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Abstract

The genus Enterococcus is increasingly recognized for its involvement in various human

infections, with several species known to be pathogenic. This study characterized Entero-

coccus sp. SMC-9, isolated from bile of a patient with cholangitis, and compared its charac-

teristics with those of Enterococcus montenegrensis CoE-012-22T, recently isolated from

dried beef sausage. A comprehensive analysis, encompassing phylogenetic, genomic, and

phenotypic studies, confirmed that strain SMC-9 belongs to the same species as E. monte-

negrensis CoE-012-22T. However, comparative genomic analysis revealed key differences

in virulence and antibiotic resistance gene profiles between the two strains. Notably, genes

related to exopolysaccharide biosynthesis and the L-rhamnose biosynthesis pathway were

found exclusively in strain SMC-9, suggesting their role in the strain’s colonization of the bili-

ary tract and its involvement in cholangitis. Additionally, the tetracycline resistance gene tet

(M), which was absent in E. montenegrensis CoE-012-22T, was identified in strain SMC-9,

explaining its high tetracycline minimum inhibitory concentration (>16 μg/mL). These find-

ings highlight the unique pathogenic traits of strain SMC-9 compared to E. montenegrensis

CoE-012-22T. Our study underscores the significant genetic and phenotypic variations that

can exist among strains within the same species, highlighting the critical need for strain typ-

ing to assess their potential impact on patient outcomes and public health.

Introduction

The genus Enterococcus was first described by Schleifer and Kilpper-Bälz [1] and currently

comprises 62 species with a validly published and correct name [2]. Members of the genus

Enterococcus, collectively termed enterococci, are Gram-stain-positive, catalase- and oxidase-
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negative, non-spore-forming, facultative anaerobic bacteria that produce lactic acid as the

major product of carbohydrate fermentation. Enterococci are widely distributed in the envi-

ronment, especially in soil, water, and plants, and are normal inhabitants of the gastrointesti-

nal tract of humans and animals [3]. Enterococci have traditionally been considered to be of

low pathogenicity but have recently emerged as a major cause of nosocomial infections world-

wide [4]. To date, 17 enterococcal species have been associated with human infections, includ-

ing bacteremia, endocarditis, catheter-related urinary tract infections, neonatal sepsis, surgical

and burn wound infections, meningitis, and intra-abdominal and pelvic infections [5, 6].

Notably, enterococci are leading causative agents of biliary tract infections, with Enterococcus
faecalis and Enterococcus faecium being the most commonly involved species.

The initial objective of this study was to investigate the characteristics and taxonomic status

of strain SMC-9, isolated from bile of a patient with cholangitis in April 2021. At the time of

isolation, strain SMC-9 was believed to represent a novel species within the genus Enterococ-
cus. However, during the course of this research, a similar strain (CoE-012-22T) was isolated

from dried beef sausage. Based on its phenotypic and genomic characteristics, this strain was

considered to represent a novel species, for which the name Enterococcus montenegrensis sp.

nov. is proposed. Additionally, strain CoE-012-22T contains genes linked to hydrolase activity

on ester bonds, carbohydrate transmembrane transporter activity, and tagatose-bisphosphate

aldolase activity, which are known to improve food flavors or textures. Other genes identified

are related to sialic acid lyase activity, DNA-binding transcription factor activity, flavin mono-

nucleotide binding, and histidine-containing phosphotransfer, which play roles in signaling,

immunity, and gene expression regulation [7]. Despite these findings, our study remains

focused on the detailed characterization of strain SMC-9, as it was isolated from the bile of a

cholangitis patient, unlike strain CoE-012-22T, which was isolated from food. We aimed to

elucidate the unique pathogenic traits of strain SMC-9 that distinguish it from strain CoE-012-

22T.

Materials and methods

Ethics statement

The present study was reviewed and approved by the Institutional Review Board of Samsung

Medical Center, Seoul, South Korea (approval number: 2023-08-008). Given the retrospective

study design, the requirement for informed consent was waived. A chart review was conducted

from October to November 2023. No patient-identifying information was recorded.

