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Abstract

Spectral clustering methods are known for their ability to represent clusters of diverse

shapes, densities etc. However, the results of such algorithms, when applied e.g. to text

documents, are hard to explain to the user, especially due to embedding in the spectral

space which has no obvious relation to document contents. Therefore, there is an urgent

need to elaborate methods for explaining the outcome of the clustering. We have con-

structed in this paper a theoretical bridge linking the clusters resulting from Graph Spectral

Clustering and the actual document content, given that similarities between documents are

computed as cosine measures in tf or tfidf representation. This link enables to provide with

explanation of cluster membership in clusters produced by GSA. We present a proposal of

explanation of the results of combinatorial and normalized Laplacian based graph spectral

clustering. For this purpose, we show (approximate) equivalence of combinatorial Laplacian

embedding and of K-embedding (proposed in this paper) and term vector space embedding.

We performed an experimental study showing that K-embedding approximates well Lapla-

cian embedding under favourable block matrix conditions and show that approximation is

good enough under other conditions. We show also perfect equivalence of normalized

Laplacian embedding and the M-embedding (proposed in this paper) and (weighted) term

vector space embedding. Hence a bridge is constructed between the textual contents and

the clustering results using both combinatorial and normalized Laplacian based Graph

Spectral Clustering methods. We provide a theoretical background for our approach. An ini-

tial version of this paper is available at arXiv, (Starosta B 2023). The Reader may refer to

that text to get acquainted with formal aspects of our method and find a detailed overview of

motivation.

1 Introduction

We propose a theoretical bridge linking the clusters resulting from Graph Spectral Clustering

and the actual document content, given that similarities between documents are computed as

cosine measures in tf or tfidf representation. This link enables us to provide the explanation of
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cluster membership in clusters produced by GSA. We provide textual justification for a docu-

ment’s cluster membership derived from cosine similarity, and at the same time provide tex-

tual justification for its non-membership in other clusters via distance computation in the

document vector embedding space. This result is novel as various authors recommend not to

use GSA if you “need an explainable algorithm”. See e.g. https://crunchingthedata.com/when-

to-use-spectral-clustering/.

The reason for focusing our research on the so-called graph spectral cluster analysis (GSA)

in application to sparse datasets stems from the fact that GSA is applicable for high-dimen-

sional datasets. This is a relatively rare feature among existing clustering algorithms. GSA clus-

tering methods are known for their ability to represent clusters of diverse shapes, different

densities, various cardinalities etc. They constitute an approximation to graph cuts of various

types (plain cuts, normalized cuts, and ratio cuts). Further, they apply to unweighted and

weighted similarity graphs. Despite their advantages, various shortcomings were encountered

in their application. The need for computing eigenvectors makes it relatively slow. Like k-

means, they are sensitive to the initialization conditions that are used. What seems to be most

painful, is that it is hard to explain results. One of the most frequently applied clustering algo-

rithms, k-means algorithm behaves perfectly when data are low dimensional and can be

divided into spherical clusters of similar cardinality. The results are easy to explain then. How-

ever, the reality of textual documents is that the clusters are usually not spherical, of different

cardinality, and the dimensionality is high, up to dozens of thousands of dimensions. There-

fore approaches like GSA are considered.

Explainable AI (XAI) is an important developing area but remains relatively understudied

for clustering. One expects that the information within a cluster represents a coherent piece of

knowledge. However, in reality, we need a human inspection stage to understand cluster con-

tent, in order to answer the question: “What is this cluster about?”. This need for human inter-

vention limits the use of clusters in automatic decision-making processes. An automatic

explanation of cluster content could remove this human step, such that the users and/or appli-

cation would be enabled to focus on consuming the clustering results. The extraction of infor-

mation that explains the semantic content of the clusters is still mostly a manual activity, as it

requires the inspection of sample documents [1, 2].

Notably, the core of GSA is usually a k-means algorithm, possessing a multitude of cluster

explanation methods, see [3–7]. In spite of this, the result of GSA clustering is hard to explain

to the user due to the embedding of clusters in the spectral space, that has no direct relation to

the document texts. This forces the users to examine manually the clusters to gain insights

which may turn out to be time-consuming. Typically, it is recommended not to use spectral

clustering if you “need an explainable algorithm”. See e.g. https://crunchingthedata.com/

when-to-use-spectral-clustering/.

The problem is that GSA describes the clusters in terms of values of eigenvectors. But what

the people need is the description in human terms. This paper seeks to overcome this weak-

ness. We devise an automated method to describe/explain GSA clusters in terms of natural

language words. This shall enable the users and/or application to focus just on consuming the

clustering results that fit their needs.

This is of practical importance as GSA is used frequently in the context of natural language

processing, see e.g. [8–11]. We propose an explanation method of the results of two types of

GSA clustering algorithms: one based on combinatorial Laplacian (we shall call this GSA clus-

tering method L-based clustering) the other based on normalized Laplacian (we shall call this

GSA clustering method N-based clustering, N standing for “normalized”). L-based clustering is

an approximation to the graph clustering method called RCut and N-based clustering is an

approximation to the graph clustering method called NCut [12]. Our approach to
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explainability is as follows: We propose an alternative “theoretical” clustering method, that we

call k-based clustering and demonstrate its approximate equivalence to RCut and hence L-

based clustering. Then we recall the traditional term-vector-space clustering method (TVS-
based) and demonstrate that it is equivalent to k-based clustering. But the TVS-based cluster-

ing is easily explained in terms of words stemming from documents. So we have provided in

this way explainability to combinatorial Laplacian based GSA clustering. On the other hand, to

explain the results of normalized Laplacian GSA based clustering, we propose an alternative

“theoretical” clustering method, that we call M-based clustering and demonstrate its full

equivalence to NCut and hence approximation to N-based clustering. Then we introduce a

special, new weighted term-vector-space clustering method (weighted TVS-based) and demon-

strate that it is equivalen t to M-based clustering. We provide also a prescription for how the

weighted TVS-based clustering can be explained in terms of words stemming from

documents.

Thanks to these results, we can explain cluster membership of textual documents in Lapla-

cian embedding by pointing at significant words/terms, as commonly practised [13], subject to

various improvements [14, 15] (compare also with Shapley-value based approaches [16]). Note

that other hard-to-explain clusterings like those generated by deep methods [17], short-text

based user clustering [18], use this form of explanation. Before presenting our method, we

review in Section 2 previous research on clustering explanations. Section 3 provides a brief

overview of GSA, in particular of combinatorial and normalized Laplacian based clustering.

Section 4 explains the relationship between GSA and graph cut clustering methods. In particu-

lar, Section 4.1 recalls the relationship between combinatorial Laplacian based clustering and

RCut, while Section 4.2 reminds the relationship between normalized Laplacian based cluster-

ing and NCut. Section 5 introduces our proposal for the explanation of combinatorial Lapla-

cian based (L-based), and Section 6—normalized Laplacian based (N-based) spectral

clustering. In particular, Section 5.1 explains our alternative (K-based) clustering method. Sec-

tion 5.2 shows that K-based clustering method approximates the target combinatorial GSA.

Section 5.4 shows that K-based clustering method is equivalent to clustering in Term Vector

Space. As normalized GSA is concerned, we introduce in Section 6.1 our new (M-based) clus-

tering method. Section 6.2 shows that M-based clustering method approximates the target

normalized GSA. Section 6.4 shows that M-based clustering method is equivalent to cluster-

ing in weighted Term Vector Space.

Section 7 presents some experimental results on clustering using the combinatorial Lapla-

cian based clustering and our K-embedding based clustering. We conclude the paper with

some final remarks in Section 8.

The Reader may refer to the initial version of this paper, available at arXiv, [19], in order to

get acquainted with formal aspects of our method and find a detailed overview of motivation.

2 Previous research

As the realm of clustering algorithms is vast, see e.g. [20–23], we narrow our interest to the

large family of spectral clustering algorithms [12, 24–26], which have numerous desirable

properties (like detection of clusters with various shapes, applicability to high dimensional

datasets, and capability to handle categorical variables). But, as mentioned, they are not free

from various shortcomings, common to other sets of algorithms, including multiple possibili-

ties of representation of the same dataset, producing results in a space different from the space

of the original problem, curse of dimensionality etc., which are particularly grieving under

large and sparse dataset scenario.
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Cluster Analysis, like the entire domain of Artificial Intelligence, experienced rapid devel-

opment over the recent years, providing algorithms of growing complexity and efficiency that

are regrettably characterized by their “black-box nature” that is their results are hard to under-

stand by human users and therefore there exists a growing resistance for their application in

practical settings. This phenomenon led to the development of a branch of AI called “Explain-

able Artificial Intelligence” (XAI) [27, 28], with subbranches including Explainable Clustering

[29]. A very general overview of methods of explainable Artificial Intelligence is given by [30].

It has to be mentioned, that short documents have some challenging peculiarities, as [31]

shows.

The “black box” problem relates in particular to cluster analysis [29]. The situation is more

difficult here, compared e.g. to the classification tasks, because the very essence of the concept

of “cluster” is not well-defined. Even though, the scientific research area of cluster analysis has

nearly a century-long history, during which hundreds of clustering algorithms have been

developed, and countless applications are reported.

Recent years have brought visible progress in this area. Multiple explainable versions of k-

means algorithm have been elaborated, [3–5] with multiple improvements [32, 33] and appli-

cations, e.g. [6, 7]. They generate explanations in terms of the underlying features used in the

clustering, which is not usable in GSA as the features here are not human-interpretable.

