channels together, and subtracting that value from three (since a
total normalized color value of three indicates that the red, green, and blue channel intensities were identical to those of DI
water and is therefore the maximum whiteness/clarity for water). Relative chlorophyll content was estimated using the ratio
of normalized mean green intensity to normalized mean blue intensity, as this value captures both brighter greens (Dl-like
normalized green intensity, lower normalized blue intensity), and darker greens (lower normalized blue and green intensity).

Statistical analyses

All statistical analyses were done using GraphPad Prism 10 (10.1.1). The Anderson-Darling test was used to test for
normality, and either Mann-Whitney tests or Kruskal-Wallis tests with uncorrected Dunn stepdown tests were used to
compare groups of unpaired non-parametric data. As each pairwise comparison stood alone, no corrections were used.
All non-parametric, paired data was analyzed using a paired Wilcoxon test. Parametric, unpaired data was analyzed using
an unpaired, two-tailed Student’s T-test with Welch’s correction. All categorical data was analyzed using either a Fisher’s
Exact test (for contingency tables with any frequencies below 10) or a Chi-Square test for independence. Principal com-
ponent analysis was conducted to determine which parameters to further investigate using data standardized to a mean
of zero and standard deviation of one. Principal components were selected using parallel analysis. While principal com-
ponent regression (PCAR) was run on all physical predictors included in the study, a multiple logistic regression model
was built using forward selection of parameters that were significant in the PCAR and chemical/interaction parameters for
which there was evidence of a relationship. The interaction terms included in the multiple logistic regression model test
whether concentration dissolved oxygen affects the presence of Anopheles differently if the subsite was semi-permanent,
made from concrete, or if rainfall levels were higher, and whether rain within 48hrs affects the presence of Anopheles
differently in concrete or in natural subsites. A significance level of 0.05 was used for all statistical tests. All maps were
generated using Q-GIS (v3.24.2-Tisler) and shapefiles were from GADM (v4.1). Copyright (CC BY 4.0) license information
can be found at https://gadm.org/license.html.

Statement of ethics

Ethical approval for this study was granted by the World Learning Inc. Institutional Review Board, and a student research
permit was granted by the Revolutionary Government of Zanzibar through the Second Vice President’s Office. Although
most land accessed was publicly owned, permission to sample was obtained from the relevant owners whenever a water
body crossed into private property. No protected species were sampled.

Inclusivity of global research

Additional information regarding the ethical, cultural, and scientific considerations specific to inclusivity in global research
is included in the Supporting Information (S1 File).
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Results
Characterization of physical properties of Anopheles breeding sites

To test whether Anopheles prefer permanent/semi-permanent sites or temporary sites in Zanzibar City during the rainy
season, we compared the number of sites with Anopheles larvae between permanent/semi-permanent and temporary sites.
We found that 56.25% of the permanent or semi-permanent sites contained Anopheles larvae at least once over the study
duration, while only 10% of the temporary sites contained Anopheles larvae (Fisher’s Exact Test, P=0.0013, OR = 11.57,
95% C1=2.359-44.85) (S1 Table). The three temporary sites with Anopheles larvae included two plastic water containers
and one rubber container. The permanent or semi-permanent Anopheles breeding sites were in both Stone Town and the
greater Zanzibar City area, while the temporary Anopheles breeding sites were only found in the Zanzibar City area outside
of Stone Town (Fig 2A). Pools were not included in the statistical analysis because they are subject to potentially confound-
ing anthropogenic variables. However, three pool drains across two hotel pools in Stone Town were sampled for mosquito
larvae, and no larvae were found. Additionally, six large rain tanks for drinking water were visually inspected for larvae (but
not sampled due to ethical issues surrounding conducting larval dips in drinking water). Among the three tanks inspected
that were left open, two had Culex larvae present. The three closed tanks inspected did not have any larvae.