Strain isolation and patient history

Strain SMC-9 was isolated from the bile of a patient with cholangitis who had undergone per-

cutaneous transhepatic biliary drainage (PTBD) due to malignant biliary obstruction. The

patient presented to the emergency room with a high fever (40.1˚C) and chills. Blood tests

revealed anemia (hemoglobin: 8.6 g/dL), leukocytosis with neutrophilia (white blood cells:

12.7 × 109/L; neutrophils: 96.1%), and elevated C-reactive protein (11.7 mg/dL). Liver function

tests indicated obstructive jaundice, with total bilirubin of 3.8 mg/dL, direct bilirubin of 3.3

mg/dL, alkaline phosphatase of 1,296 U/L, and gamma-glutamyl transferase of 239 U/L. Sus-

pecting acute cholangitis, bile and blood cultures were performed, and empirical antibiotic

therapy (intravenous piperacillin/tazobactam 4.5 g every 8 hours) was initiated. A bile speci-

men collected through the PTBD tube was inoculated onto a blood agar plate and incubated

aerobically at 37˚C for 24 hours, resulting in the growth of cream-colored colonies. Initially,

these colonies were identified as Streptococcus bovis using matrix-assisted laser desorption/ion-

ization time-of-flight mass spectrometry (VITEK MS; bioMérieux, Marcy-l’Étoile, France)
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with a confidence value of 68.0%. However, further testing using an automated system for bio-

chemical identification and antimicrobial susceptibility testing (AST) (VITEK 2; bioMérieux)

identified the isolate, designated as SMC-9, as E. faecium with 99% probability. Empirical anti-

biotic therapy was continued for five days with a good clinical response; however, bile cultures

persistently grew the same organism, and C-reactive protein levels remained elevated. The

antibiotic regimen was then switched to intravenous tigecycline 50 mg every 12 hours. After

eight days of tigecycline treatment, bile cultures turned negative, and the patient was referred

to a palliative care hospital for supportive care.

Antimicrobial susceptibility testing

AST was carried out using VITEK 2, with minimum inhibitory concentrations (MICs) inter-

preted based on the breakpoints described in the Clinical and Laboratory Standards Institute

M100-Ed31 document [8].

Phenotypic characterization

The cell morphology of strain SMC-9 was examined using transmission electron microscopy

(TEM) (HT7700; Hitachi, Tokyo, Japan) at an accelerating voltage of 100 keV. Prior to analy-

sis, the strain was cultured aerobically on MRS agar (Thermo Fisher Scientific, Waltham, MA,

USA) at 37˚C for 48 h. Sample preparation for TEM analysis was performed as previously

described with minor modifications [9]. Briefly, bacterial cells were fixed with 2.5% glutaralde-

hyde and post-fixed with 2% osmium tetroxide. After dehydration in a graded series of etha-

nol, the cells were embedded in epoxy resin and sliced using an ultramicrotome (Leica EM

UC7 Ultramicrotome; Leica Microsystems, Wetzlar, Germany). The ultrathin sections were

then stained with uranyl acetate and lead citrate and examined using TEM.

Comparative phenotypic analysis of strain SMC-9 and closely related type strains was per-

formed. The type strains used for comparison with strain SMC-9 were obtained from the

National Collection of Industrial, Food and Marine Bacteria (E. montenegrensis CoE-012-22T

= NCIMB 15468T), the Japan Collection of Microorganisms (Enterococcus saigonensis JCM

31193T), the Korean Collection for Type Cultures (Enterococcus canintestini KCTC 21021T,

Enterococcus dispar KCTC 13288T, and Enterococcus asini KCTC 13286T), and the Korean

Agricultural Culture Collection (Enterococcus diestrammenae KACC 16708T). Catalase and

oxidase activities were examined with 3% (v/v) hydrogen peroxide solution (Sigma-Aldrich,

St. Louis, MO, USA) and 1% (w/v) tetramethyl-p-phenylenediamine solution (bioMérieux),

respectively. The presence of Lancefield group D antigen was tested using the Oxoid Strepto-

coccal Grouping Kit (Thermo Fisher Scientific). Tolerance to bile and the ability to hydrolyze

esculin were assessed on bile esculin agar (Merck, Darmstadt, Germany). Other biochemical

characteristics were determined using API 20 Strep (bioMérieux).

