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Abstract

Previous studies have examined the cellulase activity of Crassostrea gigas (Pacific oyster)
and suggested its potential utilization of terrestrial lignocellulose. However, no studies have
been conducted to comprehensively assess its endogenous cellulases. Therefore, our
objective was to identify the cellulases present in C. gigas through transcriptome and geno-
mic analyses. The results showed that there are 10 cellulase orthologs, seven of which are
endogenous. Phylogenetic analysis revealed that two of these cellulases belong to the gly-
coside hydrolase family (GHF) 5, four to GHF9, and one to GHF45. An alignment of the
amino acid sequences suggested the presence of at least endo-$-1,4-glucanase. There-
fore, C. gigasis likely capable of decomposing lignocellulose into glucose. This finding sup-
ports the fact that C. gigas, a globally commercial bivalve species, thrives in environments
that lack phytoplankton, such as mangroves.

Introduction

The Pacific oyster, Crassostrea (Magallana) gigas (Thunberg, 1793), originated from East Asia
but is now becoming the most widely cultured commercial species worldwide [1]. It feeds on
various types of food, including benthic and planktonic diatoms and dinoflagellates [2]. A diet
consisting of phytobenthos and phytoplankton is rich in lipids, which are considered essential
for the survival of their larval stage and the growth of the adult stage. In contrast, Japanese fish-
ermen have observed that upstream forestation could increase the productivity of oysters cul-
tured downstream. Initially, this was explained as a result of the inflow of inorganic particles,
such as iron and phosphates, from upstream forests, which increases the production of phyto-
plankton. In the mangrove areas of Southeast Asia, large amounts of sediments are supplied
from the land during the rainy season, resulting in high turbidity that hinders phytoplankton
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growth in these estuarine areas. Therefore, it is highly likely that heterotrophic organisms,
including oysters inhabiting mangrove areas during the rainy season, feed on substances other
than phytoplankton [3]. This suggests that oysters could utilize terrestrial organic matter as an
alternative nutrient source.

Cellulases play a crucial role in hydrolyzing beta-glucoside linkages in lignocellulose, which
is the primary component of plant cell walls and the most abundant organic material on Earth.
Initially, microorganisms such as bacteria, fungi, and protozoa were studied as species capable
of feeding on lignocellulose [4]. It was also believed that herbivorous invertebrates symbioti-
cally associated with these microorganisms, particularly bacteria that possessed cellulases, to
aid in cellulose digestion [5]. However, Watanabe et al. later discovered that the Japanese ter-
mite, Reticulitermes speratus, actually carries a cellulase gene on its chromosome [6]. Since
then, various invertebrates, including bivalves and gastropods, have been found to possess
endogenous cellulases [7]. Stable isotope analyses have shown that oysters can assimilate ter-
restrial cellulose [8]. This suggests that oysters might also use terrestrial cellulose as a food
source. Given the growing significance of C. gigas in aquaculture economics, it is crucial to
thoroughly understand its feeding habitat in order to improve production.

To date, only a few studies have investigated the endogenous cellulases of oysters, with the
exception of the mangrove oyster, C. rivularis [9]. Moreover, despite the importance of reveal-
ing endogenous cellulases for a better understanding of the physiology and ecology of aquatic
invertebrates, few studies have provided an overview of specific endogenous cellulases in
invertebrates, except for the Japanese local clam, Corbicula japonica. Previous studies have
identified multiple endogenous cellulases by searching for their cDNA using degenerate prim-
ers designed based on amino acid sequences determined through protein separation and
zymographic analyses [10-12]. However, this cascade of procedures is neither sufficient nor
completely reliable because cellulases with similar molecular weights cannot be fully separated.
In the present study, we conducted a comprehensive investigation of the endogenous cellulases
of C. gigas by evaluating total mRNA and using both cDNA and genomic DNA of C. gigas to
verify the transcriptome results. Additionally, we utilized the Carbohydrate-Active Enzyme
(CAZy) database to collect and construct a eukaryotic endogenous cellulase library in order to
perform phylogenetic analysis of the detected cellulases of C. gigas and discuss their physiologi-
cal and ecological significance.

