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Abstract

The ability to conceptualize numerical quantities is an essential human trait. According to

the “Triple Code Model” in numerical cognition, distinct neural substrates encode the pro-

cessing of visual, auditory, and non-symbolic numerical representations. While our contem-

porary understanding of human number cognition has benefited greatly from advances in

clinical imaging, limited studies have investigated the intracranial electrophysiological corre-

lates of number processing. In this study, 13 subjects undergoing stereotactic electroen-

cephalography for epilepsy participated in a number recognition task. Drawing upon

postulates of the Triple Code Model, we presented subjects with numerical stimuli varying in

representation type (symbolic vs. non-symbolic) and mode of stimuli delivery (visual vs.

auditory). Time-frequency spectrograms were dimensionally reduced with principal compo-

nent analysis and passed into a linear support vector machine classification algorithm to

identify regions associated with number perception compared to inter-trial periods. Across

representation formats, the highest classification accuracy was observed in the bilateral

parietal lobes. Auditory (spoken and beeps) and visual (Arabic) number formats preferen-

tially engaged the superior temporal cortices and the frontoparietal regions, respectively.

The left parietal cortex was found to have the highest classification for number dots. Notably,

the putamen exhibited robust classification accuracies in response to numerical stimuli.

Analyses of spectral feature maps revealed that non-gamma frequency, below 30 Hz, had

greater-than-chance classification value and could be potentially used to characterize for-

mat specific number representations. Taken together, our findings obtained from intracranial

recordings provide further support and expand on the Triple Code Model for numerical

cognition.
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Introduction

The capacity to comprehend numerical quantities is remarkably phylogenetically conserved

across several animal species [1]. However, the ability to deftly conceptualize and leverage

abstract symbolic representations of numerical quantities is a uniquely human trait [1, 2]. Given

the ubiquitous need to interact with quantities in daily life and the deleterious quality-of-life con-

sequences associated with poor number literacy [3], developing further insights into the neural

basis for our sophisticated numerical processing capabilities is of particular interest and value.

A leading framework for numerical cognition is the “Triple Code Model” (TCM) [4, 5].

The TCM postulates that cortical neuronal populations within the ventral temporal lobe, peri-

sylvian region, and intraparietal sulcus are responsible for processing visual (“6”), auditory ver-

bal (“six”), and non-symbolic (“••••••”) numerical representation formats, respectively [5].

Studies utilizing functional magnetic resonance imaging (fMRI) and transcranial magnetic

stimulation (TMS) have lent support to the TCM while also indicating a broader engagement

of cortical regions beyond those originally proposed, such as the cingulate gyrus and cerebel-

lum [6, 7]. Invasive modalities such as intracranial electroencephalography have also affirmed

the TCM, contributing to a more robust understanding of the neuronal spatiotemporal

dynamics during number processing [8–11].

To date, iEEG investigations have primarily relied on electrocorticography (ECoG) in the

form of subdural strips and grids to analyze cortical areas. Despite compelling evidence that

subcortical structures play an integral role in number processing [12–15], exceptionally few

studies have conducted electrophysiological recordings from deeper subcortical regions [15,

16]. To address this gap, we used stereotactic electroencephalography (sEEG) recordings in

medically refractory epilepsy patients implanted for the purposes of seizure localization. In

contrast to ECoG, sEEG covers of cortical areas in sulci and subcortical areas posited to be

involved in number processing by the TCM. The sEEG electrodes used currently, which are

around 2 mm in diameter, measure brain activity much more locally than scalp electroenceph-

alography (EEG); most of the activity is concentrated less than 1 cm away from the recording

contact compared to large spread across cortical areas for EEG [17]. Stimulation can also be

delivered using sEEG to perturb brain activity. Compared to TMS, sEEG has similar spatial

specificity, both change activity most around 1 cm from the focus [18, 19]. There is a contrast

between sEEG and TMS in the brain depth that is able to be stimulated, with TMS being lim-