The growth of strain SMC-9 and E. montenegrensis CoE-012-22T under different NaCl con-

centrations, pH levels, and temperatures was tested. The salinity test was conducted on MRS

agar with NaCl concentrations ranging from 0% to 8%, increasing in increments of 0.5%. The

pH test was conducted at the optimal NaCl concentration determined earlier, with a pH range

from 4.5 to 10.0 in intervals of 0.5. The growth was further investigated at different tempera-

tures–4, 10, 15, 20, 25, 28, 30, 37, 40, 42, 45, and 50˚C–under the optimal NaCl concentration

and pH level.

Whole-genome sequence analysis

Genomic DNA was extracted using the MG Genomic DNA Purification Kit (Macrogen, Seoul,

South Korea), and sequencing libraries were prepared using the TruSeq DNA Nano Library
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Prep Kit (Illumina, San Diego, CA, USA). Whole-genome sequencing was performed using

the HiSeq X Ten system (Illumina). Raw paired-end reads underwent trimming to remove

adapter sequences, low-quality reads, and PhiX sequences using BBDuk v38.84 [10] Subse-

quently, the trimmed reads were de novo assembled using SPAdes v3.13.0 [11]. The assembled

contigs were annotated using Prokka v1.14.6 [12] and the Rapid Annotation using Subsystem

Technology (RAST) server v2.0 [13–15]. The comparison of gene functions between strain

SMC-9 and strain CoE-012-22T was performed using the RAST server v2.0 and the Kyoto

Encyclopedia of Genes and Genomes (KEGG) v110.1 [16]. Pathogenicity potential was

assessed using PathogenFinder v1.1 (database version: 2014) [17], and virulence genes were

identified using VirulenceFinder v2.0.5 (database version: 2022-12-02) [18]. Antibiotic resis-

tance genes were detected using the Comprehensive Antibiotic Resistance Database (CARD)

v3.2.9 (database version: 2024-02-13) [19] and ResFinder v4.4.2 (database version: 2023-04-

12) [20]. The DNA G+C content was calculated from the genome sequences. The circular

genome was visualized using Proksee v1.0.0 [21].

Phylogenetic and phylogenomic analyses

The full-length sequence of the 16S rRNA gene was retrieved from the genome sequence of

strain SMC-9 and compared with the corresponding sequences of related strains within the

genus Enterococcus available in the NCBI database (https://www.ncbi.nlm.nih.gov/genbank/).

Sequence similarity was calculated using the pairwise sequence alignment tool in NCBI. Multi-

ple sequence alignment was performed using Clustal X [22], and the phylogenetic tree was

constructed using the neighbor-joining method with 1,000 bootstrap replicates in MEGA 11

software [23].

For phylogenomic analysis, genome sequences of related strains within the genus Entero-
coccus were downloaded from the RefSeq database (https://www.ncbi.nlm.nih.gov/refseq/).

Average nucleotide identity (ANI) and in silico DNA-DNA hybridization (isDDH) values

between strain SMC-9 and these strains were computed using the ANI calculator based on the

OrthoANIu algorithm [24, 25] and the Genome-to-Genome Distance Calculator 3.0 with for-

mula 2 [26, 27], respectively. A heatmap for strain SMC-9 and related enterococcal strains was

generated based on OrthoANI values calculated using the OAT software [25]. Additionally, a

phylogenomic tree was constructed using their genome sequences. Briefly, single-copy ortho-

logs were identified using OrthoFinder v2.4.0 with the inflation parameter set to 3.0 [28]. The

amino acid sequences of these orthologs were aligned using MAFFT v7.475 with the “—auto”

option [29] and trimmed using Gblocks v0.91b [30]. The trimmed alignment was submitted to

IQ-TREE v1.3.11.1 [31], where a maximum-likelihood tree was built using the LG substitution

model selected by ModelFinder [32] and 100 bootstrap replicates. Type (Strain) Genome

Server (https://tygs.dsmz.de) results, including species cluster, subspecies cluster, G+C con-

tent, delta statistics, genome size, and protein count, were incorporated alongside the phyloge-

nomic tree [33].

