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Abstract

Background

Endurance training enhances exercise capacity and triggers cardiovascular adaptations in

both males and females. We investigated the relationship between the dimensions of great

vessels and exercise capacity in amateur cyclists while considering sex differences.

Methods

Using resting transthoracic echocardiography, we measured the dimensions of the main

pulmonary artery (PA), aorta, and inferior vena cava (IVC) in 190 participants, who subse-

quently underwent a cardiopulmonary exercise test (CPET) until exhaustion.

Results

The mean age of study participants was 30 years. Males (71%) exhibited a larger aortic

annulus (approximately 3.5 mm, p<0.0001) and PA diameter (2.4 mm, p<0.0001) than

females. No significant sex differences were found in expiratory or inspiratory IVC diame-

ters. Males achieved greater peak exercise capacity, including workload, O2 consumption

(VO2), and O2 pulse. Aortic and PA dimensions showed strong correlations with energy

expenditure, workload, VO2, and O2 pulse. However, these correlations weakened when

analyzed separately by sex. Multivariate linear regression revealed associations between

CPET results, vessels size, and sex, with sex differences observed only in the intercepts—

not in interactions between sex and vessels size. Despite males having better CPET results

and larger vessels, the relationships between peak exercise capacity parameters and ves-

sel dimensions were similar in both sexes.
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Conclusion

Larger vessel dimensions (of the aorta, PA, and IVC) were associated with greater peak

exercise capacity in amateur cyclists, with no significant sex differences in these

associations.

Introduction

Various tissues and organs increase their demand for O2 and fuel during exercise [1, 2]. Energy

production in the working muscles requires a constant supply of fuel and O2 and effective

removal of heat and CO2. Simultaneously, various metabolites, including CO2, lactate, H+

ions, and adenosine, are produced during muscular exertion. These substances must be effi-

ciently transported from the working muscles to other organs for processing. For example,

CO2 is exhaled via the lungs, while lactate is utilized for gluconeogenesis in the liver or kidneys.

Additionally, less active muscles can use lactate as a fuel source through the Cori cycle, which

converts lactate into pyruvate for subsequent use in the Krebs cycle to produce ATP. The respi-

ratory and cardiovascular systems adapt to match the demand for O2 delivery and increase the

capacity to transport exercise metabolites. As a result, pulmonary ventilation, blood pumped

by the heart and transported through the vessels increase [2–5].

Endurance exercise (including both training and physical work) causes the adaptation of

many organs and systems to allow them to perform better. The heart of an athlete provides a

classic example of such exercise-induced organ adaptation [1, 6]. The pulmonary and muscu-

loskeletal systems also undergo exercise-induced remodeling, although the exact patterns of

this process are not well understood [1, 7–9]. Many factors, including the type (endurance,

power, mixed, and/or skill), volume, intensity, and duration of exercise; genetic predisposition;

age; and sex, may contribute to such changes [6, 10].

An athlete’s heart is larger than that of a non-athlete, with thicker walls and dilated cham-

bers, leading to increased myocardial mass. This translates into improved cardiac function,

allowing highly trained individuals to achieve a greater cardiac output with a lower heart rate

(HR) [1]. During exercise, cardiac output can increase up to 8-fold, reaching 40 L/min, com-

pared to the resting 5 L/min [1]. Blood flow to muscles increases significantly (up to a 30-fold

increase in elite athletes), while e.g. the digestive system receives less perfusion [11]. Exercise

also benefits the vascular system by reducing arterial wall thickness and increasing lumen

diameter, leading to decreased vascular resistance in muscle arteries during exercise [1].

Both males and females experience the effects of endurance exercise, which lead to adapta-

tion of cells, tissues and organs. However, there are variations due to differences in body size

and composition; sex hormones; genetics; and environmental factors like diet, lifestyle, train-

ing time, pregnancies, and stress [12]. Females generally have smaller cardiac chambers and

mass and smaller aortic diameters than men. These anatomical differences might influence

how the heart responds to exercise in males and females [12, 13], however research in this

topic is lacking.

Despite extensive research on the cardiovascular system, a crucial gap remains in our

understanding of how the dimensions of great vessels relate to exercise capacity in males and

females This study examined a group of amateur cyclists with varying exercise levels to assess

the relationship between dimensions of the aorta, main pulmonary artery (PA), and inferior

vena cava (IVC) with exercise capacity. We further investigated whether these associations

existed separately in males and females and if these associations differed by sex. This research
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is exploratory, and no hypothesis regarding sex differences was formulated. Consequently, we

aim to establish associations rather than causality.

Materials and methods

Bioethical issues

This paper presents results of a project that was approved by the Bioethics Committee of Poz-

nan University of Medical Sciences (decision 693/20). The study was conducted according to

the Declaration of Helsinki [14]. All data were treated confidentially and anonymized for stor-

age and analysis. The data were collected, stored, and analyzed in the REDCap data capture

tools hosted at Poznan University of Medical Sciences [15].

Study group recruitment

We enrolled 215 consecutive adult volunteers who claimed to be recreationally physically

active and cycled regularly for a cross-sectional, observational study with a single timepoint

assessment. The recruitment took place between December 1st 2020, and April 30th 2023.

Details of all participants have already been published [16]. The enrolment included consecu-

tive volunteers who responded to the recruitment call who wanted to participate in a study to

evaluate their cardiovascular function by electrocardiogram (ECG), echocardiography

(ECHO), and CPET. All participants took part voluntarily and were informed about the study

and the fact that they could abandon the study at any time. Written informed consent was col-

lected from all volunteers.

For this substudy, we selected participants with complete data from CPET and ECHO mea-

surements concerning great vessel dimensions. Therefore, 190 subjects were analyzed. The

inclusion criteria were being recreationally physically active and cycling regularly for at least 1

h per week to ensure the participation of a wide variety of amateur cyclists. Individuals with

chronic diseases or who were taking medications were excluded from the study. Allowed sub-

stances included vitamin D, dietary supplements, and oral contraceptives for women.

Health status

Physicians performed a comprehensive pre-participation screening, including a detailed medi-

cal and family history, physical examination, and blood pressure measurement. A resting

12-lead ECG was performed to detect abnormalities such as arrhythmias, conduction prob-

lems, signs of left ventricle (LV) or right ventricle (RV) hypertrophy, pre-excitation syn-

dromes, or channelopathies. In addition, resting transthoracic ECHO assessed cardiac

structure and function to exclude clinically significant abnormalities such as moderate to

severe valve stenosis or regurgitation (e.g., mitral regurgitation or aortic stenosis). Six individ-

uals were excluded due to LV hypertrophy or moderate mitral or tricuspid regurgitation.

Anthropometric measurements and physical activity assessment

Body height and weight were measured to calculate body mass index (BMI). To assess physical

activity, we used the International Physical Activity Questionnaire (IPAQ) [17], as well as

additional questions regarding basic characteristics of training (cycling sessions per week and

hours of cycling training per session and per week). MET-min (metabolic equivalent of task–

minutes) were calculated according to IPAQ interpretation guidelines [17]. The MET-min is a

parameter showing the volume of exercise undertaken by a participant.
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Spirometry

Participants underwent baseline resting spirometry (Vyntus CPX, Vyaire Medical, IL, USA)

after resting in a sitting position for at least 5 min. The measured values included forced expi-

ratory volume in 1 s (FEV1). Maximal voluntary ventilation was calculated using the formula

FEV1 × 40 and defined the limit of breathing reserve for CPET [18]. The test was performed

until five results met the criteria for adequate quality [18, 19], and the mean results from the

three best repetitions were used for analysis.

