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Abstract

Semantic feature combination/parsing issue is one of the key problems in sound event clas-

sification for acoustic scene analysis, environmental sound monitoring, and urban sounds-

cape analysis. The input audio signal in the acoustic scene classification is composed of

multiple acoustic events, which usually leads to low recognition rate in complex environ-

ments. To address this issue, this paper proposes the Hierarchical-Concatenate Fusion

(HCF)-TDNN model by adding HCF Module to ECAPA-TDNN model for sound event classi-

fication. In the HCF module, firstly, the audio signal is converted into two-dimensional time-

frequency features for segmentation. Then, the segmented features are convolved one by

one for improving the small receptive field in perceiving details. Finally, after the convolution

is completed, the two adjacent parts are combined before proceeding with the next convolu-

tion for enlarging the receptive field in capturing large targets. Therefore, the improved

model further enhances the scalability by emphasizing channel attention and efficient propa-

gation and aggregation of feature information. The proposed model is trained and validated

on the Urbansound8K dataset. The experimental results show that the proposed model can

achieve the best classification accuracy of 95.83%, which is an approximate improvement

of 5% (relatively) over the ECAPA-TDNN model.

Section 1: Introduction

Sound Event Classification [1] (SEC) is to classify sound events in the real-world environment

into predefined categories using a trained system. The complexity and diversity of acoustic

events pose challenges for sound classification models. The research objective is to optimize

the ECAPA-TDNN network model architecture to achieve higher accuracy and reliability in

different acoustic events. In recent years, the recognition and classification of sound events

have garnered increasing attentions from researchers in artificial intelligence. For instance,

Rashid et al. [2] used the identification of cough sounds to aid in the preliminary screening for

COVID-19. Moreover, SEC is of significance to a wide range of applications in domains such

as music recognition, speech recognition, and environmental sound classification. Sound clas-

sification is the extraction of key features from audio signals. Commonly methods include Mel
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spectrograms [3–5], MFCC [6, 7], log-Mel spectrograms [8–10], and Fbank [11, 12]. These

algorithms facilitate the extraction of pertinent acoustic features from raw audio data.

In terms of SEC, researchers have introduced various deep learning models. For example,

the ResNet, proposed by Kaiming in 2015 [13], solved degradation in Deep Neural Networks

((DNN)) [14–16]. Besides, the ResNet [17, 18] and its variants [19–21] are combined with the

SE module [22–24] to enhance the robustness of sound classification model. With the rise of

Convolutional Neural Networks (CNN)-based methods in various sound signal, such as

TS-CNN10 [25], ResNeXt-GAP [26], and AST-P [27]. CNN Network Architecture have

become the standard method for addressing various audio classification problems. For

instance, Su et al. [28] proposed a TSCNN-DS model composed of two four-layer CNNs to

extract features from the LMC feature set and MC feature set, followed by classification. Some

methods are based on shallow CNN architectures [29, 30] and have obtained some results in

SEC tasks. However, shallow CNN architectures are limited by their network depth in extract-

ing local high dimensional audio features, and cannot focus on features in the time-frequency

domain over longer distances. To improve CNN model performance in SEC, variants of CNN

emerged prominently in 2021 [31]. VGG-M [32, 33], with a complexity between VGG16

[34, 35] and VGG19 [36, 37], demonstrates good results in speaker recognition. Yet, its origi-

nal design for image processing made it less adept at capturing essential features from sequen-

tial sound data. Furthermore, prevalent neural network architectures are based on Time Delay

Neural Networks (TDNN) [38], which is widely used in Automatic Speaker Verification, such

as x-vector system. For instance, the renowned ECAPA-TDNN network architecture is pro-

posed by Desplanques et al. from the Ghent University in 2020 [39], which achieves a low

Equal Error Rate (EER) of 0.95%. However, this model overlooks capturing large receptive

fields to identify significant targets. Motivated by the limitations of capturing long-range

dependencies, several professionals have recently adopted the use of attention mechanisms to

address the sound classification problem. For example, AF-TDNN [40] built upon the ECA-

PA-TDNN and provided a novel attention mechanism. While there are improvements in per-

formance, the focus remained on refining the extraction capabilities for smaller targets. In a

similar study, Sharma et al. [41] proposed an ADCNN-5 model composed of CNN and atten-

tion blocks based on DCNN and used a four-channel feature atlas composed of MFCC, GFCC.

