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Abstract

Background

Endurance training enhances exercise capacity and triggers cardiovascular adaptations in
both males and females. We investigated the relationship between the dimensions of great
vessels and exercise capacity in amateur cyclists while considering sex differences.

Methods

Using resting transthoracic echocardiography, we measured the dimensions of the main
pulmonary artery (PA), aorta, and inferior vena cava (IVC) in 190 participants, who subse-
quently underwent a cardiopulmonary exercise test (CPET) until exhaustion.

Results

The mean age of study participants was 30 years. Males (71%) exhibited a larger aortic
annulus (approximately 3.5 mm, p<0.0001) and PA diameter (2.4 mm, p<0.0001) than
females. No significant sex differences were found in expiratory or inspiratory IVC diame-
ters. Males achieved greater peak exercise capacity, including workload, O, consumption
(VOy), and O, pulse. Aortic and PA dimensions showed strong correlations with energy
expenditure, workload, VO,, and O, pulse. However, these correlations weakened when
analyzed separately by sex. Multivariate linear regression revealed associations between
CPET results, vessels size, and sex, with sex differences observed only in the intercepts—
not in interactions between sex and vessels size. Despite males having better CPET results
and larger vessels, the relationships between peak exercise capacity parameters and ves-
sel dimensions were similar in both sexes.
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Conclusion

Larger vessel dimensions (of the aorta, PA, and IVC) were associated with greater peak
exercise capacity in amateur cyclists, with no significant sex differences in these
associations.

Introduction

Various tissues and organs increase their demand for O, and fuel during exercise [1, 2]. Energy
production in the working muscles requires a constant supply of fuel and O, and effective
removal of heat and CO,. Simultaneously, various metabolites, including CO,, lactate, H"
ions, and adenosine, are produced during muscular exertion. These substances must be effi-
ciently transported from the working muscles to other organs for processing. For example,
CO, is exhaled via the lungs, while lactate is utilized for gluconeogenesis in the liver or kidneys.
Additionally, less active muscles can use lactate as a fuel source through the Cori cycle, which
converts lactate into pyruvate for subsequent use in the Krebs cycle to produce ATP. The respi-
ratory and cardiovascular systems adapt to match the demand for O, delivery and increase the
capacity to transport exercise metabolites. As a result, pulmonary ventilation, blood pumped
by the heart and transported through the vessels increase [2-5].

Endurance exercise (including both training and physical work) causes the adaptation of
many organs and systems to allow them to perform better. The heart of an athlete provides a
classic example of such exercise-induced organ adaptation [1, 6]. The pulmonary and muscu-
loskeletal systems also undergo exercise-induced remodeling, although the exact patterns of
this process are not well understood [1, 7-9]. Many factors, including the type (endurance,
power, mixed, and/or skill), volume, intensity, and duration of exercise; genetic predisposition;
age; and sex, may contribute to such changes [6, 10].

An athlete’s heart is larger than that of a non-athlete, with thicker walls and dilated cham-
bers, leading to increased myocardial mass. This translates into improved cardiac function,
allowing highly trained individuals to achieve a greater cardiac output with a lower heart rate
(HR) [1]. During exercise, cardiac output can increase up to 8-fold, reaching 40 L/min, com-
pared to the resting 5 L/min [1]. Blood flow to muscles increases significantly (up to a 30-fold
increase in elite athletes), while e.g. the digestive system receives less perfusion [11]. Exercise
also benefits the vascular system by reducing arterial wall thickness and increasing lumen
diameter, leading to decreased vascular resistance in muscle arteries during exercise [1].

Both males and females experience the effects of endurance exercise, which lead to adapta-
tion of cells, tissues and organs. However, there are variations due to differences in body size
and composition; sex hormones; genetics; and environmental factors like diet, lifestyle, train-
ing time, pregnancies, and stress [12]. Females generally have smaller cardiac chambers and
mass and smaller aortic diameters than men. These anatomical differences might influence
how the heart responds to exercise in males and females [12, 13], however research in this
topic is lacking.

Despite extensive research on the cardiovascular system, a crucial gap remains in our
understanding of how the dimensions of great vessels relate to exercise capacity in males and
females This study examined a group of amateur cyclists with varying exercise levels to assess
the relationship between dimensions of the aorta, main pulmonary artery (PA), and inferior
vena cava (IVC) with exercise capacity. We further investigated whether these associations
existed separately in males and females and if these associations differed by sex. This research
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is exploratory, and no hypothesis regarding sex differences was formulated. Consequently, we
aim to establish associations rather than causality.

Materials and methods
Bioethical issues

This paper presents results of a project that was approved by the Bioethics Committee of Poz-
nan University of Medical Sciences (decision 693/20). The study was conducted according to
the Declaration of Helsinki [14]. All data were treated confidentially and anonymized for stor-
age and analysis. The data were collected, stored, and analyzed in the REDCap data capture
tools hosted at Poznan University of Medical Sciences [15].

Study group recruitment

We enrolled 215 consecutive adult volunteers who claimed to be recreationally physically
active and cycled regularly for a cross-sectional, observational study with a single timepoint
assessment. The recruitment took place between December 1% 2020, and April 30" 2023.
Details of all participants have already been published [16]. The enrolment included consecu-
tive volunteers who responded to the recruitment call who wanted to participate in a study to
evaluate their cardiovascular function by electrocardiogram (ECG), echocardiography
(ECHO), and CPET. All participants took part voluntarily and were informed about the study
and the fact that they could abandon the study at any time. Written informed consent was col-
lected from all volunteers.

For this substudy, we selected participants with complete data from CPET and ECHO mea-
surements concerning great vessel dimensions. Therefore, 190 subjects were analyzed. The
inclusion criteria were being recreationally physically active and cycling regularly for at least 1
h per week to ensure the participation of a wide variety of amateur cyclists. Individuals with
chronic diseases or who were taking medications were excluded from the study. Allowed sub-
stances included vitamin D, dietary supplements, and oral contraceptives for women.

Health status

Physicians performed a comprehensive pre-participation screening, including a detailed medi-
cal and family history, physical examination, and blood pressure measurement. A resting
12-lead ECG was performed to detect abnormalities such as arrhythmias, conduction prob-
lems, signs of left ventricle (LV) or right ventricle (RV) hypertrophy, pre-excitation syn-
dromes, or channelopathies. In addition, resting transthoracic ECHO assessed cardiac
structure and function to exclude clinically significant abnormalities such as moderate to
severe valve stenosis or regurgitation (e.g., mitral regurgitation or aortic stenosis). Six individ-
uals were excluded due to LV hypertrophy or moderate mitral or tricuspid regurgitation.

Anthropometric measurements and physical activity assessment

Body height and weight were measured to calculate body mass index (BMI). To assess physical
activity, we used the International Physical Activity Questionnaire (IPAQ) [17], as well as
additional questions regarding basic characteristics of training (cycling sessions per week and
hours of cycling training per session and per week). MET-min (metabolic equivalent of task-
minutes) were calculated according to IPAQ interpretation guidelines [17]. The MET-min is a
parameter showing the volume of exercise undertaken by a participant.
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Spirometry

Participants underwent baseline resting spirometry (Vyntus CPX, Vyaire Medical, IL, USA)
after resting in a sitting position for at least 5 min. The measured values included forced expi-
ratory volume in 1 s (FEV1). Maximal voluntary ventilation was calculated using the formula
FEV1 x 40 and defined the limit of breathing reserve for CPET [18]. The test was performed
until five results met the criteria for adequate quality [18, 19], and the mean results from the
three best repetitions were used for analysis.