Cardiopulmonary exercise test

CPET was performed on a cycle ergometer (Excalibur Sport 2, Lode, Groningen, The Nether-

lands) using a CPET system (Vyntus CPX, Vyaire Medical, IL, USA). HR was recorded using a

chest-strap HR monitor (Polar H10, Polar, Kempele, Finland). The tidal volume and content

of O2 and CO2 in the inhaled and exhaled air were measured using the breath-by-breath

method.

The CPET was executed according to the Association for Respiratory Technology & Physi-

ology guidelines [18] using an individualized incremental ramp protocol tailored to the partic-

ipants’ current physical performance. Additionally, we took into consideration the IPAQ

result–MET-min and IPAQ category. For participants in the lower physical activity category

we aimed for the peak load after 10 minutes of exercise to reach 2.5–3.5 W/kg, for the moder-

ate physical activity category– 3.5–4.5 W/kg and for the high physical activity category– 4.5–

5.5 W/kg. The resting phase lasted 2 minutes, the warmup phase (pedaling with no additional

load) lasted 2 minutes. The main phase of the test (incremental ramp protocol) aimed to last 8

−12 min [18, 20] and was terminated at the will of the participant at peak effort. The partici-

pants were encouraged to exert maximal effort; they could increase cadence, muscle strain, or

both. During peak exercise, all participants reached at least 8 points in the modified Borg scale,

the median RER was 1.24 (RER > 1.15 defines high effort), and all reached >90% of predicted

maximal heart rate and/or maximal VO2. During the recovery phase, monitoring continued

for at least 10 min while the participant was seated.

The recorded parameters, which were used for further analysis, included:

• HR: heart rate;

• VO2: the volume of O2 consumed per min;

• O2 pulse: the ratio of VO2 to HR;

• VCO2: the volume of CO2 produced per min;

• VE: minute ventilation;

• RER: respiratory exchange ratio; and

• EE: energy expenditure.

EE, expressed as kcal per min, was calculated using the Weir formula for indirect calorime-

try [21]:

EE ¼ 3:9 ∗ VO2 þ 1:1 ∗VCO2ð Þ
kcal
min

� �

:

The recorded time points included averaged breath-by-breath values from the last 15 s of

the rest and peak exercise phases, the latter of which usually occurred before the end of the

cycling.

PLOS ONE No sex differences: Great vessels & exercise

PLOS ONE | https://doi.org/10.1371/journal.pone.0313165 November 4, 2024 4 / 23

https://doi.org/10.1371/journal.pone.0313165


Echocardiography

Echocardiography was performed in all participants according to the American Society of

Echocardiography guidelines [22]. Experienced cardiologists used a 3.5-MHz transducer on a

Vivid E95 or E9 ECHO machine from General Electric Healthcare Technologies (Chicago, IL,

USA). The IVC was measured in the subcostal view approximately 1 cm before the entrance to

the right atrium. The IVC expiratory and inspiratory diameters were obtained using the M-

mode while the patient was breathing deeply. In the parasternal long axis view, the following

diameters of the aorta were measured: aortic annulus diameter, aortic sinus of Valsalva diame-

ter, and aortic sinotubular junction (STJ) diameter. From the suprasternal view, we quantified

the diameter of the arch of the aorta. The diameter of the abdominal aorta was measured in

the longitudinal plane, in the subcostal view focused on the proximal abdominal aorta. Finally,

in the parasternal short axis view, focused on the PA, the diameters of the PA and of the left

pulmonary artery (LPA) and right pulmonary artery (RPA) (1 cm after their takeoff) were

measured. Most measurements of arteries were taken using the leading-to-leading method.

The aortic annulus and IVC dimensions were measured using the trailing-to-leading

approach.

The echocardiographic data (images and cine loops) were analyzed using TOMTEC Imag-

ing Systems (TOMTEC-ARENA Build No. 544347, TOMTEC Imaging Systems GmbH,

Unterschleissheim, Germany, distributed by Phillips, Amsterdam, The Netherlands).

An example of echocardiographic measurements is presented in Fig 1.

Fig 1. An example of echocardiographic measurements for the study. A–measurements of the aorta in the parasternal long axis (aortic annulus, sinus

of Valsalva and sinotubular junction diameters). B–measurement of the arch of the aorta in the suprasternal view. C–measurement of the diameter of

the main pulmonary artery and the left and right pulmonary arteries in the modified parasternal short axis with focus on the main pulmonary artery.

D–measurement of the inferior vena cava during inspiration and expiration–measured in M-mode.

https://doi.org/10.1371/journal.pone.0313165.g001
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Statistical analysis

QQ-plots and the D’Agostino–Pearson test were used to test the normality of the data distribu-

tions [23]. The mean ± standard deviation (SD) summarizes data with a normal distribution,

while the median and difference between the 75th and 25th percentiles (interquartile range)

describe data that are not normally distributed. Depending on the data distribution, compari-

sons between the sexes were made using either the parametric Student’s t-test or the non-

parametric Mann–Whitney test. Associations between the dimensions of great vessels and

peak exercise performance parameters from CPET, as well as the influence of sex, were prelim-

inarily examined using Pearson correlation (all these parameters were normally distributed).

Multivariate linear regression models analyzed the effects of vascular dimensions (x) and sex

and the interactions of these parameters (x × sex) on exercise capacity parameters (HR, VO2,

VO2�kg−1, VCO2, VE, load, O2 pulse, and RER). Within these models, the estimate for x repre-

sents the direct association between a peak CPET parameter and a specific great vessel dimen-

sion. The sex estimate (0 = female, 1 = male) indicates the presence of sex differences in peak

CPET parameters; a significant estimate indicates significant sex differences in the dependence

of CPET on vessel dimensions. The interaction term x × sex reflects whether the association

between specific vessel dimensions and peak CPET parameters differs between male and

female cyclists. This approach essentially compares two separate regressions for each sex: the

sex effect compares the intercepts, while the x × sex interaction compares the slopes of these

regressions. As our primary aim was to determine whether the slopes of the relationships

between exercise capacity and the dimensions of great vessels differed between males and

females, we focused on reporting only the p-value for the interaction term between vessels size

and sex. In all analyses, only p-values <0.05 were considered significant. JMP1 Pro 17.0.0

(622753) (JMP Statistical Software, Cary, NC, USA) was used for statistical analyses.

Results

Study group characteristics

Table 1 summarizes the characteristics of the 190 participants (134 males, 71%; 56 females,

29%). Males were taller (by 13 cm) and heavier (by 19.2 kg) than females, with a BMI 3.1

kg�m−2 higher. However, median age and measures of exercise volume (e.g., hours per week

and intensity) were similar between the sexes. The mean value of MET minutes per week was

4225. The IPAQ classified most participants (56%) as very active, 34% moderately active, and

10% less active. Cycling was the main sport activity for all participants, and the median num-

ber of cycling sessions per week was 4. The median cycling training time was 3.5 hours/week,

with a minimum of 2 hours per week (only 22 participants, 11%). Other sports activities

undertaken in the study group included running (40%), gym (25%), swimming (19%), team

sports (9%), and others (31%).

Echocardiography

Table 1 summarizes the echocardiographic measurements of the aorta, PA, and IVC. Males

had larger aortic diameters than females at the annulus, sinus of Valsalva, STJ, aortic arch, and

proximal abdominal aorta. The diameter of the PA was 2.4 mm larger in males, and the diame-

ters of the LPA and RPA were 1.8 and 1.7 mm larger, respectively. The diameter of the IVC

was 20.8 mm during expiration and 10.3 mm during inspiration and was similar in males and

females. The absolute and relative increases in IVC diameter during expiration were similar in

males and females (10.5 vs. 10.6 mm and 51.1% vs. 50.6%, respectively).
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Table 1. Clinical characteristics of studied male and female amateur cyclists and their peak cardio-pulmonary exercise test results.