Anopheles presence was associated with concrete, artificial, and permanent/semi-permenent subsites, in addition
to water temperature and outdoor temperature (Fig 2B). Culex presence was associated with natural subsites and the
presence of visible trash, while Aedes presence was associated with subsites made of plastic or rubber (Fig 2B). There
was also statistical evidence for the permanent/semi-permanent artificial subsites harboring more Anopheles larvae
than permanent/semi-permanent natural subsites (Two-tailed Mann-Whitney U test, P=0.0022, U(QS’ s = 1953) (Fig 2C).
Significantly more Anopheles larvae were caught at semi-permanent subsites than permanent subsites (Two-tailed Mann-
Whitney U test, P<0.0001, U, o, = 1701) (Fig 2D). Cohabitation with other mosquito larvae genera was uncommon,
and we found no statistical evidence of fewer Anopheles larvae in habitats shared with Culex or Aedes larvae (Fig 2E-F).
Last, principal component analysis regression (PCAR) showed parameters with significant positive predictive capabilities,
including permanence/semi-permanence, artificial, and concrete. Parameters with a significant negative predictive capa-
bility included Culex cohabitation, Aedes cohabitation, vegetation cover, the presence of a large dump within 3m, plastic/
rubber, and natural. While the intercept was nonsignificant, the overall PCA regression was significant by analysis of vari-
ance (F, ,,, = 3.288, P=0.0221) (S2 Table).

3,173

Characterization of chemical parameters of Anopheles breeding sites

Chemical parameters were associated with the presence of mosquito larvae of each genus. The percentage of dips per
subsite with Anopheles was associated with dissolved oxygen concentration, dissolved oxygen saturation, and pH. The
percentage of dips per subsite with Culex was associated with salinity, and the percentage of dips per subsite with Aedes
was associated with relative turbidity and estimated chlorophyll content (Fig 3A). Although the distribution of the num-

ber of Anopheles, Culex, or Aedes larvae caught plotted against dissolved oxygen levels was not normally distributed
(Anderson-Darling Test, P<0.0001), Gaussian curves were used to visualize which dissolved oxygen levels were asso-
ciated with a higher larval abundance for each genus in permanent/semipermanent subsites. A least squares regression
comparison of the Gaussian fits of larvae abundance plotted against dissolved oxygen saturation/concentration suggested
that distributions differ between genera (Extra sum of squares F test, F; .., = 6.897, P<0.0001). The distribution of Anoph-
eles larvae abundance was shifted towards higher dissolved oxygen levels than the distribution of Culex larvae abundance,
while Aedes larvae were found in low abundance across a wide range of dissolved oxygen levels (Fig 3B-C). While a
Gaussian curve could not be fit for larvae abundance plotted against pH, the distribution of Anopheles larvae abundance
was shifted towards higher pH levels than Culex (Fig 3C). Aedes larvae were found in low abundance across a wide range
of pH levels. Turbidity appeared to have little effect on the distribution of larvae abundance from different genera (Fig 3E).
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https://doi.org/10.1371/journal.pone.0313248.9003

Incorporating rainfall data into model to predict Anopheles presence
Each permanent/semi-permanent site was visited twice during the sampling period, with at least one week separating
each visit. Therefore, differences in Anopheles larvae abundance between visits were analyzed. Significantly more Anoph-
eles larvae were caught per subsite during the second visit of fountains (Two-tailed Mann-Whitney U test, P=0.0169,

U(15,15)

= 67.5) and wetlands (Two-tailed Mann-Whitney U test, P=0.0485, U(22’ 2= 187.0) (Fig 4A). No significant differ-

ence in Anopheles larvae abundance between visits of artificial ponds and ditches was observed (Fig 4A).

There was a significant difference in rainfall between visits of artificial ponds (Wilcoxon matched-pairs signed rank
test, P=0.00061, W=-108.0) and fountains (Wilcoxon matched-pairs signed rank test, P=0.000061, W=-120.0) (Fig 4B).
However, because the visits for each type of permanent/semi-permanent site did not occur on the same day (e.g., not
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Fig 4. The effect of rainfall on Anopheles breeding site preferences. A) Distribution of Anopheles larvae abundance at subsites between site types
and visits. B) Amount of rain within 48hrs of visiting each site, grouped by site types. Statistical significance determined using multiple Wilcoxon tests for
paired data. C) Individual comparisons of Anopheles larvae abundance at each visit to each site. X axis shows the amount of rain within 48hrs of visiting
that site. D) Distribution of percentage dissolved oxygen saturation across subsites of different site types, split into whether Anopheles larvae were
caught. E) Distribution of dissolved oxygen concentrations across subsites of different site types, split into whether Anopheles larvae were caught. Statis-
tical significance was determined using either a Mann-Whitney U Test or Kruskal-Wallis Test with Dunn’s uncorrected step-down tests, unless otherwise
noted. For all pairwise comparisons: * P<0.05, **P<0.01, **P<0.001, ****P<0.0001.