Subsequent models like SMMT model [42], have combined attention mechanisms with spik-

ing neural network to emphasize certain partial features to further improve performance.

Although it enlarges the perceptual field, increases the depth and ability of feature extraction

of the network, the number of parameters is much larger than that of DNN. The network

model is also too deep to cause degradation and other problems more easily. In audio process-

ing-related tasks, feature correlation over long distances cannot be ignored. To obtain more

discriminative and powerful information, Li et al. [43] proposed CAR-Transformer Neural

Network Model. Besides, Transformer-based models [44, 45] like Conformer [46] and Effi-

cient Conformer [47] algorithms based on Transformer network are verified the effectiveness

in text recognition in the last three years. However, their generalization performances when

handling various acoustic properties remain a consideration. As shown in Table 1, the three

key performance metrics for sound event classification problems: accuracy, precision, and

F1-score.

Aiming at the limitations of the ECAPA-TDNN in capturing extensive receptive fields and

the problems causes by existing models in wide-range or multi-scale sound events, this paper

proposes a Hierarchical-Concatenate Fusion Module (HCF) integrating the TDNN network.

Meanwhile, key contributions of this study include: (1) Novel Model Design: Introducing

HCF module, focusing on the effective amalgamation of multi-scale information to better cap-

ture both local and global features within Mel spectrograms to help this model get higher
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evaluation metrics. (2) Multi-scale Information Fusion: Parallel convolutional layers are used

for multi-scale feature information fusion in HCF module to make the detection system more

robust in different tasks. (3) Experimental Validation: This study contrasts HCF-TDNN with

three prominent existing convolutional neural network models on the standard Urban-

sound8K dataset, demonstrating its state-of-the-art performance.

The GoogleNet [48] is known to have a Multiscale-multichannel feature extraction archi-

tecture compared to other pre-trained models such as ResNet. In order to overcome the limita-

tions of sound classification models in dealing with the complexity and diversity of acoustic

events, we propose a novel HCF module based on the GoogleNet for the ECAPA-TDNN net-

work model. Although the proposed model utilizes two well-established concepts (convolution

and pooling), the combination of these two concepts for Multiscale-multichannel feature

extraction architecture is the first work in sound event classifications. The combination of the

convolution and HCF modules is expected to work complementarily to achieve better perfor-

mance in SEC. The convolution module captures the convoluted spectrum features, whereas

the HCF module captures the receptive field of spectrum. To evaluate the efficacy of our

method, we have conducted experiments on UrbanSound8K dataset. The results show that

our method imparts the stable performance.

The rest of the paper is organized as follows: In section 2, the sound event classification

model was described, including the topology of HCF-TDNN model and the details and opera-

tional principles of the HCF module structure. Section 3 details about dataset and the experi-

mental setup. Section 4 shows results and makes an analysis in different challenge part as well.

Finally, our works are concluded in section 5.

Section 2: Sound event classification model

This section provides a detailed introduction to the model architecture and the HCF module.

Improved model architecture design

The overall model architecture includes convolutional layer, HCF module, SE module, atten-

tion statistics pool, and fully connected layer. The detailed combination of the ECAPA-TDNN

model and HCF module is shown in Fig 1.

The first layer consists of a 1-dimensional atrous convolutions layer. The main function is

to gradually establish a temporal context. In addition, the first layer of convolution also

improves the system’s tamper-resistance performance through dimension upgrading.

The SE-HCF block is introduced into the second, third, and fourth layers. Each unit con-

sists of two convolutional layers, an HCF module, and an SE module. This combination

ensures that each unit can access all features of the input layers. For each frame layer, the

Table 1. Comparative analysis of sound event classification models.