Cardiopulmonary exercise test

CPET was performed on a cycle ergometer (Excalibur Sport 2, Lode, Groningen, The Nether-
lands) using a CPET system (Vyntus CPX, Vyaire Medical, IL, USA). HR was recorded using a
chest-strap HR monitor (Polar H10, Polar, Kempele, Finland). The tidal volume and content
of O, and CO; in the inhaled and exhaled air were measured using the breath-by-breath
method.

The CPET was executed according to the Association for Respiratory Technology & Physi-
ology guidelines [18] using an individualized incremental ramp protocol tailored to the partic-
ipants’ current physical performance. Additionally, we took into consideration the IPAQ
result-MET-min and IPAQ category. For participants in the lower physical activity category
we aimed for the peak load after 10 minutes of exercise to reach 2.5-3.5 W/kg, for the moder-
ate physical activity category- 3.5-4.5 W/kg and for the high physical activity category- 4.5-
5.5 W/kg. The resting phase lasted 2 minutes, the warmup phase (pedaling with no additional
load) lasted 2 minutes. The main phase of the test (incremental ramp protocol) aimed to last 8
—12 min [18, 20] and was terminated at the will of the participant at peak effort. The partici-
pants were encouraged to exert maximal effort; they could increase cadence, muscle strain, or
both. During peak exercise, all participants reached at least 8 points in the modified Borg scale,
the median RER was 1.24 (RER > 1.15 defines high effort), and all reached >90% of predicted
maximal heart rate and/or maximal VO,. During the recovery phase, monitoring continued
for at least 10 min while the participant was seated.

The recorded parameters, which were used for further analysis, included:

o HR: heart rate;

o VO,: the volume of O, consumed per min;

o O, pulse: the ratio of VO, to HR;

o VCO,: the volume of CO, produced per min;
 VE: minute ventilation;

« RER: respiratory exchange ratio; and

o EE: energy expenditure.

EE, expressed as kcal per min, was calculated using the Weir formula for indirect calorime-
try [21]:

kcal
EE = (3.9% VO, + 1.1 * VCO,) [ﬂ} .
min
The recorded time points included averaged breath-by-breath values from the last 15 s of
the rest and peak exercise phases, the latter of which usually occurred before the end of the
cycling.
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Echocardiography

Echocardiography was performed in all participants according to the American Society of
Echocardiography guidelines [22]. Experienced cardiologists used a 3.5-MHz transducer on a
Vivid E95 or E9 ECHO machine from General Electric Healthcare Technologies (Chicago, IL,
USA). The IVC was measured in the subcostal view approximately 1 cm before the entrance to
the right atrium. The IVC expiratory and inspiratory diameters were obtained using the M-
mode while the patient was breathing deeply. In the parasternal long axis view, the following
diameters of the aorta were measured: aortic annulus diameter, aortic sinus of Valsalva diame-
ter, and aortic sinotubular junction (STJ) diameter. From the suprasternal view, we quantified
the diameter of the arch of the aorta. The diameter of the abdominal aorta was measured in
the longitudinal plane, in the subcostal view focused on the proximal abdominal aorta. Finally,
in the parasternal short axis view, focused on the PA, the diameters of the PA and of the left
pulmonary artery (LPA) and right pulmonary artery (RPA) (1 cm after their takeoff) were
measured. Most measurements of arteries were taken using the leading-to-leading method.
The aortic annulus and IVC dimensions were measured using the trailing-to-leading
approach.

The echocardiographic data (images and cine loops) were analyzed using TOMTEC Imag-
ing Systems (TOMTEC-ARENA Build No. 544347, TOMTEC Imaging Systems GmbH,
Unterschleissheim, Germany, distributed by Phillips, Amsterdam, The Netherlands).

An example of echocardiographic measurements is presented in Fig 1.

Fig 1. An example of echocardiographic measurements for the study. A-measurements of the aorta in the parasternal long axis (aortic annulus, sinus
of Valsalva and sinotubular junction diameters). B-measurement of the arch of the aorta in the suprasternal view. C-measurement of the diameter of
the main pulmonary artery and the left and right pulmonary arteries in the modified parasternal short axis with focus on the main pulmonary artery.
D-measurement of the inferior vena cava during inspiration and expiration-measured in M-mode.

https://doi.org/10.1371/journal.pone.0313165.9001
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Statistical analysis

QQ-plots and the D’Agostino-Pearson test were used to test the normality of the data distribu-
tions [23]. The mean * standard deviation (SD) summarizes data with a normal distribution,
while the median and difference between the 75" and 25™ percentiles (interquartile range)
describe data that are not normally distributed. Depending on the data distribution, compari-
sons between the sexes were made using either the parametric Student’s t-test or the non-
parametric Mann-Whitney test. Associations between the dimensions of great vessels and
peak exercise performance parameters from CPET, as well as the influence of sex, were prelim-
inarily examined using Pearson correlation (all these parameters were normally distributed).
Multivariate linear regression models analyzed the effects of vascular dimensions (x) and sex
and the interactions of these parameters (x x sex) on exercise capacity parameters (HR, VO,,
VO,-kg ™', VCO,, VE, load, O, pulse, and RER). Within these models, the estimate for x repre-
sents the direct association between a peak CPET parameter and a specific great vessel dimen-
sion. The sex estimate (0 = female, 1 = male) indicates the presence of sex differences in peak
CPET parameters; a significant estimate indicates significant sex differences in the dependence
of CPET on vessel dimensions. The interaction term x x sex reflects whether the association
between specific vessel dimensions and peak CPET parameters differs between male and
female cyclists. This approach essentially compares two separate regressions for each sex: the
sex effect compares the intercepts, while the x x sex interaction compares the slopes of these
regressions. As our primary aim was to determine whether the slopes of the relationships
between exercise capacity and the dimensions of great vessels differed between males and
females, we focused on reporting only the p-value for the interaction term between vessels size
and sex. In all analyses, only p-values <0.05 were considered significant. JMP® Pro 17.0.0
(622753) (JMP Statistical Software, Cary, NC, USA) was used for statistical analyses.

Results
Study group characteristics

Table 1 summarizes the characteristics of the 190 participants (134 males, 71%; 56 females,
29%). Males were taller (by 13 cm) and heavier (by 19.2 kg) than females, with a BMI 3.1
kg-m ™ higher. However, median age and measures of exercise volume (e.g., hours per week
and intensity) were similar between the sexes. The mean value of MET minutes per week was
4225. The IPAQ classified most participants (56%) as very active, 34% moderately active, and
10% less active. Cycling was the main sport activity for all participants, and the median num-
ber of cycling sessions per week was 4. The median cycling training time was 3.5 hours/week,
with a minimum of 2 hours per week (only 22 participants, 11%). Other sports activities
undertaken in the study group included running (40%), gym (25%), swimming (19%), team
sports (9%), and others (31%).

Echocardiography

Table 1 summarizes the echocardiographic measurements of the aorta, PA, and IVC. Males
had larger aortic diameters than females at the annulus, sinus of Valsalva, STJ, aortic arch, and
proximal abdominal aorta. The diameter of the PA was 2.4 mm larger in males, and the diame-
ters of the LPA and RPA were 1.8 and 1.7 mm larger, respectively. The diameter of the IVC
was 20.8 mm during expiration and 10.3 mm during inspiration and was similar in males and
females. The absolute and relative increases in IVC diameter during expiration were similar in
males and females (10.5 vs. 10.6 mm and 51.1% vs. 50.6%, respectively).
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Table 1. Clinical characteristics of studied male and female amateur cyclists and their peak cardio-pulmonary exercise test results.