Materials and methods
Crassostrea gigas collection and dissection

Adult C. gigas individuals (with shells longer than 5 cm) attached to the embankment at Niyu
Fishing Harbor in Fukui Prefecture, Japan (35°42°38.7” N 135°58’16.9” E) were collected on
June 11, 2021. They were then stored in local seawater before being transferred on ice. No per-
mits were required for collecting oysters at this public site, as stated by the Fukui Prefecture
Government in Japan (https://www.pref.fukuilg.jp/). These attached individuals are wild-
grown and do not belong to any interest groups.

Total RNA and genomic DNA extraction and purification

Digestive glands, where cellulases are known to be expressed, were used to extract total RNA.
Approximately 100 mg C. gigas were immediately dissected upon arrival at the laboratory,
rinsed with 20 mL distilled water in a Petri dish, dried with tissue paper, surface sterilized
using 70% ethanol, and homogenized with scissors. Subsequently, 1 mL TRIzol reagent
(Thermo Fisher Scientific, Waltham, MA, USA) was added for total RNA extraction and puri-
fication, following the manufacturer’s protocol. The adductor muscle and mantle of C. gigas
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were used to extract genomic DNA, as these tissues were considered to have the fewest symbi-
otic organisms. They were separated, rinsed with 20 mL distilled water in a Petri dish, dried
with tissue paper, surface sterilized using 70% ethanol, and immediately frozen in liquid nitro-
gen in a pre-frozen mortar for better homogenization. Approximately 100 mg of powdered
adductor muscle or mantle was added to 1 mL TRIzol reagent, and genomic DNA was
extracted following the manufacturer’s protocol.

c¢DNA library

A portion of the purified total RNA from C. gigas digestive glands was used to synthesize first-
strand cDNA by using the PrimeScript 1st strand cDNA Synthesis Kit (Takara Bio, Kusatsu,
Japan) following the manufacturer’s protocol. The concentration of synthesized cDNA was
measured by using a Nanophotometer N60 (Wakenbtech, Kyoto, Japan), dispensed to 50 pL
(10 ng/uL), and stored at —70°C before use.

Transcriptome analysis

The extracted total RNA was sequenced by an external company (Azenta, Burlington, MA,
USA). Briefly, tagmentation was performed using the Nextera XT DNA Library Prep Kit (Illu-
mina, San Diego, CA, USA) according to the manufacturer’s protocol. Next, a first-step
12-cycle PCR amplification was performed using Nextera PCR Master Mix (Illumina) and
Nextera-DNB Conversion Primer (Illumina), followed by a second-step 12-cycle PCR amplifi-
cation to enrich the samples and add barcode sequences. The library DNA concentration was
measured using the Qubit dsDNA HS Kit (Thermo Fisher Scientific) with a Qubit 3.0 fluorom-
eter (Thermo Fisher Scientific). Next, the library DNA quality was checked using a Sensitivity
DNA Kit (Agilent Technologies, Santa Clara, CA, USA) with an Agilent 2100 Bio-Analyzer
(Agilent Technologies) before circularization using the MGIEasy Circularization Kit (MGI
Tech, Shenzhen, China). Finally, 20 pL (49.3 ng/uL) dsDNA was applied to a
DNBSEQ-G400RS High-throughput Sequencing Set (MGI Tech) before being loaded into the
DNBSEQ-G400 Sequencer (MGI Tech) and sequenced with 200 bp paired-ends.