Datasets Method Accuracy Precision F1-scores

TAU Urban Acoustic Scenes 2019 Conv-StandardPOST 77.2% 78.16% 77.7%

ESC-10 Two-Stream CNN 87.25% 85.1% 89.32%

Urbansound8k Dual-Branch Residual Network 82.6% 80.7% 84.62%

Urbansound8k Net50_SE 93.2% 96.1% 94.23%

Urbansound8k ECAPA-TDNN 89.0% 84.0% 96.0%

ESC-50 CAR-Transformer 85.72% 95.21% 86.67%

CIFAR10-AV SMMT 96.85% 99.48% 97.33%

https://doi.org/10.1371/journal.pone.0312998.t001
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convolutional layers are positioned at the beginning and the end, respectively. The first convo-

lutional layer is employed to reduce feature dimensions and computational complexity while

enhancing training speed. The second convolutional layer restores the feature count to its orig-

inal dimension, ensuring the integrity of feature information and facilitating feature extraction

in a subsequent unit. The HCF and SE modules are in the middle of the unit. The HCF module

Fig 1. A model architecture with the sound event classification model proposed by HCF-TDNN. The HCF-TDNN

branch consists of two convolution layers and three SE-HCF blocks stacked together with the Batch Normalization

laver, followed by the attentive statistics pooling layer. Linear Unit (PReLU) serves as an activation function.

https://doi.org/10.1371/journal.pone.0312998.g001
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is utilized for detailed feature recognition and capturing large targets, while the SE module is

used for channel information extraction. The entire unit employs skip connections, which is

shown in Fig 2.

The fifth layer, similar to the first layer, is also a 1-dimensional atrous convolutions layer. It

connects the output feature maps of all SE-HCF units to aggregate multi-layer features.

Another function is to generate features for the attentive statistics pooling.

The sixth layer is the attentive statistics pooling layer. This layer assigns different weights to

different frames, while generating weighted average and weighted standard deviation. Based

on this way, it can effectively capture longer term changes in speaker features.

The seventh layer serves as the bottleneck layer, generating low dimensional speaker feature

embedding.

The eighth layer serves as the classification layer and outputs the corresponding sound

event classification results. The number of filters in the convolutional layer in the network

structure is set to 128, 512, and 1024. The unbiased linear layer is used in this network, the loss

function uses the Softmax with Cross-Entropy, and the epoch of the training batch is set to 50.

The categories of classification are denoted as the letter S. The specific parameters of each layer

in this network architecture are shown in Table 2.

Fig 2. The SE-HCF block of the ECAPA-TDNN architecture. Each HCF block consists of the stack of the layers that

include Conv-BN-operations and the skip-connection. The processing step contains one-dimensional convolution of

the pre-trained sound features over 3-second snippets for detailed feature recognition and capturing large targets.

https://doi.org/10.1371/journal.pone.0312998.g002
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HCF module

An improved ECAPA-TDNN module is proposed. The HCF module is inspired by GoogleNet

[48], with the advantage of Plug-and-Play. Fig 3 shows the complete architecture of the HCF

module.

The feature maps are divided into s groups, represented by x1,x2,. . .xs. Each group has con-

sistent channel width, denoted by w. Subsequently, each xi is processed via s convolutional

operations. These convolutions can be represented as G1,G2,. . .Gs. When we perform convolu-

tional operations on x1,x2,. . .xs, the output feature maps for each x1,x2,. . .xs are represented as

y1,y2,. . .ys. The innovation is an introduction to a novel concept, instead of processing these

output feature maps independently, we introduce a novel concept. We concatenate adjacent

feature maps yi and yi+1 to form a subgroup, represented as yi,i+1. Mathematically, for each yi
and yi+1, the concatenation operation is formulated as:

yi ¼ GiðxiÞ i ¼ 1:::s ð1Þ

yi;iþ1 ¼ Concatðyi� 1; yiÞ i ¼ 2:::s ð2Þ

Table 2. Model parameters.