https://doi.org/10.1371/journal.pone.0313248.9004

all artificial ponds were sampled on the same day), we also compared rainfall between individual sites. Overall, wetlands
had significant differences in Anopheles abundance between visits but nonsignificant differences in rainfall. However, one
wetland had strong, rain-associated increases in Anopheles larvae abundance (Fig 4C).

Because PCA indicated an association between Anopheles breeding sites in Zanzibar City and higher dissolved oxy-
gen levels, we hypothesized that rain-independent breeding sites might be preferred by Anopheles mosquitoes due to
consistently higher levels of dissolved oxygen. Additionally, the semi-permanent subsites sampled had significantly greater
levels of dissolved oxygen (Welch’s T test, toses = 6.912, P<0.0001), lower levels of salinity (Two-tailed Mann-Whitney
U test, U(84’ 62 = 2053, P=0.0146), and fewer predators present than permanent subsites (X?2=5.227, df=1, P=0.0222)
(S2 Fig, S3 and S4 Tables). Commonly observed predators of mosquito larvae included dragonfly/damselfly larvae (order
Odonata), backswimmers and water skaters (order Hemiptera), and stonefly larvae (order Plecoptera) (S3 Table). The
subsites from artificial ponds and ditches where Anopheles larvae were caught had significantly higher levels of dissolved
oxygen than the subsites where no Anopheles larvae were caught (Fig 4D-E) (S5 and S6 Tables). Subsites from fountains
where Anopheles larvae were caught had significantly lower levels of dissolved oxygen than subsites from fountains with-
out Anopheles larvae, and there was no significant difference in dissolved oxygen levels between either group of subsites
from wetlands (S5 and S6 Tables). Subsites with Anopheles larvae from artificial ponds had significantly higher levels of
dissolved oxygen than subsites with Anopheles larvae from fountains and wetlands (Fig 4D-E) (S7 and S8 Tables). Addi-
tionally, subsites with Anopheles larvae from ditches had significantly higher dissolved oxygen levels than subsites with
Anopheles larvae from wetlands (S7 and S8 Tables).
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Regression analysis

The data suggested an interaction between dissolved oxygen levels (both saturation and concentration), rainfall within
48hrs, and/or site type, so we fit a logistic regression model to all data from permanent/semi-permanent sites and tempo-
rary sites. The outcome used for the logistic regression model was either “Anopheles caught” or “no Anopheles caught”.
We included physical parameters that were significant in the original PCA regression analysis, as well as dissolved
oxygen concentration and depth. We omitted data that were included in the initial PCA regression analysis, but for which
dissolved oxygen data was unavailable. Dissolved oxygen concentration was included in the model instead of dissolved
oxygen saturation because dissolved oxygen concentration was more significantly associated with Anopheles presence
than saturation (as shown in Fig 4D-E). Interaction terms included dissolved oxygen saturation and semi-permanence,
dissolved oxygen concentration and concrete, dissolved oxygen concentration and rainfall within 48hrs, concrete and rain
within 48hrs, and natural and rain within 48hrs. Significant physical predictors included the percentage of dips with Aedes
larvae (lower odds of catching Anopheles larvae), increased depth (lower odds of catching Anopheles larvae), the pres-
ence of a predator in the quadrat (lower odds of catching Anopheles larvae), and more rain within 48hrs (lower odds of
catching Anopheles larvae) (Table 1). Significant chemical predictors included increased salinity (lower odds of catching
Anopheles larvae) (Table 1). Significant interaction terms included increased concentration dissolved oxygen in semi-
permanent subsites (lower odds of catching Anopheles larvae), increased concentration dissolved oxygen in concrete
subsites (higher odds of catching Anopheles larvae), and increased concentration of dissolved oxygen after more rainfall
within 48hrs (higher odds of catching Anopheles larvae) (Table 1). The area under the receiver operating characteristic
(ROC) curve was 0.9034, and the positive predictive power was 65.7% (S3 Fiqg).