Results and discussion

Phenotypic characteristics

Colonies grown on MRS agar after incubation at 37˚C for 48 h were circular, convex, entire,

smooth, shiny, greyish-white, and 1–2 mm in diameter. Under TEM observation, the cells of

strain SMC-9 were spherical or ovoid in shape with 0.7–1.2 μm in diameter. Flagella were not

seen in the cells, suggesting that this strain is non-motile (Fig 1).

Strain SMC-9 exhibited distinct growth patterns compared to E. montenegrensis CoE-012-

22T in terms of salinity, pH, and temperature tolerance. The salinity tests showed that strain
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SMC-9 could grow in NaCl concentrations ranging from 0% to 5.5%, with optimal growth

observed at a 3.0% NaCl concentration. In contrast, E. montenegrensis CoE-012-22T could

grow in NaCl concentrations ranging from 0% to 6.0%. When tested at a 3.0% NaCl concen-

tration, strain SMC-9 exhibited growth between pH 5.0 and 7.5, with optimal growth observed

within the pH range of 6.0 to 6.5. In comparison, E. montenegrensis CoE-012-22T showed

growth over a broader pH range, from 5.0 to 8.0. Under conditions of 3.0% NaCl and pH 6.5,

E. montenegrensis CoE-012-22T demonstrated growth across a wide temperature range of 4 to

50˚C, while strain SMC-9 exhibited growth only within a narrower range of 25 to 37˚C.

Strain SMC-9 lacked the Lancefield group D antigen and exhibited negative reactions in

both catalase and oxidase tests. Despite being considered the same species, strain SMC-9 and

E. montenegrensis CoE-012-22T exhibited notable phenotypic differences. Specifically, strain

SMC-9 was positive for hippuric acid hydrolysis, a trait not observed in E. montenegrensis
CoE-012-22T. Conversely, E. montenegrensis CoE-012-22T displayed α-galactosidase activity,

which was absent in strain SMC-9. Furthermore, strain SMC-9 did not ferment D-raffinose

and starch, both of which were acidified by E. montenegrensis CoE-012-22T (Table 1).

16S rRNA gene sequence and phylogenetic analysis

The full-length sequence (1,558 bp) of the 16S rRNA gene (GenBank accession number

OL689132) was obtained from the whole genome sequence of strain SMC-9. Based on the 16S

rRNA gene sequence, strain SMC-9 was most closely related to E. montenegrensis CoE-012-

22T (100%), followed by E. canintestini DSM 21207T (99.6%), E. saigonensis VE80T (99.6%)

and E. dispar ATCC 51266T (99.3%). In the phylogenetic tree based on 16S rRNA gene

sequences (Fig 2), strain SMC-9 clustered closest with E. montenegrensis CoE-012-22T. Addi-

tionally, the strain formed a closely related clade with E. canintestini LMC 13590T, E. saigonen-
sis VE80T, and E. dispar NCFB 2821T. The clustering observed in the phylogenetic tree is

Fig 1. Transmission electron microscopy image of strain SMC-9 grown on MRS agar at 37˚C for 48 h. The organism is spherical (A) or ovoid (B) in shape

with 0.7–1.2 μm in diameter. The scale bar indicates 500 nm. CW, cell wall; CM, cytoplasmic membrane.

https://doi.org/10.1371/journal.pone.0312953.g001
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consistent with the numerical sequence similarities, providing support for the classification of

strain SMC-9 as the most closely related to E. montenegrensis CoE-012-22T.