Sequence Layer Kernel Dimension Activation Stride Padding Output

L0 input - - - - - Batch×64×98

L1 Covn1d-1 5 64×512 relu 1 2 Batch×512×98

L2 SE_HCF-1 3 512×512 relu 1 2 Batch×512×98

L3 SE_HCF-2 3 512×512 relu 1 3 Batch×512×98

L4 SE_HCF-3 3 512×512 relu 1 4 Batch×512×98

L5 Covn1d-2 1 1536×1536 relu 1 2 Batch×1536×98

L6 Pooling 1 1536×128 tanh 1 2 Batch×3072

L7 Liner-1 - 3072×198 - - - Batch×198

L8 Liner-2 - 198×10 - - - Batch×S

https://doi.org/10.1371/journal.pone.0312998.t002

Fig 3. A detailed view of the HCF module. The HCF module consists of several convolutional layers. Each layer contains a unique set of filters for

extracting temporal features from the input audio signals. These filters are crafted to respond to different frequency ranges and time scales, allowing the

module to capture a wide range of temporal characteristics in sound events.

https://doi.org/10.1371/journal.pone.0312998.g003
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Where, “Concat” denotes the concatenation of two feature maps along the channel dimen-

sions. After pairwise concatenation, s − 1 subgroups are formed. Then, these subgroups are fed

into a subsequent series of layers for further convolution and adjacent feature map concatena-

tion until forming a single subgroup. Similarly, in Fig 3, zi,i+1, o1,2,. . .,i,i+1, and oi,i+1,. . .,s−1,s rep-

resent the results of subgroups convolution operations. After operating all input feature

groups, o1,2,. . .,i,i+1,. . .,s−1,s restores the channel dimension by concatenating all and then utiliz-

ing 1D convolution to reduce the dimensionality. The result after dimensionality reduction is

denoted by O.

The method of creating subgroups by concatenating adjacent feature maps within each

group enhances the model’s ability to capture both local and contextual information. It pro-

vides more structured features, which can improve performance in sound classification by

CNN.

Within this module, parameters and computational complexity are reduced by controlling

the number of convolution groups, layers, and channels. The larger the number of groups and

layers, the stronger the multi-scale extraction capability. The more the channels are, the richer

features become. The specific parameters of the proposed HCF module are shown in Table 3.

Split and concatenate operation of HCF module

The HCF module consists of two primary stages: the split and concatenate operations.

• Splitting Operation: Initially, the integrated feature map X is divided into different groups,

denoted by xi. Importantly, each of these groups xi maintains the same width.

• Phase of Connection Operation: This operation combines adjacent feature maps yi and yi+1

to form a subgroup yi,i+1. It’s worth noting that the channel width of yi,i+1 is twice yi or yi+1.

• Purpose of Identity Mapping: The identity mapping for yi aims to preserve the intrinsic fea-

ture maps. Conversely, yi,i+1 focus on capturing more complex features.

• Channel Expansion & Information Flow: Each connection (such as the initial connection

between yi and yi+1, etc.) is utilized to widen the channel width. This amplifies the exchange

of information between different groups, enhancing feature representation.

• Final Connection & Feature Maintenance: All subgroups are connected, and their outputs

are processed by a 1×1 convolutional layer. In summary, the HCF module is employed a

combination of splitting and connecting operations. This design allows for effective channel

expansion, facilitates the enhancement of information flow, and maintains the integrity of

feature representation, distinguishing it from summation methods used in Res2Net [31].

Table 3. HCF module parameters.