Discussion

In this study, we characterized the breeding sites of Anopheles mosquitoes during the rainy season in Zanzibar City. Our
results suggest that Anopheles breeding sites in Zanzibar City tend to be concrete, semi-permanent water bodies with
high dissolved oxygen saturation regardless of heavy rainfall. However, Anopheles breeding sites can expand to natural
semi-permanent water bodies with high dissolved oxygen concentration after heavier rains.

Table 1. Logistic regression model of Anopheles larvae caught vs. not caught.

Parameter estimates Variable Odds Ratio Wald Statistic P-value
B2 % Dips with Aedes 0.9222 2.406 0.0161
B5 Depth (cm) 0.9195 2.425 0.0153
36 Salinity 0.0008745 3.674 0.0002
B7 Predator in Quadrat 0.07624 2.349 0.0188
B11 Rain within 48hrs 0.8722 2.408 0.016
B12 (Semi)permanent: Concentration DO 0.01612 2.1 0.0357
B13 Concentration DO: Concrete 22.91 2.328 0.0199
p14 Concentration DO: Rain within 48hrs 1.076 3.376 0.0007
Intercept-only AlCc 145.7

Model AlCc 123.3

Area Under ROC Curve 0.9034 <0.0001
Positive Predictive Power (%) 65.71

Negative Predictive Power(%) 88.76

Table showing variables with significant odds ratios along with overall model significance and predictive power. Statistical significance determined
using a P-value calculated from the t-ratio and number of degrees of freedom. For all statistical comparisons: * P<0.05, **<0.01, ***P<0.001,
kP <(0.0001.

https://doi.org/10.1371/journal.pone.0313248.t001
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Semi-permanent, artificial sites are likely preferred by Anopheles mosquitoes over temporary breeding sites due to their
longer developmental times compared to larvae from different mosquito genera. Anopheles mosquitoes develop from egg
to adult in 10—14 days, while Aedes and Culex mosquitoes develop from eggs to adults in 7-10 days [40]. Since Anoph-
eles larvae take longer to develop, they may either be outcompeted in temporary environments where Aedes mosquitoes
are more suited to breed in, or the container is emptied too frequently for Anopheles larvae to develop [30]. This finding
is consistent with studies in Ethiopia and elsewhere where more Anopheles larvae were found mostly in artificial, perma-
nent/semi-permanent sites [22,41-43]. However, this finding contradicts other studies where Anopheles larvae were found
mostly in either natural or temporary environments [20,44,45], suggesting either context-dependent adaptations to use
semi-permanent sites for breeding, or variation in the definition of “temporary” between studies.

Semi-permanent subsites sampled had more favorable conditions for Anopheles than permanent sites, including higher
levels of dissolved oxygen, fewer predators, and lower salinity (S2 Fig). Chemical qualities of water bodies influence
Anopheles ability to breed due to impacts on nutrient availability, toxicity, selection for predators, algae growth, exposure
to sunlight, and other factors [46—48]. In Zanzibar City, dissolved oxygen, low abundance of predators, and low salinity are
associated with higher Anopheles larvae abundance, as seen in some locations but not in others [49,50]. While the rea-
sons behind these differences in breeding site chemical characteristics are likely to be site-specific, permanent sites may
have more artificial introduction of predators or competing species, more accumulated pollution than the more frequently
drained semipermanent sites, or more nutrients that support a naturally higher population of predators. Higher predator
abundance has been associated with fewer Anopheles larvae in permanent sites in Ethiopia [48], which is consistent with
our data, except semipermanent sites are used as breeding sites in Zanzibar City instead of temporary sites. Therefore,
the data presented in this study support a location-dependent hypothesis for Anopheles breeding site preferences, where
Anopheles prefer artificial, semipermanent breeding sites during the rainy season in Zanzibar City.