[34] propose a different, exemplar-based approach to clustering explanation which may be

suitable for various embedding types, like auto-encoders or word embeddings. As selecting a

small set of exemplars to explain even a single cluster appears to be computationally intracta-

ble, they developed an approximation algorithm. Its basic version explains all the instances in

every cluster, while an extension detects a bounded number of exemplars providing explana-

tions covering a large fraction of all the instances. [35] presents a similar idea, but rather based

on prototypes. [2] concentrate on explanations via relevant keywords.

While the mentioned methods are not well suited for explaining text clustering, authors of

[36] suggest a quite universal method for text cluster explanation. The method is based on cre-

ating an equivalent neural network model for a given clustering of text documents. The net-

work shall be trained via backpropagation. Then, via backpropagation too, the words

determining a given cluster membership can be read out. In a similar spirit, but much more

elaborated, taking into account also semantic features, the authors of [17] propose a deep neu-

ral network suitable for both clustering and its explanation. Notably, in both approaches, the

explanation provided is in form of a list of word/phrases characterizing each cluster. Authors

of [37] concentrate on the deep models enriched with multi-view aspects. Still another deep

learning approach in [38] exploits the concept of self-organizing-maps.

Authors of [18] use a (hidden variable) probabilistic model with the detection of hidden

topics generating word pairs to perform clustering into topics and then to describe the topics

by the distribution of word pairs implied by the topic.

Authors of [1] stress the need to define appropriate similarity measures as clusters need to

contain similar documents.

3 A brief overview of Graph Spectral Clustering

Throughout this paper, we will use the symbols listed in Table 1.

Graph spectral clustering methods can be viewed as a relaxation of cut based graph cluster-

ing methods. Let S be a (symmetric) similarity matrix between pairs of items (e.g. documents).

It induces a graph whose nodes correspond to the items (documents). In the domain of text

mining, the similarity matrix is usually based on either a graph representation of relationships

(links) between items (text documents) or such a graph is induced by (cosine) similarity
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measures between items (document texts). However, mixed object representations (text and

links) have also been studied [39]. By convention, all diagonal elements of matrix S are equal

to zero.

A(n unnormalised or) combinatorial Laplacian L corresponding to this matrix (approxi-

mating the RCut) is defined as

L ¼ D � S; ð1Þ

where D is the diagonal matrix with dii ¼
Pn

‘¼1
si‘ for each i 2 [n]. A normalized Laplacian L

of the graph represented by S (approximating NCut) is defined as

L ¼ D� 1=2LD� 1=2 ¼ I � D� 1=2SD� 1=2: ð2Þ

The power operations performed on the diagonal matrix Dx are not real matrix power opera-

tions. They are rather performed on each element of the diagonal of D separately, not affecting

the zeros outside of the diagonal (D0 = Dx means computing d0ii ¼ dxii for each diagonal element

of D, and setting d0i‘ ¼ 0 for each off-diagonal element.) In particular, D−1 is a pseudo-inverse

of D.

Table 1. Symbols and abbreviations used throughout the paper.

Symbol meaning

GSA Graph Spectral Clustering

D the set of documents

n the number of documents

Cj the set of elements of a document cluster j
nj the number of elements in the document cluster j
S similarity matrix, siℓ—similarity between document i and ℓ; the diagonal elements sii are all equal to

zero.

D diagonal matrix containing row sums of the similarity matrix S; dii—the element i of the diagonal of

D; ωi = dii—the weight of document i, when performing weighted clustering.

L combinatorial Laplacian of the similarity matrix S; see formula (1)

L normalized Laplacian of the similarity matrix S; see formula (2)

Q[RCut](Γ) the clustering quality criterion (for clustering Γ) for RCut clustering algorithm; see formula (3)

Q[NCut](Γ) the clustering quality criterion (for clustering Γ) for NCut clustering algorithm; see formula (11)

Q[GSAL](Γ) the clustering quality criterion (for clustering Γ) for GSA clustering algorithm based on

combinatorial Laplacian L; see formula (9)

Q½GSAL�ðGÞ the clustering quality criterion (for clustering Γ) for GSA clustering algorithm based on normalized

Laplacian L; see formula (17)

Q[Kbased](Γ) the clustering quality criterion (for clustering Γ) for K-based clustering algorithm; see formula (22)

Q½Mbased�ðG; ωÞ the clustering quality criterion (for clustering Γ) for M-based clustering algorithm; see formula (39)

Q[TVS](Γ) the clustering quality criterion (for clustering Γ) for clustering algorithm in Term Vector Space,

approximating RCut; see formula (25)

Q[ωTVS](Γ; ω) the clustering quality criterion (for clustering Γ) for clustering algorithm in weighted Term Vector

Space, equivalent to NCut; see formula (58)

xi vector representing document i in the space spanned by eigenvectors of combinatorial Laplacian L
ξi vector representing document i in the space spanned by eigenvectors of normalized Laplacian L

zi vector representing document i in the space generated by the K-embedding

zi vector representing document i in the space generated by the M-embedding

wi vector representing document i in the Term Vector Space.

w0 i vector representing document i in the weighted Term Vector Space.

https://doi.org/10.1371/journal.pone.0313238.t001
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Whichever Laplacian is used, the clustering is performed as follows. We assume that we

want to cluster the data into k clusters. One computes the eigen-decomposition of the Lapla-

cian, getting n eigenvalues λ1� � � � � λn (always λ1 = 0) and corresponding eigenvectors v1,

. . ., vn. Then one embeds the documents in the k-dimensional space spanned by the k eigen-

vectors corresponding to k lowest eigenvalues. That is, one assigns each document i the coordi-

nates [vi,1, . . ., vi,k]. This shall be called L-embedding if the combinatorial Laplacian L is used,

and N-embedding, if the normalized Laplacian L is used. Then one clusters the documents in

this embedding using e.g. k-means algorithm.

Let us briefly recall the typical spectral clustering algorithm in order to make it understand-

able, how distant the clustering may be from the applier’s comprehension [12]. The first step

consists in creating a similarity matrix of objects (in case of documents based on tf, tfidf, in

unigram or n-gram versions, or some transformer based embeddings are the options—consult

e.g. [40] for details), then mixing them in case of multiple views available. The second step is to

calculate a Laplacian matrix. There are at least three variants to use: combinatorial, normal-

ized, and random-walk Laplacian, [12]. Then computing eigenvectors and eigenvalues, eigen-

vector smoothing (to remove noise and/or achieve robustness against outliers) choice of

eigenvectors, and finally clustering in the space of selected eigenvectors (via e.g. k-means).

Detailed descriptions can be found e.g. in [12, 21]. When the clustering is finalized, then for

each item i we have its coordinates [vi,1, . . ., vi,k] and its membership in some cluster Cj, but we

cannot tell why i belongs to Cj because none of the coordinates [vi,1, . . ., vi,k] has anything to

do with the contents of the document i, in particular with its term frequency (tf, tfidf) or any

other content representation. Therefore our goal is to find a justified way to tell which terms

are the reason for cluster membership of a document.

4 The Graph Spectral Clustering versus graph cuts

The relationship between Graph Spectral Clustering methods and Graph Cut methods is as

follows: The RCut criterion corresponds to finding the partition matrix PRCut 2 R
n�k

that mini-

mizes the formula H0LH (where H’ stands for the transpose of H) over the set of all partition

matrices H 2 Rn�k
. Such a formulated problem is NP-hard. That is why we relax it by assum-

ing thatH is a column orthogonal matrix. In this case the solution is obvious: the columns of

PRCut are eigenvectors of L corresponding to k smallest eigenvalues of L. Similarly, the columns

of matrix PNCut, representing NCut criterion, are eigenvectors of L corresponding to k smallest

eigenvalues of L. We provide more details in the subsequent subsections. For an in-depth

explanation and further details see e.g. [12, 21].

4.1 The goal of Graph Spectral Clustering versus RCut

The RCut clustering aims at splitting the dataset into k clusters Γ = {C1, . . ., Ck} minimizing

the following criterion:

Q½RCut�ðGÞ ¼
Xk

j¼1

1

nj

X

i2Cj

X

‘=2Cj

si‘ ð3Þ

where nj = |Cj|, that is we minimize the sum over all clusters of sum of similarity between ele-

ments of a given cluster and other clusters divided by the cluster cardinality.

Let us reformulate this task, following the ideas of Hall [41]. Imagine, we want to embed the

set of documents D ¼ f1; . . . ; ng in an Euclidean spaceRk in such a way that the clusters in

this space reflect the clustering via RCut criterion. This embedding shall be denoted by a

matrix Y such that yij indicates the membership of document i in cluster j. In the Euclidean
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space mentioned above, the row vector of this matrix (yi1, . . ., yik) means coordinates of docu-

ment i in the space Rk and the column vector yj is the indicator vector of class membership of

the cluster j. Let

yij ¼
1
ffiffiffiffinj
p ; if the document i belongs to cluster j

yij ¼ 0 otherwise
ð4Þ

Note that under this definition, all indicator vectors are of unit length, kyjk = 1, and are mutu-

ally orthogonal (yTj yj0 ¼ 0, for j0 6¼ j). Hall [41] proposed the following criterion to be mini-

mized when embedding a graph in Euclidean space:

EHðY; SÞ ¼
1

2

Xn

i¼1

Xn

‘¼1

Xk

j¼1

ðyij � y‘jÞ
2

 !

si‘ ð5Þ

It is also worth noting that we can reexpress the above Hall criterion as

EHðY; SÞ ¼
Xk

j¼1

yTj Lyj ð6Þ

where L is the combinatorial Laplacian of the similarity matrix S. It can be immediately seen

that given the above definitions of yij

EHðY; SÞ ¼ Q½RCut�ðGÞ ð7Þ

This means that minimizing the Hall criterion (while maintaining the constraints imposed on

the indicator vectors) is equivalent to minimizing the RCut criterion when clustering the data.