Sequence Layer Kernel Dimension Activation Stride Padding Output

L0 input - - - - - Batch×512×98

L1 Covn1d-1 3 128×128 relu 1 2 Batch×128×98

L2 Covn1d-2 3 256×256 relu 1 2 Batch×256×98

L3 Covn1d-3 3 512×512 relu 1 2 Batch×512×98

L4 Covn1d-4 3 1024×1024 relu 1 2 Batch×1024×98

L5 Covn1d-5 3 1024×512 relu 1 2 Batch×512×98

https://doi.org/10.1371/journal.pone.0312998.t003
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Section 3: Experimental setup

In this section, we primarily describe the experiment conducted to evaluate the proposed

acoustic scene classification. Two contrasting methods, vertical contrast and horizontal con-

trast, are employed to ensure the experiment validity. The vertical experiment mainly focus on

comparing baseline models ECAPA-TDNN [39], AF-TDNN [40], ECAPA-TDNN-GRU [49]

and MultiChannel-ECAPA-TDNN [50]. Horizontal experiment primarily compare with the

conformer [46], VGG19 [51] and STF-Yolo8 [52]. These model comparisons are implemented

in Pycharm with the Torchaudio and PyTorch libraries [53]. In this experiment, training is

accomplished using a GPU (NVIDIA GeForce GTX 3060).

Datasets

The public dataset Urbansound8k is adopted in this experiment, which contains 8732 labelled

excepts of urban sounds from 10 categories (durations less than or equal to 4s, a total of 9.7h)

[33]. Urbansound8k is a medium-sized audio dataset. The length of each segment is at least 3

seconds. Considering the amount of Urbansound8k data, the training and testing data are

divided into 7032 and 1700 pieces in independent experiment, respectively. The test dataset is

extracted for 170 audio data from each category.

Acoustic features

In the experiment, each input audio is converted into a 64 dimensional Mel spectrograms

through a short-term Fourier transform (STFT) and subsequent Mel filter bank. The Mel spec-

trograms are generated by STFT with 25ms Hamming windows duration and 10ms shift.

Mean normalization is used for each frequency interval of the spectrum.

Network settings

The proposed model is trained on 50 epochs and with a batch size of 32. To optimize the net-

work, the Adam optimizer is carried out with a learning rate of 0.001. The unbiased linear

layer is used in this network. When verifying the sound events, Softmax activation is usually

adopted at the output layer. For continuous control of the training and prevention of overfit-

ting, the experimental process involved one round of training and one round of evaluation.

Evaluation metrics

For the sake of monitoring the performance of the models, Accuracy, Kappa, and F1 score are

used for experimental method evaluation. In the statistical results, there are four relationships

between actual and predicted values. TP (True Positive) indicates that observation is positive,

and prediction is positive; FP (False Positive) indicates that observation is negative, but predic-

tion is positive; FN (False Negative) indicates that observation is positive, but prediction is neg-

ative; TN (True Negative) indicates that observation is negative, and prediction is negative.

The Accuracy, Kappa, and F1-scores are defined as:

Accuracy ¼
TP þ TN

TP þ FPþ TN þ FN
ð3Þ

Precision ¼
TP

TP þ FP
ð4Þ

Recall ¼
TP

TPþ FN
ð5Þ
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F1 ¼
2

1

Precisionþ
1

Recall

ð6Þ

Ex Acc ¼
ðTP þ FNÞ � ðTPþ FPÞ þ ðFP þ TNÞ � ðFN þ TNÞ

ðTP þ FPþ TN þ FNÞ2
ð7Þ

Kappa ¼
Accuracy � Ex Acc

1 � Ex Acc
ð8Þ

Section 4: Experimental results

To further demonstrate that the proposed HCF module can effectively enhance the sound clas-

sification accuracy of ECAPA-TDNN, this section will analyze and discuss the performance of

HCF module by ablation experiment and data analysis.

Ablation experiment

To ascertain the improvement of different activation functions for the proposed model in this

paper, classification combinations of the model are tested. In the same model backbone net-

work, tests are conducted using three different activation functions: Relu, Leaky ReLU with a

negative slope of 0.02, and PReLU (Parametric Rectified Linear Unit) with a learning parame-

ter of 0.1. The results of these tests are shown in Table 4.

In the experiment, compared to Relu, Leaky Relu can improve the model’s accuracy by

about 0.35%. PReLU further enhances the accuracy by approximately 1.1%. Therefore, the

PReLU activation function is employed for experiment in the HCF-TDNN model.