Phylogenomic analysis and genomic characteristics

The genome size of strain SMC-9 was 2.81 Mb with a DNA G+C content of 37.5 mol%, which

is within the range reported for Enterococcus species (genome size: 2.3 to 5.3 Mb; G+C content:

34 to 45 mol%) [34]. Genome annotation using Prokka predicted 2,639 coding sequences

(CDS), 53 tRNA genes, 3 rRNA genes, and 1 tmRNA gene. The RAST server annotation pre-

dicted 2,713 CDS, of which 1,290 (47.5%) were classified into 353 subsystems. The most abun-

dant subsystem category was carbohydrates (390 CDS), followed by amino acids and

derivatives (273 CDS), protein metabolism (222 CDS), cell wall and capsule (133 CDS), and

DNA metabolism (123 CDS) (S1 Fig). The circular genome map of strain SMC-9 is shown in

S2 Fig.

In the phylogenomic tree based on genome sequences (Fig 3), strain SMC-9 formed a dis-

tinct clade with E. montenegrensis CoE-012-22T, E. canintestini LMC 13590T, E. saigonensis

Table 1. Differential phenotypic characteristics of strain SMC-9 and related type strains of the genus

Enterococcus.

Characteristics 1 2 3 4 5 6 7

Growth at

10˚C - + + - + + -

45˚C - + + + - - +

Group D antigen - N/A - - - - +

API 20 Strep results:

Acetoin production + + + + + - -

Hippuric acid hydrolysis + - - - - - -

β-glucosidase hydrolysis + + + + + + +

Pyrrolidonyl arylamidase + + + + - - +

α-galactosidase - + + + - - -

β-glucuronidase - - - - - - -

β-galactosidase - - - + - - -

Alkaline phosphatase - - - - - - -

Leucine aminopeptidase + + + + - - -

Arginine dihydrolase + + + + + - -

Acidification of

D-ribose + + + + + - -

L-arabinose - - - + - - -

D-mannitol - - - - - - -

D-sorbitol - - - - - - -

D-lactose + + + + + + -

D-trehalose + + + + + - -

Inulin - - - - - - -

D-raffinose - + - + - - -

Starch - + - + - - -

Glycogen - - - - - - -

Strains: 1, SMC-9; 2, E. montenegrensis CoE-012-22T; 3, E. canintestini KCTC 21021T; 4, E. saigonensis JCM 31193T;

5, E. dispar KCTC 13288T; 6, E. diestrammenae KACC 16708T; 7, E. asini KCTC 13286T.

All data were obtained from the current study. +, Positive; -, Negative; N/A, not analyzed.

https://doi.org/10.1371/journal.pone.0312953.t001
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VE80T, and E. dispar NCFB 2821T. Notably, the closest clustering was observed with E. monte-
negrensis CoE-012-22T. These findings are consistent with those observed in the phylogenetic

tree based on 16S rRNA gene sequences. The ANI and isDDH values between strain SMC-9

and related strains of the genus Enterococcus were 70.4–98.7% and 20.2–90.9%, respectively.

The highest ANI and isDDH values (98.7% and 90.9%, respectively) were observed between

strain SMC-9 and E. montenegrensis CoE-012-22T (Table 2 and Fig 4), exceeding the thresh-

olds for the delineation of prokaryotic species (95–96% for ANI and 70% for isDDH) [35].

Based on the results of phylogenetic and phylogenomic analyses, we suggest that strain SMC-9

belongs to the same species as E. montenegrensis CoE-012-22T.