Parameter Males (N = 134) Females (N = 56) p value

Median IQR Median IQR

Height [cm] 181 178–185 168 165–172 <0.0001*
Weight [kg] 79.7 72.4–87.8 60.0 55.0–66.3 <0.0001*
BMI [kg�m-2] 24.5 22.7–26.5 21.4 20.0–23.2 <0.0001*
Age [years] 29 25–37 26 22–35 0.1432

Exercise days per week [days] 4 3–5 4 3–5 0.5470

Weekly training time [hours/week] 6 4–9 6.5 4–8 0.5653

Weekly cycling time [hours/week] 4 2.5–6.0 3 2.5–5.1 0.1566

MET-min [per week] 3470 1479–6124 2949 1424–5295 0.7607

CPET duration [min] 10.6 9.7–11.5 10.0 9.0–11.1 0.2136

Mean ± SD Mean ± SD

Resting ECHO Ao Annulus [mm] 22.6 ± 2.3 19.1 ± 1.9 <0.0001*
Ao SV [mm] 32.9 ± 3.2 28.5 ± 2.7 <0.0001*
Ao STJ [mm] 26.8 ± 3.2 24.1 ± 2.7 <0.0001*
Ao Arch [mm] 24.5 ±2.7 22.1 ± 2.4 <0.0001*
Ao Abd [mm] 17.9 ± 1.8 16.1 ± 1.6 <0.0001*
PA [mm] 21.4 ± 2.8 19.0 ± 2.16 <0.0001*
LPA [mm] 16.2 ± 2.1 14.4 ± 1.8 <0.0001*
RPA [mm] 15.9 ± 2.1 14.2 ± 1.7 <0.0001*
IVC inspiration [mm] 10.2 ± 3.8 10.6 ± 3.2 0.5718

IVC expiration [mm] 20.7 ± 5.8 21.0 ± 4.4 0.7379

Rest before exercise HR [beats�min-1] 82.9 ± 15.1 81.38 ± 15.4 0.5339

O2pulse [mL�beat-1] 6.2 ±2. 4.3 ± 1.3 <0.0001*
RER 0.90 ± 0.14 0.89 ± 0.13 0.5258

VCO2 [L�min-1] 0.44 ± 0.17 0.30 ± 0.09 <0.0001*
VO2 [L�min-1] 0.50 ± 0.17 0.35 ± 0.09 <0.0001*
VO2kg [mL�min-1�kg-1] 5.70 ± 2.83 4.50 ± 2.30 0.0052*
VE [L�min-1] 16.4 ± 5.1 12.5 ± 3.4 <0.0001*
EE [kcal�min-1] 2.45 ± 1.44 1.66 ± 0.66 <0.0001*

Peak exercise HR [beats�min-1] 184.7 ± 11.0 182.1 ± 11.2 0.1359

Load [W] 342.7 ± 63.73 229.1 ± 45.9 <0.0001*
Load per body mass [W�kg-1] 4.31 ± 0.93 3.72 ± 0.64 <0.0001*
O2pulse [mL�beat-1] 20.7 ± 3.5 14.0 ± 2.8 <0.0001*
RER 1.24 ± 0.07 1.22 ± 0.08 0.0209*
VCO2 [L�min-1] 4.72 ± 0.74 3.08 ± 0.54 <0.0001*
VO2 [L�min-1] 3.81 ± 0.60 2.54 ± 0.47 <0.0001*
VO2�kg-1 [mL�min-1�kg-1] 43.3 ± 12.9 33.5 ± 13.4 <0.0001*
VE [L�min-1] 159.7 ± 30.8 106.1 ± 19.0 <0.0001*
EE [kcal�min-1] 20.17 ± 4.52 13.38 ± 3.49 <0.0001*

Comparisons between males and females were made using the parametric student’s t-test (for normally distributed data) or the non-parametric Mann-Whitney test (for

not normally distributed data).

Abbreviations: Ao Abd–abdominal aorta diameter; Ao Annulus–aortic annulus diameter; Ao Arch–aortic arch diameter; Ao STJ–aortic sinotubular junction diameter;

Ao SV–aortic sinus Valsalva diameter; BMI–body mass index; CPET- cardio-pulmonary exercise test; EE–energy expenditure; HR–heart rate; IVC–inferior vena cava

diameter; LPA–left pulmonary artery diameter; LVOT–left ventricle outflow tract diameter; MET–the metabolic equivalent of task; O2 pulse—the ratio of VO2 to HR;

PA–main pulmonary artery diameter; RER–respiratory exchange ratio; RPA–right pulmonary artery diameter; SD–standard deviation. VCO2 –the volume of produced

CO2; VE–minute ventilation; VO2 –the volume of consumed O2; VO2�kg-1 –the volume of consumed O2 per kilogram of body weight;

https://doi.org/10.1371/journal.pone.0313165.t001
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Cardiopulmonary exercise test

The data from CPET at rest and during peak exercise are presented in Table 1. During peak

exercise, the HR increased by 225%, from 82 to 184 bpm, and was comparable between males

and females. Males achieved higher peak load (343 vs. 229 W), as well as load per unit body

mass (4.31 vs. 3.72 W�kg−1). For all participants, breathing frequency increased by 325%,

reaching 51 breaths per min at peak exercise, and the peak VE was 144 L�min−1. O2 pulse was

higher in males and reached 20.7 mL�beat−1 (334% increase) compared to 14.0 mL�beat−1

(326% increase) in females. The peak RER was 1.24, indicating very high effort by the partici-

pants. The data are available in the supporting information–S1 Table.

Associations between the dimensions of great vessels and exercise capacity

The diameter of the aorta, particularly at the levels of the annulus, the sinuses of Valsalva, and

the proximal abdominal segment below the diaphragm, as well as of the LPA, showed signifi-

cant positive correlations of moderate strength with peak EE, workload, O2 pulse, VCO2, VO2,

and VE. Interestingly, peak HR showed a weak negative correlation with the same dimensions.

The IVC showed weak or nonsignificant correlations with the same exercise capacity parame-

ters, with the exception of O2 pulse. All correlations were generally weaker when analyzed sep-

arately for males and females. Fig 2 illustrates some of the strongest correlations observed,

focusing on the aortic annulus and selected peak CPET parameters.

In Table 2, we present the results of the Pearson correlation coefficient analysis for associa-

tions between the dimensions of great vessels and exercise capacity. Generally, stronger corre-

lations were found in the whole study group, and weaker correlations were found in the

subgroups for each sex. The strongest recorded correlations were moderate (r�0.4) and were

found between dimensions of the aorta and of the PA and peak EE, load, O2 pulse, VCO2, and

VO2, as well as between dimensions of the aorta and VE.

Fig 2. Correlations between aortic annulus diameter and peak exercise capacity parameters from CPET. The red dots and shaded ellipses

represent females, the blue dots and shades represent males. Abbreviations: O2 pulse—the ratio of VO2 to HR; VE–minute ventilation; VO2 –the

volume of consumed O2.

https://doi.org/10.1371/journal.pone.0313165.g002
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Table 2. Pearson correlation coefficient for associations between the dimensions of great vessels and exercise capacity parameters in the study group and in sex-

subgroups.