Parameter Males (N = 134) Females (N = 56) p value
Median IQR Median IQR
Height [cm] 181 178-185 168 165-172 <0.0001*
Weight [kg] 79.7 72.4-87.8 60.0 55.0-66.3 <0.0001*
BMI [kg-m’z] 24.5 22.7-26.5 21.4 20.0-23.2 <0.0001*
Age [years] 29 25-37 26 22-35 0.1432
Exercise days per week [days] 4 3-5 4 3-5 0.5470
Weekly training time [hours/week] 6 4-9 6.5 4-8 0.5653
Weekly cycling time [hours/week] 4 2.5-6.0 3 2.5-5.1 0.1566
MET-min [per week] 3470 1479-6124 2949 1424-5295 0.7607
CPET duration [min] 10.6 9.7-11.5 10.0 9.0-11.1 0.2136
Mean + SD Mean + SD
Resting ECHO Ao Annulus [mm)] 22.6+23 19.1+1.9 <0.0001*
Ao SV [mm)] 329+32 285+2.7 <0.0001*
Ao STJ [mm] 268+3.2 24.1+2.7 <0.0001*
Ao Arch [mm)] 24.5+2.7 22.1+24 <0.0001*
Ao Abd [mm] 179+ 1.8 16.1£1.6 <0.0001*
PA [mm] 214+28 19.0 £2.16 <0.0001*
LPA [mm] 16.2+2.1 144 +1.8 <0.0001*
RPA [mm)] 159 £ 2.1 142 +1.7 <0.0001*
IVC inspiration [mm] 10.2 + 3.8 10.6 + 3.2 0.5718
IVC expiration [mm] 20.7 £ 5.8 21.0+44 0.7379
Rest before exercise HR [beats-min '] 829 +15.1 81.38 +15.4 0.5339
O,pulse [mL-beat™] 6.2 £2. 43+13 <0.0001*
RER 0.90 £0.14 0.89 £0.13 0.5258
VCO, [L-min™!] 0.44 +0.17 0.30 + 0.09 <0.0001*
VO, [L'min™!] 0.50 +0.17 0.35 +0.09 <0.0001*
VO,kg [mL-min"kg'] 5.70 £ 2.83 4.50 + 2.30 0.0052*
VE [L-min'] 16.4 £5.1 125+£3.4 <0.0001*
EE [kcal-min™] 245+ 1.44 1.66 + 0.66 <0.0001*
Peak exercise HR [beats-min™'] 184.7 £+ 11.0 182.1+11.2 0.1359
Load [W] 342.7 £ 63.73 229.1 £45.9 <0.0001*
Load per body mass [W-kg™'] 4.31+0.93 3.72+0.64 <0.0001*
O,pulse [mL-beat™] 20.7 £3.5 14.0+2.8 <0.0001*
RER 1.24 £ 0.07 1.22 £ 0.08 0.0209*
VCO, [L-min’!] 472 +0.74 3.08 +0.54 <0.0001*
VO, [L-min'] 3.81 + 0.60 2.54+0.47 <0.0001*
VO, kg [mL-min"kg'] 433 +12.9 33.5+13.4 <0.0001%
VE [L-min'l] 159.7 £ 30.8 106.1 £ 19.0 <0.0001*
EE [kcal-min'l] 20.17 £ 4.52 13.38 £ 3.49 <0.0001*

Comparisons between males and females were made using the parametric student’s t-test (for normally distributed data) or the non-parametric Mann-Whitney test (for

not normally distributed data).

Abbreviations: Ao Abd-abdominal aorta diameter; Ao Annulus-aortic annulus diameter; Ao Arch-aortic arch diameter; Ao STJ-aortic sinotubular junction diameter;

Ao SV-aortic sinus Valsalva diameter; BMI-body mass index; CPET- cardio-pulmonary exercise test; EE-energy expenditure; HR-heart rate; IVC-inferior vena cava

diameter; LPA-left pulmonary artery diameter; LVOT-left ventricle outflow tract diameter; MET-the metabolic equivalent of task; O, pulse—the ratio of VO, to HR;

PA-main pulmonary artery diameter; RER-respiratory exchange ratio; RPA-right pulmonary artery diameter; SD-standard deviation. VCO, -the volume of produced

CO,; VE-minute ventilation; VO, —the volume of consumed O; VOz-kg’1 —the volume of consumed O, per kilogram of body weight;

https://doi.org/10.1371/journal.pone.0313165.t001
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Peak VO2 Peak Load
[L/min] [W]
8

Peak VE
[L]

Peak O2pulse
[mL/beat]
S

Cardiopulmonary exercise test

The data from CPET at rest and during peak exercise are presented in Table 1. During peak
exercise, the HR increased by 225%, from 82 to 184 bpm, and was comparable between males
and females. Males achieved higher peak load (343 vs. 229 W), as well as load per unit body
mass (4.31 vs. 3.72 W-kg™"). For all participants, breathing frequency increased by 325%,
reaching 51 breaths per min at peak exercise, and the peak VE was 144 L-min"". O, pulse was
higher in males and reached 20.7 mL-beat ™' (334% increase) compared to 14.0 mL-beat ™"
(326% increase) in females. The peak RER was 1.24, indicating very high effort by the partici-
pants. The data are available in the supporting information-S1 Table.

Associations between the dimensions of great vessels and exercise capacity

The diameter of the aorta, particularly at the levels of the annulus, the sinuses of Valsalva, and
the proximal abdominal segment below the diaphragm, as well as of the LPA, showed signifi-
cant positive correlations of moderate strength with peak EE, workload, O, pulse, VCO,, VO,,
and VE. Interestingly, peak HR showed a weak negative correlation with the same dimensions.
The IVC showed weak or nonsignificant correlations with the same exercise capacity parame-
ters, with the exception of O, pulse. All correlations were generally weaker when analyzed sep-
arately for males and females. Fig 2 illustrates some of the strongest correlations observed,
focusing on the aortic annulus and selected peak CPET parameters.

In Table 2, we present the results of the Pearson correlation coefficient analysis for associa-
tions between the dimensions of great vessels and exercise capacity. Generally, stronger corre-
lations were found in the whole study group, and weaker correlations were found in the
subgroups for each sex. The strongest recorded correlations were moderate (r>0.4) and were
found between dimensions of the aorta and of the PA and peak EE, load, O, pulse, VCO,, and
VO,, as well as between dimensions of the aorta and VE.

*Women
*Men
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Fig 2. Correlations between aortic annulus diameter and peak exercise capacity parameters from CPET. The red dots and shaded ellipses
represent females, the blue dots and shades represent males. Abbreviations: O, pulse—the ratio of VO, to HR; VE-minute ventilation; VO, —the

volume of consumed O,.

https://doi.org/10.1371/journal.pone.0313165.9002
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Table 2. Pearson correlation coefficient for associations between the dimensions of great vessels and exercise capacity parameters in the study group and in sex-

subgroups.
y X Study group (N = 190) Females (N = 56) Males (N = 134)
r P r P r P

Peak EE Ao Annulus 0.56 <0.0001 0.11 0.4136 0.27 0.0019
Ao SV 0.50 <0.0001 0.25 0.0688 0.17 0.0474
Ao ST] 0.33 <0.0001 0.12 0.3634 0.09 0.3147
Ao Arch 0.36 <0.0001 0.25 0.0629 0.09 0.2964
Ao Abd 0.49 <0.0001 0.39 0.0034 0.29 0.0008
PA 0.44 <0.0001 0.28 0.0393 0.23 0.0075
LPA 0.46 <0.0001 0.33 0.0135 0.29 0.0006
RPA 0.42 <0.0001 0.30 0.0236 0.23 0.0085
IVC inspiration 0.12 0.1128 0.20 0.1324 0.21 0.0131
IVC expiration 0.16 0.0267 0.27 0.0441 0.26 0.0027