While strain SMC-9 and strain CoE-012-22T share highly similar genomes, differences

were noted in their genomic profiles. Comparative genomic analysis on the RAST server,

focusing on the chromosomal regions that encode gene functions, revealed a high degree of

similarity between the two strains, with 822 matching categories. However, strain SMC-9

exhibited 60 unique gene categories not found in E. montenegrensis CoE-012-22T, while E.

montenegrensis CoE-012-22T had 14 unique gene categories not present in strain SMC-9

Fig 2. Neighbor-joining phylogenetic tree based on 16S rRNA gene sequences showing the relationships between strain SMC-9 and related type strains in

the genus Enterococcus. Bootstrap values (�50%) based on 1,000 replications are given at branch nodes. Tetragenococcus solitarius 885/78T was used as an

outgroup. Bar, 0.01 substitutions per nucleotide.

https://doi.org/10.1371/journal.pone.0312953.g002
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(Fig 5). The dominant functional gene categories, including those involved in Amino Acids

and Derivatives, Carbohydrates, and Protein Metabolism, were mostly shared between strain

SMC-9 and E. montenegrensis CoE-012-22T. However, strain SMC-9 exhibited 20 additional

genes in the Amino Acids and Derivatives category and 11 additional genes in the Carbohy-

drates category compared to E. montenegrensis CoE-012-22T. Of particular interest is the Cell

Wall and Capsule category, common to both strains. Within this category, genes responsible

for “Exopolysaccharide Biosynthesis” were exclusively found in strain SMC-9 (S1 Table).

These functional genes play a crucial role in biofilm formation, which provides a protective

environment for bacteria, enhancing their survival against adverse conditions, including

immune responses and antibiotic treatments [36]. Although the VirulenceFinder analysis did

not identify any specific virulence genes in strain SMC-9, the KEGG analysis revealed that this

strain uniquely harbors four genes involved in the L-rhamnose biosynthesis pathway (rmlA,

rmlB, rmlC, and rmlD). Rhamnose-rich cell wall polysaccharides have been reported to affect

Fig 3. Phylogenomic tree of strain SMC-9 and related strains of the genus Enterococcus. The tree was reconstructed based on the 562 single-copy

orthologue protein sequences. Bootstrap values (�50%) based on 100 replications are given at branch nodes. Type Strain Genome Server analysis (TYGS)

results, including species cluster, subspecies cluster, GC content, delta statistics, genome size, and protein count, were incorporated alongside the

phylogenomic tree. Tetragenococcus solitarius 885/78T was used as an outgroup.

https://doi.org/10.1371/journal.pone.0312953.g003
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virulence and colonization potential in the host gut [37, 38]. Thus, the presence of these genes

in strain SMC-9 may have facilitated its colonization of the biliary tract and contributed to the

development of cholangitis in the patient.

The KEGG analysis detected no genes related to primary or secondary bile salt metabolism

in strain SMC-9 and E. montenegrensis CoE-012-22T. However, it revealed that both strains

shared xthA and nfo, which are required for base excision repair to overcome DNA damage

caused by bile salts. They also possessed dinB and recA, which are necessary for SOS-associated

DNA repair for bile-induced DNA damage [39, 40]. Additionally, they shared mrcA, a gene

encoding penicillin-binding protein 1A, which is known to be related to bile tolerance [39,

41]. These findings suggest that both strains are tolerant to bile, as demonstrated by their

growth on bile esculin agar.

Using PathogenFinder, strain SMC-9 was predicted to be a human pathogen with a proba-

bility of 0.897 and matched to 10 pathogenic protein families: 1 SSU ribosomal protein S19P, 1

30S ribosomal protein S21, 1 polyribonucleotide nucleotidyltransferase, 1 ribosomal protein

L29, 2 conserved hypothetical proteins from Streptococcus mitis, 1 conserved hypothetical pro-

tein from Staphylococcus aureus, 1 conserved hypothetical protein from Enterococcus faecalis,
and 2 hypothetical proteins from Staphylococcus aureus. In contrast, PathogenFinder analysis

predicted E. montenegrensis CoE-012-22T as non-pathogenic [7]. These findings indicate that

strain SMC-9 is a causative agent of cholangitis and possesses pathogenic traits distinct from

