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Abstract

The ability to conceptualize numerical quantities is an essential human trait. According to
the “Triple Code Model” in numerical cognition, distinct neural substrates encode the pro-
cessing of visual, auditory, and non-symbolic numerical representations. While our contem-
porary understanding of human number cognition has benefited greatly from advances in
clinical imaging, limited studies have investigated the intracranial electrophysiological corre-
lates of number processing. In this study, 13 subjects undergoing stereotactic electroen-
cephalography for epilepsy participated in a number recognition task. Drawing upon
postulates of the Triple Code Model, we presented subjects with numerical stimuli varying in
representation type (symbolic vs. non-symbolic) and mode of stimuli delivery (visual vs.
auditory). Time-frequency spectrograms were dimensionally reduced with principal compo-
nent analysis and passed into a linear support vector machine classification algorithm to
identify regions associated with number perception compared to inter-trial periods. Across
representation formats, the highest classification accuracy was observed in the bilateral
parietal lobes. Auditory (spoken and beeps) and visual (Arabic) number formats preferen-
tially engaged the superior temporal cortices and the frontoparietal regions, respectively.
The left parietal cortex was found to have the highest classification for number dots. Notably,
the putamen exhibited robust classification accuracies in response to numerical stimuli.
Analyses of spectral feature maps revealed that non-gamma frequency, below 30 Hz, had
greater-than-chance classification value and could be potentially used to characterize for-
mat specific number representations. Taken together, our findings obtained from intracranial
recordings provide further support and expand on the Triple Code Model for numerical
cognition.
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Introduction

The capacity to comprehend numerical quantities is remarkably phylogenetically conserved
across several animal species [1]. However, the ability to deftly conceptualize and leverage
abstract symbolic representations of numerical quantities is a uniquely human trait [1, 2]. Given
the ubiquitous need to interact with quantities in daily life and the deleterious quality-of-life con-
sequences associated with poor number literacy [3], developing further insights into the neural
basis for our sophisticated numerical processing capabilities is of particular interest and value.

A leading framework for numerical cognition is the “Triple Code Model” (TCM) [4, 5].
The TCM postulates that cortical neuronal populations within the ventral temporal lobe, peri-
sylvian region, and intraparietal sulcus are responsible for processing visual (“6”), auditory ver-
bal (“six”), and non-symbolic (“eeeees”) numerical representation formats, respectively [5].
Studies utilizing functional magnetic resonance imaging (fMRI) and transcranial magnetic
stimulation (TMS) have lent support to the TCM while also indicating a broader engagement
of cortical regions beyond those originally proposed, such as the cingulate gyrus and cerebel-
lum [6, 7]. Invasive modalities such as intracranial electroencephalography have also affirmed
the TCM, contributing to a more robust understanding of the neuronal spatiotemporal
dynamics during number processing [8-11].

To date, iEEG investigations have primarily relied on electrocorticography (ECoG) in the
form of subdural strips and grids to analyze cortical areas. Despite compelling evidence that
subcortical structures play an integral role in number processing [12-15], exceptionally few
studies have conducted electrophysiological recordings from deeper subcortical regions [15,
16]. To address this gap, we used stereotactic electroencephalography (sEEG) recordings in
medically refractory epilepsy patients implanted for the purposes of seizure localization. In
contrast to ECoG, sEEG covers of cortical areas in sulci and subcortical areas posited to be
involved in number processing by the TCM. The sEEG electrodes used currently, which are
around 2 mm in diameter, measure brain activity much more locally than scalp electroenceph-
alography (EEG); most of the activity is concentrated less than 1 cm away from the recording
contact compared to large spread across cortical areas for EEG [17]. Stimulation can also be
delivered using sEEG to perturb brain activity. Compared to TMS, sEEG has similar spatial
specificity, both change activity most around 1 cm from the focus [18, 19]. There is a contrast
between SEEG and TMS in the brain depth that is able to be stimulated, with TMS being lim-
ited to around 4 cm in depth [20] and sEEG is able to stimulate as deep as the contact is
implanted. Comparing sEEG to fMRI, both record from the same sub-surface brain structures,
however, fMRI measures blood oxygenation whereas sEEG is a direct measure of electrical
neural communication. Practically, this is important because of reproducing brain-wide asso-
ciation studies using fMRI has been shown to take thousands of individuals [21] so having cor-
roborating evidence from other neuroimaging modalities is essential, and SEEG can detect
millisecond-time scale changes in neural activity whereas fMRI samples activity on the order
of every two seconds. Thus, sEEG can detect the precise order of brain area activation as well
as fast neural activity such as oscillations. In this study, we used sEEG to replicate the triple
code involvement of the ventral temporal lobe, perisylvian region, and intraparietal sulcus and
characterize the involvement structures outside these areas in numerical cognition. Drawing
upon the TCM’s postulates, we presented 13 subjects with a number recognition task of
numerical stimuli that differed at the level of representation type (symbolic vs. non-symbolic)
and mode of stimuli delivery (visual vs. auditory). Using a classification algorithm on sEEG
recordings, we examined the extent to which number encoding brain regions aligned to the
TCM. Additionally, this approach enabled us to explore neural substrates outside of this pre-
dicted framework.
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Materials and methods
Participants