y x Study group (N = 190) Females (N = 56) Males (N = 134)

r p r p r p

Peak EE Ao Annulus 0.56 <0.0001 0.11 0.4136 0.27 0.0019

Ao SV 0.50 <0.0001 0.25 0.0688 0.17 0.0474

Ao STJ 0.33 <0.0001 0.12 0.3634 0.09 0.3147

Ao Arch 0.36 <0.0001 0.25 0.0629 0.09 0.2964

Ao Abd 0.49 <0.0001 0.39 0.0034 0.29 0.0008

PA 0.44 <0.0001 0.28 0.0393 0.23 0.0075

LPA 0.46 <0.0001 0.33 0.0135 0.29 0.0006

RPA 0.42 <0.0001 0.30 0.0236 0.23 0.0085

IVC inspiration 0.12 0.1128 0.20 0.1324 0.21 0.0131

IVC expiration 0.16 0.0267 0.27 0.0441 0.26 0.0027

Peak HR Ao Annulus -0.07 0.3452 -0.03 0.8279 -0.21 0.0132

Ao SV -0.25 0.0006 -0.32 0.0172 -0.39 <0.0001

Ao STJ -0.27 0.0002 -0.29 0.0317 -0.35 <0.0001

Ao Arch -0.23 0.0013 -0.12 0.3717 -0.36 <0.0001

Ao Abd -0.19 0.0074 -0.27 0.0469 -0.26 0.0021

PA -0.17 0.0159 -0.17 0.2192 -0.26 0.0022

LPA -0.33 <0.0001 -0.47 0.0003 -0.38 <0.0001

RPA -0.31 <0.0001 -0.42 0.0013 -0.37 <0.0001

IVC inspiration -0.11 0.1413 -0.04 0.7776 -0.13 0.1446

IVC expiration -0.21 0.0039 -0.27 0.0451 -0.19 0.0284

Peak Load Ao Annulus 0.52 <0.0001 0.11 0.4214 0.24 0.0047

Ao SV 0.48 <0.0001 0.25 0.0607 0.18 0.0328

Ao STJ 0.33 <0.0001 0.16 0.2258 0.10 0.2292

Ao Arch 0.35 <0.0001 0.25 0.0646 0.11 0.1869

Ao Abd 0.46 <0.0001 0.36 0.0065 0.26 0.0023

PA 0.41 <0.0001 0.26 0.052 0.21 0.0130

LPA 0.44 <0.0001 0.25 0.0623 0.28 0.0011

RPA 0.40 <0.0001 0.24 0.0739 0.22 0.0113

IVC inspiration 0.13 0.0715 0.17 0.2105 0.22 0.0099

IVC expiration 0.18 0.0152 0.23 0.0822 0.26 0.0023

Peak O2pulse Ao Annulus 0.56 <0.0001 0.14 0.3197 0.32 0.0002

Ao SV 0.56 <0.0001 0.33 0.0122 0.31 0.0003

Ao STJ 0.40 <0.0001 0.21 0.1228 0.23 0.0089

Ao Arch 0.43 <0.0001 0.29 0.033 0.24 0.0062

Ao Abd 0.55 <0.0001 0.48 0.0002 0.38 <0.0001

PA 0.47 <0.0001 0.32 0.0166 0.31 0.0003

LPA 0.55 <0.0001 0.48 0.0002 0.43 <0.0001

RPA 0.51 <0.0001 0.45 0.0005 0.36 <0.0001

IVC inspiration 0.15 0.0437 0.20 0.1480 0.25 0.0036

IVC expiration 0.22 0.0022 0.35 0.0087 0.32 0.0002
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Table 2. (Continued)

y x Study group (N = 190) Females (N = 56) Males (N = 134)

r p r p r p

Peak RER Ao Annulus -0.01 0.8769 -0.19 0.1688 -0.12 0.1594

Ao SV 0.00 0.9989 -0.11 0.4005 -0.11 0.1989

Ao STJ -0.11 0.1216 -0.14 0.3095 -0.22 0.0115

Ao Arch -0.10 0.1910 -0.12 0.3847 -0.20 0.0189

Ao Abd -0.18 0.0131 -0.41 0.0019 -0.23 0.0082

PA 0.03 0.6604 0.08 0.5781 -0.08 0.3489

LPA -0.16 0.0241 -0.23 0.0906 -0.26 0.0023

RPA -0.16 0.0265 -0.28 0.0400 -0.24 0.0059

IVC inspiration 0.01 0.8644 0.08 0.5543 0.00 0.9556

IVC expiration -0.08 0.2887 -0.12 0.3622 -0.06 0.5079

Peak VCO2 Ao Annulus 0.55 <0.0001 0.06 0.6440 0.24 0.0045

Ao SV 0.49 <0.0001 0.21 0.1216 0.14 0.1125

Ao STJ 0.30 <0.0001 0.09 0.5246 0.04 0.6728

Ao Arch 0.33 <0.0001 0.22 0.1076 0.04 0.6418

Ao Abd 0.45 <0.0001 0.28 0.0363 0.23 0.0084

PA 0.43 <0.0001 0.29 0.0311 0.22 0.0116

LPA 0.42 <0.0001 0.26 0.0501 0.23 0.0079

RPA 0.38 <0.0001 0.22 0.0962 0.17 0.0499

IVC inspiration 0.11 0.1295 0.22 0.1058 0.21 0.0166

IVC expiration 0.14 0.0499 0.23 0.0817 0.24 0.0055

Peak VE Ao Annulus 0.50 <0.0001 0.08 0.5408 0.21 0.0161

Ao SV 0.46 <0.0001 0.26 0.0570 0.14 0.0961

Ao STJ 0.25 0.0006 0.10 0.4497 -0.02 0.8352

Ao Arch 0.32 <0.0001 0.14 0.2958 0.10 0.2589

Ao Abd 0.39 <0.0001 0.28 0.0397 0.14 0.1053

PA 0.36 <0.0001 0.29 0.0310 0.12 0.1503

LPA 0.36 <0.0001 0.33 0.0136 0.13 0.142

RPA 0.34 <0.0001 0.30 0.0264 0.11 0.1941

IVC inspiration 0.05 0.4695 0.20 0.1353 0.09 0.3145

IVC expiration 0.11 0.1252 0.27 0.0435 0.15 0.0800

Peak VO2 Ao Annulus 0.55 <0.0001 0.12 0.3621 0.27 0.0018

Ao SV 0.50 <0.0001 0.25 0.0619 0.18 0.0351

Ao STJ 0.34 <0.0001 0.13 0.3393 0.11 0.2170

Ao Arch 0.37 <0.0001 0.26 0.0579 0.12 0.1815

Ao Abd 0.50 <0.0001 0.41 0.0016 0.30 0.0004

PA 0.44 <0.0001 0.27 0.0405 0.23 0.0065

LPA 0.48 <0.0001 0.35 0.0085 0.32 0.0002

RPA 0.43 <0.0001 0.33 0.0136 0.24 0.0045

IVC inspiration 0.12 0.1034 0.20 0.1469 0.22 0.0119

IVC expiration 0.17 0.0195 0.28 0.0352 0.26 0.002
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In the whole study group, larger aortic dimensions were correlated with higher peak EE,

load, O2 pulse, VCO2, VO2, and VO2�kg−1 and with lower peak HR. Specifically, the strongest

correlations included aortic annulus diameter with: EE (r = 0.56, p<0.0001), O2 pulse

(r = 0.56, p<0.0001), VCO2 (r = 0.55, p<0.0001), and VO2 (r = 0.55, p<0.0001); aortic sinus of

Valsalva diameter with O2 pulse (r = 0.56, p<0.0001); proximal abdominal aorta diameter with

O2 pulse (r = 0.55, p<0.0001); and LPA with O2pulse (r = 0.55, p<0.0001). Larger dimensions

of the thoracic aorta were correlated with higher O2 pulse and lower HR in males. Proximal

abdominal aorta diameter was larger in cyclists (both males and females) who achieved higher

peak EE, load, O2 pulse, VO2 and RER. The abdominal aorta was additionally correlated with

higher VCO2 in males and with higher VE in females.

Larger dimensions of the PA and its branches were correlated with higher EE, load, O2

pulse, VCO2, VE, VO2, and VO2�kg−1 and with lower HR in all cyclists. For males, the correla-

tions were significant between the diameters of the PA, LPA, and RPA and EE, HR, O2 pulse,

VCO2, VO2, and VO2�kg−1, as well as between the diameters of the RPA and LPA and RER. In

females, fewer correlations were found: between PA diameter and EE, O2 pulse, VCO2, VE,

VO2; LPA diameter and EE, VO2, O2 pulse and VE; RPA diameter and EE, HR, O2 pulse, RER,

VO2, VO2�kg−1 and VE.

