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Abstract

Nowadays, electronic computers use a “binary” numbering system, as opposed to “ternary”

logic, which is closer to the way the human brain thinks. In this paper, the symmetric ternary

system is applied to membrane computing for the first time. By combining the symmetric ter-

nary system with membrane computing, this paper provides a more suitable arithmetic oper-

ation method for bio-computers, which breaks through the limitations of the traditional binary

system in complex operations, and has a great potential for application in artificial intelli-

gence and automatic learning in particular. The P System we designed include: Π+ for sym-

metric ternary addition, Π* for symmetric ternary multiplication, and Π/ for symmetric ternary

division. The operation process of each P System was explained through examples, and

their feasibility and effectiveness were verified through simulation software, UPSimulator.

The system we designed can be further applied to symmetric ternary applications.

1 Introduction

Existing computers use a “binary” numbering system, which, despite the simplicity of its

computational rules, is not a perfect representation of what humans really think. In contrast,

“ternary” logic is much closer to the way the human brain thinks.

Ternary is the base 3 for the system, generally has two forms of expression: one is to “0”,

“1”, “2” as the basic character form of expression. One is a representation with “-1”, “0”, “1” as

the base character, and this representation is also known as symmetric or balanced ternary. In

general, we do not have only “true” and “false” answers to questions, but also “I don’t know”.

In symmetric triadic logic, the symbol “1” represents “true”; the symbol “-1” represents “false”;

the symbol “0” represents “I don’t know”. Obviously, this logical expression is more in line

with the development trend of computers in artificial intelligence, which provides the possibil-

ity of fuzzy arithmetic and autonomous learning for computers. The logic of symmetric ter-

nary is usually applied to decision-making [1], such as voting with “yes”, “no”, or “abstain”;

trading with “buy”, “sell”, or “wait-and-see”; double-entry bookkeeping reflects the thinking of

symmetric ternary; SQL database system adopts three-valued logic, which is the application of

symmetric ternary.
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However, ternary logic is not a new emphasis. Ternary computers have long had a prece-

dent in the history of computer development. As early as the 1950s and 1960s, a group of

researchers at Moscow State University designed the first ternary computers in the history of

mankind, “Сетунь” and “Сетунь 70”. The “Сетунь” computers used symmetric trigonometry

instead of normal trigonometry [2]. Symmetric ternary logic circuits are not only faster and

more reliable than binary logic circuits, but also require less equipment and power. One of the

characteristics of symmetric ternary code is symmetry, i.e., the consistency of the opposite

numbers, so that, unlike binary code, there is no concept of an “unsigned number”. As a result,

the architecture of a ternary computer is much simpler, more stable, and more economical.

The instruction system is also easier to read and very efficient. At the same time, symmetric

ternary can represent integers more naturally than binary, with fewer integer digits of smaller

absolute value (omitting the zero before the first non-zero digit). The numbers it records can

express the full range of integers, and the introduction of “-1” eliminates the need for an extra

minus sign for negative numbers. Its corresponding logic circuits are “negative voltage”, “zero

voltage” and “positive voltage”.

As computer technology continues to advance, symmetric ternary logic has once again

attracted the attention of the scientific community. As chips are made smaller and smaller,

semiconductors are gradually moving closer to the realm of quantum. Difficult problems like

quantum tunneling, where we might have to put in a very large amount of effort to possibly

improve efficiency a little bit, might have to start opening up other paths. And ternary, right

now, is being resurrected in forms other than electronic computers. The electronic computer

has only two base states, on and off. But photonic computers, there are light intensity, wave-

length, phase, propagation direction and polarization of five states. Professor Yi Jin of Shang-

hai University, starting from the basic principles of constructing computers and the basic

characteristics of light, for the first time combined light intensity and polarization direction to

represent the three-valued information, and utilized the spinning effect of liquid crystals and

polarizers to realize the interconversion and migration of the three optical states, which put

forward a brand-new theory of optical computers—Ternary Optical Computer (referred to as

the TOC) [3]. In 2019, Chinese physicist Guangchan Guo and his team successfully completed

the transmission of a ternary quantum signal called “qutrit”, which is the first successful ter-

nary study by scientists in the quantum field [4].

Meanwhile, membrane computing has gradually become a popular research area in bio-

computing. Membrane computing (also known as P System) is a new branch of natural com-

puting, which is a new model of computation based on the abstraction of the structure and

function of living cells and the collaboration of cell population such as tissues and organs. It is

a computational model proposed by the Professor Gh.Păun in 1998 [5]. After Gh.Păun pub-

lished his paper “Computing with membranes” in 2000 [6], it marked the birth of membrane

computing as a research field. Since its introduction, membrane computing has attracted

extensive attention from the scientific community, covering a wide range of disciplines or

fields such as computer graphics and linguistics [7], biology [8], automation [9], and econom-

ics [10], and has rapidly evolved into a field of scientific research with great potential, and its

development provides a rich computational framework for bio-computing.