Peak HR Ao Annulus -0.07 0.3452 -0.03 0.8279 -0.21 0.0132
Ao SV -0.25 0.0006 -0.32 0.0172 -0.39 <0.0001
Ao STJ -0.27 0.0002 -0.29 0.0317 -0.35 <0.0001
Ao Arch -0.23 0.0013 -0.12 0.3717 -0.36 <0.0001
Ao Abd -0.19 0.0074 -0.27 0.0469 -0.26 0.0021
PA -0.17 0.0159 -0.17 0.2192 -0.26 0.0022
LPA -0.33 <0.0001 -0.47 0.0003 -0.38 <0.0001
RPA -0.31 <0.0001 -0.42 0.0013 -0.37 <0.0001
IVC inspiration -0.11 0.1413 -0.04 0.7776 -0.13 0.1446
IVC expiration -0.21 0.0039 -0.27 0.0451 -0.19 0.0284

Peak Load Ao Annulus 0.52 <0.0001 0.11 0.4214 0.24 0.0047
Ao SV 0.48 <0.0001 0.25 0.0607 0.18 0.0328
Ao STJ 0.33 <0.0001 0.16 0.2258 0.10 0.2292
Ao Arch 0.35 <0.0001 0.25 0.0646 0.11 0.1869
Ao Abd 0.46 <0.0001 0.36 0.0065 0.26 0.0023
PA 0.41 <0.0001 0.26 0.052 0.21 0.0130
LPA 0.44 <0.0001 0.25 0.0623 0.28 0.0011
RPA 0.40 <0.0001 0.24 0.0739 0.22 0.0113
IVC inspiration 0.13 0.0715 0.17 0.2105 0.22 0.0099
IVC expiration 0.18 0.0152 0.23 0.0822 0.26 0.0023

Peak O,pulse Ao Annulus 0.56 <0.0001 0.14 0.3197 0.32 0.0002
Ao SV 0.56 <0.0001 0.33 0.0122 0.31 0.0003
Ao STJ 0.40 <0.0001 0.21 0.1228 0.23 0.0089
Ao Arch 0.43 <0.0001 0.29 0.033 0.24 0.0062
Ao Abd 0.55 <0.0001 0.48 0.0002 0.38 <0.0001
PA 0.47 <0.0001 0.32 0.0166 0.31 0.0003
LPA 0.55 <0.0001 0.48 0.0002 0.43 <0.0001
RPA 0.51 <0.0001 0.45 0.0005 0.36 <0.0001
IVC inspiration 0.15 0.0437 0.20 0.1480 0.25 0.0036
IVC expiration 0.22 0.0022 0.35 0.0087 0.32 0.0002

(Continued)
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Table 2. (Continued)

y x Study group (N = 190) Females (N = 56) Males (N = 134)
r p r p r p
Peak RER Ao Annulus -0.01 0.8769 -0.19 0.1688 -0.12 0.1594
Ao SV 0.00 0.9989 -0.11 0.4005 -0.11 0.1989
Ao STJ -0.11 0.1216 -0.14 0.3095 -0.22 0.0115
Ao Arch -0.10 0.1910 -0.12 0.3847 -0.20 0.0189
Ao Abd -0.18 0.0131 -0.41 0.0019 -0.23 0.0082
PA 0.03 0.6604 0.08 0.5781 -0.08 0.3489
LPA -0.16 0.0241 -0.23 0.0906 -0.26 0.0023
RPA -0.16 0.0265 -0.28 0.0400 -0.24 0.0059
IVC inspiration 0.01 0.8644 0.08 0.5543 0.00 0.9556
IVC expiration -0.08 0.2887 -0.12 0.3622 -0.06 0.5079
Peak VCO, Ao Annulus 0.55 <0.0001 0.06 0.6440 0.24 0.0045
Ao SV 0.49 <0.0001 0.21 0.1216 0.14 0.1125
Ao STJ 0.30 <0.0001 0.09 0.5246 0.04 0.6728
Ao Arch 0.33 <0.0001 0.22 0.1076 0.04 0.6418
Ao Abd 0.45 <0.0001 0.28 0.0363 0.23 0.0084
PA 0.43 <0.0001 0.29 0.0311 0.22 0.0116
LPA 0.42 <0.0001 0.26 0.0501 0.23 0.0079
RPA 0.38 <0.0001 0.22 0.0962 0.17 0.0499
IVC inspiration 0.11 0.1295 0.22 0.1058 0.21 0.0166
IVC expiration 0.14 0.0499 0.23 0.0817 0.24 0.0055
Peak VE Ao Annulus 0.50 <0.0001 0.08 0.5408 0.21 0.0161
Ao SV 0.46 <0.0001 0.26 0.0570 0.14 0.0961
Ao ST] 0.25 0.0006 0.10 0.4497 -0.02 0.8352
Ao Arch 0.32 <0.0001 0.14 0.2958 0.10 0.2589
Ao Abd 0.39 <0.0001 0.28 0.0397 0.14 0.1053
PA 0.36 <0.0001 0.29 0.0310 0.12 0.1503
LPA 0.36 <0.0001 0.33 0.0136 0.13 0.142
RPA 0.34 <0.0001 0.30 0.0264 0.11 0.1941
IVC inspiration 0.05 0.4695 0.20 0.1353 0.09 0.3145
IVC expiration 0.11 0.1252 0.27 0.0435 0.15 0.0800
Peak VO, Ao Annulus 0.55 <0.0001 0.12 0.3621 0.27 0.0018
Ao SV 0.50 <0.0001 0.25 0.0619 0.18 0.0351
Ao STJ 0.34 <0.0001 0.13 0.3393 0.11 0.2170
Ao Arch 0.37 <0.0001 0.26 0.0579 0.12 0.1815
Ao Abd 0.50 <0.0001 0.41 0.0016 0.30 0.0004
PA 0.44 <0.0001 0.27 0.0405 0.23 0.0065
LPA 0.48 <0.0001 0.35 0.0085 0.32 0.0002
RPA 0.43 <0.0001 0.33 0.0136 0.24 0.0045
IVC inspiration 0.12 0.1034 0.20 0.1469 0.22 0.0119
IVC expiration 0.17 0.0195 0.28 0.0352 0.26 0.002
(Continued)
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Table 2. (Continued)

y X Study group (N = 190) Females (N = 56) Males (N = 134)
r P r p r p

Peak VOz-kg’I Ao Annulus 0.07 0.3170 -0.32 0.0178 -0.10 0.2722
Ao SV 0.20 0.0055 0.03 0.8110 0.03 0.7222
Ao STJ 0.00 0.9638 -0.17 0.2176 -0.12 0.1613
Ao Arch 0.00 0.9464 -0.08 0.5704 -0.17 0.0452
Ao Abd 0.22 0.0022 -0.02 0.896 0.14 0.0961
PA 0.26 0.0004 0.04 0.7861 0.18 0.0328
LPA 0.35 <0.0001 0.26 0.0509 0.26 0.0022
RPA 0.29 <0.0001 0.28 0.0355 0.17 0.0482
IVC inspiration 0.16 0.0288 0.10 0.4862 0.21 0.0129
IVC expiration 0.18 0.0116 0.11 0.406 0.23 0.0068

The Pearson correlation coefficient explored associations between peak exercise performance parameters from CPET and the dimensions of the great vessels from
ECHO.