As high dissolved oxygen is an indicator of overall clean water [51], it is unclear from our data whether Anopheles
larvae are found in sites with relatively higher dissolved oxygen concentrations/saturation because of the requirement for
dissolved oxygen itself, or because of the lack of pollutants that negatively covary with dissolved oxygen levels. Data from
experiments on Culex and Aedes larvae suggest that larvae from these genera can use dissolved oxygen for respiration
when reaching the water surface to access atmospheric oxygen is difficult [52,53]. Although formal dissolved oxygen utili-
zation experiments with Anopheles larvae are lacking, some authors suggest that dissolved oxygen might itself be espe-
cially important for Anopheles larvae development because Anopheles larvae lack breathing tubes [54]. Alternatively, as
higher dissolved oxygen is an indicator of a less-polluted environment [51], the tendency for Anopheles breeding sites to
have higher dissolved oxygen levels may be solely because those sites are less likely to have harmful pollutants and more
likely to have the nutrients required for Anopheles development. Due to the lack of a strong, direct correlation between dis-
solved oxygen levels and Anopheles larvae abundance, the data from this study more strongly support the latter hypoth-
esis (especially since the water surface was accessible to larvae in all breeding sites). However, more laboratory-based
experimental studies are necessary to determine the role of dissolved oxygen in Anopheles larvae development.

Although we observed cohabitation between Anopheles and Culex larvae, this cohabitation was relatively uncommon,
suggesting that each genus occupies distinct niches in Zanzibar City. This lack of common cohabitation is consistent with
data from other studies, suggesting that Culex and Anopheles larvae compete for nutrients [48,55]. The site in our study
with the most cohabitation between Anopheles and Culex larvae was a large, flooded wetland only after heavy rain, which
could mean that the rain-associated expansion of this breeding site minimized the competition between mosquito gen-
era. Culex larvae are well known to tolerate heavily polluted sites and are often able to avoid competition at these sites
[56,57], while the tolerance of Anopheles larvae for polluted sites is more debated. While some study locations support
the hypothesis that Anopheles primarily breed in clean sites [49,50], studies on mainland Africa have provided evidence
of Anopheles adapting to more polluted environments [41,44,58,59]. With Aedes larvae dominating temporary breeding
sites and Culex larvae dominating more polluted breeding sites with salinity levels above 0 ppt, it is possible that there is
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little pressure for Anopheles to use more polluted sites for breeding during the rainy season in Zanzibar City. However,
as breeding site characteristics change during the dry season - when the semipermanent sites may not be available
for breeding [42] - it is likely that Anopheles will need to find other breeding sites and may be forced into more polluted
environments.

Additionally, it is likely that larval density decreases during the dry period, as other studies have shown higher densities
of Anopheles mosquitoes during or immediately after rainy seasons [60—62]. However, a recent analysis of Anopheles
stephensi breeding patterns revealed that seasonal shifts in breeding patterns are also dependent on the degree of urban-
ization [63], highlighting how seasonal breeding patterns in one location cannot be extrapolated to other locations. Studies
of Anopheles breeding sites in Zanzibar City during other seasons are, therefore, crucial for a complete understanding of
breeding dynamics.

Because this sampling event took place during April (i.e., in rainy season), when consistent rain over many days is
followed by days of intense sun, we hypothesized that rain might play a role in the changes in breeding site productivity
between visits. Studies have shown that rainfall contributes to either the expansion of Anopheles breeding sites, or the
flooding of breeding sites and increased mortality of Anopheles larvae [64,65]. However, these two outcomes are clearly
dependent on the amount of rainfall and the specific shape of the site. The sites in our study most subjected to incom-
ing drainage that could potentially transfer Anopheles larvae from other breeding sites were those classified as drains.
Additionally, the wetland located at the eastern extreme of the study area also accepted an influx of drainage. While a
small number of Anopheles larvae were found at the wetland on the eastern extreme of the study area, it is unlikely that
the presence of Anopheles larvae at this site was dependent on drainage influx because the Anopheles were found during
the visit with less rain. All other sites were filled mostly by rainwater and did not accept runoff from other locations, so any
increase in Anopheles larvae can be attributed to breeding at that site. Our data, therefore, suggest that higher rainfall
levels are associated with more Anopheles larvae being found in wetlands and fountains, while artificial ponds and ditches
serve as Anopheles breeding sites regardless of rain levels.