Raw sequence data were analyzed using Atria software (v3.2.1; https://github.com/
cihga39871/Atria) to trim adapters and transposon sequences. Trimmed files were analyzed
using FastQC software (version 3; https://github.com/s-andrews/FastQC) to check the quality
of the reads. Next, Trinity software (v2.15.0; https://github.com/trinityrnaseq/trinityrnaseq/
releases) was used to assemble the sequence reads. The assembled transcriptomes were ana-
lyzed using BUSCO software (version 5.4.5) to check the quality of the assembly. Finally, func-
tional transcript annotation was performed using the Trinotate software (v3.2.2; https://
github.com/Trinotate/Trinotate/releases), particularly for similarity-based searches that refer-
enced the Basic Local Alignment Search Tool (BLAST) and SwissProt protein sequence data-
bases. Annotated transcripts that have similarities with cellulase (B-1,4-glucanase and p-
glucosidase) were manually selected for further analysis.

cDNA cloning of candidate cellulase open reading frames (ORFs)

All transcripts similar to cellulase were collected and their ORFs were analyzed using the
Translate tool operated by the Swiss Institute of Bioinformatics (https://web.expasy.org/
translate/) (Lausanne, Switzerland). Specific primers complementary to sequences covering
the start and end codons of the ORF were designed according to the transcripts (Table 1). PCR
amplification was performed using cDNA as the template. The amplified PCR products were
separated on a 1% TAE agar gel and imaged using a UV imaging system. For one transcript
that had an incomplete ORF (CgCel9D), an oligo-dT primer was designed, the amplified PCR
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product was purified using the NucleoSpin Gel and PCR Clean-up Kit (Takara, Kusatsu,
Japan), and then sequenced using a Sanger sequencer (Applied Biosystems 3730; Thermo
Fisher Scientific). With the 3’-end of the ORF verified, a new primer was designed and the
complete ORF was amplified. For the PCR reaction, a 10 pL reaction mixture was used, con-
taining 10 ng cDNA, 0.2 mM dNTPs, 1 mM MgSOy,, 0.3 mM primers, and 0.2 U KOD plus
ver.2 DNA polymerase (Toyobo, Japan). PCR products were separated and imaged as previ-
ously described.

Genomic PCR

PCR of genomic DNA was first performed using the same primers as those used for cDNA
cloning. Additional primers, complementary to the middle section of the ORF, were designed
for PCR products containing introns that were too long for conventional PCR (Table 1). The
PCR reaction used a 10 mL reaction mixture, similar to that for cDNA cloning, except that 10
ng mantle/adductor muscle genomic DNA was used as a template.

Construction of a eukaryotic endogenous cellulase library

Endogenous cellulases in eukaryotic organisms were confirmed from the CAZy database
(http://www.cazy.org/), and collated protein sequences were collected from the NCBI database
(https://www.ncbi.nlm.nih.gov/) based on two rules. Firstly, only cellulase sequence data with
identified full-length ORFs were collected, while fragmental sequences were ignored. Secondly,
only cellulase sequence data from published references with clear endogeneity verification pro-
cesses were collected. DNA/protein sequence data submitted without any information related
to the risk of contamination were ignored. The collected cellulase sequences were taxonomi-
cally classified into glycoside hydrolase families (GHFs) for further analysis, as provided in the
CAZy database.

Phylogenetic analysis of C. gigas endogenous cellulases

Full-length ORFs of the endogenous cellulases of C. gigas were first translated into protein
sequences and then aligned with all collected cellulase sequences in the constructed library
using the MAFFT algorithm (multiple alignment using fast Fourier transform; https://mafft.
cbre.jp/alignment/software/) to confirm their closest similarity to a GHF. Next, the original
(unaligned) protein sequences of each C. gigas cellulase were combined with the dataset of
their most similar GHF and aligned using the same algorithm mentioned above. The aligned
dataset of each GHF was then manually checked, and regions with long gaps were deleted. The
sequences used for phylogenetic analysis are available in the supplementary data (S1-S3 File).
Phylogenetic analyses were performed using IQ-TREE software (version 2.2.0; https://www.
igtree.org), applying common empirical amino acid exchange rate matrices (LG, general
matrix) and common rate heterogeneity across site models (+I+G, invariable site plus discrete
gamma model). Clade stability was evaluated using 100 replicates of a standard non-paramet-
ric bootstrap. Branches with less than 50 support values were collapsed. Based on the results of
the phylogenetic analysis, the homology and enzymatic characteristics of the cellulases pos-
sessed by C. gigas were discussed.