Abbreviations: Ao Abd-abdominal aorta diameter; Ao Annulus-annulus of the aorta diameter; Ao Arch—aortic arch diameter; Ao STJ—aortic sinotubular junction
diameter; Ao SV—aortic sinus of Valsalva diameter; EE-energy expenditure; IVC expiration-inferior vena cava diameter during expiration; IVC inspiration-inferior
vena cava diameter during inspiration; HR-heart rate; LPA-left pulmonary artery diameter; O,pulse—the ratio of VO, to HR; PA-main pulmonary artery diameter;
RER-respiratory exchange ratio; RPA-right pulmonary artery diameter; VCO, —the volume of produced CO,; VE-minute ventilation; VO, —the volume of consumed

04 VO, kg™ ~the volume of consumed O, per kilogram of body weight

https://doi.org/10.1371/journal.pone.0313165.t002

In the whole study group, larger aortic dimensions were correlated with higher peak EE,
load, O, pulse, VCO,, VO,, and VOz'kg’1 and with lower peak HR. Specifically, the strongest
correlations included aortic annulus diameter with: EE (r = 0.56, p<0.0001), O, pulse
(r=0.56, p<0.0001), VCO, (r = 0.55, p<0.0001), and VO, (r = 0.55, p<0.0001); aortic sinus of
Valsalva diameter with O, pulse ( = 0.56, p<0.0001); proximal abdominal aorta diameter with
O, pulse (r = 0.55, p<0.0001); and LPA with O,pulse (r = 0.55, p<0.0001). Larger dimensions
of the thoracic aorta were correlated with higher O, pulse and lower HR in males. Proximal
abdominal aorta diameter was larger in cyclists (both males and females) who achieved higher
peak EE, load, O, pulse, VO, and RER. The abdominal aorta was additionally correlated with
higher VCO, in males and with higher VE in females.

Larger dimensions of the PA and its branches were correlated with higher EE, load, O,
pulse, VCO,, VE, VO,, and VO,-kg ™" and with lower HR in all cyclists. For males, the correla-
tions were significant between the diameters of the PA, LPA, and RPA and EE, HR, O, pulse,
VCO,, VO,, and V02~kg’1, as well as between the diameters of the RPA and LPA and RER. In
females, fewer correlations were found: between PA diameter and EE, O, pulse, VCO,, VE,
VO,; LPA diameter and EE, VO,, O, pulse and VE; RPA diameter and EE, HR, O, pulse, RER,
VO,, VO,kg ' and VE.

The IVC expiratory and inspiratory diameters were correlated with higher EE, load, O,
pulse, VCO,, and VO,-kg ™" in males. In females, only the IVC expiratory diameter was associ-
ated with higher EE, O, pulse, VE, and VO, and lower HR.

Sex-specific associations between peak CPET parameters and resting
dimensions of great vessels
Tables 3 and 4 summarize the potential influence of the dimensions of great vessels, sex, and

their interaction on peak CPET parameters. The estimate for each vessel dimension (x) repre-
sents its direct effect on peak CPET. The estimate for sex (0 = female, 1 = male) indicates sex
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Table 3. Table 3 shows the p-values for the interaction terms between resting large vessel dimensions and sex in their influence on peak CPET parameters. As none
of these interaction terms were statistically significant and influenced the linear regression models, the estimates for vessel dimensions and sex are omitted from this table
for clarity. The final regression models without interaction terms are shown in Table 4. Data presented for N = 190 (134 males, 56 females).

y X p-value for the x and sex interaction x p-value for the x and sex interaction
Peak EE Ao Annulus 0.3182 PA 0.7773
Ao SV 0.7553 LPA 0.9442
Ao STJ 0.8840 RPA 0.7152
Ao Arch 0.4285 IVC inspiration 0.8746
Ao Abd 0.7394 IVC expiration 0.9276
Peak HR Ao Annulus 0.3213 PA 0.8434
Ao SV 0.9835 LPA 0.2535
Ao ST] 0.9575 RPA 0.3761
Ao Arch 0.2021 IVC inspiration 0.6633
Ao Abd 0.7893 IVC expiration 0.3849
Peak load Ao Annulus 0.3600 PA 0.8501
Ao SV 0.8528 LPA 0.7116
Ao ST] 0.8358 RPA 0.9856
Ao Arch 0.5754 IVC inspiration 0.6466
Ao Abd 0.8294 IVC expiration 0.8223
Peak O, pulse Ao Annulus 0.2492 PA 0.8435
Ao SV 0.9352 LPA 0.7979
Ao ST] 0.8808 RPA 0.5840
Ao Arch 0.8399 IVC inspiration 0.7249
Ao Abd 0.6846 IVC expiration 0.7633
Peak RER Ao Annulus 0.4723 PA 0.3411
Ao SV 0.7989 LPA 0.7389
Ao STJ 0.8924 RPA 0.3881
Ao Arch 0.8266 IVC inspiration 0.5411
Ao Abd 0.0738 IVC expiration 0.5185
Peak VCO, Ao Annulus 0.2503 PA 0.7307
Ao SV 0.7918 LPA 0.9839
Ao STJ 0.8215 RPA 0.8409
Ao Arch 0.3871 IVC inspiration 0.9253
Ao Abd 0.9614 IVC expiration 0.9438
Peak VO, Ao Annulus 0.3614 PA 0.5366
Ao SV 0.7934 LPA 0.4838
Ao ST] 0.5722 RPA 0.5008
Ao Arch 0.9846 IVC inspiration 0.7120
Ao Abd 0.6848 IVC expiration 0.7032
Peak VO, kg™ Ao Annulus 0.3551 PA 0.7813
Ao SV 0.7603 LPA 0.9404
Ao STJ 0.9405 RPA 0.6610
Ao Arch 0.4909 IVC inspiration 0.8451
Ao Abd 0.3531 IVC expiration 0.8840
(Continued)
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Table 3. (Continued)

y x p-value for the x and sex interaction x p-value for the x and sex interaction
Peak VE Ao Annulus 0.1126 PA 0.5002

Ao SV 0.9613 LPA 0.7271

Ao STJ 0.6552 RPA 0.3120

Ao Arch 0.6508 IVC inspiration 0.5920

Ao Abd 0.7369 IVC expiration 0.6840

Multivariate linear regression models analyzed the effects of interactions of vascular dimensions (x) and sex (x x sex) on exercise capacity parameters.

Abbreviations: Ao Abd-abdominal aorta diameter; Ao Annulus-annulus of the aorta diameter; Ao Arch—aortic arch diameter; Ao ST]—aortic sinotubular junction

diameter; Ao SV—aortic sinus of Valsalva diameter; HR-heart rate; IVC expiration-inferior vena cava diameter during expiration; IVC inspiration-inferior vena cava

diameter during inspiration; LPA-left pulmonary artery diameter; O,pulse—the ratio of VO, to HR; PA-main pulmonary artery diameter; RER-respiratory exchange

ratio; RPA-right pulmonary artery diameter; SE-standard error; VCO, -the volume of produced CO,; VE-minute ventilation; VO, —the volume of consumed O,;

VO,-kg" —the volume of consumed O, per kilogram of body weight

https://doi.org/10.1371/journal.pone.0313165.t003

Table 4. Associations between peak CPET parameters with resting dimensions of the great vessels and sex. Data presented for N = 190 (134 males, 56 females).