Many insects observed alongside mosquito larvae were known predators of mosquito larvae [66—68]. Because preda-
tor abundance decreased the odds of observing Anopheles larvae in a subsite, promoting the development of predatory
larvae may also help reduce Anopheles mosquito abundance. Although their abundance was not recorded in this study,
Cyclopoid copepods are also known to be predators of mosquito larvae and have been shown to complement the activity
of antilarval phytochemicals [69,70]. Future studies aiming to assess whether copepod abundance correlates with less
Anopheles breeding site productivity could also help inform antimalarial strategies. Introduction of predatory fish (e.g.,
Gambusia spp.) into artificial ponds has shown to be an effective antilarval strategy in some sites [71]. However, Gambu-
sia spp. target other prey over mosquito larvae and are destructive towards the natural ecosystem when introduced [72].
The presence of other prey besides mosquito larvae in a breeding site also affects the practicality of introducing preda-
tory invertebrates into water bodies as an antimalarial strategy [72,73]. Therefore, while introducing natural predators of
mosquito larvae may seem like a promising antimalarial strategy, each site’s ecosystem must first be analyzed to ensure
specific targeting of mosquito larvae. Nevertheless, the introduction of predators could be effective when used in combi-
nation with other larvicidal strategies, especially because adult Anopheles mosquitoes may be able to detect the presence
of predators in water bodies and avoid breeding in such sites (mostly through chemosensory mechanisms) [69]. Future
studies are necessary to determine the most effective larvicidal strategy in Zanzibar City.

Although larvicides are rarely used in Africa [23,24], the data from our study suggest that semipermanent ponds or
obstructed concrete ditches with high levels of dissolved oxygen saturation may be effective targets for larvicidal strate-
gies in Zanzibar City. Additionally, preventing the flooding and expansion of wetland sites during rain by increasing drain-
age from those sites might also help prevent Anopheles from using these as breeding sites. Because mosquito larvae
require stagnant water to breathe [74], larvae abundance in fountains could be minimized by ensuring that these foun-
tains remain functional, and larvae abundance in drains could be minimized by ensuring that these drains remain free of
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stagnant water. The use of synthetic larvicides should be avoided, as their use can result in harmful, off-target effects to
the environment, and mosquito larvae can develop resistance to the larvicides [75]. However, phytochemicals from plant
extracts may be a useful alternative, as they are more benign to the environment, more biodegradable, and contain a
diverse array of larvicidal secondary compounds that minimize the risk of resistance [76,77]. Additionally, bacterial larvi-
cides using larva-specific toxins from Bacillus thuringiensis israelensis or Bacillus sphaericus may be another safe and
effective larvicidal strategy [78,79].

Limitations to this study include other potentially important parameters (e.g., algae cover) not being analyzed, limited
geographical range, potential differences in Anopheles pupae abundance being overlooked, and a lack of species-level
resolution of mosquito breeding habits. Differences in microbiota composition between sites were also not analyzed,
which could also impact the ability for Anopheles larvae to develop [80]. While the purpose of this study was to analyze
the Anopheles genus, as all Anopheles species in Zanzibar are capable of transmitting malaria, individual species have
distinct breeding habits in other locations [21,62,81]. Determining which Anopheles species are occupying each type of
breeding site in Zanzibar City would be useful for monitoring adaptations to more polluted breeding sites and the relative
importance of each species in malaria and filarial disease transmission [35,44]. Additionally, larvicidal strategies tend to
be more effective in areas where Anopheles adults are exophilic, as residual indoor spraying or bed nets are less effective
in those areas [82]. Therefore, more recent studies on the behavior of adult Anopheles mosquitoes in Zanzibar City are
necessary and can also help further assess breeding site productivity [83].

Nevertheless, the short-term nature of the study provides evidence of rapid, rain-associated changes in Anopheles
breeding site preferences in Zanzibar City, while also revealing sites that are likely to be more consistent breeding sites if
they remain filled with water. The small geographical range included provides a targeted analysis of Zanzibar City-specific
breeding habitats of Anopheles mosquitoes. Additionally, while our study did not include all potentially relevant parame-
ters, the parameters measured are easy to monitor (e.g., more easily than site-specific microbiota) and can therefore be
put into practice for larvicidal strategies targeted against Anopheles. This study can serve as a baseline for future longitu-
dinal studies on Anopheles breeding sites in Zanzibar City, which could be used to develop a larvicidal strategy to combat
persistent malaria in the Zanzibar archipelago.