Results
Transcriptome analysis

A total of 30,044,943 paired-end, 200 bp-long reads (12,017,977,200 bp in total) were produced
after sequencing. After trimming adaptor sequences and filtering low-quality sequences using
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the Atria tool, 27,094,086 paired-end reads remained. The FastQC tool was used to check the
quality of the reads, and the Trinity tool was thereafter used to assemble 273,631 contigs.
Benchmarking Universal Single-Copy Orthologs (BUSCO) analysis (S1 Fig) showed that the
assembled transcriptome mainly belonged to the Metazoa and mostly comprised completed
transcripts (n = 954). Thus, the transcriptome of C. gigas was successfully completed.

Endogenous cellulases of C. gigas

As shown in Table 1, using a similarity-based search, 10 transcripts were detected as cellulase
orthologs (54 File). Among these, seven (CgCel5A, CgCel5C, CgCel9A, CgCel9B, CgCel9C,
CgCel9D, and CgCel45A) were successfully amplified via PCR using digestive gland cDNA as
the template, indicating successful assembly (Fig 1). For the other three orthologs that failed to
be amplified during cDNA PCR, nested PCR using primers targeting the outer region of the
ORFs was performed to avoid incorrect assembly and/or low target expression levels; however,
all amplification attempts failed.

Genomic PCR was performed on all 10 orthologs using primers targeting partial or full-
length ORFs. As a result, seven orthologs (CgCel5A, CgCel5C, CgCel9A, CgCel9B, CgCel9C,
CgCel9D, and CgCel45A) were successfully amplified from adductor muscle and/or mantle
genomic DNA templates (Fig 2). Compared with the length of the targeted cDNA sequences, a
larger size of the genomic PCR products from all orthologs was verified (Table 1), indicating
the existence of intron sequences. However, the remaining four orthologs failed all genomic
PCR amplification attempts using primers targeting either the full-length or interparts of their
ORFs, indicating that they might represent misassembled contigs.

Phylogenetic analysis

Cellulase orthologs with intron sequences confirmed via genomic PCR were verified as endog-
enous cellulases of C. gigas. However, in the present study, we used all 10 orthologs in the phy-
logenetic analysis. The first round of analysis, using all data collected from the CAZy database,
classified the 10 orthologs with their closest GHF based on amino acid sequence similarity (S2

Fig). The 10 cellulase orthologs belonged to three GHFs: GHF5, GHF9, and GHF45. The
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Fig 1. The cDNA PCR of 10 cellulase orthologs of Crassostrea gigas using first-strand cDNA as a template. White
arrows show the major product. The primers used and the approximate size of the products are summarized in
Table 1. M = Gene Ladder Fast 1 (0.1-2 kb) (NIPPON GENE, Tokyo, Japan).

https://doi.org/10.1371/journal.pone.0313246.9001

PLOS ONE | https://doi.org/10.1371/journal.pone.0313246  February 7, 2025 6/16


https://doi.org/10.1371/journal.pone.0313246.g001
https://doi.org/10.1371/journal.pone.0313246

PLOS ONE Endogenous cellulases of the pacific oyster, Crassostrea gigas

a. Mantal Adductor muscle

Fig 2. Genomic PCR of 10 cellulase orthologs using mantle and/or adductor muscle DNA of Crassostrea gigas as templates.
White arrows show the major product. The primers used and the approximate size of the products are summarized in Table 1. (A).
Genomic PCR of CgCel5A, Cgcel5C, CgCel9B, CgCel9C, and CgCel9D. Cytochrome oxidase subunit 1 (CO1), B-actinl, and B-actin2
are positive controls. (B-D). Genomic PCR of (B) CgCel9A, (C) CgCel9D, and (D) CgCel45A. Left, 5 min of annealing failed to
produce any product. Right, 10 min of annealing successfully produced a > 20-kb product. Maker sizes are shared in the lower panel
(B, C, and D). M = Gene Ladder Wide 1 (0.1-20 kb) (NIPPON GENE, Tokyo, Japan).

https://doi.org/10.1371/journal.pone.0313246.9g002

second round of analysis was intended to show the detailed taxonomic positions of each ortho-
log within its closest GHF (Figs 3-5).