Dependent y X Effects of x Effects of sex R for the model
Estimate x SE p-value Estimate sex SE p-value
Peak EE Ao Annulus 0.313 0.096 0.0013 -2.853 0.283 <0.0001 0.555
Ao SV 0.178 0.068 0.0100 -3.008 0.275 <0.0001 0.544
Ao STJ 0.092 0.071 0.1926 -3.367 0.252 <0.0001 0.531
Ao Arch 0.140 0.081 0.0859 -3.230 0.252 <0.0001 0.536
Ao Abd 0.507 0.115 <0.0001 -2.946 0.246 <0.0001 0.536
PA 0.268 0.079 0.0009 -3.068 0.248 <0.0001 0.554
LPA 0.435 0.101 <0.0001 -3.007 0.242 <0.0001 0.569
RPA 0.361 0.106 0.0008 -3.089 0.245 <0.0001 0.555
IVC inspiration 0.171 0.058 0.0035 -3.423 0.230 <0.0001 0.548
IVC expiration 0.142 0.039 0.0003 -3.416 0.227 <0.0001 0.559
Peak HR Ao Annulus -0.829 0.363 0.0236 -2.750 1.072 0.0111 0.044
Ao SV -1.307 0.243 <0.0001 -4.152 0.974 <0.0001 0.145
Ao STJ -1.215 0.250 <0.0001 -2.921 0.893 0.0013 0.122
Ao Arch -1.242 0.292 <0.0001 -2.786 0.909 0.0025 0.107
Ao Abd -1.625 0.435 0.0002 -2.755 0.933 0.0035 0.107
PA -0.993 0.297 0.0010 -2.528 0.929 0.0071 0.068
LPA -2.159 0.364 <0.0001 -3.240 0.870 0.0003 0.174
RPA -2.130 0.377 <0.0001 -3.126 0.875 0.0004 0.160
IVC inspiration -0.312 0.219 0.1571 -1.264 0.876 0.1510 0.023
IVC expiration -0.423 0.146 0.0042 -1.254 0.862 0.1472 0.058
Peak load Ao Annulus 5.803 1.925 0.0029 -46.773 5.681 <0.0001 0.466
Ao SV 3.773 1.368 0.0064 -48.629 5.491 <0.0001 0.459
Ao STJ 2.263 1.412 0.1106 -53.826 5.039 <0.0001 0.445
Ao Arch 3.174 1.620 0.0516 -53.060 5.044 <0.0001 0.450
Ao Abd 9.254 2.317 <0.0001 -48.617 4.968 <0.0001 0.450
PA 4.989 1.597 0.0021 -50.723 4.991 <0.0001 0.465
LPA 7.897 2.043 0.0002 -49.776 4.887 <0.0001 0.479
RPA 6.638 2.128 0.0021 -51.172 4.938 <0.0001 0.465
IVC inspiration 3.413 1.154 0.0035 -57.380 4.610 <0.0001 0.463
IVC expiration 2.800 0.773 0.0004 -57.221 4.556 <0.0001 0.474
(Continued)
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Table 4. (Continued)

Dependent y x Effects of x Effects of sex R for the model
Estimate x SE p-value Estimate sex SE p-value
Peak O, pulse Ao Annulus 0.421 0.106 0.0001 -2.609 0.313 <0.0001 0.506
Ao SV 0.335 0.074 <0.0001 -2.610 0.298 <0.0001 0.514
Ao STJ 0.241 0.078 0.0022 -3.018 0.277 <0.0001 0.488
Ao Arch 0.309 0.089 0.0006 -2.971 0.276 <0.0001 0.494
Ao Abd 0.741 0.124 <0.0001 -2.681 0.265 <0.0001 0.494
PA 0.389 0.087 <0.0001 -2.862 0.273 <0.0001 0.513
LPA 0.717 0.107 <0.0001 -2.698 0.255 <0.0001 0.566
RPA 0.636 0.113 <0.0001 -2.796 0.262 <0.0001 0.540
IVC inspiration 0.215 0.064 0.0010 -3.372 0.256 <0.0001 0.492
IVC expiration 0.198 0.042 <0.0001 -3.366 0.250 <0.0001 0.518
Peak RER Ao Annulus -0.004 0.002 0.0554 -0.021 0.007 0.0025 0.051
Ao SV -0.002 0.002 0.1277 -0.018 0.007 0.0051 0.041
Ao STJ -0.004 0.002 0.0081 -0.019 0.006 0.0014 0.065
Ao Arch -0.005 0.002 0.0155 -0.018 0.006 0.0019 0.059
Ao Abd -0.011 0.003 0.0001 -0.023 0.006 0.0001 0.059
PA -0.001 0.002 0.6018 -0.014 0.006 0.0180 0.035
LPA -0.008 0.002 0.0006 -0.021 0.006 0.0004 0.090
RPA -0.009 0.002 0.0007 -0.020 0.006 0.0005 0.091
IVC inspiration 0.000 0.001 0.7866 -0.013 0.006 0.0184 0.031
IVC expiration -0.001 0.001 0.3095 -0.013 0.005 0.0198 0.037
Peak VCO, Ao Annulus 0.065 0.022 0.0044 -0.706 0.066 <0.0001 0.567
Ao SV 0.034 0.016 0.0367 -0.745 0.064 <0.0001 0.555
Ao STJ 0.011 0.016 0.5207 -0.804 0.059 <0.0001 0.545
Ao Arch 0.020 0.019 0.2910 -0.794 0.059 <0.0001 0.549
Ao Abd 0.091 0.027 0.0010 -0.737 0.058 <0.0001 0.549
PA 0.060 0.019 0.0014 -0.744 0.058 <0.0001 0.569
LPA 0.079 0.024 0.0011 -0.747 0.057 <0.0001 0.569
RPA 0.063 0.025 0.0130 -0.765 0.058 <0.0001 0.559
IVC inspiration 0.039 0.013 0.0039 -0.824 0.054 <0.0001 0.564
IVC expiration 0.030 0.009 0.0010 -0.822 0.053 <0.0001 0.570
Peak VO, Ao Annulus 0.061 0.018 0.0011 -0.528 0.054 <0.0001 0.542
Ao SV 0.036 0.013 0.0066 -0.555 0.053 <0.0001 0.532
Ao STJ 0.021 0.014 0.1242 -0.606 0.048 <0.0001 0.519
Ao Arch 0.031 0.016 0.0443 -0.596 0.048 <0.0001 0.524
Ao Abd 0.103 0.022 <0.0001 -0.542 0.047 <0.0001 0.524
PA 0.052 0.015 0.0008 -0.570 0.048 <0.0001 0.541
LPA 0.090 0.019 <0.0001 -0.553 0.046 <0.0001 0.564
RPA 0.075 0.020 0.0003 -0.570 0.047 <0.0001 0.546
IVC inspiration 0.033 0.011 0.0034 -0.639 0.044 <0.0001 0.535
IVC expiration 0.028 0.007 0.0002 -0.637 0.044 <0.0001 0.548
(Continued)
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Table 4. (Continued)

Dependent y X Effects of x Effects of sex
Estimate x SE p-value Estimate sex SE

Peak VO, kg™ Ao Annulus -0.917 0.431 0.0347 -6.491 1.272
Ao SV 0.132 0.309 0.6688 -4.617 1.239
Ao STJ -0.574 0.312 0.0673 -5.662 1.112
Ao Arch -0.728 0.358 0.0435 -5.766 1.115
Ao Abd 0.730 0.531 0.1715 -4.258 1.139
PA 0.729 0.358 0.0433 -4.013 1.120
LPA 1.676 0.453 0.0003 -3.410 1.085
RPA 1.309 0.473 0.0063 -3.791 1.098
IVC inspiration 0.651 0.257 0.0121 -5.011 1.026
IVC expiration 0.488 0.173 0.0054 -4.974 1.022

Peak VE Ao Annulus 2.336 0.913 0.0113 -22.788 2.694
Ao SV 1.464 0.648 0.0251 -23.653 2.603
Ao STJ 0.032 0.670 0.9623 -26.790 2.390
Ao Arch 1.110 0.767 0.1493 -25.517 2.387
Ao Abd 2.547 1.122 0.0244 -24.575 2.405
PA 1.594 0.763 0.0380 -24.885 2.384
LPA 2.210 0.987 0.0263 -24.861 2.361
RPA 2.018 1.018 0.0488 -25.115 2.361
IVC inspiration 0.814 0.553 0.1427 -26.966 2.209
IVC expiration 0.879 0.371 0.0189 -26.958 2.188