ited to around 4 cm in depth [20] and sEEG is able to stimulate as deep as the contact is

implanted. Comparing sEEG to fMRI, both record from the same sub-surface brain structures,

however, fMRI measures blood oxygenation whereas sEEG is a direct measure of electrical

neural communication. Practically, this is important because of reproducing brain-wide asso-

ciation studies using fMRI has been shown to take thousands of individuals [21] so having cor-

roborating evidence from other neuroimaging modalities is essential, and sEEG can detect

millisecond-time scale changes in neural activity whereas fMRI samples activity on the order

of every two seconds. Thus, sEEG can detect the precise order of brain area activation as well

as fast neural activity such as oscillations. In this study, we used sEEG to replicate the triple

code involvement of the ventral temporal lobe, perisylvian region, and intraparietal sulcus and

characterize the involvement structures outside these areas in numerical cognition. Drawing

upon the TCM’s postulates, we presented 13 subjects with a number recognition task of

numerical stimuli that differed at the level of representation type (symbolic vs. non-symbolic)

and mode of stimuli delivery (visual vs. auditory). Using a classification algorithm on sEEG

recordings, we examined the extent to which number encoding brain regions aligned to the

TCM. Additionally, this approach enabled us to explore neural substrates outside of this pre-

dicted framework.
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Materials and methods

Participants

Thirteen patients with a diagnosis of medically refractory epilepsy were implanted with sEEG

electrodes for the purpose of seizure onset zone localization. The sEEG electrodes used were

0.8 mm in diameter with a center-to-center pitch of 3.3 mm to 5mm between electrode con-

tacts (PMT, Chanhassen, MN, USA). A total of 2,482 contacts were analyzed and distributed

within each subject as shown in Fig 1. Pertinent demographic characteristics are tabulated in

Table 1. Institutional Review Board approval was obtained at Oregon Health & Science Uni-

versity (STUDY00018870). All participants were over the age of 18 and provided written

informed consent. Informed consent was obtained under the Declaration of the Principles of

Helsinki.

Behavioral task

Patients performed a passive numerical recognition task on a laptop (Fig 2). During the task,

patients were presented with a number quantity from one to nine in one of four different

representation formats. Two of the four were auditory (spoken number, sequential beeps)

while the remaining two were visual (Arabic numeral, assortment of dots). These representa-

tion formats were designed to reflect common types of number stimuli encountered in daily

life. At the start of each trial, a fixation cross was shown for between 500 and 1500 ms, chosen

uniform randomly, to orient the patient’s attention. The number stimulus was then presented

for 1000 ms with an inter-trial period of 1500 to 3500 ms chosen uniform randomly. All 13

patients were presented with 200 number trials randomly shuffled so that there were 40 pre-

sentations of each number modality. To ensure attentiveness, patients were presented with

catch trials on 10% of trials. They were prompted to press the left arrow key when the number

was odd and the right arrow key when the number was even. The task would not proceed until

patients responded to the catch trial. The code to administer the task is available at https://

github.com/alexrockhill/numbers.

The task was administered using a custom jsPsych script implemented through a web

browser [22]. The laptop was placed in front of patients on a table comfortably positioned over

their lap. Trials were synchronized to intracranial electrophysiology using a photodiode con-

nected into the same amplifier as the sEEG data and attached to either the right or left corners

of the laptop screen [23]. Trials during corrupted photodiode events were excluded as accurate

timing of intracranial electrophysiology changes could not be ascertained without photodiode

synchronization. All participants included were right-hand dominant and responded to catch

trials accordingly.