Thirteen patients with a diagnosis of medically refractory epilepsy were implanted with sEEG
electrodes for the purpose of seizure onset zone localization. The sEEG electrodes used were
0.8 mm in diameter with a center-to-center pitch of 3.3 mm to 5mm between electrode con-
tacts (PMT, Chanhassen, MN, USA). A total of 2,482 contacts were analyzed and distributed
within each subject as shown in Fig 1. Pertinent demographic characteristics are tabulated in
Table 1. Institutional Review Board approval was obtained at Oregon Health & Science Uni-
versity (STUDY00018870). All participants were over the age of 18 and provided written
informed consent. Informed consent was obtained under the Declaration of the Principles of
Helsinki.

Behavioral task

Patients performed a passive numerical recognition task on a laptop (Fig 2). During the task,
patients were presented with a number quantity from one to nine in one of four different
representation formats. Two of the four were auditory (spoken number, sequential beeps)
while the remaining two were visual (Arabic numeral, assortment of dots). These representa-
tion formats were designed to reflect common types of number stimuli encountered in daily
life. At the start of each trial, a fixation cross was shown for between 500 and 1500 ms, chosen
uniform randomly, to orient the patient’s attention. The number stimulus was then presented
for 1000 ms with an inter-trial period of 1500 to 3500 ms chosen uniform randomly. All 13
patients were presented with 200 number trials randomly shuffled so that there were 40 pre-
sentations of each number modality. To ensure attentiveness, patients were presented with
catch trials on 10% of trials. They were prompted to press the left arrow key when the number
was odd and the right arrow key when the number was even. The task would not proceed until
patients responded to the catch trial. The code to administer the task is available at https://
github.com/alexrockhill/numbers.

The task was administered using a custom jsPsych script implemented through a web
browser [22]. The laptop was placed in front of patients on a table comfortably positioned over
their lap. Trials were synchronized to intracranial electrophysiology using a photodiode con-
nected into the same amplifier as the sSEEG data and attached to either the right or left corners
of the laptop screen [23]. Trials during corrupted photodiode events were excluded as accurate
timing of intracranial electrophysiology changes could not be ascertained without photodiode
synchronization. All participants included were right-hand dominant and responded to catch
trials accordingly.

Electrode localization

To determine sEEG electrode positions, preoperative stereotactic T1 and T2 magnetic reso-
nance (MR) were registered to postoperative computerized tomography (CT) imaging studies
with MNE-Python [24, 25]. Anatomic labels were assigned to contacts using the Desikan-Kill-
iany atlas label of each patient’s Freesurfer reconstruction [26]. Contact locations were warped
to a template brain (cvs_avg35_inMNI152) to standardize contact positions across patients
and allow between patient comparisons. Task-related cue and response events were synchro-
nized using differences in time stamps recorded by the task computer relative to the time that
the fixation stimulus was displayed which was synchronized by the photodiode. Using MNE--
Python, time-frequency spectrograms for each event were computed using the Morlet wavelets
method with frequencies from 1 to 250 Hz. After bandpass filtered between 0.1 and 40 Hz,
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Fig 1. Distribution and localization of sEEG electrodes. Electrode localization (A) Heat map 94 of sSEEG electrode contact distribution (B) sSEEG
implantation layouts for each of the 13 patients.

https://doi.org/10.1371/journal.pone.0313155.9001

voltage time-series signals were appended to the bottom of each spectrogram to account for
event-related potentials in our classification analysis.