The IVC expiratory and inspiratory diameters were correlated with higher EE, load, O2

pulse, VCO2, and VO2�kg−1 in males. In females, only the IVC expiratory diameter was associ-

ated with higher EE, O2 pulse, VE, and VO2 and lower HR.

Sex-specific associations between peak CPET parameters and resting

dimensions of great vessels

Tables 3 and 4 summarize the potential influence of the dimensions of great vessels, sex, and

their interaction on peak CPET parameters. The estimate for each vessel dimension (x) repre-

sents its direct effect on peak CPET. The estimate for sex (0 = female, 1 = male) indicates sex

Table 2. (Continued)

y x Study group (N = 190) Females (N = 56) Males (N = 134)

r p r p r p

Peak VO2�kg-1 Ao Annulus 0.07 0.3170 -0.32 0.0178 -0.10 0.2722

Ao SV 0.20 0.0055 0.03 0.8110 0.03 0.7222

Ao STJ 0.00 0.9638 -0.17 0.2176 -0.12 0.1613

Ao Arch 0.00 0.9464 -0.08 0.5704 -0.17 0.0452

Ao Abd 0.22 0.0022 -0.02 0.896 0.14 0.0961

PA 0.26 0.0004 0.04 0.7861 0.18 0.0328

LPA 0.35 <0.0001 0.26 0.0509 0.26 0.0022

RPA 0.29 <0.0001 0.28 0.0355 0.17 0.0482

IVC inspiration 0.16 0.0288 0.10 0.4862 0.21 0.0129

IVC expiration 0.18 0.0116 0.11 0.406 0.23 0.0068

The Pearson correlation coefficient explored associations between peak exercise performance parameters from CPET and the dimensions of the great vessels from

ECHO.

Abbreviations: Ao Abd–abdominal aorta diameter; Ao Annulus–annulus of the aorta diameter; Ao Arch—aortic arch diameter; Ao STJ—aortic sinotubular junction

diameter; Ao SV—aortic sinus of Valsalva diameter; EE–energy expenditure; IVC expiration–inferior vena cava diameter during expiration; IVC inspiration–inferior

vena cava diameter during inspiration; HR–heart rate; LPA–left pulmonary artery diameter; O2pulse—the ratio of VO2 to HR; PA–main pulmonary artery diameter;

RER–respiratory exchange ratio; RPA–right pulmonary artery diameter; VCO2 –the volume of produced CO2; VE–minute ventilation; VO2 –the volume of consumed

O2; VO2�kg-1 –the volume of consumed O2 per kilogram of body weight

https://doi.org/10.1371/journal.pone.0313165.t002
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Table 3. Table 3 shows the p-values for the interaction terms between resting large vessel dimensions and sex in their influence on peak CPET parameters. As none

of these interaction terms were statistically significant and influenced the linear regression models, the estimates for vessel dimensions and sex are omitted from this table

for clarity. The final regression models without interaction terms are shown in Table 4. Data presented for N = 190 (134 males, 56 females).

y x p-value for the x and sex interaction x p-value for the x and sex interaction

Peak EE Ao Annulus 0.3182 PA 0.7773

Ao SV 0.7553 LPA 0.9442

Ao STJ 0.8840 RPA 0.7152

Ao Arch 0.4285 IVC inspiration 0.8746

Ao Abd 0.7394 IVC expiration 0.9276

Peak HR Ao Annulus 0.3213 PA 0.8434

Ao SV 0.9835 LPA 0.2535

Ao STJ 0.9575 RPA 0.3761

Ao Arch 0.2021 IVC inspiration 0.6633

Ao Abd 0.7893 IVC expiration 0.3849

Peak load Ao Annulus 0.3600 PA 0.8501

Ao SV 0.8528 LPA 0.7116

Ao STJ 0.8358 RPA 0.9856

Ao Arch 0.5754 IVC inspiration 0.6466

Ao Abd 0.8294 IVC expiration 0.8223

Peak O2 pulse Ao Annulus 0.2492 PA 0.8435

Ao SV 0.9352 LPA 0.7979

Ao STJ 0.8808 RPA 0.5840

Ao Arch 0.8399 IVC inspiration 0.7249

Ao Abd 0.6846 IVC expiration 0.7633

Peak RER Ao Annulus 0.4723 PA 0.3411

Ao SV 0.7989 LPA 0.7389

Ao STJ 0.8924 RPA 0.3881

Ao Arch 0.8266 IVC inspiration 0.5411

Ao Abd 0.0738 IVC expiration 0.5185

Peak VCO2 Ao Annulus 0.2503 PA 0.7307

Ao SV 0.7918 LPA 0.9839

Ao STJ 0.8215 RPA 0.8409

Ao Arch 0.3871 IVC inspiration 0.9253

Ao Abd 0.9614 IVC expiration 0.9438

Peak VO2 Ao Annulus 0.3614 PA 0.5366

Ao SV 0.7934 LPA 0.4838

Ao STJ 0.5722 RPA 0.5008

Ao Arch 0.9846 IVC inspiration 0.7120

Ao Abd 0.6848 IVC expiration 0.7032

Peak VO2�kg-1 Ao Annulus 0.3551 PA 0.7813

Ao SV 0.7603 LPA 0.9404

Ao STJ 0.9405 RPA 0.6610

Ao Arch 0.4909 IVC inspiration 0.8451

Ao Abd 0.3531 IVC expiration 0.8840

(Continued)
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Table 3. (Continued)

y x p-value for the x and sex interaction x p-value for the x and sex interaction

Peak VE Ao Annulus 0.1126 PA 0.5002

Ao SV 0.9613 LPA 0.7271

Ao STJ 0.6552 RPA 0.3120

Ao Arch 0.6508 IVC inspiration 0.5920

Ao Abd 0.7369 IVC expiration 0.6840

Multivariate linear regression models analyzed the effects of interactions of vascular dimensions (x) and sex (x × sex) on exercise capacity parameters.

Abbreviations: Ao Abd–abdominal aorta diameter; Ao Annulus–annulus of the aorta diameter; Ao Arch—aortic arch diameter; Ao STJ—aortic sinotubular junction

diameter; Ao SV—aortic sinus of Valsalva diameter; HR–heart rate; IVC expiration–inferior vena cava diameter during expiration; IVC inspiration–inferior vena cava

diameter during inspiration; LPA–left pulmonary artery diameter; O2pulse—the ratio of VO2 to HR; PA–main pulmonary artery diameter; RER–respiratory exchange

ratio; RPA–right pulmonary artery diameter; SE–standard error; VCO2 –the volume of produced CO2; VE–minute ventilation; VO2 –the volume of consumed O2;

VO2�kg-1 –the volume of consumed O2 per kilogram of body weight

https://doi.org/10.1371/journal.pone.0313165.t003

Table 4. Associations between peak CPET parameters with resting dimensions of the great vessels and sex. Data presented for N = 190 (134 males, 56 females).