Electrode localization

To determine sEEG electrode positions, preoperative stereotactic T1 and T2 magnetic reso-

nance (MR) were registered to postoperative computerized tomography (CT) imaging studies

with MNE-Python [24, 25]. Anatomic labels were assigned to contacts using the Desikan-Kill-

iany atlas label of each patient’s Freesurfer reconstruction [26]. Contact locations were warped

to a template brain (cvs_avg35_inMNI152) to standardize contact positions across patients

and allow between patient comparisons. Task-related cue and response events were synchro-

nized using differences in time stamps recorded by the task computer relative to the time that

the fixation stimulus was displayed which was synchronized by the photodiode. Using MNE--

Python, time-frequency spectrograms for each event were computed using the Morlet wavelets

method with frequencies from 1 to 250 Hz. After bandpass filtered between 0.1 and 40 Hz,
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voltage time-series signals were appended to the bottom of each spectrogram to account for

event-related potentials in our classification analysis.

Pre-processing

Recordings from sEEG channels were average re-referenced, which has been shown to increase

sensitivity to high-frequency broadband activity which is correlated with single unit activity

Fig 1. Distribution and localization of sEEG electrodes. Electrode localization (A) Heat map 94 of sEEG electrode contact distribution (B) sEEG

implantation layouts for each of the 13 patients.

https://doi.org/10.1371/journal.pone.0313155.g001
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[27]. Trials where peak-to-peak amplitude at any recording contact was greater than a global

rejection threshold estimated by autoreject [28].

Classification

We leveraged a classification analysis similar to Rockhill et al. 2023 to determine the classifica-

tion accuracy of sEEG channels, parcellated brain regions, and spectral features for all numeri-

cal stimuli (Fig 2). Number trial spectrograms consisted of the period -1 s prior to number

stimulus presentation to 1 s afterward. These spectrograms were classified differently from

inter-trial interval spectrograms of the same duration. Due to the size of the spectrogram data

relative to the number of trials, the data had to be dimensionality reduced by principal compo-

nent analysis (PCA) in order for the SVM to converge on classification that generalizes to

unseen data [25]. Training spectrograms were dimensionally reduced with PCA. The first 50

principal components were used as inputs into a linear support vector machine (SVM) classi-

fier deployed with scikit-learn [29]. Six-fold cross-validation was used. A binomial distribution

with a probability of 0.5 and with the number of observations matching the number of presen-

tations of each number modality was used as the null distribution. Coefficient matrices from

the SVM were validated using a one sample cluster permutation test with a significance thresh-

old set at 99% of a T-distribution (alpha = 0.01). Within sEEG channels, clusters were deemed

statistically significant if their T-statistics were greater than 99% of permuted clusters. With 40

trials per number modality, we were powered at 79.97% to detect a large effect size of 0.4

between the stimulus and inter-trial interval conditions.

Results

SVM classifier accuracy

Our linear SVM successfully classified spectrograms during number stimuli and specific repre-

sentation formats from those during the inter-trial interval. With an alpha threshold of 0.01

relative to the null distribution, we identified contacts with statistically significant classification

probabilities. For our four representation formats, 360, 781, 962, and 342 contacts had signifi-

cant classification values during Arabic, beeps, spoken, and dots, respectively, out of 2,567

total contacts (Fig 3). There were 74 contacts that were significant for all four representation

types.

Table 1. Subject demographics.

Subject Age Sex Dominant Hand

S72 47 female right

S73 25 female right

S78 34 female right

S79 30 male right

S80 20 male right

S82 43 male right

S83 43 female right

S84 25 male right

S85 69 male right

S86 21 male right

S90 33 male right

S91 48 male right

S92 44 female right

https://doi.org/10.1371/journal.pone.0313155.t001
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Fig 2. Task paradigm and classification algorithm. (A) The numerical task paradigm showing the timing of the task, examples

of stimuli shown to patients and how catch trials were presented (blue). (B) The task timing used for the classification is shown.