Pre-processing

Recordings from sEEG channels were average re-referenced, which has been shown to increase
sensitivity to high-frequency broadband activity which is correlated with single unit activity
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Table 1. Subject demographics.

Subject Age Sex Dominant Hand
S72 47 female right
S73 25 female right
S78 34 female right
S79 30 male right
S80 20 male right
S82 43 male right
S83 43 female right
S84 25 male right
S85 69 male right
S86 21 male right
S90 33 male right
S91 48 male right
S92 44 female right

https://doi.org/10.1371/journal.pone.0313155.t001

[27]. Trials where peak-to-peak amplitude at any recording contact was greater than a global
rejection threshold estimated by autoreject [28].

Classification

We leveraged a classification analysis similar to Rockhill et al. 2023 to determine the classifica-
tion accuracy of SEEG channels, parcellated brain regions, and spectral features for all numeri-
cal stimuli (Fig 2). Number trial spectrograms consisted of the period -1 s prior to number
stimulus presentation to 1 s afterward. These spectrograms were classified differently from
inter-trial interval spectrograms of the same duration. Due to the size of the spectrogram data
relative to the number of trials, the data had to be dimensionality reduced by principal compo-
nent analysis (PCA) in order for the SVM to converge on classification that generalizes to
unseen data [25]. Training spectrograms were dimensionally reduced with PCA. The first 50
principal components were used as inputs into a linear support vector machine (SVM) classi-
fier deployed with scikit-learn [29]. Six-fold cross-validation was used. A binomial distribution
with a probability of 0.5 and with the number of observations matching the number of presen-
tations of each number modality was used as the null distribution. Coefficient matrices from
the SVM were validated using a one sample cluster permutation test with a significance thresh-
old set at 99% of a T-distribution (alpha = 0.01). Within sSEEG channels, clusters were deemed
statistically significant if their T-statistics were greater than 99% of permuted clusters. With 40
trials per number modality, we were powered at 79.97% to detect a large effect size of 0.4
between the stimulus and inter-trial interval conditions.

Results
SVM classifier accuracy

Our linear SVM successfully classified spectrograms during number stimuli and specific repre-
sentation formats from those during the inter-trial interval. With an alpha threshold of 0.01
relative to the null distribution, we identified contacts with statistically significant classification
probabilities. For our four representation formats, 360, 781, 962, and 342 contacts had signifi-
cant classification values during Arabic, beeps, spoken, and dots, respectively, out of 2,567
total contacts (Fig 3). There were 74 contacts that were significant for all four representation

types.
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decomposed into spectrograms. (3) PCA is fit to the spectrograms to reduce the dimension of the data. For each epoch, there is a
weight for each PCA component, and the explained variance is shown as a bar plot beneath the line plot of weights for that
component. (4) An SVM was fit to the PCA component weights, beneath, the projection back into spectrogram space is shown
by multiplying the principal component weights by the SVM coefficients and summing the output. (5) Finally, the PCA
component weight for the test trials were classified as being during the stimulus period of interest or inter-trial interval. The
linear decision boundary for the first 2 principal components is shown as an example. (D) Three example principal components
are shown projected back into time-frequency space showing “eigenspectrograms” which are spectrograms with important
features for the classification task. This is done my multiplying each of the first three PCA components with the SVM coefficients
to project them back into spectrogram space (like in (4) but not averaged).

https://doi.org/10.1371/journal.pone.0313155.9002

All number formats vs. Inter-trial period

We began by looking at spectrogram classifications that were significant across number repre-
sentation formats compared to spectrograms during the inter-trial interval. The SVM classifi-
cation demonstrated that left parietal regions and left lingual cortex had the highest
classification accuracy (Fig 4A). The three contacts with the highest classification value across
all number stimuli are presented on Fig 4B. The first was in the left lingual cortex. The second
was in right fusiform gyrus. The third was in the superior frontal cortex. The contacts found to
be significant for Arabic, dots, spoken, and beeps number representation formats were
observed to be distributed in a fronto-parietal-temporal network that closely matches the
TCM.