Note also that under the aforementioned Hall embedding, documents of the same cluster

are located at the same point in the Euclidean space so that any algorithm, and in particular

the k-means algorithm easily finds the clusters.

As mentioned, the minimization of the formula (6) under the constraint (4) is NP-hard.

This is the point where GSA provides a solution. The constraint (4) is replaced with the

mere requirement that the matrix Y is real-valued and that vectors yj are of unit length and

orthogonal to each other. Under this relaxation, by the Rayleigh-Ritz theorem, the minimiza-

tion of (6) can be reduced to solving the eigen-decomposition problem of L. If we additionally

require that vectors yj are different from each other and vector entries are not the same at

every coordinate, then

min
Y
ðEHðY; SÞÞ ¼ l2 þ � � � þ lkþ1 ð8Þ

where λ1 = 0, λ2, . . ., λk+1 are the lowest eigenvalues of L (sorted non-decreasingly), with eigen-

vectors corresponding to λ2, . . ., λk+1 being the sought indicator vectors y0j. The clustering per-

formed in this embedding approximates therefore the clustering Γ that minimizes RCut.

So L-based GSA minimizes the criterion

Q½GSAL�ðGÞ ¼
Xk

j¼1

X

i2Cj

jjxi � μðCjÞjj
2

ð9Þ
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where μ(Cj) is the center of cluster Cj, equal to:

μðCjÞ ¼
1

jCjj

X

i2Cj

xi ð10Þ

whereby xi = (y0i2, . . ., y0i,k+1)T, and y01 is the eigenvector of L corresponding to its eigenvalue

λ2, y02 to λ3 and so on.

We shall call this embedding xi of documents i from D the L-based embedding.
The formula (9) is exactly the target function of the k-means algorithm in the respective

(Euclidean) embedding space. It is hence quite natural that its minimum is sought using the

traditional k-means algorithm.

Note that if the eigenvectors of L were really the yj indicator vectors, then k-means would

achieve the absolute minimum equal to zero and return the intrinsic RCut clustering (and

RCut optimum would be reached).

The disadvantage of L-embedding xi is that there is no direct link between its components

and the cosine similarity between textual documents from the collection D. Hence, an explana-

tion of cluster membership is not straightforward. In the subsequent section 5 we seek a way

out of this situation.

4.2 The goal of Graph Spectral Clustering versus NCut

The NCut clustering aims at splitting the dataset into k clusters Γ = {C1, . . ., Ck} minimizing

the following criterion:

Q½NCut�ðGÞ ¼
Xk

j¼1

1

Vj

X

i2Cj

X

‘=2Cj

si‘ ð11Þ

where V j ¼
P

i2Cj
dii, that is we minimize the sum over all clusters of sum of similarity between

elements of a given cluster and other clusters divided by the cluster volume V j.

Let us reformulate this task, following the ideas of Belkin & Niyogi [42]. Imagine, we want

to embed the set of documents D ¼ f1; . . . ; ng in an Euclidean space Rk
in such a way that the

clusters in this space reflect the clustering via NCut criterion. This embedding shall be denoted

by a matrix U such that υij is the indicator of the membership of document i in cluster j. In the

Euclidean space mentioned above, the row vector of this matrix (υi1, . . ., υik) means coordi-

nates of document i in the aforementioned space Rk
and the column vector υj is the indicator

vector of class membership of the cluster j. Let

uij ¼

ffiffiffiffiffi
dii
V j

s

; if the document i belongs to cluster j

uij ¼ 0 otherwise

ð12Þ

Note that under this definition, all indicator vectors are of unit length, kυjk = 1, and are pair-

wise orthogonal (υT
j υj0 ¼ 0, for j0 6¼ j). Let us define, following Belkin & Niyogi [42], the

embedding criterion, to be minimized:

EBðU; SÞ ¼
1

2

Xn

i¼1

Xn

‘¼1

Xk

j¼1

uij
ffiffiffiffiffi
dii

p �
u‘j
ffiffiffiffiffiffi
d‘‘

p

 !2 !

si‘ ð13Þ
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It is also worth noting that we can reexpress the above Belkin & Niyogi criterion as

EBðY; SÞ ¼
Xk

j¼1

υT
j Lυj ð14Þ

where L is the normalized Laplacian of the similarity matrix S. It can be immediately seen that

given the above definitions of υij that

EBðU; SÞ ¼ Q½NCut�ðGÞ ð15Þ

This means that minimizing Belkin & Niyogi criterion (while keeping the constraints imposed

on indicator vectors) means minimizing NCut criterion when clustering data.

Note also that under the aforementioned Belkin & Niyogi embedding, documents of the

same cluster are located at the same point in the Euclidean space so that any algorithm and in

particular k-means algorithm easily finds the clusters.

The problem is, however, that minimization of formula (14) under the constraint (12) is

NP-hard.

This is the point where GSA provides with a solution, in a way analogous to that on page 7.

The constraint (12) is relaxed to requiring only that the matrixU is real-valued and that vectors

υj are of unit length and orthogonal to each other. Given this assumption, by the Rayleigh-Ritz

theorem, the minimization of (14) means solving the eigen-decomposition problem of L.

Under the additional requirement, that vectors υj are different from each other and are not

same at each coordinate, we have

min
U
ðEBðU; SÞÞ ¼ l2 þ � � � þ lkþ1 ð16Þ

where λ1 = 0, λ2, . . ., λk+1 are the lowest eigenvalues of L (sorted non-decreasingly), with eigen-

vectors corresponding to λ2, . . ., λk+1 being the sought indicator vectors υ0j. The clustering per-

formed in this embedding approximates therefore the clustering Γ that minimizes NCut.

So N-based GSA, exploiting the normalized Laplacian L, minimizes the criterion

Q½GSAL�ðGÞ ¼
Xk

j¼1

X

i2Cj

jjξi � μðCjÞjj
2

ð17Þ

where μ(Cj) is the center of cluster Cj, equal to

μðCjÞ ¼
1

jCjj

X

i2Cj

ξi ð18Þ

whereby ξi = (υ01i, . . ., υ0ki)T, and υ0
1

is the eigenvector of L corresponding to its eigenvalue λ2,

υ0
2

to λ3 and so on.

We shall call this embedding ξi of documents i from D the N-based embedding.
The formula (17) is in fact the target function of the k-means algorithm in the respective

(Euclidean) embedding space. It is hence quite natural that its minimum is sought using the

traditional k-means algorithm.

Note that if the eigenvectors of L were really the υj indicator vectors, then k-means would

achieve the absolute minimum equal to zero and return the intrinsic clustering and NCut opti-

mum would be reached.

The disadvantage of L-embedding ξi is that there is no direct link between its components

and the cosine similarity between textual documents from the collection D. Hence, an explana-

tion of cluster membership is not straightforward. In the subsequent section 6 we seek a way
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out of this inconvenient situation. Though there is some superficial analogy to the solution in

section 5, the details are making the significant difference.

5 Searching for clustering explanation for combinatorial Laplacian-

based GSA

We face the following problem. The clustering of textual documents can be done in at least

two different ways. On the one hand, we can use the traditional embedding of documents in

the Term Vector Space, and then a clustering algorithm like k-means can be applied. On the

other hand, GSA allows to embed the documents in the space spanned by eigenvector of docu-

ment similarity matrix Laplacian. What is the difference?

In term-vector-space, each document is a point in a space where coordinates are terms

(words) used in the document (coordinate values being e.g. term frequency-inverse document

frequency). If we use k-means in this space, then we have a pretty simple way to explain the

content of the clusters. Each cluster has a cluster center, the distance of which to the other clus-

ter centers can be related to terms, and each document in the cluster has some similarity to the

cluster center, expressed as the cosine similarity between embedding vectors, so that the cluster

membership can be explained again via document terms.

The disadvantage is of course the huge dimensionality, e.g. in 1.000 documents some

10,000 terms may be used, so the Euclidean term space would be expected to be at least 10,000

dimensional.

On the other hand, we have the Graph Spectral Analysis (GSA) clustering methodology, as

described in Sections 3, 4.1, and 4.2. Based on the cosine similarity between documents, we

can construct a similarity matrix S, then its Laplacian (L or L), and then embed the documents

into a low-dimensional space spanned by the low Laplacian eigenvectors. The number of

dimensions is equal to the number k of clusters into which we want to cluster the data. Here

also the k-means algorithm can be applied, but it will be much more efficient due to drastically

reduced dimensionality. However, we have a problem: the coordinates in the Laplacian-

induced spaces have nothing to do with the terms of the documents. How then to explain the

cluster membership in terms of words from the documents?

In this section, we propose an explanation method for combinatorial Laplacian based clus-

tering, while in Sec. 6, we present a solution for the normalized Laplacian based clustering.

It is known (Sec. 4.1) that in the discrete indicator space, clustering in the combinatorial

Laplacian induced embedding produces results identical to graph clustering using RCut crite-

rion. In the continuous space, GSA clustering method, based on the mentioned combinatorial

Laplacian, approximates RCut.

Below (Sec. 5.1) we will propose a new embedding, the K-embedding and will demonstrate

that k-means applied in this embedding approximately optimizes the RCut criterion (Sec. 5.2).

Furthermore, we will show that k-means clustering in the K-embedding optimizes the same

criterion as k-means in the term-vector space (Sec. 5.4). If so, then the clusters from combina-

torial Laplacian embedding, from RCut clustering, from K-embedding and from term-vector

space embedding are approximately the same. And if so, we can use the cluster explanation,

originally valid for term-vector-space (Sec. 5.3), to explain cluster membership for clusters

obtained via GSA method for combinatorial Laplacian.