The jittered event timing avoids patients anticipating upcoming trials. The choice of a baseline period allowed at least 1990 ms

after the last trial for brain activity to return to baseline. (C) a schematic of the classification analysis pipeline using an example

contact is shown. This process is iteratively performed for all sEEG channels. (1) Continuous data is divided into epochs and (2)
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All number formats vs. Inter-trial period

We began by looking at spectrogram classifications that were significant across number repre-

sentation formats compared to spectrograms during the inter-trial interval. The SVM classifi-

cation demonstrated that left parietal regions and left lingual cortex had the highest

classification accuracy (Fig 4A). The three contacts with the highest classification value across

all number stimuli are presented on Fig 4B. The first was in the left lingual cortex. The second

was in right fusiform gyrus. The third was in the superior frontal cortex. The contacts found to

be significant for Arabic, dots, spoken, and beeps number representation formats were

observed to be distributed in a fronto-parietal-temporal network that closely matches the

TCM.

Classification of auditory representation formats

SVM classification of beep spectrograms showed that bilateral superior temporal and right

inferior parietal cortex had robust classification values (Fig 5A). Left putamen had classified

with high accuracy as well (Fig 5A). Of the three contacts with the highest classification accu-

racy, two were in the right superior temporal gyrus while the third was in the left superior tem-

poral gyrus (Fig 5B). Gamma and theta to low beta increases were used for classifying beeps in

the two right superior temporal gyrus contacts. These changes were also present and used for

classification in the left superior temporal gyrus contact, and both had similar timing with

most activity occurring before the end of the audio presentation at 0 s.

Similar to the classification of beeps, spoken number trials demonstrated the best classifica-

tion value in the bilateral superior temporal cortices (Fig 6A). Within the subcortex, the left

putamen demonstrated a robust classification value similar to that of the superior temporal

cortices (Fig 6A). The three contacts of highest accuracy were found in left superior temporal

cortex(Fig 6B). High-frequency broadband increases were used to classify spoken number tri-

als within superior temporal cortices. Additionally, sustained theta and alpha decreases were

observed to be important for classification within both superior temporal cortex contacts.

Classification of visual representation formats

The SVM classification of spectrograms during Arabic numeral trials indicated that the frontal

lobes, left parietal lobe posterior to the postcentral gyrus and bilateral inferior temporal gyrus

had robust classification value (Fig 7A). The three contacts of highest classification accuracy

were localized in the temporal-occipital junction, middle temporal cortex, and the superior

parietal lobule (Fig 7B). Decreases and increases in alpha and increases in high-frequency

broadband activity were most important for classifying Arabic numerals for the contacts

located in these areas.

Despite having fewer contacts than other regions, the left parietal cortex had the best classi-

fication value when the SVM classified dot number stimuli spectrograms compared to inter-

trial interval spectrograms (Fig 8A). The bilateral frontal lobe had robust classification value as

decomposed into spectrograms. (3) PCA is fit to the spectrograms to reduce the dimension of the data. For each epoch, there is a

weight for each PCA component, and the explained variance is shown as a bar plot beneath the line plot of weights for that

component. (4) An SVM was fit to the PCA component weights, beneath, the projection back into spectrogram space is shown

by multiplying the principal component weights by the SVM coefficients and summing the output. (5) Finally, the PCA

component weight for the test trials were classified as being during the stimulus period of interest or inter-trial interval. The

linear decision boundary for the first 2 principal components is shown as an example. (D) Three example principal components

are shown projected back into time-frequency space showing “eigenspectrograms” which are spectrograms with important

features for the classification task. This is done my multiplying each of the first three PCA components with the SVM coefficients

to project them back into spectrogram space (like in (4) but not averaged).

https://doi.org/10.1371/journal.pone.0313155.g002
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well. The three contacts with the highest classification accuracies were in and around bilateral

superior parietal lobule (Fig 8B). Alpha and beta decreases and high-frequency broadband

increases were important for classifying dot trials.

Spectral features with high classification value for number stimuli

To better understand the SVM classification coefficients, we generated feature maps showcas-

ing the relative abundance of statistically significant time-frequency clusters and the propor-

tion of positive significant clusters to determine the directional patterns of time-frequency

cluster changes (Fig 9). Then, we assessed the classification value of these cluster changes.