Conclusion

The incidence of malaria in Zanzibar City has remained between 1-2% since 2015, with a slight but steady increase due
to continued import of Plasmodium spp. from other malaria endemic areas. Therefore, targeting the resident population
of Anopheles vector mosquitoes in the largest city of the Zanzibar archipelago is a crucial strategy to combating malaria
on the islands. With pyrethroid resistance in adult Anopheles mosquitoes increasing on Unguja, larvicidal strategies could
serve as an alternative strategy to decrease the population numbers of resident Anopheles mosquitoes. Although the
geographic range of this study focused on the core of Zanzibar City, Anopheles larvae appeared to be evenly distributed
between core Stone Town and the surrounding Zanzibar City. However, as most beautification projects and artificial,
semipermanent structures are in the more tourist-trafficked area of core Stone Town, careful monitoring of these projects
is necessary to prevent these concrete basins in parks from becoming nutrient and oxygen-rich breeding grounds for
Anopheles mosquitoes.

Our study provides the first systematic survey of Anopheles breeding sites in Zanzibar City. Our findings that Anophe-
les prefer either semipermanent, concrete habitats with high dissolved oxygen levels, but can expand to sites with lower
dissolved oxygen levels after heavy rains, suggest that Anopheles larvae may be targeted as an antimalarial strategy.
However, because our study is the first of its kind conducted in Zanzibar City, future longitudinal research is required to
characterize the breeding sites of Anopheles mosquitoes during dry periods. Additionally, the productivity of each breeding
site should be studied by analyzing which breeding sites are producing Anopheles pupae and mature mosquitoes. Given
the current targetability of Anopheles larvae, potential public health policies that may reduce the population of Anopheles
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mosquitoes during the rainy season could include introducing phytochemical larvicides into artificial ponds, ensuring that
fountains are functional, and preventing the flooding of wetlands. Through a combination of strategies targeting larval and
adult Anopheles, the resident population of Anopheles mosquitoes could be depleted sufficiently to eliminate malaria in
Unguja.

Supporting information

S$1 Fig. Photos of examples of each site type. A) Artificial pond. B) Ditch. C) Fountain. D) Wetland. E) Temporary water
jug. F) Temporary tire.
(TIF)

S2 Fig. Differences in water quality parameters between semi-permanent and permanent subsites. A) Dissolved
oxygen concentrations in semi-permanent and permanent subsites. B) Dissolved oxygen saturation percentages in
semi-permanent and permanent subsites. C) Salinity levels in semi-permanent and permanent subsites. Statistical signif-
icance determined using Student’s unpaired T tests or Mann-Whitney tests for nonparametric data (salinity levels). For all
pairwise comparisons: * P<0.05, **P<0.01, ***P<0.001, ***P<0.0001.

(TIF)

S3 Fig. Receiver operator characteristic curve for the logistic regression model. Curve shows a deviation of the
current model (black line) from a model with 50/50 odds of predicting Anopheles presence (red line).
(TIF)

S1 Table. Permanent/semi-permanent site-level Anopheles larvae abundances.
(PDF)

S2 Table. Principal component regression results for physical parameters. All slope estimates are presented in
terms of the parameters, not in terms of principal components. Statistical significance for each parameter determined
automatically using a T-distribution. Overall significance for the regression determined using ANOVA. For all statistical
comparisons: * P<0.05, **P<0.01, **P<0.001, ****P<0.0001.

(PDF)

S3 Table. Predatory taxa found at each site.
(PDF)

S4 Table. Differences in predator abundance between semi-permanent and permanent subsites. Statistical signifi-
cance determined using Chi-square test for independence.
(PDF)

S5 Table. Two-tailed Mann-Whitney U test results comparing oxygen concentration between subsites with and
without Anopheles larvae, split by site type. Only significant pairwise comparisons shown.
(PDF)

S6 Table. Two-tailed Mann-Whitney U test results comparing oxygen saturation between subsites with and with-
out Anopheles larvae, split by site type. Only significant pairwise comparisons shown.
(PDF)

S7 Table. Kruskal-Wallace test results comparing dissolved oxygen concentration at subsites with Anopheles
between different site types. Only significant pairwise comparisons shown.
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