If we take the result of any clustering method applied to textual documents, we would be

able to compute for the clustering the cluster centers in Term Vector Space. We could then

compute the cosine similarity between each document and the cluster center. However, this

cosine similarity would tell us nothing about why the document belongs to the cluster. Our

approach differs here significantly. If we take the clustering achieved in the K-embedding,
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then the cosine similarities between cluster centers in Term Vector Space will be minimized,

and so these similarities justify cluster membership. This is a huge difference compared to

explanation methods mentioned in [2, 34–37] and other papers.

5.1 A Proposal of double-centered document similarity matrix based

embedding (For use with k-means)

Let us introduce a new embedding of the documents from D, based on [43]. Let A be a matrix

of the form:

A ¼ 11T � I � S ; ð19Þ

where I is the identity matrix, and 1 is the (column) vector consisting of ones, both of appro-

priate dimensions. The matrix A is non-negative and has a diagonal equal to zero, so that it

may be considered as a kind of (squared) pseudo-distance, needed by the Gower’s embedding

method [44], used below. We have to assume here that the diagonal of S consists of zeros. Let

K be the matrix of the (double centered) form [44]:

K ¼ �
1

2
I �

1

n
11T

� �

A I �
1

n
11T

� �

; ð20Þ

with n × n being the dimension of S. 1 is an eigenvector of K, with the corresponding eigen-

value equal to 0. In fact, I � 1

n 11
T

� �
1 ¼ 1 � 1

n 11
T1 ¼ 1 � 1

n 1n ¼ 0. All the other eigenvectors

must be orthogonal to it as K is real and symmetric, so for any other eigenvector v of K we

have: 1Tv = 0.

Let Λ be the diagonal matrix of eigenvalues of K, and V the matrix where columns are cor-

responding (unit length) eigenvectors of K. Then K = VΛVT. Let zi ¼ L
1=2VT

i , where Vi stands

for i-th row of V. Let zi, zℓ be the embeddings of the documents i, ℓ, resp. This embedding shall

be called K-embedding. Then (see [43])

kzi � z‘k
2
¼ Ai‘ ¼ 1 � si‘ ð21Þ

for i 6¼ ℓ. Hence upon performing k-means clustering in this space we de facto try to maximize

the sum of similarities within a cluster. Lingoes correction is needed, if K turns out to have

negative eigenvalues, see [43]. The correction consists in adding 2σ to all elements of dissimi-

larity matrix A except for the main diagonal, which has to stay equal to zero, where σ� −λm
where λm is the smallest eigenvalue of K. Via adding we get a new matrix A0, for which we com-

pute new K0 and use the prescribed embedding resulting from K0 and not from K, when per-

forming k-means.

The above embedding can be used for clustering documents using the k-means algorithm.

Let us recall the k-means quality function which is minimized by k-means (μ(Cj) = μj is the

gravity center of cluster Cj) in the context of this new embedding.

Q½Kbased�ðGÞ ¼
Xk

j¼1

X

i2Cj

jjzi � μðCjÞjj
2

ð22Þ

(with μðCjÞ ¼
1

jCjj

P
i2Cj

zi) which may be reformulated as

Q½Kbased�ðGÞ ¼
Xk

j¼1

1

2nj

X

i2Cj

X

‘2Cj

kzi � z‘k
2

ð23Þ
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where nj = |Cj|. This implies

Q½Kbased�ðGÞ ¼
Xk

j¼1

1

2nj

X

i2Cj

X

‘ 2 Cj
‘ 6¼ i

ð1 � si‘Þ

¼
Xk

j¼1

1

2nj

X

i2Cj

X

‘2Cj;‘6¼i

1 �
Xk

j¼1

1

2nj

X

i2Cj

X

‘2Cj ;‘6¼i

si‘

¼
Xk

j¼1

1

2nj
njðnj � 1Þ �

Xk

j¼1

1

2nj

X

i2Cj

X

‘2Cj;‘6¼i

si‘

that is

Q½Kbased�ðGÞ ¼
n � k

2
�
Xk

j¼1

1

2nj

X

i2Cj

X

‘2Cj;‘6¼i

si‘ ð24Þ

where nj = |Cj|, while n, k are independent of clustering.

Instead of using all eigenvectors in representing the K, the top m eigenvalues and associated

eigenvectors can be used to approximate it sufficiently. The reason is the shape of the eigen-

value spectrum as visible in Figs 1 and 2 where the leading eigenvalues are much bigger than

the other ones for K-embedding.

5.2 Relationship between L-based clustering and K-based clustering

We see from Eq (24) that k-means applied to K-based embedding seeks to find the clustering

that maximizes the sum of the average similarity within a cluster. On the other hand, the

Fig 1. A comparison: Left—Distribution of eigenvalues under K-based embedding for TWT.4 data, right—Distribution of eigenvalues under L-based

embedding for TWT.4 data.

https://doi.org/10.1371/journal.pone.0313238.g001
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intention of the L-based GSA described previously in Sec. 4.1 is to approximate the target of

RCut, which is expressed via formula (3), is to minimize the sum of average similarity to ele-

ments of other clusters. These goals are similar, but not identical, as we shall see. Let us com-

pute the difference between them:

Q½RCut�ðGÞ � 2Q½Kbased�ðGÞ ¼
Xk

j¼1

1

nj

X

i2Cj

X

‘=2Cj

si‘ � ðn � kÞ þ
Xk

j¼1

1

nj

X

i2Cj

X

‘2Cj ;‘6¼i

si‘

¼ � ðn � kÞ þ
Xk

j¼1

1

nj

X

i2Cj

X

‘2D

si‘ ¼ � ðn � kÞ þ
Xk

j¼1

1

nj

X

i2Cj

dii

¼ � ðn � kÞ þ
Xk

j¼1

V j

nj

If all the clusters targeted at would be of the same size, the above expression would be a con-

stant so that optimization of either quality function would yield the same result. Otherwise, the

same results can be achieved under the following assumption: The similarities within the good

clusters are above some level g, and those between elements of different clusters are below

some level b. If g/ maxj(|Cj|) > b/ minj(|Cj|), then also the optimal clustering of both is the

same (if the smallest cluster is large). If these criteria are matched approximately, also the

optima will be approximately the same.

5.3 Why is term vector space clustering explanation friendly

Let us recall the very popular method of representing documents in the so-called Term Vector

Space (or Document Vector Space). One considers each document i 2 D as a vector wi of

Fig 2. Distribution of eigenvalues under K-based embedding for BLK data (left) and Distribution of eigenvalues under L-based embedding for BLK

data (right).

https://doi.org/10.1371/journal.pone.0313238.g002
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length equal to the number |T| of terms in a dictionary T. Each element wit of the embedding

vector corresponds to an indicator of the presence/absence of the term t in the document i.
This indicator can be e.g. the term frequency, the inverse of the document frequency, divided

by a normalising constant so that kwik = 1.

The dimensionality of this embedding is huge compared to those based on L or K, but it has

some nice properties. First of all, it defines document similarities in that si‘ ¼ wT
i w‘ by defini-

tion. Consider the k-mean clustering in such a space. The following criterion can be mini-

mised:

Q½TVS�ðGÞ ¼
Xk

j¼1

X

i2Cj

jjwi � μðCjÞjj
2

ð25Þ

(with μðCjÞ ¼
1

jCjj

P
i2Cj

wi) which may be reformulated as

Q½TVS�ðGÞ ¼
Xk

j¼1

1

2nj

X

i2Cj

X

‘2Cj

kwi � w‘k
2

ð26Þ

where nj is the cardinality of Cj.
Obviously, for i 6¼ ℓ

kwi � w‘k
2
¼ kwik

2
� 2wT

i w‘ þ kw‘k
2
¼ 2 � 2si‘

This means that

Q½TVS�ðGÞ ¼
Xk

j¼1

1

nj

X

i2Cj

X

‘2Cj;‘6¼i

ð1 � si‘Þ ð27Þ

¼
Xk

j¼1

1

nj

X

i2Cj

X

‘2Cj;‘6¼i

1 �
Xk

j¼1

1

nj

X

i2Cj

X

‘2Cj;‘6¼i

si‘ ð28Þ

¼
Xk

j¼1

1

nj
ðnj � 1Þnj �

Xk

j¼1

1

nj

X

i2Cj

X

‘2Cj;‘6¼i

si‘ ð29Þ

¼ n � k �
Xk

j¼1

1

nj

X

i2Cj

X

‘2Cj;‘6¼i

si‘ ð30Þ

If a clustering was performed via k-means in this embedding and cluster set Γ was obtained,

then we have the following possibility to explain each cluster Cj by the characteristic terms:

Compute cluster centers μj = μ(Cj). Let denote μjt the element of μj related to term t. Sort terms

from T into a sequence t1, . . ., t|T| so that mjtp � mjtpþ1
. Then take the leading m terms t1, . . ., tm

as the explanation of the cluster.

Let us illustrate this method of cluster explanation with the following simple example. We

considered clustering of tweets related to two hashtags (see the experimental section for

details): #anjisalvacion and #puredoctrinesofchrist. We clustered the data using K-based

method, described in Sec. 5.1, that is equivalent to clustering in the Term Vector Space, as

shown in Sec. 5.4, and got two clusters characterized by the following 10 top words (according

to the above prescription):
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• Cluster 1: “anjisalvacion”, “anji”, “god”, “dalampasigan”, “esv”, “life”, “people”, “happy”,

“love”, “day”

• Cluster 2: “king”, “proverbs”, “god”, “luke”, “lord”, “psalm”, “christ”, “man”, “jesus”, “hath”

For comparison see the top words in the respective hashtags:

• hashtag set #anjisalvacion: “anjisalvacion”, “anji”, “dalampasigan”, “life”, “happy”, “feelsthe-

concert”, “birthday”, “people”, “salvacion”, “mv”

• hashtag set #puredoctrinesofchrist: “king”, “god”, “proverbs”, “esv”, “lord”, “christ”, “eli”,

“let”, “jesus”, “man”

One can see that the term-vector-space based explanation looks quite reasonable.