Classification of auditory representation formats

SVM classification of beep spectrograms showed that bilateral superior temporal and right
inferior parietal cortex had robust classification values (Fig 5A). Left putamen had classified
with high accuracy as well (Fig 5A). Of the three contacts with the highest classification accu-
racy, two were in the right superior temporal gyrus while the third was in the left superior tem-
poral gyrus (Fig 5B). Gamma and theta to low beta increases were used for classifying beeps in
the two right superior temporal gyrus contacts. These changes were also present and used for
classification in the left superior temporal gyrus contact, and both had similar timing with
most activity occurring before the end of the audio presentation at 0 s.

Similar to the classification of beeps, spoken number trials demonstrated the best classifica-
tion value in the bilateral superior temporal cortices (Fig 6A). Within the subcortex, the left
putamen demonstrated a robust classification value similar to that of the superior temporal
cortices (Fig 6A). The three contacts of highest accuracy were found in left superior temporal
cortex(Fig 6B). High-frequency broadband increases were used to classify spoken number tri-
als within superior temporal cortices. Additionally, sustained theta and alpha decreases were
observed to be important for classification within both superior temporal cortex contacts.

Classification of visual representation formats

The SVM classification of spectrograms during Arabic numeral trials indicated that the frontal
lobes, left parietal lobe posterior to the postcentral gyrus and bilateral inferior temporal gyrus
had robust classification value (Fig 7A). The three contacts of highest classification accuracy
were localized in the temporal-occipital junction, middle temporal cortex, and the superior
parietal lobule (Fig 7B). Decreases and increases in alpha and increases in high-frequency
broadband activity were most important for classifying Arabic numerals for the contacts
located in these areas.

Despite having fewer contacts than other regions, the left parietal cortex had the best classi-
fication value when the SVM classified dot number stimuli spectrograms compared to inter-
trial interval spectrograms (Fig 8A). The bilateral frontal lobe had robust classification value as
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distribution across all contacts are shown. One sample t-tests comparing the difference between the test distribution and chance resulted
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representation format.

https://doi.org/10.1371/journal.pone.0313155.9003

well. The three contacts with the highest classification accuracies were in and around bilateral
superior parietal lobule (Fig 8B). Alpha and beta decreases and high-frequency broadband
increases were important for classifying dot trials.

Spectral features with high classification value for number stimuli

To better understand the SVM classification coefficients, we generated feature maps showcas-
ing the relative abundance of statistically significant time-frequency clusters and the propor-
tion of positive significant clusters to determine the directional patterns of time-frequency
cluster changes (Fig 9). Then, we assessed the classification value of these cluster changes.
Across all number representation formats, significant clusters within the theta to beta fre-
quency ranges were well represented. To a less robust degree, spoken number and beeps dem-
onstrated a number of significant high-frequency broadband clusters as well. The theta and
beta clusters generally increased in power for all representation formats with the exception of
spoken number, where beta clusters demonstrated an initial increase before a decrease. For
beeps and spoken number formats, there were significant high-frequency broadband clusters
with increased power during the experimental condition compared to the inter-trial intervals.
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Increases in high-frequency broadband power had the highest classification accuracy. Alpha
and beta were less closely associated with high-accuracy classifications but were still important
to classification which were unlikely to happen by chance.

Discussion
Brain regions encoding number processing

Using a linear SVM classifier with PCA, we identified cortical and subcortical structures, indi-
vidual contacts, and spectral patterns with high classification value during our number stimuli
trials. Overall, our findings align with results from prior fMRI and ECoG investigations into
number cognition, [6, 8, 11, 31] and by extension, are congruent with existing neuroanatomi-
cal models of number cognition.