With the intensive research on membrane computing, several studies have been devoted to

the development and optimization of P System for arithmetic operations. Adrian Atanasiu

designed arithmetic cell-like P System [11]. G.Ciobanu [12] designed arithmetic P System

based on natural coding to realize arithmetic operations, which greatly simplified the mem-

brane system structure. Ping Guo et al. [13] designed multi-layer membrane P System to real-

ize arithmetic operations and reduce the computational complexity. Haiyan Zhang et al. [14]

designed a single-layer membrane P System to realize arithmetic operations, which further

PLOS ONE An arithmetic operation P system based on symmetric ternary system

PLOS ONE | https://doi.org/10.1371/journal.pone.0312778 November 1, 2024 2 / 30

Competing interests: The authors declare that they

have no known competing financial interests or

personal relationships that could have appeared to

influence the work reported in this paper.

https://doi.org/10.1371/journal.pone.0312778


simplifies the membrane structure and improves the computational efficiency. Minghong Luo

et al. [15] designed a multi-layer membrane P System to realize arithmetic operations with

signed numbers. Ping Guo et al. [16–18] designed single-layer membrane P System to realize

expression evaluation in the integer domain. Hong Zhang et al. [19] implemented basic arith-

metic operations in the domain of rational numbers using P System. Kong, Y. et al. [20] inves-

tigated fundamental problems in fraction representation and arithmetic-fraction

simplification. However all the above studies are based on binary or decimal.

While most research is still focused on binary and decimal systems, the potential of ternary

is gradually emerging.Symmetric ternary is used in a number of applications due to its unique

properties. Inspired by the balanced-ternary concept, Ji L et al. [21] demonstrates the reconfi-

gurable generation of order-controllable vortices via cascaded N-layer meta surfaces. Faghih E

et al. [22], for the first time, considers balanced ternary advantages to achieve a more efficient

design for quantum multipliers as the main component in arithmetic blocks.

There are also many scientists who have devised arithmetic operations related to symmetric

ternary. Ratan Kumar et al. [23] designs ternary logic circuits for nanoelectronics applications,

the digital multiplier circuit is developed using Pseudo n-type carbon nanotube field effect

transistors (CNTFETs). Based on the parallel carry-free TW-MSD adder, Yunfu S et al. [24]

proposed a parallel R4-MSD square root algorithm, which is designed and implemented on

the protype SD16 of ternary optical computer. Malik A et al. [25] proposes carbon nanotube

field effect transistor (CNTFET)-based ‘exact’ and ‘approximate’ ternary full adders (TFA).

Vudadha C [26] presents a new methodology to implement ternary Conditional Sum Adders

(CSA) using CNFETs.

Although ternary has shown its potential for applications in several fields, its combination

with membrane computing is still under-explored. And balanced ternary may become the most

suitable number system for bio-computers. The study of arithmetic P System based on symmet-

ric triples for membrane computing is of great academic and practical importance for the reali-

zation of a general-purpose bio-computer. The innovations of this paper mainly include:

1) Applying the symmetric ternary number system to membrane computing and designing a

symmetric ternary arithmetic operation cell-like P System.

2) Dynamically creating cell membranes to realize arbitrary digit ternary arithmetic

operations.

3) The symmetric ternary arithmetic operation system designed in this paper is simulated in

UPSimulator (UPS), which is a simulator proposed in [27]. And the idea and feasibility of

the algorithm are verified by examples.

The rest of the paper is organized as follows, Section 2 introduces the biological basis of

membrane computing, describes the definition of cell-like P System. And then briefly intro-

duces symmetric ternary and its arithmetic rules. Section 3 designs and implements an arith-

metic P System based on symmetric ternary and detailing the rule execution process. Section 4

gives examples to elaborate the execution flow of the rule and verifies the correctness of the

rule design through experimental simulation on computer. Section 5 summarizes the work

accomplished in this paper and presents issues for future refinement.

2 Research foundation

2.1 Cell-like P system

The cell-like P System is one of the most basic and earliest proposed model of membrane com-

puting [6], and an abstract schematic of the cell-like P System is shown in Fig 1. The
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membrane computing model divides a cell into multiple regions with a hierarchical structure,

and the boundary of each region is the membrane. The outermost membrane, called the skin,

separates the entire membrane system from its external environment, and the region outside

the skin is the environment. If there are no other membranes within the membrane, it is called

the basic membrane [28]. Each membrane represents a region; the region of a basic membrane

is the space it contains; the region of a non-basic membrane refers to the space between the

membrane itself and the membrane it directly contains. Regions contain objects represented

by multi-sets, and objects evolve by executing reaction rules: objects are converted into other

objects that can reach a certain membrane, which can also be dissolved or split. The execution

of rules follows a nondeterministic and parallel character. The time when there are no rules to

be executed in the region is called downtime, and the results of the computation are sent in the

specified membrane or environment.

Membrane structures can be represented by generalized tables. A membrane is denoted by

a pair of brackets ‘[]’, with the subscripts of the brackets denoting the label of the membrane.