You may also explain the cluster membership of a document in a similar way. The docu-

ment similarity of a document i to its cluster center is given as

wT
i μj ¼

X

t2T

witmjt ð31Þ

Sort terms from T into a sequence t1, . . ., t|T| so that witp
mjtp � witpþ1

mjtpþ1
. Then take the leading

m terms t1, . . ., tm as the explanation of the membership of the document i in cluster Cj.
But the aforementioned explanation of clusters via the terms does not take into account the

distinction from the other clusters.

Below we make a new proposal of relative cluster explanation. For the cluster j consider the

following expression

ClDiff ðjÞ ¼
Xk

j0¼1

kμj � μj0 k
2

ð32Þ

which is the sum of squared differences between the given cluster and the other ones. It can be

rewritten as

ClDiff ðjÞ ¼
Xk

j0¼1

X

t2T

ðmjt � mj0tÞ
2
¼
X

t2T

Xk

j0¼1

ðmjt � mj0tÞ
2

 !

ð33Þ

Based on this, just sort the terms from T into a sequence t1, . . ., t|T| so that for each tp in this

sequence ð
Pk

j0¼1
ðmjtp � mj0tpÞ

2
Þ � ð

Pk
j0¼1
ðmjtpþ1

� mj0tpþ1
Þ

2
Þ. Then take the leading m terms

t1, . . ., tm as the first step explanation of the cluster. However, further elaboration is needed

because the distinction between two clusters may result from the fact that the term is present

in one, but absent in the other (which would be quite simple to detect), or has a higher or

lower tfidf value at this position, which is not that easy to decide because there is a multitude

of clusters. Therefore, if term tp is important, consider the expression ð
Pk

j0¼1
ðmjtp � mj0tpÞ

2
Þ and

compute its derivative on mjtp that is

d
dmjtp

Xk

j0¼1

ðmjtp � mj0tpÞ
2

 !

¼
Xk

j0¼1

2ðmjtp � mj0tpÞ ð34Þ

If this derivative is positive at mjtp , then the presence of the term tp is important for cluster dis-

tinction, otherwise its absence.

This would lead to the following cluster description.
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• Cluster 1: “(++) anjisalvacion” “(++) anji” “(-) king” “(++) dalampasigan” “(++) esv” “(++)

life” “(++) god” “(++) happy” “(++) people” “(++) love”

• Cluster 2: “(-) anjisalvacion” “(-) anji” “(++) king” “(-) dalampasigan” “(-) esv” “(-) life” “(-)

god” “(-) happy” “(-) people” “(-) love”

Terms marked with (++) are those the presence of which is in favour of the membership in

the cluster, while (-) is discouraging membership. So for example the term “anjisalvacion” is

more likely to appear in texts of the first cluster than in those of the second.

5.4 Equivalence between K-based clustering and term/document vector

based clustering

A quick look at formulas (24) and (30) reveals that both clustering criteria are identical. There-

fore clustering in K-based embedding and clustering in Term Vector Space optimize the same

target function. What is the difference? The K-embedding is lower dimensional, as the length

of eigenvectors equals the number of documents. Here, the number of dimensions is equal to

the richness of the vocabulary, which may be 10 times as high or more. Hence the clustering

under K-embedding will be significantly faster.

What do we gain then via Term Vector Space embedding? We have already seen that

under-balanced clusters clustering in K-based embedding approximates RCut clustering

which on the other hand is approximated by L-based clustering. Therefore, the application of

cluster and cluster membership explanation methods outlined in Sec. 5.3 to the results of L-

based spectral clustering method is justified.

In summary, we have pointed out in this section that the traditional L-embedding lost the

direct relation between datapoint distances and the cosine similarity of documents. This is a

serious disadvantage because k-means is applied in GSA clusters based on distances in embed-

ding space, not similarities between documents. We have shown that there exists a K embed-

ding having approximately the same general goal as L-embedding (see Sec. 5.2), but with the

property that distances in the space are directly translated to similarities so that k-means

applied in this embedding optimizes on the similarities within a cluster directly. In the third

embedding, the Term Vector Space embedding, the similarities can be computed directly as

cosine similarity or based on Euclidean distances. This duality allows for precise pointing at

sources of similarities of the cluster elements and at sources of dissimilarities in terms of words

of the documents.

In this way the problem of GSA explanation is overcome in that membership reason can be

given in terms of sets of decisive words.

6 Searching for clustering explanation for normalized Laplacian-

based GSA

The currently more popular normalized Laplacian based spectral clustering (see Eq (2)) consti-

tutes a bigger challenge for explanation as the translation to cosine similarity is not that

straightforward. Note that the issues we are interested in were discussed by [45].

It is known (Section 4.2) that in the discrete indicator space, clustering in the normalised

Laplacian induced embedding gives identical results to graph clustering using the NCut crite-

rion. But in the continuous space, GSA based on the mentioned normalised Laplacian only

approximates NCut. To bridge the gap between Term Vector Space and NCuts, we will pro-

ceed similarly to the treatment of RCut in Section 5.1. So first we propose a new embedding,

the M embedding (Section 6.1), and will show that the weighted k-means used in this embed-

ding exactly optimizes the NCut criterion (Section 6.2). When we talk about weighted k-
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means, we mean that the items are weighted, but not the features. We also assume that the

weights are given in advance and are not changed during the execution of the weighted k-

means algorithm. Note that previously (for K-embedding), we used the plain k-means

algorithm.

We will show that weighted k-means clustering in the M-embedding optimizes the same
criterion as weighted k-means in the term-vector space. (In the case of RCut, only a similar
criterion was optimized). If so, then the clusters from normalized Laplacian embedding and

from NCut clustering are approximately the same (see Sec. 4.2), while those from NCut, from

M-embedding and from term-vector space embedding are identical. And if so, we can use the

cluster explanation, originally valid for term-vector space, to explain cluster membership for

clusters obtained by the GSA method for normalized Laplacian, but with the correction that

the explanation takes into account the document weights.

6.1 A proposal of double-centered “normalized” document similarity

matrix based embedding (For use with weighted k-means)

We suggest to use the A matrix of the following form. E be a matrix of the following form

E ¼ 11T � I : ð35Þ

Then define

A ¼ D� 1ðEDþ DE � 2SÞD� 1 : ð36Þ

with D, S being defined as previously. Let M be the matrix of the form:

M ¼ �
1

2
I �

1

n
11T

� �

A I �
1

n
11T

� �

: ð37Þ

We proceed with M in a similar way as with Kmatrix. Note that 1 is an eigenvector of M,

with the corresponding eigenvalue equal to 0. All the other eigenvectors must be orthogonal to

it as M is real and symmetric, so for any other eigenvector v of M we have: 1Tv = 0.

Let Λ be the diagonal matrix of eigenvalues of M, and V the matrix where columns are cor-

responding (unit length) eigenvectors of M. Then M ¼ VLVT . Let ζi ¼ L
1=2VT

i , where Vi
stands for i-th row of V. Let zi, zℓ be the embeddings of the documents i, ℓ, resp. This embed-

ding shall be called M-embedding. Then

kζi � ζ‘k
2
¼ Ai‘ ¼ ðdii þ d‘‘ � 2si‘Þ=ðdiid‘‘Þ ð38Þ

for i 6¼ ℓ, and zero otherwise. Let us now discuss performing weighted k-means clustering on

the vectors zi with weights amounting to dii respectively.

Let us use the following weighting of documents: ωi = dii. Clustering via weighted k-means

with weights ωi in the M embedding will optimize the following criterion

Q½Mbased�ðG; ωÞ ¼
Xk

j¼1

X

i2Cj

oikζi � μωðCjÞk
2

ð39Þ

whereby

μωðCjÞ ¼

P
2Cj
oiζi

P
2Cj
oi
¼

1

V j

X

2Cj

oiζi
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which may be reformulated as

Q½Mbased�ðG; ωÞ ¼
Xn
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That is
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(see (11) for comparison).

6.2 Relationship between N-based clustering and M-based clustering

From Eqs (11) and (53) we see immediately that

Q½Mbased�ðG; ωÞ ¼ n � 2kþ Q½NCut�ðGÞ ð54Þ

As n − 2k is a constant, minimizing one criterion minimizes the second one. As N-based Clus-

tering (clustering using the normalized Laplacian L) has the same target as NCut clustering,

we see that we have here a better situation than for K-embedding versus L-based clustering.

Lingoes correction is needed, if M turns out to have negative eigenvalues, see [43] and the ear-

lier remark on this correction.

Note that a similar topic was handled by [45], with an extension by [46]. However, they

sought equivalence between spectral approximation to NCut and weighted k-means clustering,

while we looked for equivalence directly to NCut clustering. We stress also the capability to go

over to cluster explanation.