Dependent y x Effects of x Effects of sex R2 for the model

Estimate x SE p-value Estimate sex SE p-value

Peak EE Ao Annulus 0.313 0.096 0.0013 -2.853 0.283 <0.0001 0.555

Ao SV 0.178 0.068 0.0100 -3.008 0.275 <0.0001 0.544

Ao STJ 0.092 0.071 0.1926 -3.367 0.252 <0.0001 0.531

Ao Arch 0.140 0.081 0.0859 -3.230 0.252 <0.0001 0.536

Ao Abd 0.507 0.115 <0.0001 -2.946 0.246 <0.0001 0.536

PA 0.268 0.079 0.0009 -3.068 0.248 <0.0001 0.554

LPA 0.435 0.101 <0.0001 -3.007 0.242 <0.0001 0.569

RPA 0.361 0.106 0.0008 -3.089 0.245 <0.0001 0.555

IVC inspiration 0.171 0.058 0.0035 -3.423 0.230 <0.0001 0.548

IVC expiration 0.142 0.039 0.0003 -3.416 0.227 <0.0001 0.559

Peak HR Ao Annulus -0.829 0.363 0.0236 -2.750 1.072 0.0111 0.044

Ao SV -1.307 0.243 <0.0001 -4.152 0.974 <0.0001 0.145

Ao STJ -1.215 0.250 <0.0001 -2.921 0.893 0.0013 0.122

Ao Arch -1.242 0.292 <0.0001 -2.786 0.909 0.0025 0.107

Ao Abd -1.625 0.435 0.0002 -2.755 0.933 0.0035 0.107

PA -0.993 0.297 0.0010 -2.528 0.929 0.0071 0.068

LPA -2.159 0.364 <0.0001 -3.240 0.870 0.0003 0.174

RPA -2.130 0.377 <0.0001 -3.126 0.875 0.0004 0.160

IVC inspiration -0.312 0.219 0.1571 -1.264 0.876 0.1510 0.023

IVC expiration -0.423 0.146 0.0042 -1.254 0.862 0.1472 0.058

Peak load Ao Annulus 5.803 1.925 0.0029 -46.773 5.681 <0.0001 0.466

Ao SV 3.773 1.368 0.0064 -48.629 5.491 <0.0001 0.459

Ao STJ 2.263 1.412 0.1106 -53.826 5.039 <0.0001 0.445

Ao Arch 3.174 1.620 0.0516 -53.060 5.044 <0.0001 0.450

Ao Abd 9.254 2.317 <0.0001 -48.617 4.968 <0.0001 0.450

PA 4.989 1.597 0.0021 -50.723 4.991 <0.0001 0.465

LPA 7.897 2.043 0.0002 -49.776 4.887 <0.0001 0.479

RPA 6.638 2.128 0.0021 -51.172 4.938 <0.0001 0.465

IVC inspiration 3.413 1.154 0.0035 -57.380 4.610 <0.0001 0.463

IVC expiration 2.800 0.773 0.0004 -57.221 4.556 <0.0001 0.474
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Table 4. (Continued)

Dependent y x Effects of x Effects of sex R2 for the model

Estimate x SE p-value Estimate sex SE p-value

Peak O2 pulse Ao Annulus 0.421 0.106 0.0001 -2.609 0.313 <0.0001 0.506

Ao SV 0.335 0.074 <0.0001 -2.610 0.298 <0.0001 0.514

Ao STJ 0.241 0.078 0.0022 -3.018 0.277 <0.0001 0.488

Ao Arch 0.309 0.089 0.0006 -2.971 0.276 <0.0001 0.494

Ao Abd 0.741 0.124 <0.0001 -2.681 0.265 <0.0001 0.494

PA 0.389 0.087 <0.0001 -2.862 0.273 <0.0001 0.513

LPA 0.717 0.107 <0.0001 -2.698 0.255 <0.0001 0.566

RPA 0.636 0.113 <0.0001 -2.796 0.262 <0.0001 0.540

IVC inspiration 0.215 0.064 0.0010 -3.372 0.256 <0.0001 0.492

IVC expiration 0.198 0.042 <0.0001 -3.366 0.250 <0.0001 0.518

Peak RER Ao Annulus -0.004 0.002 0.0554 -0.021 0.007 0.0025 0.051

Ao SV -0.002 0.002 0.1277 -0.018 0.007 0.0051 0.041

Ao STJ -0.004 0.002 0.0081 -0.019 0.006 0.0014 0.065

Ao Arch -0.005 0.002 0.0155 -0.018 0.006 0.0019 0.059

Ao Abd -0.011 0.003 0.0001 -0.023 0.006 0.0001 0.059

PA -0.001 0.002 0.6018 -0.014 0.006 0.0180 0.035

LPA -0.008 0.002 0.0006 -0.021 0.006 0.0004 0.090

RPA -0.009 0.002 0.0007 -0.020 0.006 0.0005 0.091

IVC inspiration 0.000 0.001 0.7866 -0.013 0.006 0.0184 0.031

IVC expiration -0.001 0.001 0.3095 -0.013 0.005 0.0198 0.037

Peak VCO2 Ao Annulus 0.065 0.022 0.0044 -0.706 0.066 <0.0001 0.567

Ao SV 0.034 0.016 0.0367 -0.745 0.064 <0.0001 0.555

Ao STJ 0.011 0.016 0.5207 -0.804 0.059 <0.0001 0.545

Ao Arch 0.020 0.019 0.2910 -0.794 0.059 <0.0001 0.549

Ao Abd 0.091 0.027 0.0010 -0.737 0.058 <0.0001 0.549

PA 0.060 0.019 0.0014 -0.744 0.058 <0.0001 0.569

LPA 0.079 0.024 0.0011 -0.747 0.057 <0.0001 0.569

RPA 0.063 0.025 0.0130 -0.765 0.058 <0.0001 0.559

IVC inspiration 0.039 0.013 0.0039 -0.824 0.054 <0.0001 0.564

IVC expiration 0.030 0.009 0.0010 -0.822 0.053 <0.0001 0.570

Peak VO2 Ao Annulus 0.061 0.018 0.0011 -0.528 0.054 <0.0001 0.542

Ao SV 0.036 0.013 0.0066 -0.555 0.053 <0.0001 0.532

Ao STJ 0.021 0.014 0.1242 -0.606 0.048 <0.0001 0.519

Ao Arch 0.031 0.016 0.0443 -0.596 0.048 <0.0001 0.524

Ao Abd 0.103 0.022 <0.0001 -0.542 0.047 <0.0001 0.524

PA 0.052 0.015 0.0008 -0.570 0.048 <0.0001 0.541

LPA 0.090 0.019 <0.0001 -0.553 0.046 <0.0001 0.564

RPA 0.075 0.020 0.0003 -0.570 0.047 <0.0001 0.546

IVC inspiration 0.033 0.011 0.0034 -0.639 0.044 <0.0001 0.535

IVC expiration 0.028 0.007 0.0002 -0.637 0.044 <0.0001 0.548
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differences in peak CPET. Significant interaction terms (x × sex) indicate that the relationship

between a vessel dimension and peak CPET differs between males and females. However, no

interactions were statistically significant, indicating that these relationships were comparable

in both sexes. Therefore, the final regressions (Table 4) included only vessel dimension (x) and

sex as independent variables, without interaction terms.

Significant associations were found between both peak HR and O2 pulse and aortic, PA, and

IVC dimensions. In contrast, fewer associations were observed between RER or VE and vascular

dimensions. Males and females showed significant differences in the relationships between peak

CPET parameters and vessel dimensions. This can be attributed to both higher peak CPET val-

ues and larger sizes of great vessel in males than females. Consistently, the correlations between

CPET parameters and vessel dimensions were stronger and parallel in males (Fig 3). Notably,

the interactions between vessel dimensions and sex did not affect the associations between these

variables and CPET results. Taken together, these results suggest that sex differences exist in the

baseline values (intercepts) of the relationships between CPET and vessel dimensions but not in

the overall trends (slopes) of these associations.