Multivariate linear regression models analyzed the effects of vascular dimensions (x) and sex on exercise capacity parameters

p-value
<0.0001

0.0003
<0.0001
<0.0001

0.0002

0.0004

0.0019

0.0007
<0.0001
<0.0001
<0.0001
<0.0001
<0.0001
<0.0001
<0.0001
<0.0001
<0.0001
<0.0001
<0.0001
<0.0001

R? for the model

0.139
0.107
0.123
0.126
0.126
0.127
0.167
0.146
0.137
0.143
0.460
0.454
0.440
0.445
0.445
0.453
0.455
0.451
0.445
0.455

Abbreviations: Ao Abd-abdominal aorta diameter; Ao Annulus-annulus of the aorta diameter; Ao Arch—aortic arch diameter; Ao STJ—aortic sinotubular junction

diameter; Ao SV—aortic sinus of Valsalva diameter; HR-heart rate; IVC expiration-inferior vena cava diameter during expiration; IVC inspiration-inferior vena cava

diameter during inspiration; LPA-left pulmonary artery diameter; O,pulse—the ratio of VO, to HR; PA-main pulmonary artery diameter; R2 —the coefficient of

determination; RER-respiratory exchange ratio; RPA-right pulmonary artery diameter; SE-standard error; VCO, —the volume of produced CO,; VE-minute

ventilation; VO,-kg™ —the volume of consumed Os; VO,kg-the volume of consumed O, per kilogram of body weight;

https://doi.org/10.1371/journal.pone.0313165.t004

differences in peak CPET. Significant interaction terms (x x sex) indicate that the relationship
between a vessel dimension and peak CPET differs between males and females. However, no
interactions were statistically significant, indicating that these relationships were comparable
in both sexes. Therefore, the final regressions (Table 4) included only vessel dimension (x) and
sex as independent variables, without interaction terms.
Significant associations were found between both peak HR and O, pulse and aortic, PA, and
IVC dimensions. In contrast, fewer associations were observed between RER or VE and vascular
dimensions. Males and females showed significant differences in the relationships between peak
CPET parameters and vessel dimensions. This can be attributed to both higher peak CPET val-
ues and larger sizes of great vessel in males than females. Consistently, the correlations between

CPET parameters and vessel dimensions were stronger and parallel in males (Fig 3). Notably,

the interactions between vessel dimensions and sex did not affect the associations between these
variables and CPET results. Taken together, these results suggest that sex differences exist in the
baseline values (intercepts) of the relationships between CPET and vessel dimensions but not in

the overall trends (slopes) of these associations.

Discussion

Larger major vessel dimensions, particularly of the aorta and PA, were associated with greater
peak exercise capacity in amateur cyclists, regardless of their sex. The strongest correlations
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were observed between aortic and PA dimensions and peak O, pulse, VO,, VCO,, VE, and
EE. However, these correlations were moderate at best. IVC dimensions showed weak or non-
significant correlations with peak CPET parameters. When these correlations were analyzed
separately for males and females, weaker or nonsignificant associations were found. Linear
regression models with interactions showed that male cyclists had larger dimensions of the
aorta and PA, and their peak exercise capacity was generally greater than that of females—this
was reflected by the intercepts of the regression lines. However, the slopes of the regression
lines indicating the strength of the association between CPET parameters and vessel diameter
did not differ significantly between the sexes—this was demonstrated by nonsignificant effects
of the interactions between vessel dimensions and sex.

Changes in the vascular system due to exercise

The vascular system transports nutrients and O, to working muscle cells and removes various
substances like CO,, lactates, excessive H', and heat from them [24-26]. Repeated endurance
training involves hours of exercise during which blood flow (including cardiac output and
venous return) increases through all arteries and veins to meet the increased metabolic
demands of the muscles. Over time, endurance training increases total blood volume by 20-
25% in trained individuals and up to 50% in elite athletes. This increase is primarily due to
direct increases in red blood cell mass and plasma volume [5].

During exercise, the aorta and arteries must efficiently deliver this increased blood volume
to the working muscles. Meanwhile, deoxygenated blood returns from the muscles through
the veins, including the IVC, to the right side of the heart, which pumps it through the PA to
the lungs for essential gas exchange (O, uptake and CO, removal) and heat dissipation.

Repeated endurance exercise leads to vascular adaptations, which are particularly evident in
the microvasculature of trained muscle groups [27]. Muscle capillarization may serve as a lim-
iting factor for exercise performance [28]. Training elevates the number of capillaries per
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muscle fiber by 10-20% within several weeks in untrained individuals, with a slower rate of
increase in well-trained athletes [28]. Not only capillary density, but also capillary positioning
may be influential [28]. However, research linking muscle capillarization and exercise perfor-
mance is lacking [28].

Endurance training also triggers arterial remodeling. Increased circulating blood volume
and altered shear stress and transmural pressure lead to a decrease in arterial wall thickness
and an increase in lumen diameter [1, 29]. These widened arteries result in reduced vascular
resistance, effectively priming the muscles for an increase in blood supply during exercise [1].
The dimensions of the aorta [13, 30-35], PA [36, 37], and IVC [38, 39] are reported to be larger
in training athletes than in sedentary controls. Similarly to other studies, we demonstrated that
healthy amateur cyclists with greater exercise capacity had larger aortic diameters [13, 30-35].
However, less is known about the PA and IVC and about possible sex differences.

Arteries of athletes

Repeated exercise improves vascular plasticity and increases the body’s ability to respond to
physical activity [29]. Endurance training activates endothelial nitric oxide synthase, leading to
the production of nitric oxide, which dilates both arteries and veins [9]. As a result, the large
arteries that supply and drain frequently used muscles are enlarged [29, 40]. For example,
wheelchair-using athletes have larger aortas, subclavian arteries, and carotid arteries but a
smaller IVC and abdominal aortas than controls. In rowers, the brachial artery is dispropor-
tionately enlarged [29, 40]. In our study, cyclists with greater exercise capacity had not only a
wider thoracic aorta but also a wider abdominal aorta, which supplies blood to the leg muscles
used during cycling. This finding was consistent in both male and female cyclists with superior
peak CPET results.

Aortic dimensions of athletes

Athletes have larger diameters of the aortic root than controls [13, 30-35]. However, most of
them do not exceed the 99® percentile for males and females (40 and 38 mm, respectively) [30,
31, 33, 35]. Athletes have an aortic diameter that is 3.2 mm larger at the level of the sinuses of
Valsalva and an aortic valve annulus that is 1.6 mm larger compared to nonathletic controls
[31]. No progression of aortic root enlargement in athletes is observed if the values are less
than the 99 percentile [30]. However, if the values are greater and aortic root dilatation is
present, it is most probably pathologic and likely to progress [31]. Differences due to athletic
discipline and aortic root size have been reported [32, 41]. Athletes who train in sports with a
higher dynamic component have a larger aortic root [32]. The diameter of the aortic root is
larger in males than in females [31-33]. Similarly, we found that all aortic diameter measure-
ments (annulus, sinus Valsalva, STJ, arch, and abdominal) were greater in males than in
females.