For the intron-confirmed endogenous cellulases of C. gigas, CgCel5A and CgCel5C showed
the highest similarity to GHF5 in terrestrial plants (Fig 3). In contrast, CgCel9A, CgCel9B,
CgCel9C, and CgCel9D, which belong to GHF9, exhibited very close relationships with other
aquatic invertebrates like bivalves (e.g., C. japonica) and gastropods (e.g., Ampullaria crossean
and Haliotis discus) (Fig 4). CgCel45A also demonstrated the highest similarity to other
bivalves (Fig 5). The remaining orthologs, for which intron sequences could not be detected
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Fig 3. Phylogenetic position of CgCel5A, CgCel5B, and CgCel5C (in bold) in the eukaryotic endogenous cellulase gene tree of GHF5.

Bootstrap values larger than 50 are shown in each branch.

https://doi.org/10.1371/journal.pone.0313246.9003

via genomic PCR, were all closely related to other C. gigas orthologs in the same GHF group
(i.e., CgCel5B showed the highest similarity to CgCel5A and CgCel5B [Fig 3], CgCel9E to
CgCel9B and CgCel9D [Fig 4], and CgCel45B to CgCel45A [Fig 5]).

Discussion
Phylogenic analysis of C. gigas endogenous cellulases

Notably, the eukaryotic endogenous cellulase library constructed in this study omitted frag-

mental sequences to increase the reliability of the results. In addition, some invertebrates, such

as termites, have eukaryotic symbiosis and possess cellulases [13]. Thus, it is critical to check
the method by which each sequence is obtained and to evaluate the likelihood of "contamina-

tion" when discussing the origin of a cellulase. We only collected sequences that were extracted

from published references, where the method of sample preparation or endogeneity verifica-

tion is clearly stated. Finally, although this step was not performed during the library construc-

tion process, we also gathered data on whether each cellulase sequence was confirmed to

possess enzymatic activity via indisputable methods like protein purification and recombinant
expression. These data were taken into account when discussing the putative activity of endog-

enous cellulases in C. gigas.

Among the 10 cellulase orthologs found in C. gigas, CgCel5A, CgCel5B, and CgCel5C were

categorized as GHF5 (Fig 3). As shown in Table 1, the cDNA PCR of CgCel5A amplified a
product with a size of 1.6 kb, which was smaller than its expected ORF (3,183 bp). However,
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Fig 4. Phylogenetic position of CgCel9A, CgCel9B, CgCel9C, CgCel9D, and CgCel9E (in bold) in the eukaryotic endogenous cellulase gene tree of GHF9.
Bootstrap values larger than 50 are shown in each branch.

https://doi.org/10.1371/journal.pone.0313246.9004

genomic PCR confirmed the presence of introns in CjCel54, indicating that it was endogenous
to C. gigas. Although we attempted to target the 138-bp ORF of CgCel5B using cDNA as a tem-
plate, no PCR product could be amplified. Subsequently, we employed primers to target the
outer region of the ORF and conducted nested PCR, yet we still failed to amplify a PCR prod-
uct. Moreover, despite both sets of primers being used for genomic PCR, no product could be
amplified. Considering the short length of the OREF, it is possible that CgCel5B represents a
misassembled or incomplete (fragmental) contig. On the other hand, for CgCel5C, a 2.8 kb
product was obtained through cDNA PCR, matching the target length of its ORF. Addition-
ally, the existence of an intron was confirmed through genomic PCR. In the phylogenetic tree
of GHF5 (Fig 3), C. gigas is included in a clade consisting of invertebrates and higher plants.
This clade is clearly separated from fungi (bootstrap support = 82). Within this clade, orthologs
of C. gigas, several invertebrates including nematodes and insects, and terrestrial plants are
included. Crassostrea gigas should show homology to invertebrates since they are evolution-
arily closer compared to plants, but the bootstrap support between them is low. According to
Chang and Lai [14], the evolutionary origins of GHF5 are unclear. Invertebrates like C. gigas
and nematodes may have acquired cellulase genes through either vertical inheritance from
common ancestors or intermittent horizontal acquisitions from bacteria or fungi (possibly
also intestinal microbiota). However, these organisms have shown low similarity in recent
times. Regarding the biochemical activity of CgCel5A and CgCel5B, it is important to note
that their orthologs in terrestrial plants, such as Camellia sinensis, have been found to possess
B-glucosidase activity [15]. However, it is challenging to assume that CgCel5A and CgCel5B
share the same enzymatic activity solely based on their amino acid sequences (S3 Fig). To
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Fig 5. Phylogenetic position of CgCel45A and CgCel45B (in bold) in the eukaryotic endogenous cellulase gene tree of GHF45. Bootstrap values larger than