Discussion

Larger major vessel dimensions, particularly of the aorta and PA, were associated with greater

peak exercise capacity in amateur cyclists, regardless of their sex. The strongest correlations

Table 4. (Continued)

Dependent y x Effects of x Effects of sex R2 for the model

Estimate x SE p-value Estimate sex SE p-value

Peak VO2�kg-1 Ao Annulus -0.917 0.431 0.0347 -6.491 1.272 <0.0001 0.139

Ao SV 0.132 0.309 0.6688 -4.617 1.239 0.0003 0.107

Ao STJ -0.574 0.312 0.0673 -5.662 1.112 <0.0001 0.123

Ao Arch -0.728 0.358 0.0435 -5.766 1.115 <0.0001 0.126

Ao Abd 0.730 0.531 0.1715 -4.258 1.139 0.0002 0.126

PA 0.729 0.358 0.0433 -4.013 1.120 0.0004 0.127

LPA 1.676 0.453 0.0003 -3.410 1.085 0.0019 0.167

RPA 1.309 0.473 0.0063 -3.791 1.098 0.0007 0.146

IVC inspiration 0.651 0.257 0.0121 -5.011 1.026 <0.0001 0.137

IVC expiration 0.488 0.173 0.0054 -4.974 1.022 <0.0001 0.143

Peak VE Ao Annulus 2.336 0.913 0.0113 -22.788 2.694 <0.0001 0.460

Ao SV 1.464 0.648 0.0251 -23.653 2.603 <0.0001 0.454

Ao STJ 0.032 0.670 0.9623 -26.790 2.390 <0.0001 0.440

Ao Arch 1.110 0.767 0.1493 -25.517 2.387 <0.0001 0.445

Ao Abd 2.547 1.122 0.0244 -24.575 2.405 <0.0001 0.445

PA 1.594 0.763 0.0380 -24.885 2.384 <0.0001 0.453

LPA 2.210 0.987 0.0263 -24.861 2.361 <0.0001 0.455

RPA 2.018 1.018 0.0488 -25.115 2.361 <0.0001 0.451

IVC inspiration 0.814 0.553 0.1427 -26.966 2.209 <0.0001 0.445

IVC expiration 0.879 0.371 0.0189 -26.958 2.188 <0.0001 0.455

Multivariate linear regression models analyzed the effects of vascular dimensions (x) and sex on exercise capacity parameters

Abbreviations: Ao Abd–abdominal aorta diameter; Ao Annulus–annulus of the aorta diameter; Ao Arch—aortic arch diameter; Ao STJ—aortic sinotubular junction

diameter; Ao SV—aortic sinus of Valsalva diameter; HR–heart rate; IVC expiration–inferior vena cava diameter during expiration; IVC inspiration–inferior vena cava

diameter during inspiration; LPA–left pulmonary artery diameter; O2pulse—the ratio of VO2 to HR; PA–main pulmonary artery diameter; R2 –the coefficient of

determination; RER–respiratory exchange ratio; RPA–right pulmonary artery diameter; SE–standard error; VCO2 –the volume of produced CO2; VE–minute

ventilation; VO2�kg-1 –the volume of consumed O2; VO2kg–the volume of consumed O2 per kilogram of body weight;

https://doi.org/10.1371/journal.pone.0313165.t004
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were observed between aortic and PA dimensions and peak O2 pulse, VO2, VCO2, VE, and

EE. However, these correlations were moderate at best. IVC dimensions showed weak or non-

significant correlations with peak CPET parameters. When these correlations were analyzed

separately for males and females, weaker or nonsignificant associations were found. Linear

regression models with interactions showed that male cyclists had larger dimensions of the

aorta and PA, and their peak exercise capacity was generally greater than that of females—this

was reflected by the intercepts of the regression lines. However, the slopes of the regression

lines indicating the strength of the association between CPET parameters and vessel diameter

did not differ significantly between the sexes—this was demonstrated by nonsignificant effects

of the interactions between vessel dimensions and sex.

Changes in the vascular system due to exercise

The vascular system transports nutrients and O2 to working muscle cells and removes various

substances like CO2, lactates, excessive H+, and heat from them [24–26]. Repeated endurance

training involves hours of exercise during which blood flow (including cardiac output and

venous return) increases through all arteries and veins to meet the increased metabolic

demands of the muscles. Over time, endurance training increases total blood volume by 20–

25% in trained individuals and up to 50% in elite athletes. This increase is primarily due to

direct increases in red blood cell mass and plasma volume [5].

During exercise, the aorta and arteries must efficiently deliver this increased blood volume

to the working muscles. Meanwhile, deoxygenated blood returns from the muscles through

the veins, including the IVC, to the right side of the heart, which pumps it through the PA to

the lungs for essential gas exchange (O2 uptake and CO2 removal) and heat dissipation.

Repeated endurance exercise leads to vascular adaptations, which are particularly evident in

the microvasculature of trained muscle groups [27]. Muscle capillarization may serve as a lim-

iting factor for exercise performance [28]. Training elevates the number of capillaries per

Fig 3. An example of graphic presentation of associations between main pulmonary artery diameter and peak exercise capacity parameters

(load, VO2, O2pulse and VCO2). Red dots and shades indicate females, blue dots and shades represents males. Abbreviations: O2pulse—the ratio

of VO2 to HR; VE–minute ventilation; VO2 –the volume of consumed O2.

https://doi.org/10.1371/journal.pone.0313165.g003
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muscle fiber by 10–20% within several weeks in untrained individuals, with a slower rate of

increase in well-trained athletes [28]. Not only capillary density, but also capillary positioning

may be influential [28]. However, research linking muscle capillarization and exercise perfor-

mance is lacking [28].

Endurance training also triggers arterial remodeling. Increased circulating blood volume

and altered shear stress and transmural pressure lead to a decrease in arterial wall thickness

and an increase in lumen diameter [1, 29]. These widened arteries result in reduced vascular

resistance, effectively priming the muscles for an increase in blood supply during exercise [1].

The dimensions of the aorta [13, 30–35], PA [36, 37], and IVC [38, 39] are reported to be larger

in training athletes than in sedentary controls. Similarly to other studies, we demonstrated that

healthy amateur cyclists with greater exercise capacity had larger aortic diameters [13, 30–35].

However, less is known about the PA and IVC and about possible sex differences.

Arteries of athletes

Repeated exercise improves vascular plasticity and increases the body’s ability to respond to

physical activity [29]. Endurance training activates endothelial nitric oxide synthase, leading to

the production of nitric oxide, which dilates both arteries and veins [9]. As a result, the large

arteries that supply and drain frequently used muscles are enlarged [29, 40]. For example,

wheelchair-using athletes have larger aortas, subclavian arteries, and carotid arteries but a

smaller IVC and abdominal aortas than controls. In rowers, the brachial artery is dispropor-

tionately enlarged [29, 40]. In our study, cyclists with greater exercise capacity had not only a

wider thoracic aorta but also a wider abdominal aorta, which supplies blood to the leg muscles

used during cycling. This finding was consistent in both male and female cyclists with superior

peak CPET results.

Aortic dimensions of athletes

Athletes have larger diameters of the aortic root than controls [13, 30–35]. However, most of

them do not exceed the 99th percentile for males and females (40 and 38 mm, respectively) [30,

31, 33, 35]. Athletes have an aortic diameter that is 3.2 mm larger at the level of the sinuses of

Valsalva and an aortic valve annulus that is 1.6 mm larger compared to nonathletic controls

[31]. No progression of aortic root enlargement in athletes is observed if the values are less

than the 99th percentile [30]. However, if the values are greater and aortic root dilatation is

present, it is most probably pathologic and likely to progress [31]. Differences due to athletic

discipline and aortic root size have been reported [32, 41]. Athletes who train in sports with a

higher dynamic component have a larger aortic root [32]. The diameter of the aortic root is

larger in males than in females [31–33]. Similarly, we found that all aortic diameter measure-

ments (annulus, sinus Valsalva, STJ, arch, and abdominal) were greater in males than in

females.