6.3 How to make weighted term vector space clustering explanation

friendly

In order to parallel the dissimilarity measure from formula (38), the squared dissimilarity

between documents i and ℓ would have to be defined in a specific way. Consider the wi vectors

representing embedding in Term Vector Space that was introduced in Section 5.3. Consider a

modified vector in the Term Vector Space:

w0i ¼
wi

oi
; gi

� �

ð55Þ

where gi is a vector of dimension n, equal to zero everywhere except the ith element,

gii ¼
ffiffiffiffiffiffiffi
oi � 1
p

oi
. With this notation, let us compute the squared distance between two documents:
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(for different i, ℓ)

kw0i � w0
‘
k

2
¼ kw0ik

2
þ kw0

‘
k

2
� 2w0
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Tw0i ð56Þ
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oi � 1þ 1

o2
i

þ
o‘ � 1þ 1

o2
‘

� 2
si‘
oio‘

¼
1

oi
þ

1

o‘

� 2
si‘
oio‘

ð57Þ

The dissimilarity is greater when the vectors are longer, but smaller if the dot product is big-

ger. Under this assumption, one has to perform weighted k-means clustering (for weighted

kernel-k-means see e.g. [45]):

Q½oTVS�ðG; ωÞ ¼
Xk
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1
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X

‘ 2 Cj
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oi þ o‘ � 2si‘ð Þ
ð60Þ

which is identical with Eq (42) showing equivalence with Q½Mbased�ðG; ωÞ.
Note that the w0i vectors are of higher dimension than those used in the kernel approach in

the M. There is no need to use them in practice during the clustering process. One uses them

only “mentally” for the sake of explanation. As proven in Section 6.4, clusters resulting from

clustering the w0i vectors are the same as clusters resulting from clustering in the

M-embedding.

The advantage of this embedding is that we can use it to look for best characterizing terms

as in the case of term space embedding described in Section 5.3.

This means: If a clustering was performed via weighted k-means in this embedding and

cluster set Γ was obtained, then we have the following possibility to explain each cluster Cj by

the characteristic terms: Compute cluster centers μj ¼ μðCjÞ ¼

P
i2Cj

oiw0i
P

i2Cj
oi
¼

P
i2Cj
ðwi ;oigiÞ

P
i2Cj

oi
. Let

denote μjt the element of μj related to term t. Sort terms from T into a sequence t1, . . ., t|T| so

that mjtp � mjtpþ1
. Then take the leading m terms t1, . . ., tm as the explanation of the cluster.

Let us illustrate this method of cluster explanation with the following simple example. We

considered clustering of tweets related to two hashtags (see the experimental section for

details): #anjisalvacion and #puredoctrinesofchrist. We clustered the data using M-based

method, described below, that is equivalent to clustering in the Term Vector Space, and got

two clusters characterized by the following 10 top words (according to the above prescription):

• Cluster 1: “anjisalvacion”, “anji” “king”, “god”, “dalampasigan”, “life”, “people”, “proverbs”,

“happy” “feelstheconcert”

• Cluster 2: “esv”, “god”, “proverbs”, “king”, “eli”, “lord”, “christ”, “words”, “spirit”, “holy”
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Formulas from Section 5.3 for explaining cluster membership (31) and for explaining a

cluster against other clusters (32) can be applied analogously.

6.4 Equivalence between M-based clustering and weighted term/document

vector based clustering

Essentially, we have shown the equivalence in the previous section 6.3 (compare formulas (42)

and (60)). There is, however, one weakness of the approach: gi ¼
ffiffiffiffiffiffiffi
oi � 1
p

oi
may be a complex

number if ωi is too small. We can get around the problem if ωi is not equal to dii, but rather to

a multiplicity of it, that is ωi = f � dii. In such a case V j needs to be redefined for the purpose of

the weighted Term/Document Vector embedding as sum of ωi

V∗
j ¼

X

i2Cj

oi

In such a case the cost function will not be identical with but rather in a linear relation with

Eq (42). This reformulation will go as follows:
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That is
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As already mentioned, there exist no “standard” method of explaining the contents of clus-

ters obtained using the N-embedding of Normalized Laplacian Based Graph Spectral Cluster-

ing method. The “universal” methods presented in Section 2 do not give a warranty that the

distance between the cluster center and the given document has anything to do with optimiza-

tion method underlying the clustering methodology. Our approach to GSA based on normal-

ized Laplacian is different and even more advantageous than for combinatorial Laplacians. It

goes along the following line: NCut clustering, among others applied to text document collec-

tions, is equivalent to clustering using N-embedding as generally known (see Section 4.2), that

is the classical Normalized Laplacian based Graph Spectral Clustering under some rigid

assumptions on the form of cluster membership indicator vectors. Upon relaxation of these

assumptions, N-embedding based clustering approximates NCut clustering. But the normal-

ized Laplacian matrix eigenvectors have no meaningful interpretation in terms of document

contents. So we proposed an M-embedding based clustering method (Section 6.1) that has a
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target equivalent to NCut (Section 6.2). Note that this is different from K-embedding which

has only approximately equivalent clustering target as RCut. However, the M-embedding vec-

tors have also no direct relationship to text document terms. Therefore, we investigated the

weighted Term Vector Space (wTVS) embedding vectors the components of which have a

direct correspondence to terms in textual documents, Section 6.3. The target of wTVS-embed-

ding is the same of M-embedding (Section 6.4) which is the same as of NCut (Section 6.2)

which is approximated by N-embedding (Section 4.2). So as clusters in wTVS-embedding can

be explained in terms of weighted Term Vector Space (that is the leading terms of cluster cen-

ter representation, and of each document representation, as explained already at the end of

Section 5.3), so same explanation holds for M-embedding, NCUT and N-embedding.

7 Experiments

Through experiments,

• we demonstrate, by inspection of their eigenvalue spectrogram, that Kmatrix is unrelated to

Lmatrix;

• we demonstrate that L-based embedding differs from K-based embedding in that L-based

embedding is poorly related to the similarity measures, while K-based embedding is corre-

lated with similarity;

• finally, we demonstrate that both are similarly well suited for text clustering in that we show

that they restore groups of tweets sharing the same hashtag with similar performance.

7.1 Data

In the experiments, we use three sets of data:

• A synthetic dataset BLK of 2000 “product descriptions” divided into 4 classes, hence referred

to as BLK4); the dataset was generated by a random generator providing random descriptive

texts, but characterized by a clear block-structure relationships within the classes (generator

was the BLK_read.R program, in the directory R of https://github.com/ipipan-barstar/PLOS.

EGSCoTD).

• The set TWT.4, is a collection of tweets related to hashtags #anjisalvacion, #lolinginlove,

#nowplaying and #puredoctrinesofchrist from TWT.10 dataset.

• The set TWT.10, being a collection of tweets related to hashtags listed in Table 2 (available in

directory Data of https://github.com/ipipan-barstar/PLOS.EGSCoTD). Only tweets were

Table 2. TWT.10 dataset—Hashtags and cardinalities of the set of related tweets used in the experiments.

No. hashtag count

0 90dayfiance 316

1 tejran 345

2 ukraine 352

3 tejasswiprakash 372

4 nowplaying 439

5 anjisalvacion 732

6 puredoctrinesofchrist 831

7 1 1105

8 lolinginlove 1258

9 bbnaija 1405

https://doi.org/10.1371/journal.pone.0313238.t002
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selected in which only one hashtag appeared (only once). The processing code was placed in

the directory Python at the same WWW address.

7.2 Differences between L- and K-embeddings

First, we have computed the spectrograms of the K-matrix and L-matrix for the TWT.4 data-

set. They are shown in Fig 1. One can see that the shapes of these spectrograms differ strongly

so that it cannot be claimed that K-embedding based clustering and L-embedding based clus-

tering rely on related mathematical concepts. Analogous spectrograms have been shown in

Figs 2 and 3 for BLK and BLK.20 datasets.

7.3 Relationship of K-embedding clustering and L-embedding clustering

We performed experiments using our synthetic data BLK that creates a block similarity matrix.

Such a structure of data is known to be friendly for GSA methodology (it clusters them most

successfully).

We clustered the data using the traditional GSA clustering method (L-embedding) and

using our one (K-embedding). The results comparing the clustering produced by each of them

are presented in Table 3. In this and in the following confusion matrices, when evaluating the

results, we ignore the cluster label permutations and instead consider the correct result being

the cell in each column with the maximal cardinality. So the row labels are considered as

Fig 3. A comparison: Left—Distribution of eigenvalues under K-based embedding for BLK.20 data, right—

Distribution of eigenvalues under L-based embedding for BLK.20 data (20 groups with 100 elements each, the

bottom picture).

https://doi.org/10.1371/journal.pone.0313238.g003
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“ground truth”, while the columns are the “predictors”. In particular, in Table 3, the results of

K-embedding are taken as “ground truth”.

We see that the clusterings largely agree. We compared also both the “real” groups (that is

groups predefined in the data generator) in Tables 4 and 5. We see that K-embedding based

approach gets closer to real groups than L-based approach. This may be due to the fact that K-

embedding is more similar to RCut than L-embedding.

We performed also experiments using real world dataset TWT.4 using both mentioned

methods of clustering. The results, comparing the clusterings produced by each of them

against the ground truth, being the hashtag groups, are presented in Tables 6 and 7. We see

that K-embedding based approach gets closer to real groups than L-based approach.

In summary, we can say that our method gets closer to the intrinsic clustering (that is one

indicated by hashtags) than the conventional GSA.