E. montenegrensis CoE-012-22T.

Antimicrobial susceptibility testing results

The AST results obtained using VITEK 2 were as follows: ampicillin,�2 μg/mL (susceptible);

ciprofloxacin, 1 μg/mL (susceptible); erythromycin, 4 μg/mL (intermediate); levofloxacin,

1 μg/mL (susceptible); linezolid, 2 μg/mL (susceptible); nitrofurantoin,�16 μg/mL (suscepti-

ble); norfloxacin, 4 μg/mL (susceptible); penicillin, 0.5 μg/mL (susceptible); Quinupristin-dal-

fopristin, 2 μg/mL (intermediate); teicoplanin,�0.5 μg/mL (susceptible); tetracycline, >16 μg/

Table 2. Average nucleotide identity (ANI) and in silico DNA-DNA hybridization (isDDH) values between strain SMC-9 and related strains of the genus

Enterococcus.

Species Strain RefSeq accession no. ANI (%) isDDH (%)

Enterococcus montenegrensis CoE-012-22T GCF_029983095.1 98.7 90.9

Enterococcus saigonensis VE80T GCF_011397115.1 84.3 27.9

Enterococcus dispar ATCC 51266T GCF_000406945.1 81.9 25.4

Enterococcus canintestini DSM 21207T GCF_001885735.1 81.0 24.4

Enterococcus hirae ATCC 9790T GCF_000271405.2 72.1 25.5

Enterococcus asini ATCC 700915T GCF_000407365.1 71.8 23.7

Enterococcus diestrammenae JM9A GCF_009933255.1 71.8 22.1

Enterococcus italicus DSM 15952T GCF_001885995.1 71.7 22.9

Enterococcus canis DSM 17029T GCF_001885805.1 71.6 22.8

Enterococcus innesii DB-1 GCF_022846515.1 71.5 26.4

Enterococcus lactis CX 2–6_2 GCF_019343125.1 71.5 24.3

Enterococcus durans BDGP3 GCF_002277935.1 71.4 24.3

Enterococcus gilvus ATCC BAA-350T GCF_000407545.1 71.1 23.8

Enterococcus hermanniensis DSM 17122T GCF_001885945.1 71.1 20.2

Enterococcus malodoratus NCTC 12365T GCF_900447955.1 70.8 25.3

Enterococcus pallens ATCC BAA-351T GCF_000393975.1 70.7 23.7

Enterococcus florum Gos25-1T GCF_004309355.1 70.4 23.6

https://doi.org/10.1371/journal.pone.0312953.t002
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mL (resistant); vancomycin,�0.5 μg/mL (susceptible); high-level gentamicin (susceptible);

high-level streptomycin (susceptible). While certain species within the genus Enterococcus,
particularly common hospital isolates such as E. faecium and E. faecalis, are known to exhibit

resistance to various antibiotics [42, 43], strain SMC-9, albeit isolated in hospital setting,

showed susceptibility to most antibiotics tested. This susceptibility profile holds particular sig-

nificance given the frequent occurrence of antibiotic-resistant Enterococcus strains in hospital

environments.

The genome analysis using the CARD and ResFinder revealed that the tetracycline resis-

tance gene tet(M) was present in the genome of strain SMC-9, which accounts for the high tet-

racycline MIC value of this strain (>16 μg/mL). In enterococci, tet(M), which encodes a

ribosomal protection protein, is the most frequently encountered tetracycline resistance gene

[44, 45]. In contrast, E. montenegrensis CoE-012-22T lacked tet(M), explaining its susceptibility

to tetracycline [7]. The CARD also identified vanY in the vanB cluster (vanYB) and vanT in the

vanG cluster (vanTG) in the genomes of both strain SMC-9 and E. montenegrensis CoE-012-

22T. vanYB encodes a D,D-carboxypeptidase that cleaves the terminal D-Ala from peptidogly-

can precursors, preventing the binding of vancomycin, while vanTG encodes a membrane-

bound serine racemase, which converts L-Serine to D-Serine, the key substrate for the D-Ala-

D-Ser-based vancomycin resistance mechanism [46]. Despite the presence of vanYB and

vanTG, both strain SMC-9 and E. montenegrensis CoE-012-22T lacked the complete gene cas-

settes required for vancomycin resistance, rendering these strains vancomycin-susceptible.