Across all number representation formats, significant clusters within the theta to beta fre-

quency ranges were well represented. To a less robust degree, spoken number and beeps dem-

onstrated a number of significant high-frequency broadband clusters as well. The theta and

beta clusters generally increased in power for all representation formats with the exception of

spoken number, where beta clusters demonstrated an initial increase before a decrease. For

beeps and spoken number formats, there were significant high-frequency broadband clusters

with increased power during the experimental condition compared to the inter-trial intervals.

Fig 3. Distribution of sEEG channel classification accuracy across different numerical representations. Histograms presenting the

counts of sEEG channels with significant (red) and non-significant (blue) classification accuracy at alpha = 0.01 relative to a null binomial

distribution across all contacts are shown. One sample t-tests comparing the difference between the test distribution and chance resulted

in p<0.001 for all comparisons. The distribution of significant and non-significant sEEG channels are presented for each number

representation format.

https://doi.org/10.1371/journal.pone.0313155.g003
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Increases in high-frequency broadband power had the highest classification accuracy. Alpha

and beta were less closely associated with high-accuracy classifications but were still important

to classification which were unlikely to happen by chance.

Discussion

Brain regions encoding number processing

Using a linear SVM classifier with PCA, we identified cortical and subcortical structures, indi-

vidual contacts, and spectral patterns with high classification value during our number stimuli

trials. Overall, our findings align with results from prior fMRI and ECoG investigations into

number cognition, [6, 8, 11, 31] and by extension, are congruent with existing neuroanatomi-

cal models of number cognition.

When number stimuli, irrespective of representation format, were classified against the

inter-trial period, we found evidence of bilateral parietal lobe engagement and robust engage-

ment of the left inferior parietal cortex, which aligns with the postulates of the TCM (5). Intra-

parietal sulcus is hypothesized to be responsible for encoding an innate, conserved sense of

non-abstract number processing [5, 6]. Previous fMRI studies have implicated the involve-

ment of this region across a variety of number stimuli which has been replicated in ECoG stud-

ies [9, 30, 31]. We also observed that auditory numerical stimuli reliably engaged these

putative cortical substrates. For both beeps and spoken number trials, the bilateral superior

temporal cortices had high-accuracy classifications, suggesting preferential activation at these

Fig 4. Linear SVM classification of spectrograms from all number trials versus inter-trial interval spectrograms. Linear SVM classifications that were

significant for all number representation formats versus the inter-trial interval. Classification values of parcellated brain regions are presented with a gradient

(Yellow; 1 = 100% classification accuracy, Purple: 0.68 = 68% classification accuracy) (A). The three contacts with the highest classification value are shown in

(B).

https://doi.org/10.1371/journal.pone.0313155.g004
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Fig 5. Linear SVM classification of spectrograms from sequential beep trials versus inter-trial interval

spectrograms. Linear SVM classification of spectrograms from sequential beep trials versus inter-trial interval

spectrograms. Classification values of parcellated cortical and subcortical brain regions are presented with a gradient

(Yellow; 1 = 100% classification accuracy, Purple: 0.68 = 68% classification accuracy) (A). The three contacts with the

highest classification value are shown in (B). Left panels show SVM coefficients from the spectrogram classification

projected back to spectrogram space using the principal components with significant clusters shown by the red

contours. Right panels show the location of the contact within parcellated brain regions.

https://doi.org/10.1371/journal.pone.0313155.g005

PLOS ONE Investigating the TCM using SEEG

PLOS ONE | https://doi.org/10.1371/journal.pone.0313155 December 3, 2024 10 / 18

https://doi.org/10.1371/journal.pone.0313155.g005
https://doi.org/10.1371/journal.pone.0313155


Fig 6. Linear SVM classification of spectrograms from all spoken number trials versus inter-trial interval

spectrograms. Linear SVM classification of spectrograms from all spoken number trials versus inter-trial interval

spectrograms. Classification values of parcellated cortical and subcortical brain regions are presented with a gradient

(Yellow; 1 = 100% classification accuracy, Purple: 0.68 = 68% classification accuracy) (A). The three contacts with the

highest classification value are shown in (B). Left panels show SVM coefficients from the spectrogram classification
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sites. This confirms known localizations of the eloquent human auditory cortex which have

been implicated by fMRI analyses to underline auditory number processing [32–34].