50 are shown in each branch.

https://doi.org/10.1371/journal.pone.0313246.9005

definitively confirm their true enzymatic activity, the use of CgCel5A and CgCel5B recombi-
nants would be the most efficient approach.

Five orthologs (CgCel9A, CgCel9B, CgCel9C, CgCel9D, and CgCel9E) were categorized as
GHF?9, with the highest counts of endogenous cellulases in aquatic invertebrates (Fig 4).
CgCel9A, CgCel9B, and CgCel9C amplified PCR products of 1.7, 1.8, and 1.7 kb in size,
respectively. The sizes of these products were identical to the expected ORF lengths. In addi-
tion, the introns confirmed via genomic PCR showed endogeneity. For CgCel9D, we success-
fully amplified a PCR product of 1.6 kb in size, which matches the size of the assembled contig.
However, as the ORF sequence inside this contig is fragmental (no stop codon), a poly-dT
primer was used to verify the 3’-end sequence of the ORF. A 1.9 kb product was successfully
amplified after targeting the full-length ORF. After using primers targeting the inner region of
the ORF, genomic PCR amplified a 4-kb product, indicating that it is an endogenous cellulase
of C. gigas. Phylogenetic analysis showed that CgCel9A and CgCel9C were very closely related
to each other and had the highest similarity to an endo-f-1,4-glucanase preserved in A. cross-
ean, a freshwater gastropod whose cellulase (ACEG65) was purified via high-performance lig-
uid chromatography and verified to have carboxymethyl cellulose (CMC) hydrolytic activity.
In contrast, CgCel9B and CgCel9D showed the highest similarity to the brackish bivalve (C.
japonica) [10] and abalone (H. discus) [16]. The cellulase of the abalone was found to have lig-
nocellulose hydrolytic activity. Amino acid alignment, which includes these orthologs, indi-
cates that they have common catalytically important residues (Fig 6) [10]. These results
showed that C. gigas has multiple GHF9 cellulases encoded in its genome, which might func-
tion similarly to that of endo-B-1,4-glucanases. It might be considered redundant to have simi-
lar cellulases encoded in the genome. However, based on our current knowledge, the same
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Fig 6. Amino acid sequence alignment of CgCel9A, CgCel9B, CgCel9C, CgCel9D, and three other GHF9 orthologs from Ampullaria crossean, Haliotis
discus, and Corbicula japonica. Dots indicate multiple identical residues, while asterisks represent fully identical residues among each ortholog. Open squares
indicate catalytically important residues, including aspartic acid, as determined by previous research [10].

https://doi.org/10.1371/journal.pone.0313246.9006

cellulase could exhibit different enzymatic activities. For example, it may have distinct func-
tions associated with the length of the lignocellulose chain [17], and times, with the level of lig-
nocellulose crystallites [18]. Multiple GHF9 cellulases might act differently on different
sources of lignocellulose to optimize decomposition efficiency. For CgCel9E, when targeting
its 1,233-bp ORF, a 0.4 kb PCR product was amplified. We then used primers targeting the
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Fig 7. Amino acid sequence alignment of CgCel45A, CgCel45B, and four other GHF45 orthologs from Ampullaria crossean, Aplysia kurodai, Mytilus
edulis, and Corbicula japonica. Dots indicate multiple identical residues, and asterisks represent fully identical residues between each ortholog. Open squares
indicate the aspartic acid residue of the active center based on previous research [11].

https://doi.org/10.1371/journal.pone.0313246.9007

outer region of the ORF and performed nested PCR, but amplification failed. In addition, both
sets of primers were used for genomic PCR, but no product could be amplified. These results
indicate that CgCel9E might represent a misassembled contig. Regardless, we used CgCel9E in
the phylogenetic analysis, and the results showed that it was closely related to CgCel9B and
CgCel9D.