Arterial dimensions and exercise capacity

According to Radegran et al., common femoral artery diameter was correlated with peak VO2

during exercise on an ergometer (r = 0.91) [42]. Also, Rasica et al. report a strong correlation

between resting superficial femoral artery diameter and peak VO2, which may represent a key

adaptation for active muscles perfusion [27]. Vanhees et al. reported that a 16-week training

program (which included 48 h of cycling, jogging, and calisthenics) increased VO2; however, it

decreased resting brachial artery diameter and mean blood flow velocity in the brachial artery

and had no effect on aortic diameter or cardiac output [43]. These results can be explained by

the fact that the total training time was short, which could account for the lack of changes in
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aortic diameter. The decreased brachial artery diameter can be explained by the training pro-

gram, which heavily favored lower-body workouts (83% of the training time). Another study

found that after a 3-month exercise program (indoor cycling 2 or 3 times per week) healthy

females had increased diameters of the infrarenal aorta, thoracic aorta, and brachial artery. No

differences were reported in aortic root or carotid artery diameters [44]. A positive correlation

was found between the absolute change in peak workload and the absolute change in the diam-

eter of the ascending aorta (r = 0.42) [44]. Factors associated with aortic size at the sinuses of

Valsalva included sex, height, sport type (rowing), and elite competitor status (rowing partici-

pation in world championships or Olympics or marathon time under 2 h and 45 min) [34].

We report that increased aortic dimensions in amateur cyclists were associated with better

exercise performance during CPET in both males and females.

Adaptation of the great vessels to exercise and heat redistribution

Heat is a byproduct of metabolism, energy production and energy use in muscles, at rest and

during exercise. Heat must be redistributed to other organs, mainly the skin and lungs, to dis-

sipate it from the body to prevent hyperthermia. Increased blood flow through working mus-

cles prevents heat accumulation [45]. Similar physiological responses to exercise are typical of

fever. A rise in body temperature during fever is accompanied by skin vessel dilation and

increased HR, cardiac output, and ventilation [46]. Repeated exercise does not change the

amount of heat produced per exercise bout, but during each bout of exercise the heat accumu-

lation is lower [45]. This is due to increased blood flow through working muscles and an

increased release of heat into the blood [45]. The physiology of exercise during heat stress has

been studied, but little is known about the mechanisms of vascular adaptation under these

conditions or whether greater heat production contributes to long-term vascular remodeling

in endurance athletes [4, 5, 47].

In our study, amateur cyclists with larger diameters of the aorta, PA, and IVC had a greater

peak exercise capacity and a higher EE. One report suggests that humans have a larger aortic

diameter (a surrogate measure for cardiac output), reflecting higher EE, than apes [48]. In a

group of patients with abdominal aortic aneurysm, resting EE was higher than in controls

[49]. Otherwise, the link between aortic dimensions and EE has not been studied.

Better exercise performance improves heat loss capacity (activation of cutaneous vasodila-

tion and increased blood flow at a lower core temperature, reduction in the internal tempera-

ture threshold for the onset of sweating, and increased sweat rate) [4, 5, 50]. One proposed

mechanism is that exercise leads to hypervolemia, an increase in total body water volume. This

means that a greater volume of interstitial fluid is available for cardiac output and is distributed

to working muscles and other organs, including the skin and sweat glands. Increased exercise

intensity also increases the total loss of Na+ and Cl− ions via sweat [50, 51]. Increased skin per-

fusion and a greater amount of water available for evaporation through the skin facilitates

more efficient heat loss [4, 5, 52]. This training-induced, prolonged hypervolemia may be

responsible for the adaptation of great vessels, ultimately leading to improved exercise

performance.

The inferior vena cava during exercise

The maximal expiratory IVC diameter is usually between 15 and 25 mm and is larger in males

than in females [38, 53]. However, in patients under 60 years old, sex differences are nonsignif-

icant [38]. Our findings are similar: no differences between males and females in IVC diameter

during expiration (20.6 vs. 21.0 mm, respectively) or inspiration (10.2 vs. 10.5 mm, respec-

tively) were found.
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Larger expiratory IVC diameters have been reported in trained athletes [38, 39]. Further-

more, IVC diameter correlates with exercise capacity parameters such as VO2 [54]. We found

correlations between expiratory IVC and peak exercise capacity parameters (HR, VO2, O2

pulse, and load). This suggests that IVC size can be influenced by endurance training. It is pos-

sible that a larger IVC diameter means the individual has a larger reservoir of circulating blood

and therefore is better prepared for sustaining longer bouts of exercise. This observation is

supported by the clinical measurement of IVC diameter to assess patient volemic status. For

example, the IVC diameter is related to percent weight loss after football practice [55]. Patients

with hypervolemia have a larger IVC; similarly, athletes with better exercise performance, and

therefore a larger volemic reservoir, have a larger IVC.

Pulmonary arteries during exercise

Athletes have larger PA dimensions than non-athletes, as well as a greater pulmonary vascular

reserve, which is essential for accommodating the significantly increased blood flow that

occurs during exercise [36, 37]. Athletes with higher pulmonary blood flow tend to have higher

peak VO2 [36]. Chung et al. reported correlations between dimensions of the PA and aorta (as

measured using computed tomography) and exercise capacity (as measured by a 6-min walk

test) [56]. We used a more accessible method to measure the dimensions of the PA, namely,

transthoracic ECHO. We also used CPET to measure exercise capacity in more detail than

provided by the 6-min walk test.

Our results showed that larger dimensions of the main PA, LPA, and RPA were positively

correlated with exercise capacity. These associations were observed in both males and females.

To date, no studies have specifically analyzed the relationship between PA diameter and exer-

cise capacity using CPET.

Study limitations

This study was cross-sectional and lacked a control group of sedentary people. During recruit-

ment, we enrolled more males than females (149 vs. 60), mainly due to the consecutive enroll-

ment process. For a various reasons, a higher proportion of adult males are regular cyclists,

and our male-female ratio reflects amateur cyclists’ demographics. However, not all echocar-

diographic measurements were possible for each participant. Thus, complete datasets with the

results of CPET and the dimensions of the great vessels were analyzed for 190 subjects (134

males, 56 females). Furthermore, the inclusion criterion for our study was amateur cycling for

at least 1 hour per week to include individuals with a large variety of exercise training levels.

This allowed us to observe CPET results and associations with echocardiographic parameters

in a wide range of exercise levels. However, this resulted in recruiting volunteers with varying

exercise levels, who undertook various sports activities. Future studies should include a more

homogenous group of highly trained individuals to assess better the impact of exercise training

on the dimensions of great vessels. Our results showed more significant associations between

the dimensions of great vessels and CPET parameters in males than in females. However, this

observation may have been influenced by the unbalanced distribution of the data. If we had

included more women, we assume that similar trends would have been found in their exercise

capacity. Additionally, it should be noted that although our study’s protocol selection and cus-

tomization adhered to established guidelines [18, 20], different test protocols can influence

peak power achieved during the test. Many studies show minor differences between protocols

terminated due to exhaustion, regardless of the test duration or power increments between

stages [57–59] Some studies report no differences between test protocols [60]. Finally, it is
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important to recognize that our study group consisted of volunteers of European descent.

Therefore, our results cannot be extrapolated to the general population.

Conclusion

Males had larger dimensions of the thoracic and proximal abdominal aorta and of the PA and

its branches. However, there were no sex differences in the dimensions of the IVC. We

observed associations between the dimensions of great vessels and higher exercise capacity

parameters (particularly VO2, O2 pulse, load, and peak EE). These associations were present in

both sexes and had comparable directions. The differences in these associations were due to

the differing intercepts, which resulted from the observation that males generally have larger

vessel dimensions, body size and greater exercise capacity than females. This finding indicates

that the direction of changes in the vascular system in exercising males and females is similar

and there are no sex-specific changes in this regard. Future studies should determine these

findings’ clinical and practical applicability, for example, in health-related screening purposes

or tailoring training protocols.
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