Classification of the visual representation formats implicated similar regions to expected

cortical regions of engagement. Prior ECoG analyses have identified a visual number form

area (VNFA) within the fusiform and inferior temporal gyri that is preferentially engaged in

response to Arabic numerals (10,11). During Arabic trials, we found evidence of this activation

as well as frontal lobe involvement with evidence of inferior parietal and middle temporal cor-

tical engagement. Our sEEG channels did not sample the VNFA densely, potentially explain-

ing why contacts with high-accuracy classifications were not even more predominately located

in this area. Finally, classification of dot trials indicated preferential engagement of the left

parietal cortex, as expected, as well as the left frontal lobe. This aligns with the frontoparietal

network of number cognition posited by Dehaene et al. and the hypothesized role of the parie-

tal cortex put forth by the TCM [4, 5] with the notable difference that the right parietal sEEG

channels had lower classification accuracy, questioning the whether the right-hemisphere

dominance found in previous studies should be re-examined.

Interestingly, for auditory number representation formats, the left putamen had the best

classification value of all subcortical structures. The classification accuracy of the putamen was

comparable to that of putative cortical substrates of number processing. The superior classifi-

cation of the left putamen compared to the right is unclear. However, this may be partially

related to the hemispheric dominance of our patients as all were left hemisphere dominant.

Although commonly associated with motor function as a component of the basal ganglia, the

putamen is known to take part in higher-level cognitive functions as well [35–37]. Enhanced

putaminal engagement during numerical processing has been demonstrated during magni-

tude evaluation and arithmetic tasks with functional imaging [12, 14]. Recently, using a high

field MRI, investigators recently detected tuned neural responses to numerical quantities

within the putamen during a tactile numerosity task [14], illustrating the pertinent role of the

putamen in integrating and comprehending numerosity inputs.

Considering that neuroimaging studies have also demonstrated the role of the putamen in

language cognition [35, 36], the engagement of the putamen during our number recognition

paradigm touches on the potential interplay between number cognition and language. We did

not attempt to compare neuroanatomic and electrophysiologic features of number stimuli to

language ones in our study due to time constraints. There is spirited debate, particularly within

neuropsychology and social sciences literature, over whether the development of and capacity

for numerical cognition is independent of language acquisition [38]. More recent evidence

suggests that the development of large and exact numerosity representations is contingent

upon access to language [39]. As a corollary, conceptualizing smaller and less precise quantities

may be agnostic of language, which suggests that there are indeed numerosity specific, or lan-

guage independent, neural substrates circuitry. Previous studies have demonstrated the

involvement of the putamen in visual processing of Roman numerals [40], magnitude esti-

mates of negative numbers [41] and haptic numerosity [11]. Our findings not only replicate

the involvement of the putamen in processing of numerals but also provide detail about how

the putamen responds to different modality presentations of numbers and the time-frequency

characteristics of those responses. Disentangling numerical circuits from language ones could

be of clinical value, especially in the setting of Gerstmann syndrome which is classically typi-

fied by acalculia. To this end, future studies should leverage structural and functional

projected back to spectrogram space using the principal components with significant clusters shown by the red

contours. Right panels show the location of the contact within parcellated brain regions.

https://doi.org/10.1371/journal.pone.0313155.g006
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Fig 7. Linear SVM classification of spectrograms from all arabic numeral trials versus inter-trial interval

spectrograms. Classification values of parcellated cortical and subcortical brain regions are presented with a gradient