The two orthologs, CgCel45A and CgCel45B, were categorized as GHF45. CgCel45A
yielded a slightly shorter product (0.4 kb) than expected. For genomic PCR, the first amplifica-
tion attempt using the same reaction conditions as those used for the other orthologs failed,
but by extending the annealing time from 5 to 10 min, the second attempt successfully ampli-
fied a large product (> 20 kb) (Fig 2). However, for CgCel45B, both cDNA and genomic PCR
failed to yield a product. This failure might be attributed to misassembly because the assembled
sequence of CgCel45B was markedly short (only 369 bp in length). According to the phyloge-
netic analysis, CgCel45A had the highest similarity with the two bivalves, Mytilus edulis and C.
japonica, indicating that this clade comprises a common endogenous cellulase possessed by
aquatic invertebrates. Amino acid alignment showed that CgCel45A and CgCel45B share com-
mon residues in the active center of the cellulase with several invertebrates (Fig 7) [11]. The
study of the C. japonica GHF45 cellulase (CjCEL45) revealed its ability to decompose CMC
but did not verify whether it is an endo-f-1,4-glucanase, exo-B-1,4-glucanase, or B-glucosidase
[11]. Unfortunately, the enzymatic activities of other cellulases of aquatic invertebrates in this
clade have not yet been studied.

Physiological and ecological significance of C. gigas endogenous cellulases

C. gigas and other oysters have empirically been found to have higher productivity when ter-
restrial organic matter is supplied upstream. They are able to survive in mangrove areas, even
during the rainy season when the water has very low light transparency (almost 0 m) due to
the large amount of insoluble particles in the water. Oysters are known to feed on phytoplank-
ton that require light for photosynthesis, such as diatoms. However, the presence of such low
numbers of primary producers did not decrease the productivity of oysters, leading some ecol-
ogists to explore the possibility that oysters could forage on particles originating from man-
groves [19]. Our previous study revealed that small crustaceans (e.g., Mysidacea and
Copepoda), which are heterotrophic predators that mainly feed on phytoplankton, have high
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levels of cellulase activity, allowing them to assimilate terrestrial lignocellulose [20]. Unlike
small crustaceans, oysters, which are aquaculture species with high economic value, have been
large-scale (next-generation) sequenced previously. However, few studies have focused on pro-
viding a comprehensive understanding of their endogenous cellulases, and the ecological sig-
nificance of this has never been discussed. Based on the results of the present study, C. gigas
has at least seven endogenous cellulases covering three GHFs. Putatively, these cellulases con-
sist of both endo-f-1,4-glucanase and B-glucosidase, based on the database constructed in the
present study. Using an online database, exo-$-1,4-glucanase was also detected. If all endoge-
nous cellulases discovered have the expected activity, C. gigas should be capable of self-decom-
posing lignocellulose (e.g., broken leaves) into glucose. This capability might be the key to
thriving downstream of forests or surviving in areas with low primary producers owing to low
light penetration.

Studies on aquatic invertebrate cellulases are increasing, but few efforts have been made to
reveal all endogenous cellulases possessed by one species. This information is essential for
understanding the physiological and ecological advantages of certain species. Taking the pres-
ent study as an example, possessing p-glucosidase indicates that C. gigas is more likely to use
terrestrial lignocellulose as a direct food source rather than using only endo-f-1,4-glucanase
and exo-B-1,4-glucanase to digest microalgae with cell walls made of cellulose. The abundance
of diatoms and photosynthetic dinoflagellates is believed to reduce the need for cellulase
because these microalgae are more nutritious. On the other hand, an increase in cellulose is
thought to increase the expression of C. gigas’s natural cellulase, especially when these microal-
gae are insufficient. Other environmental factors such as pH, water temperature, and salinity
can also affect the efficiency of cellulase, potentially influencing C. gigas’s cellulases positively
or negatively. However, there have been no prior studies focused on the regulation of C. gigas’s
or other oysters’ natural cellulase, which requires further investigation.