7.4 Discrepancies between embeddings and similarities

We have also investigated the relationships between the L-embedding and the similarities and

the K-embeddings and similarities for the BLK dataset and the TWT.4 datasets. We randomly

selected 80 “documents” and drew in Figs 4 and 5 plots of the distances in the embeddings and

Table 3. Confusion matrix; clsLbased—Clusters generated from L-embedding, clsKbased—Clusters generated

from K-embedding, number of elements in correct clusters: 1913, incorrectly clustered: 87, errors: 4.35%. Parame-

ter: r = number of clusters + 1.

clsKbased clsLbased

1 2 3 4

1 0 86 400 0

2 500 0 0 0

3 0 0 0 500

4 0 513 0 1

https://doi.org/10.1371/journal.pone.0313238.t003

Table 4. Confusion matrix; clsLbased—Clusters generated from L-embedding, clsTrue—The true clusters, num-

ber of elements in correct clusters 1899 incorrectly clustered: 101 = errors: 5.05.

clsTrue clsLbased

1 2 3 4

1 500 0 0 0

2 0 0 0 500

3 0 499 0 1

4 0 100 400 0

https://doi.org/10.1371/journal.pone.0313238.t004

Table 5. Confusion matrix; clsKbased—Clusters generated from K-embedding, clsTrue—The true clusters, num-

ber of elements in correct clusters: 1984, incorrectly clustered: 16, error: 0.8%.

clsTrue clsKbased

1 2 3 4

1 0 500 0 0

2 0 0 500 0

3 1 0 0 499

4 485 0 0 15

https://doi.org/10.1371/journal.pone.0313238.t005
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the document similarities. One sees that the distances in the K-embedding are more closely

related to similarities than those of L-embeddings. This confirms that we cannot explain the

document membership in a cluster based on L-embeddings, while K-embedding justifies such

an interpretation of clusters.

Table 6. Confusion matrix; clsKbased—Clusters generated from K-embedding, clsTrue—The true clusters, num-

ber of elements in correct clusters: 1214 incorrectly clustered: 416, errors: 25.52147%.

clsTrue clsKbased

1 2 3 4

#anjisalvacion 370 0 0 10

#lolinginlove 0 0 0 614

#nowplaying 85 27 1 96

#puredoctrinesofchrist 207 0 203 17

https://doi.org/10.1371/journal.pone.0313238.t006

Table 7. Confusion matrix; clsLbased—Clusters generated from L-embedding, clsTrue—The true clusters, num-

ber of elements in correct clusters 614 incorrectly clustered: 1016 errors: 62.33129%.

clsTrue clsLbased

1 2 3 4

#anjisalvacion 0 0 0 380

#lolinginlove 1 3 2 608

#nowplaying 0 0 0 209

#puredoctrinesofchrist 0 0 0 427

https://doi.org/10.1371/journal.pone.0313238.t007

Fig 4. Reconstruction of similarity by squared distance under K-embedding with the number of coordinates reduced to 400, BLK dataset (left) and

Reconstruction of similarity by squared distance under L-embedding with the number of coordinates reduced to 5 (as required by GSA) (right).

https://doi.org/10.1371/journal.pone.0313238.g004
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L-embedding has the good side that one allows to perform clustering in low dimensions.

This may be of course the reason why the relationship of L-embedding to similarities is so

poor though the Lmatrix itself contains these similarities. In Table 8 we compared the K
matrix and L-matrix reconstruction mean absolute errors when using different numbers of

eigenvectors (top eigenvectors for K, and low eigenvectors for L). As one might have expected,

for various numbers of eigenvectors, the reconstruction in K is better than in L.

7.5 Clustering performance for 10 hashtags

The experiments were performed on TWT.10 Twitter data for a selected set of 10 hashtags that

had to appear only once in the tweet. The hashtags are listed in Table 2. The reason for the

choice of such tweets was to have a human-induced reference set on which the quality of clus-

tering was evaluated.

Fig 5. Comparison: Left—Reconstruction of similarity by squared distance under K-embedding with the number of coordinates reduced to 400; right

—Reconstruction of similarity by squared distance under L-embedding with the number of coordinates reduced to 5 (as required by GSA)—For

TWT.4 data.

https://doi.org/10.1371/journal.pone.0313238.g005

Table 8. Errors in reconstructing the K (errorK) and L (errorL) matrix resp. by the subsets of eigenvectors and

eigenvalues of various cardinalities (r). They indicate that the K reconstruction is better.

r errorK errorL

1000 0.001713712 0.03710026

500 0.003453155 0.03710026

250 0.004585440 0.03710026

125 0.005164994 0.03710026

62 0.005363871 0.03710026

31 0.005285830 0.03710026

16 0.005282382 0.03710026

8 0.005252960 0.03710026

4 0.005268428 0.03710026

https://doi.org/10.1371/journal.pone.0313238.t008
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The clustering experiments were performed with popular Python libraries: numpy [47],

scipy [48], scikit-learn [49] and soyclustering [50] which is an implementation

of spherical k-means [51]. In particular, we used

1. SpectralClustering class from scikit-learn with two distinct settings of the

affinity parameter: precomputed (affinity from similarity matrix) and nearest_

Table 9. L-based spectral clustering scores under diverse settings of affinity parameter (column names). All the metrics used are available in the sklearn package, see

the documentation at https://scikit-learn.org/stable/api/sklearn.metrics.html.

Score nearest_neighbors precomputed

adjusted mutual info score: 0.486238 0.400122

adjusted rand score: 0.308131 0.139347

completeness score: 0.394151 0.268025

fowlkes mallows score 0.492279 0.433780

homogeneity score: 0.640522 0.808333

mutual info score: 0.849066 0.577371

normalized mutual info score: 0.488004 0.402568

rand score: 0.733106 0.481941

v measure score: 0.488004 0.402568

F-score: 0.1105 0.0413

F-score average: 0.0596 0.0291

https://doi.org/10.1371/journal.pone.0313238.t009

Table 10. Spherical k-means, achieved scores under diverse settings of the algorithm; the highest values in 10 runs.

Score sc.n sc.sc sc.md

adjusted mutual info score 0.442456 0.481259 0.450716

adjusted rand score 0.370633 0.409385 0.389930

completeness score 0.452317 0.482101 0.448153

fowlkes mallows score 0.454743 0.485733 0.467060

homogeneity score 0.435729 0.483157 0.456226

mutual info score 0.938634 1.040801 0.982786

normalized mutual info score 0.443868 0.482629 0.452153

rand score 0.854369 0.867059 0.865477

v measure score 0.443868 0.482629 0.452153

F-score 0.185137 0.235635 0.180591

F-score average: 0.0881 0.1077 0.1070

Score k++.n k++.sc k++.md

adjusted mutual info score 0.377781 0.430736 0.412699

adjusted rand score 0.352018 0.391106 0.377490

completeness score 0.375782 0.428704 0.414931

fowlkes mallows score 0.433405 0.467857 0.456492

homogeneity score 0.383106 0.435809 0.413615

mutual info score 0.825274 0.938805 0.890996

normalized mutual info score 0.379409 0.432227 0.414272

rand score 0.857969 0.866138 0.862212

v measure score 0.379409 0.432227 0.414272

F-score 0.162810 0.166237 0.198266

F-score average: 0.0937 0.0765 0.0974

https://doi.org/10.1371/journal.pone.0313238.t010
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neighbors (affinity from graph of nearest neighbors)—as a representative of the L-

embedding based clustering (see Table 9)

2. SphericalKMeans class from soyclustering with the following combinations of (init,

sparsity) parameter pairs (short names given for reference in Table 11 and following):

“sc.n”: (’similar_cut’, None), “sc.sc”: (’similar_cut’, ‘sculley’), “sc.md”: (’similar_cut’, ‘mini-

mum_df’), “k++.n”: (’k-means++’, None), “k++.sc”: (’k-means++’, ‘sculley’), “k++.md”:

(’k-means++’, ‘minimum_df’)

3. K-embedding clustering (our implementation, exploiting spherical k-means). The following

numbers of eigenvectors were tried: r = 10 (number of hashtags), r = 20, r = 3577 (half of

the tweet count) and r = 7155 (tweet count). See Tables 11 and 12.

As visible from Tables 9 and 10, the spherical k-means worst F-score (0.16281 for “k++.n”)

is superior to the best spectral clustering score (0.1105 for nearest_neighbors). K-embedding

based clustering (Tables 11 and 12) best F-score achieved was 0.2144 for “sc.sc” and r = 7155.

This experiment demonstrates that K-embedding clustering can approximate a real-world

data clustering at a level at least comparable with L-based clustering, so that the clustering

explanation bridge L-embedding—K-embedding—Term Vector Space embedding appears to

be justified.

Finally, we have checked which clustering results are closer to those of K-based clustering—

it turned out that spherical clustering is closer than spectral one, see Table 13.

Table 11. K-based clustering, scores (rows) under diverse settings of spherical k-means algorithm (columns), when the number of dimensions used (columns)

r = 10; the highest values in 10 runs.

Score sc.n sc.sc sc.md

adjusted mutual info score 0.259935 0.273119 0.259381

adjusted rand score 0.261349 0.241035 0.236007

completeness score 0.260018 0.268650 0.256508

fowlkes mallows score 0.362643 0.352751 0.346052

homogeneity score 0.263817 0.281839 0.266431

mutual info score 0.560122 0.578717 0.552560

normalized mutual info score 0.261904 0.275087 0.261375

rand score 0.825399 0.810171 0.812104

v measure score 0.261904 0.275087 0.261375

F-score 0.1635 0.1335 0.1348

F-score average: 0.1005 0.0904 0.0757

Score k++.n k++.sc k++.md

adjusted mutual info score 0.282358 0.255432 0.259865

adjusted rand score 0.252918 0.238203 0.241569

completeness score 0.278569 0.253377 0.257751

fowlkes mallows score 0.360486 0.347467 0.349507

homogeneity score 0.290259 0.261615 0.266085

mutual info score 0.600085 0.545816 0.555239

normalized mutual info score 0.284294 0.257430 0.261852

rand score 0.816440 0.813288 0.815278

v measure score 0.284294 0.257430 0.261852

F-score 0.2119 0.1624 0.1396

F-score average: 0.0850 0.1048 0.0861

https://doi.org/10.1371/journal.pone.0313238.t011
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7.6 A discussion

The selected real-world dataset TWT.10 was in general not friendly for spectral clustering

methods. Nonetheless, it points out that our K-embedding can be a candidate for substitution

of L-embedding for such cases. On the other hand, the GSA friendly (artificial) dataset sup-

ports our claim that the explanation path that we have proposed is justified.