(Yellow; 1 = 100% classification accuracy, Purple: 0.68 = 68% classification accuracy) (A). The three contacts with the

highest classification value are shown in (B). Left panels show SVM coefficients from the spectrogram classification

projected back to spectrogram space using the principal components with significant clusters shown by the red

contours. Right panels show the location of the contact within parcellated brain regions.

https://doi.org/10.1371/journal.pone.0313155.g007
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Fig 8. Linear SVM classification of spectrograms from all assorted dots trials versus inter-trial interval

spectrograms. Classification values of parcellated cortical and subcortical brain regions are presented with a gradient

(Yellow; 1 = 100% classification accuracy, Purple: 0.68 = 68% classification accuracy) (A). The three contacts with the

highest classification value are shown in (B). Left panels show SVM coefficients from the spectrogram classification

projected back to spectrogram space using the principal components with significant clusters shown by the red

contours. Right panels show the location of the contact within parcellated brain regions.

https://doi.org/10.1371/journal.pone.0313155.g008
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connectivity methods while directing specific attention towards the involvement of subcortical

structures. The development of smaller scale and higher resolution recordings will be instru-

mental to these future investigations.

Because fMRI analyses hinge upon blood-oxygen-level-dependent (BOLD) signal changes,

which are strongly coupled with high-frequency broadband activity and local field potentials

[42], prior iEEG studies into number cognition have largely directed their attention to this

band as a marker for synchronized neuronal activity [8–11]. While high-frequency broadband

activity had strong classification value within our analysis, our time-frequency cluster feature

maps suggest that power changes in lower frequency bands may also be of value in distinguish-

ing numerical stimuli from non-numerical stimuli and characterizing specific representation

formats. Future studies should attempt to further elucidate the role of theta, alpha, and beta

frequency changes during number processing.

Fig 9. Summary map of all contacts with statistically significant SVM classifications. The top row presents the proportion

of significant SVM clusters. It illustrates what proportions of channels are significant at that time-frequency ranging from 0 to

1. Yellow indicates a greater proportion of clusters while blue represents few clusters at specific time-frequency points. The

middle row shows the directionality of spectral change for these significant SVM clusters during number trial conditions

versus inter-trial intervals. It illustrates which proportions are positive ranging from 0 to 1. Yellow indicates an increase in

time-frequency clusters during number trials versus inter-trial intervals while blue indicates a decrease in time-frequency

clusters. White regions in the plot indicate that no directional change occurred. The bottom row presents the classification

value of the directionality of SVM cluster changes. Yellow reflects high classification accuracy, while dark blue represents less

robust classification accuracy. Time-frequency points with no significant classification value are white.

https://doi.org/10.1371/journal.pone.0313155.g009
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Limitations

There were several limitations to our study. First, by only using sEEG, the spatial resolution of

our cortical recordings was constrained because the placement of electrodes is solely deter-

mined by clinical purposes. Nonetheless, we were still able to associate number stimuli with

structures that align with existing models of number cognition, specifically the TCM. Second,

we chose to use a linear SVM with PCA as our classification method knowing that this may

come at the sacrifice of classification accuracy. We opted against a more complex classification

method with the intent of prioritizing interpretability over classification accuracy. Despite

these limitations, to our knowledge, this is one of the first studies to utilize sEEG depth elec-

trodes for the purpose of investigating human number cognition through sampling both corti-

cal and subcortical structures.

Conclusion

In conclusion, we used a machine learning classifier to identify cortical and subcortical sub-

strates of human number cognition. Our findings support postulates of the TCM in number

processing. However, we also determined that subcortical structures, particularly the putamen

exhibited robust classification accuracy in response to numerical stimuli, thus expanding this

framework. Analyses of spectral feature maps revealed that theta, alpha and beta frequency

bands held greater than chance classification value and could be potentially used to character-

ize format specific number representations. We provide both neuroanatomical and electro-

physiologic targets of interest that can be leveraged in future number cognition investigations.
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