Additionally, carbohydrate-binding modules (CBMs) were detected in the transcriptome.
Although CBMs do not have direct hydrolase activity on lignocellulose, it is necessary to men-
tion their possible role in bivalves. CBMs have been well studied in bacteria and fungi, but
there is limited knowledge about them in invertebrates [21, 22]. Our recent research focused
on a Family 2 CBM of C. japonica used recombinant expression to verify its function of having
a high affinity to crystalline cellulose [23]. Usually, CBMs are considered to increase cellulose
decomposition efficiency. The CBM linked to the cellulase of C. japonica plays a different but
important role in the decomposition of lignocellulose because it uses secreted cellulase to
decompose cellulose ex vivo (in the sediment), thus requiring CBMs to keep the secreted cellu-
lase anchored on the leaves. It is difficult to estimate whether C. gigas uses the same method as
that of C. japonica, which inhabits the sediment of wetlands where immobilized lignocellulose
(i.e., leaves) can easily be found, whereas C. gigas lives close to seawater where lignocellulose
can easily be washed away. Interestingly, based on our experience in culturing bivalves
(unpublished), they sometimes secrete slime-like substances, possibly extracellular polysaccha-
rides, to capture particulate organic matter in water, including leaf fragments, where CBMs
might be useful. However, the functions and distribution of CBMs in bivalves remain poorly
understood and require further study to verify this assumption.

Approach to reveal the ecological significance of aquatic invertebrates in
the carbon cycle
Our previous study, which utilized zymographic assays, revealed the presence of cellulase

activities not only in oysters but also in almost all aquatic invertebrate phyla, indicating the
presence of endogenous cellulases [7, 24]. A recent study, based on genome and transcriptome
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analyses, further supported this assumption [14]. However, additional research is required to
fully understand the role of the carbon cycle in aquatic invertebrates. Since it is possible for
one invertebrate species to possess multiple endogenous cellulases, comprehensive studies like
the present one, which thoroughly investigate the endogenous cellulases of the target inverte-
brates, will be necessary. In this process, it is important to carefully exclude any contamination
from symbiotic organisms. Next, using phylogenetic analysis and referencing previous studies,
the enzymatic activity of the newly identified cellulase orthologs was predicted. However,
since studies on invertebrate cellulases are still limited and it can sometimes be difficult to pre-
dict the enzymatic activities of certain hydrolases based solely on nucleoside/amino acid
sequences, methods like protein purification and recombinant expression are still necessary to
confirm the activity of a detected cellulase. Following this, quantification analysis of activity-
confirmed endogenous cellulases expressed in the field should be conducted in order to evalu-
ate the amount of lignocellulose used by invertebrates, such as C. gigas, and assess its ecological
significance.

Conclusion

This study successfully identified seven endogenous cellulases. First, transcriptome data were
mined to target cellulase orthologs. Genomic analysis was then conducted to confirm their
existence, including the presence of introns. Three cellulase orthologs that could not be ampli-
fied by PCR using either cDNA or genomic DNA as templates were found to be a result of mis-
assembling of the next-generation sequencing data of the total RNA or symbiotic organism
contamination during the RNA extraction step. For future studies aiming to identify endoge-
nous cellulase or other glycoside hydrolases related to decomposing terrestrial plant organic
matter, it is recommended to follow our method to avoid erroneous determination of endo-
geneity. The identified cellulase sequences in this study could also be utilized to identify
endogenous cellulase in other oyster species. Additionally, this opens up the possibility for
quantitative analysis of the expression level of C. gigas’s cellulases. By examining the ability of
oysters to decompose lignocellulose, it is now possible to investigate the differences in thriving
or non-thriving oysters across different environments.
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