To further analyze the impact of different blocks within the HCF module on the overall sys-

tem, ablation experiments are executed on the HCF module. The specific experimental results

are shown in Table 5.

Table 4. The model accuracy and F1 score under different activation functions.

Activation Function Method Accuracy F1-scores

Relu HCF-TDNN 94.44% 95.92

LeakyReLU HCF-TDNN 94.79% 95.88

PReLU HCF-TDNN 95.83% 97.04

https://doi.org/10.1371/journal.pone.0312998.t004

Table 5. Ablation study of the HCF-TDNN architecture.

Exp SE HCF Skip Connections Accuracy Precision Sensitivity Recall F1-scores

Exp.1 × × × 84.72% 85.14% 98.36% 83.75% 84.44

Exp.2 × × ✓ 85.42% 85.77% 98.43% 87.68% 86.71

Exp.3 × ✓ × 88.54% 87.73% 98.8% 92.5% 90.58

Exp.4 ✓ × × 87.85% 89.28% 98.7% 90.39% 89.83

Exp.5 × ✓ ✓ 89.24% 90.48% 98.8% 92.5% 91.48

Exp.6 ✓ × ✓ 89.58% 89.98% 98.81% 91.96% 91.67

Exp.7 ✓ ✓ × 93.40% 94.16% 99.34% 96.04% 95.09

Exp.8 ✓ ✓ ✓ 95.83% 96.59% 99.6% 97.5% 97.04

https://doi.org/10.1371/journal.pone.0312998.t005
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Fig 4. Comparison of confusion matrices for eight models in sound classification. The performance of sound

category classification is meticulously detailed portrayals by each matrix. The matrices are clearly organized for easy

comparison of TP, FP, TN, and FN across models. The strengths and weaknesses of models in sound type

differentiation are indicated by the color gradients in each matrix.

https://doi.org/10.1371/journal.pone.0312998.g004
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The experimental results indicate that the sound classification accuracy is lower than that of

the baseline model with the SE module, HCF module, or skip connection individually. When

combining the SE module with the HCF module, the accuracy is 93.04%, representing an

improvement of approximately 3%. The simultaneous addition of all three components

increases the accuracy to 95.83%, achieving the highest classification precision.

Comparative analysis

We improve the ECAPA-TDNN model by replacing Res2net with the HCF module proposed

in this paper. The confusion matrices for each model are shown in Fig 4.

By comparing the probability values on the diagonals of each model, the HCF-TDNN

achieves a prediction accuracy of 100% for eight types of sounds, including air conditioner

and car horn, surpassing the overall sound recognition performance of other models.

To further evaluate the performance of the four different models in sound event classifica-

tion, a box plot is generated to visualize the distribution of F1 scores for each model, as shown

in Fig 5.

Through the analysis of the box plot results for F1 scores, we can clearly compare and inter-

pret the performance of various models in audio classification. It can be seen from median F1

scores that the HCF-TDNN and ECAPA-TDNN exhibit similar performance. Therefore, it is

necessary to further assess the models comprehensively using Kappa values, providing a more

Fig 5. Box plot analysis of F1 scores for various models. In SEC, the F1 score range and potential outliers obtained

by various models are vividly outlined by the block diagram for each model. The effectiveness of different sound scapes

in complex tasks is distinguished by the visualization of box plots.

https://doi.org/10.1371/journal.pone.0312998.g005
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holistic evaluation than simple accuracy, especially in cases of class imbalance or uneven

errors, as shown in Fig 6.

It should be noted that, for the median Kappa values, the HCF-TDNN model demonstrates

the highest predictive consistency. Additionally, the HCF-TDNN model exhibits relatively

short whiskers, indicating stable performance.

For better visual observation, the accuracy results for each neural network model are plot-

ted as curves. The loss curves and test accuracy curves for each model are shown in Figs 7 and

8, respectively. Since the same number of sound categories are used to form the test set in this

study, the influence of randomness related to initializing weights and hidden layer units can be

disregarded.