In order to deepen the understanding of the reasons for this observation, please have a look

at the following Figs 6–8. It is known from the literature that GSA works best when the similar-

ity matrix between documents has a block-matrix structure. Fig 6 shows that this is not

Table 12. K-based clustering, scores (rows) under diverse settings of spherical k-means algorithm (columns), when the number of dimensions used (columns)

r = 7155; the highest values in 10 runs.

Score sc.n sc.sc sc.md

adjusted mutual info score 0.351894 0.385909 0.284980

adjusted rand score 0.331422 0.357056 0.285706

completeness score 0.356581 0.391112 0.288709

fowlkes mallows score 0.417609 0.439716 0.378092

homogeneity score 0.350650 0.383984 0.285026

mutual info score 0.768135 0.842521 0.621927

normalized mutual info score 0.353591 0.387516 0.286856

rand score 0.849867 0.855971 0.839133

v measure score 0.353591 0.387516 0.286856

F-score 0.1051 0.2144 0.1317

F-score average: 0.0662 0.0930 0.0757

Score k++.n k++.sc k++.md

adjusted mutual info score 0.401542 0.360389 0.356130

adjusted rand score 0.377350 0.340112 0.335164

completeness score 0.408082 0.364872 0.360456

fowlkes mallows score 0.456293 0.425090 0.420925

homogeneity score 0.398242 0.359300 0.355218

mutual info score 0.879077 0.785996 0.776483

normalized mutual info score 0.403102 0.362065 0.357818

rand score 0.862309 0.851955 0.850621

v measure score 0.403102 0.362065 0.357818

F-score 0.1864 0.2015 0.1642

F-score average: 0.0913 0.0933 0.1000

https://doi.org/10.1371/journal.pone.0313238.t012

Table 13. Best F-score for predicting spectral clustering and spherical clustering by K-based clustering for

r = 3754.

config F1 for spectral F1 for spherical

precomp nn

sc.n 0.0604 0.1129 0.1820

sc.sc 0.1101 0.1343 0.1422

sc.md 0.1315 0.1469 0.1627

k++.n 0.0940 0.1042 0.1358

k++.sc 0.0612 0.1359 0.2608

k++.md 0.1034 0.1754 0.1817

https://doi.org/10.1371/journal.pone.0313238.t013

PLOS ONE Explainable Graph Spectral Clustering of text documents

PLOS ONE | https://doi.org/10.1371/journal.pone.0313238 February 4, 2025 30 / 41

https://doi.org/10.1371/journal.pone.0313238.t012
https://doi.org/10.1371/journal.pone.0313238.t013
https://doi.org/10.1371/journal.pone.0313238


necessarily the case with the data that we are working with. First of all, the top similarities

between documents, though located within groups of documents sharing a hashtag, are not

evenly distributed over various hashtags. There are even hashtags without any top similarity

values. On the other hand, low similarities between documents are not only present outside of

hashtag groups, but are also quite common within these groups. Therefore guessing what is

the right number of clusters from the similarity distribution is quite hard.

Fig 7 illustrates this point from another perspective. Average of 5% of top similarities

were computed for each document (black line); Also average of 5% of bottom similarities

Fig 6. Similarities within and between hashtag related documents. Gray squares: 400 lowest similarities between the documents. Blue squares: top

similarities between documents.

https://doi.org/10.1371/journal.pone.0313238.g006
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was computed for each document (blue line). One sees that there are numerous documents

that have not a big span between top and bottom similarities (see also Fig 8). So their cluster

membership may be deemed questionable and their assignment to concrete clusters a bit

random.

This point is also visible in Fig 9. We see there that for a considerable amount of documents,

their similarities within the same hashtag group and outside do not differ significantly.

Last but not least a manual inspection of some of the hashtags suggests that their content is

not a real content but the result of some more or less random or mysterious word assignment.

Fig 7. Average top similarities and bottom similarities.

https://doi.org/10.1371/journal.pone.0313238.g007
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8 Conclusions

We have constructed a theoretical bridge linking the clusters resulting from Graph Spectral

Clustering and the actual document content, given that similarities between documents are

computed as cosine measures in tf (term frequency) or tfidf (term frequency-inverse docu-

ment frequency) representation. This link enables to provide with explanation of cluster mem-

bership in clusters produced by GSA. We provide textual justification for a document’s cluster

membership derived from cosine similarity, and at the same time provide textual justification

Fig 8. Differences between average top similarities and bottom similarities.

https://doi.org/10.1371/journal.pone.0313238.g008
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for its non-membership in other clusters. via distance computation in the document vector

embedding space.

This result is novel as various authors recommend not to use GSA if you “need an explain-

able algorithm”. See e.g. https://crunchingthedata.com/when-to-use-spectral-clustering/.

Our result is based on a comparative study of three different embeddings of documents:

one in the Term Vector Space, one in the spectral clustering space and one based on the kernel

approach. The kernel-based approach shares with the Term Vector Space approach the repro-

duction of cosine similarity while performing traditional k-means clustering, but has much

Fig 9. Average similarity of a document: General—Black, within a cluster—Green, between clusters—Blue.

https://doi.org/10.1371/journal.pone.0313238.g009
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lower dimensionality. On the other hand, both kernel-based approach and spectral analysis

based approach use the traditional (distance-based) k-means at their heart and approximate

the same target function. We have investigated both combinatorial and normalized Laplacian

based clustering methods along this path. By comparing the theoretical results we get a new

insight into the difference between both types of GSA. While combinatorial Laplacian induces

the plain explanation via distances in the Term Vector Space, the explanation for the normal-

ized Laplacian leads us to usage of weighted versions of document embeddings in the Term

Vector Space. This can be also considered as a novel insight. So the bridge we have established

can be used not only as explanation of cluster membership but also as an insight into the GSA

methodology itself.

An important question for future research is the issue under what conditions some number

of clusters have been chosen. There has been some research on the automated selection of the

number of clusters in general [52] and in spectral clustering domain [53], but the results for

real data that were available to us were not satisfactory so this topic should be considered as a

future research area.

9 Appendix

9.1 L-based clustering versus K-based clustering

Experiments with artificial data were performed, investigating the methodology of Sec. 5.1.

An artificial dataset with 20 clusters (of equal cardinality 100) was generated (in the same

way as the BLK.4 dataset). The profile of this dataset in terms of eigenvalues in the L-based and

K-based clustering method is shown in Fig 3.

The clustering results of both methods are compared in Tables 14–16.

Table 14. Does L-based GSC imply our K-based GSC? Number of elements in correct clusters: 1936, incorrectly clustered: 64 = errors: 3.2%.

TRUE/PRED 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 20 0 0 0 0 0 0 0 0

3 0 0 0 56 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 100 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 100 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0

10 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0

11 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0

12 0 0 0 44 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100

16 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0

18 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0

19 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0

20 0 0 0 0 0 0 0 0 0 0 0 80 0 0 0 0 0 0 0 0

https://doi.org/10.1371/journal.pone.0313238.t014
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Table 16. Is true clustering implied with our K-based method? Number of elements in correct clusters: 1800, incorrectly clustered: 200 = errors: 10%.

TRUE/PRED 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0

2 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0

8 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0

10 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0

11 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 80

12 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0

14 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0

15 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0

17 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0

20 0 0 56 0 0 0 0 0 0 0 0 44 0 0 0 0 0 0 0 0

https://doi.org/10.1371/journal.pone.0313238.t016

Table 15. Does our K-based method imply L-based GSC? Number of elements in correct clusters: 1800, incorrectly clustered: 200 = errors: 10%.

TRUE/PRED 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0

4 0 0 56 0 0 0 0 0 0 0 0 44 0 0 0 0 0 0 0 0

5 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0

7 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0

8 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0

10 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0

11 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0

12 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 80

13 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0

14 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0

15 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0

17 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0

19 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0

20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0

https://doi.org/10.1371/journal.pone.0313238.t015
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Table 18. Is true clustering implied with our M-based method? Number of elements in correct clusters: 1999, incorrectly clustered: 1 = errors: 0.05%.

TRUE/PRED 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0

2 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0

6 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0

9 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 99 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

11 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0

13 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100

15 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0

17 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0

20 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

https://doi.org/10.1371/journal.pone.0313238.t018

Table 17. Does L-based GSC imply our M-based GSC? Number of elements in correct clusters: 1900, incorrectly clustered: 100 = errors: 5%.

TRUE/PRED 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0

2 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0 0 99 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0

7 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 100

8 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0

11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0

12 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0

13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0

14 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 0 0 58 0 0 42 0 0 0 0 0 0 0 0 0 0 0 0 0 0

17 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0

18 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0

19 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0

20 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

https://doi.org/10.1371/journal.pone.0313238.t017
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9.2 N-based clustering versus M-based clustering

Again, experiments with artificial data were performed, investigating the methodology of Sec.

6.1.

An artificial dataset with 20 clusters (of equal cardinality 100) was generated (in the same

way as the BLK.4 dataset).

The clustering results of both methods are compared in Tables 17–19.

We asked also: Is true clustering implied with L-based GSC? perfect match of clusterings

was observed.
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Table 19. Is true clustering implied with L-based GSC? Number of elements in correct clusters: 1900, incorrectly clustered: 100 = errors: 5%.

TRUE/PRED 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0

2 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100

4 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0

7 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0

8 0 0 58 0 0 42 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0

11 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0

13 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

14 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0

16 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0

18 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0

19 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

20 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

https://doi.org/10.1371/journal.pone.0313238.t019
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