Arterial dimensions and exercise capacity

According to Radegran et al., common femoral artery diameter was correlated with peak VO,
during exercise on an ergometer (r = 0.91) [42]. Also, Rasica et al. report a strong correlation
between resting superficial femoral artery diameter and peak VO,, which may represent a key
adaptation for active muscles perfusion [27]. Vanhees et al. reported that a 16-week training
program (which included 48 h of cycling, jogging, and calisthenics) increased VO,; however, it
decreased resting brachial artery diameter and mean blood flow velocity in the brachial artery
and had no effect on aortic diameter or cardiac output [43]. These results can be explained by
the fact that the total training time was short, which could account for the lack of changes in
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aortic diameter. The decreased brachial artery diameter can be explained by the training pro-
gram, which heavily favored lower-body workouts (83% of the training time). Another study
found that after a 3-month exercise program (indoor cycling 2 or 3 times per week) healthy
females had increased diameters of the infrarenal aorta, thoracic aorta, and brachial artery. No
differences were reported in aortic root or carotid artery diameters [44]. A positive correlation
was found between the absolute change in peak workload and the absolute change in the diam-
eter of the ascending aorta (r = 0.42) [44]. Factors associated with aortic size at the sinuses of
Valsalva included sex, height, sport type (rowing), and elite competitor status (rowing partici-
pation in world championships or Olympics or marathon time under 2 h and 45 min) [34].
We report that increased aortic dimensions in amateur cyclists were associated with better
exercise performance during CPET in both males and females.

Adaptation of the great vessels to exercise and heat redistribution

Heat is a byproduct of metabolism, energy production and energy use in muscles, at rest and
during exercise. Heat must be redistributed to other organs, mainly the skin and lungs, to dis-
sipate it from the body to prevent hyperthermia. Increased blood flow through working mus-
cles prevents heat accumulation [45]. Similar physiological responses to exercise are typical of
fever. A rise in body temperature during fever is accompanied by skin vessel dilation and
increased HR, cardiac output, and ventilation [46]. Repeated exercise does not change the
amount of heat produced per exercise bout, but during each bout of exercise the heat accumu-
lation is lower [45]. This is due to increased blood flow through working muscles and an
increased release of heat into the blood [45]. The physiology of exercise during heat stress has
been studied, but little is known about the mechanisms of vascular adaptation under these
conditions or whether greater heat production contributes to long-term vascular remodeling
in endurance athletes [4, 5, 47].

In our study, amateur cyclists with larger diameters of the aorta, PA, and IVC had a greater
peak exercise capacity and a higher EE. One report suggests that humans have a larger aortic
diameter (a surrogate measure for cardiac output), reflecting higher EE, than apes [48]. In a
group of patients with abdominal aortic aneurysm, resting EE was higher than in controls
[49]. Otherwise, the link between aortic dimensions and EE has not been studied.

Better exercise performance improves heat loss capacity (activation of cutaneous vasodila-
tion and increased blood flow at a lower core temperature, reduction in the internal tempera-
ture threshold for the onset of sweating, and increased sweat rate) [4, 5, 50]. One proposed
mechanism is that exercise leads to hypervolemia, an increase in total body water volume. This
means that a greater volume of interstitial fluid is available for cardiac output and is distributed
to working muscles and other organs, including the skin and sweat glands. Increased exercise
intensity also increases the total loss of Na* and CI” ions via sweat [50, 51]. Increased skin per-
fusion and a greater amount of water available for evaporation through the skin facilitates
more efficient heat loss [4, 5, 52]. This training-induced, prolonged hypervolemia may be
responsible for the adaptation of great vessels, ultimately leading to improved exercise
performance.

The inferior vena cava during exercise

The maximal expiratory IVC diameter is usually between 15 and 25 mm and is larger in males
than in females [38, 53]. However, in patients under 60 years old, sex differences are nonsignif-
icant [38]. Our findings are similar: no differences between males and females in IVC diameter
during expiration (20.6 vs. 21.0 mm, respectively) or inspiration (10.2 vs. 10.5 mm, respec-
tively) were found.
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Larger expiratory IVC diameters have been reported in trained athletes [38, 39]. Further-
more, IVC diameter correlates with exercise capacity parameters such as VO, [54]. We found
correlations between expiratory IVC and peak exercise capacity parameters (HR, VO,, O,
pulse, and load). This suggests that IVC size can be influenced by endurance training. It is pos-
sible that a larger IVC diameter means the individual has a larger reservoir of circulating blood
and therefore is better prepared for sustaining longer bouts of exercise. This observation is
supported by the clinical measurement of IVC diameter to assess patient volemic status. For
example, the IVC diameter is related to percent weight loss after football practice [55]. Patients
with hypervolemia have a larger IVC; similarly, athletes with better exercise performance, and
therefore a larger volemic reservoir, have a larger IVC.

Pulmonary arteries during exercise

Athletes have larger PA dimensions than non-athletes, as well as a greater pulmonary vascular
reserve, which is essential for accommodating the significantly increased blood flow that
occurs during exercise [36, 37]. Athletes with higher pulmonary blood flow tend to have higher
peak VO, [36]. Chung et al. reported correlations between dimensions of the PA and aorta (as
measured using computed tomography) and exercise capacity (as measured by a 6-min walk
test) [56]. We used a more accessible method to measure the dimensions of the PA, namely,
transthoracic ECHO. We also used CPET to measure exercise capacity in more detail than
provided by the 6-min walk test.

Our results showed that larger dimensions of the main PA, LPA, and RPA were positively
correlated with exercise capacity. These associations were observed in both males and females.
To date, no studies have specifically analyzed the relationship between PA diameter and exer-
cise capacity using CPET.

Study limitations

This study was cross-sectional and lacked a control group of sedentary people. During recruit-
ment, we enrolled more males than females (149 vs. 60), mainly due to the consecutive enroll-
ment process. For a various reasons, a higher proportion of adult males are regular cyclists,
and our male-female ratio reflects amateur cyclists’ demographics. However, not all echocar-
diographic measurements were possible for each participant. Thus, complete datasets with the
results of CPET and the dimensions of the great vessels were analyzed for 190 subjects (134
males, 56 females). Furthermore, the inclusion criterion for our study was amateur cycling for
at least 1 hour per week to include individuals with a large variety of exercise training levels.
This allowed us to observe CPET results and associations with echocardiographic parameters
in a wide range of exercise levels. However, this resulted in recruiting volunteers with varying
exercise levels, who undertook various sports activities. Future studies should include a more
homogenous group of highly trained individuals to assess better the impact of exercise training
on the dimensions of great vessels. Our results showed more significant associations between
the dimensions of great vessels and CPET parameters in males than in females. However, this
observation may have been influenced by the unbalanced distribution of the data. If we had
included more women, we assume that similar trends would have been found in their exercise
capacity. Additionally, it should be noted that although our study’s protocol selection and cus-
tomization adhered to established guidelines [18, 20], different test protocols can influence
peak power achieved during the test. Many studies show minor differences between protocols
terminated due to exhaustion, regardless of the test duration or power increments between
stages [57-59] Some studies report no differences between test protocols [60]. Finally, it is
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important to recognize that our study group consisted of volunteers of European descent.
Therefore, our results cannot be extrapolated to the general population.

Conclusion

Males had larger dimensions of the thoracic and proximal abdominal aorta and of the PA and
its branches. However, there were no sex differences in the dimensions of the IVC. We
observed associations between the dimensions of great vessels and higher exercise capacity
parameters (particularly VO,, O, pulse, load, and peak EE). These associations were present in
both sexes and had comparable directions. The differences in these associations were due to
the differing intercepts, which resulted from the observation that males generally have larger
vessel dimensions, body size and greater exercise capacity than females. This finding indicates
that the direction of changes in the vascular system in exercising males and females is similar
and there are no sex-specific changes in this regard. Future studies should determine these
findings’ clinical and practical applicability, for example, in health-related screening purposes
or tailoring training protocols.
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