When number stimuli, irrespective of representation format, were classified against the
inter-trial period, we found evidence of bilateral parietal lobe engagement and robust engage-
ment of the left inferior parietal cortex, which aligns with the postulates of the TCM (5). Intra-
parietal sulcus is hypothesized to be responsible for encoding an innate, conserved sense of
non-abstract number processing [5, 6]. Previous fMRI studies have implicated the involve-
ment of this region across a variety of number stimuli which has been replicated in ECoG stud-
ies [9, 30, 31]. We also observed that auditory numerical stimuli reliably engaged these
putative cortical substrates. For both beeps and spoken number trials, the bilateral superior
temporal cortices had high-accuracy classifications, suggesting preferential activation at these
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https://doi.org/10.1371/journal.pone.0313155.9005
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projected back to spectrogram space using the principal components with significant clusters shown by the red
contours. Right panels show the location of the contact within parcellated brain regions.

https://doi.org/10.1371/journal.pone.0313155.9006

sites. This confirms known localizations of the eloquent human auditory cortex which have
been implicated by fMRI analyses to underline auditory number processing [32-34].

Classification of the visual representation formats implicated similar regions to expected
cortical regions of engagement. Prior ECoG analyses have identified a visual number form
area (VNFA) within the fusiform and inferior temporal gyri that is preferentially engaged in
response to Arabic numerals (10,11). During Arabic trials, we found evidence of this activation
as well as frontal lobe involvement with evidence of inferior parietal and middle temporal cor-
tical engagement. Our sEEG channels did not sample the VNFA densely, potentially explain-
ing why contacts with high-accuracy classifications were not even more predominately located
in this area. Finally, classification of dot trials indicated preferential engagement of the left
parietal cortex, as expected, as well as the left frontal lobe. This aligns with the frontoparietal
network of number cognition posited by Dehaene et al. and the hypothesized role of the parie-
tal cortex put forth by the TCM [4, 5] with the notable difference that the right parietal sSEEG
channels had lower classification accuracy, questioning the whether the right-hemisphere
dominance found in previous studies should be re-examined.

Interestingly, for auditory number representation formats, the left putamen had the best
classification value of all subcortical structures. The classification accuracy of the putamen was
comparable to that of putative cortical substrates of number processing. The superior classifi-
cation of the left putamen compared to the right is unclear. However, this may be partially
related to the hemispheric dominance of our patients as all were left hemisphere dominant.
Although commonly associated with motor function as a component of the basal ganglia, the
putamen is known to take part in higher-level cognitive functions as well [35-37]. Enhanced
putaminal engagement during numerical processing has been demonstrated during magni-
tude evaluation and arithmetic tasks with functional imaging [12, 14]. Recently, using a high
field MR], investigators recently detected tuned neural responses to numerical quantities
within the putamen during a tactile numerosity task [14], illustrating the pertinent role of the
putamen in integrating and comprehending numerosity inputs.