Fig 4. Heatmap generated with Ortho ANI values calculated using the OAT software for strain SMC-9 and related strains within the genus

Enterococcus.

https://doi.org/10.1371/journal.pone.0312953.g004
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In conclusion, strain SMC-9, isolated from bile of a patient with acute cholangitis, demon-

strated key differences in virulence and antibiotic resistance gene profiles compared to E. mon-
tenegrensis CoE-012-22T, which was isolated from dried beef sausage, despite both strains

belonging to the same species. Notably, genes related to exopolysaccharide biosynthesis and

the L-rhamnose biosynthesis pathway were found exclusively in strain SMC-9, suggesting

their role in the strain’s colonization of the biliary tract and its involvement in cholangitis.

Additionally, the tetracycline resistance gene tet(M), which was absent in E. montenegrensis
CoE-012-22T, was identified in strain SMC-9, explaining its high tetracycline MIC (>16 μg/

mL). These findings underscore the unique pathogenic traits of strain SMC-9 compared to E.

montenegrensis CoE-012-22T. This study highlights significant genetic and phenotypic varia-

tions that can exist among strains classified within the same species, emphasizing the critical

need for strain typing to evaluate their potential impact on patient outcomes and public health.

Fig 5. Genome comparison between E. montenegrensis CoE-012-22T and Enterococcus sp. SMC-9. (A) Compositions of gene ontology categories with the

inner ring representing the genome of E. montenegrensis CoE-012-22T and the outer ring representing the genome of strain SMC-9, (B) Venn diagram showing

the number of shared and specific gene orthologs within the genomes.

https://doi.org/10.1371/journal.pone.0312953.g005
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In the context of increasing awareness of antibiotic-resistant Enterococcus infections, contin-

ued research into the characteristics of variant strains isolated from patients, particularly those

with multidrug resistance, is of critical clinical importance.

Description of Enterococcus sp. strain SMC-9

Cells are Gram-stain-positive, spherical- or ovoid-shaped cocci with 0.7–1.2 μm in diameter

that usually occur in pairs or short chains. When cultured on MRS agar, growth is observed at

temperatures between 25 and 37˚C, with an optimal temperature of 37˚C. The strain can grow

in NaCl concentrations ranging from 0% to 5.5%, with optimal growth occurring at 3.0%

NaCl. Additionally, it is capable of growing in a pH range from 5.0 to 7.5, with optimal growth

observed between pH 6.0 and 6.5. Colonies grown on MRS agar after incubation at 37˚C for

48h are circular, convex, entire, smooth, shiny, greyish-white, and 1–2 mm in diameter. The

strain is catalase- and oxidase-negative, lacks the Lancefield group D antigen, and is capable of

growing on bile esculin agar. The strain is positive for acetoin production, hippuric acid

hydrolysis, β-glucosidase hydrolysis, pyrrolidonyl arylamidase, leucine aminopeptidase, and

arginine dihydrolase, and negative for α-galactosidase, β-glucuronidase, β-galactosidase, and

alkaline phosphatase. Acid is produced from D-ribose, D-lactose, and D-trehalose, but not

from L-arabinose, D-mannitol, D-sorbitol, inulin, D-raffinose, starch, and glycogen.

The strain is SMC-9 (= KCTC 21174 = JCM 34907), isolated from bile of a patient with cho-

langitis. The draft genome of the strain is 2.81 Mb in size with a DNA G+C content of 37.5

mol%.

Supporting information

S1 Fig. Subsystem coverage and category distribution of strain SMC-9 based on the RAST

annotation results.

(TIF)

S2 Fig. Circular genome map of strain SMC-9.

(TIF)

S1 Table. Comparative genome analysis of strain SMC-9 and E. montenegrensis CoE-012-

22T based on the RAST server.
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