Clearly, with the increase of epochs, the loss curve of the HCF-TDNN model gradually

decreases to a relatively stable value. Additionally, the accuracy of the HCF-TDNN model

gradually improves, indicating that the model has reached its optimal performance.

Compared to the Transformer model, the HCF-TDNN model not only enhances the recog-

nition performance but also demonstrates strong convergence. In terms of the same experi-

mental conditions, the accuracy of the HCF-TDNN model is approximately 3%-5% higher

than that of AF-TDNN and ECAPA-TDNN. The experimental results for ECAPA-TDNN,

Fig 6. Comparison box plot of Kappa values for different models in sound classification. The Kappa coefficients of

multiple models within the sound classification domain are evaluated through the presented box plot. The distribution

and consistency of Kappa scores are summarized graphically. The degree of agreement between actual and predicted

sound classifications is measured by the box plot. The identification of models achieving higher precision and

consistency in differentiating sound types is facilitated by the Kappa scores.

https://doi.org/10.1371/journal.pone.0312998.g006
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AF-TDNN, Transformer, and HCF-TDNN model in sound event classification are presented

in Table 6.

The results indicate that the testing performance of the HCF-TDNN model is superior to

other models. This is attributed to the proposed model in this study, which not only considers

how to extract multi-scale features to enhance feature aggregation but also places emphasis on

increasing the channel count and enriching channel information by adding an appropriate

number of layers.

Section 5: Conclusion

This paper proposes a novel HCF module based on the ECAPA-TDNN model to improve

model performance. The HCF-TDNN model uses Mel spectrograms as input features. It is

possible to capture details while still considering local features by the idea of combining

adjacent features. The combination of features from different levels can better integrate

semantic information. Finally, HCF-TDNN model is compared with the previous work in

the same experimental environment. Based on the experimental results, HCF-TDNN model

can achieve an average recognition accuracy of 95.83% on the dataset UrbanSound8K. On

the prospects of systems design, the optimizations targeted at embedded deployment can

help realize real-time urban environmental sound recognition scenarios and edge

Fig 7. Comparison of Loss curves across various models on UrbanSound8K dataset. The evolutions of each model’s

performance over different epochs are illustrated by the graph. The learning dynamics and convergence rates of

various models are revealed by this visualization. A visual assessment of model convergence and training effectiveness

is offered by the distinct learning curves. The models that struggle to minimize the loss are also identified by these

curves.

https://doi.org/10.1371/journal.pone.0312998.g007
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computing solutions. This research makes notable progress in sound event detection, and

the presented approach, analyses, and directions can be laying the groundwork to enable

smart city design. Future work should focus on further compressing the model design as

well as incorporating additional shape and context information and exploring supplemen-

tary data sources.

Fig 8. Model testing accuracy curves based on UrbanSound8K dataset. Evolutions of the loss function over the

epochs during the training using the training and the validation datasets for the different cases are evaluated. The

testing accuracy curves also reveal the model’s performance on SEC.

https://doi.org/10.1371/journal.pone.0312998.g008

Table 6. Comparison of datasets.

Datasets Method Accuracy Precision Sensitivity Recall F1-scores Kappa

UrbanSound8K Conformer 81.944% 84.19% 98.0% 86.92% 85.53% 0.8089

ECAPA-TDNN 90.625% 91.33% 92.44% 93.75% 92.52% 0.9103

AF-TDNN 92.708% 93.0% 99.22% 94.0% 93.5% 0.923

HCF-TDNN 95.83% 96.59% 99.6% 97.5% 97.04% 0.9615

ECAPA-TDNN-GRU 93.056% 94.06% 99.35% 94.93% 94.49% 0.936

Multichannel ECAPA-TDNN 92.014% 94.33% 99.24% 92.22% 93.26% 0.9227

VGG19 92.708% 93.71% 99.2% 95.14% 94.42% 0.9231

STF-Yolo8 91.319% 90.89% 99.09% 92.08% 91.48% 0.9103

https://doi.org/10.1371/journal.pone.0312998.t006
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