Considering that neuroimaging studies have also demonstrated the role of the putamen in
language cognition [35, 36], the engagement of the putamen during our number recognition
paradigm touches on the potential interplay between number cognition and language. We did
not attempt to compare neuroanatomic and electrophysiologic features of number stimuli to
language ones in our study due to time constraints. There is spirited debate, particularly within
neuropsychology and social sciences literature, over whether the development of and capacity
for numerical cognition is independent of language acquisition [38]. More recent evidence
suggests that the development of large and exact numerosity representations is contingent
upon access to language [39]. As a corollary, conceptualizing smaller and less precise quantities
may be agnostic of language, which suggests that there are indeed numerosity specific, or lan-
guage independent, neural substrates circuitry. Previous studies have demonstrated the
involvement of the putamen in visual processing of Roman numerals [40], magnitude esti-
mates of negative numbers [41] and haptic numerosity [11]. Our findings not only replicate
the involvement of the putamen in processing of numerals but also provide detail about how
the putamen responds to different modality presentations of numbers and the time-frequency
characteristics of those responses. Disentangling numerical circuits from language ones could
be of clinical value, especially in the setting of Gerstmann syndrome which is classically typi-
fied by acalculia. To this end, future studies should leverage structural and functional
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Fig 7. Linear SVM classification of spectrograms from all arabic numeral trials versus inter-trial interval
spectrograms. Classification values of parcellated cortical and subcortical brain regions are presented with a gradient
(Yellow; 1 = 100% classification accuracy, Purple: 0.68 = 68% classification accuracy) (A). The three contacts with the
highest classification value are shown in (B). Left panels show SVM coefficients from the spectrogram classification
projected back to spectrogram space using the principal components with significant clusters shown by the red
contours. Right panels show the location of the contact within parcellated brain regions.
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Fig 8. Linear SVM classification of spectrograms from all assorted dots trials versus inter-trial interval
spectrograms. Classification values of parcellated cortical and subcortical brain regions are presented with a gradient
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highest classification value are shown in (B). Left panels show SVM coefficients from the spectrogram classification
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https://doi.org/10.1371/journal.pone.0313155.9008
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Fig 9. Summary map of all contacts with statistically significant SVM classifications. The top row presents the proportion
of significant SVM clusters. It illustrates what proportions of channels are significant at that time-frequency ranging from 0 to
1. Yellow indicates a greater proportion of clusters while blue represents few clusters at specific time-frequency points. The
middle row shows the directionality of spectral change for these significant SVM clusters during number trial conditions
versus inter-trial intervals. It illustrates which proportions are positive ranging from 0 to 1. Yellow indicates an increase in
time-frequency clusters during number trials versus inter-trial intervals while blue indicates a decrease in time-frequency
clusters. White regions in the plot indicate that no directional change occurred. The bottom row presents the classification
value of the directionality of SVM cluster changes. Yellow reflects high classification accuracy, while dark blue represents less
robust classification accuracy. Time-frequency points with no significant classification value are white.

https://doi.org/10.1371/journal.pone.0313155.g009

connectivity methods while directing specific attention towards the involvement of subcortical
structures. The development of smaller scale and higher resolution recordings will be instru-
mental to these future investigations.

Because fMRI analyses hinge upon blood-oxygen-level-dependent (BOLD) signal changes,
which are strongly coupled with high-frequency broadband activity and local field potentials
[42], prior iEEG studies into number cognition have largely directed their attention to this
band as a marker for synchronized neuronal activity [8-11]. While high-frequency broadband
activity had strong classification value within our analysis, our time-frequency cluster feature
maps suggest that power changes in lower frequency bands may also be of value in distinguish-
ing numerical stimuli from non-numerical stimuli and characterizing specific representation
formats. Future studies should attempt to further elucidate the role of theta, alpha, and beta
frequency changes during number processing.
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Limitations

There were several limitations to our study. First, by only using sEEG, the spatial resolution of
our cortical recordings was constrained because the placement of electrodes is solely deter-
mined by clinical purposes. Nonetheless, we were still able to associate number stimuli with
structures that align with existing models of number cognition, specifically the TCM. Second,
we chose to use a linear SVM with PCA as our classification method knowing that this may
come at the sacrifice of classification accuracy. We opted against a more complex classification
method with the intent of prioritizing interpretability over classification accuracy. Despite
these limitations, to our knowledge, this is one of the first studies to utilize SEEG depth elec-
trodes for the purpose of investigating human number cognition through sampling both corti-
cal and subcortical structures.

Conclusion

In conclusion, we used a machine learning classifier to identify cortical and subcortical sub-
strates of human number cognition. Our findings support postulates of the TCM in number
processing. However, we also determined that subcortical structures, particularly the putamen
exhibited robust classification accuracy in response to numerical stimuli, thus expanding this
framework. Analyses of spectral feature maps revealed that theta, alpha and beta frequency
bands held greater than chance classification value and could be potentially used to character-
ize format specific number representations. We provide both neuroanatomical and electro-
physiologic targets of interest that can be leveraged in future number cognition investigations.
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