The basic membrane i is denoted as [i]i; if membrane i contains membrane k inside, the mem-

brane structure is denoted as [i[k]k]i. The membrane structure of Fig 1 can be represented by

the generalized table [1 [2]2 [3]3 [4 [5]5 [6 [8]8 [9]9]6 [7]7]4]1.

A cell-like P System of degree m (m� 1) is defined as formula (1) [6].

P ¼ ðV; m;o1; . . . ;om;R1; . . . ;Rm; r1; r2; . . . ; rm; i0Þ ð1Þ

where:

1. V is a finite non-empty alphabet, whose elements are objects;

2. μ is a membrane structure containing m membranes, where m is called the degree of P;

3. ωi 2 V* (1� i�m), denotes the multiset of objects contained inside region i in the mem-

brane structure μ. V* is the set of arbitrary strings consisting of characters in V;

4. Ri (1� i�m) is a finite set of evolutionary rules inside region i in the membrane structure

μ, the evolutionary rules are binary groups (u, v), usually written as u! v, where, u is a

string in V+ and V+ is a set of non-empty strings in V*, v = v0 or v = v0δ, here v0 is a string

on the set fahere; aout; ainj j a 2 V; 1 � j � mg, δ is a special character that does not belong

to V, when a rule contains δ, the membrane is dissolved after executing the rule, the length

of u is known as the radius of the rule u! v;

Fig 1. The structure of cell-like P system [6].

https://doi.org/10.1371/journal.pone.0312778.g001
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5. ρi (1� i�m), denotes a partial order relation in Ri;

6. io is a number between 1 and m where the output of results in P.

In this paper, the initial grid refers to the P System that has not yet started the computation.

When operands are sent into the P System, which triggers the rules to be executed, the compu-

tation starts. The P System at a certain time slice in the computation is called the configuration

at that moment. As rules are executed, the configuration of the P System will change until

there are no rules left to be executed.

In every membrane structure, the rules will be enforced according to the following two

principles:

1) Uncertainty. The P System will follow the principle of uncertainty when executing rules,

which means that when there are n evolutionary rules in the membrane that can be exe-

cuted at the same time, the P System randomly selects some of the rules to be implemented

and the objects in the system to be evolved and chooses the rule that governs this evolution

in a non-deterministic way [28].

2) Maximum Parallelism. In the P System, each step of the computation follows the principle

of maximum parallelism, which means that all the rules that can be executed must be exe-

cuted at the same time.

2.2 Symmetric ternary

The symmetric ternary was inspired by Gauss’s idea of the simplest set of weights. The sim-

plest set of weights problem is as follows: How should the simplest set of weights be designed

for weighing an object of any integer gram weight with weights on a balance. Usually when

weighing an object with weights on a balance, the object to be weighed is placed on one side

of the balance pan and the weights on the other side. Gauss proposed that the simplest set of

weights is 1, 3, 9, 27, . . ., 3n, . . . grams, and that the weights can be placed on either side of

the balance pan when weighing an object. It can be shown that the formula for weighing an

object of any integer gram weight with the simplest set of weights is expressed as follows

[29]:

K ¼ an3
n þ an� 13

n� 1 þ � � � þ a13
1 þ a03

0: ð2Þ

Where K is any positive integer, 3n, 3n−1, . . ., 31, 30 is the weight of each weight, the coeffi-

cients an, an−1, . . ., a1, a0 is one of −1,0,1. “1” represents that the weight is placed on the other

side of the balance pan of the object to be weighed, “−1” represents that the weight is placed on

the same side of the object to be weighed. And “0” means that the weight does not participate

in the weighing. The 3n, 3n−1, . . ., 31, 30 are used to represent the mass of the weights are

viewed as bit-weights, and ignoring the bit-weights, any positive integer K can be expressed in

the following form [29]:

K ¼ an; an� 1; . . . ; a1; a0: ð3Þ

Where an, an−1, . . ., a1, a0 is one of −1,0,1. To avoid confusion, −1 is generally denoted by T,

and Z or z under special conditions. In this paper, we denote −1 by T. This representation of

an arbitrary integer K by a string of numbers consisting of the various coefficients is called

symmetric ternary.
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Symmetric ternary system has many advantages, first of all, it has both positive and negative

number elements, which can be expressed as positive or negative numbers by the same Eq (2).

The sign of the first digit can be used to determine whether K is positive or negative; i.e., when

the first digit is positive, K is positive, and when the first digit is negative, K is negative. The

quadratic operations for symmetric ternary are also simple, and Tables 1–4 shows the qua-

dratic rules for symmetric ternary.

Table 1. Addition in symmetric ternary.

+ TT T0 T1 T 0 1 1T 10 11

11 0 1 1T 10 11 1TT 10T 1T1 10T

10 T 0 1 1T 10 11 1TT 1T0 -

1T T1 T 0 1 1T 10 11 - -

1 T0 T1 T 0 1 1T - - -

0 TT T0 T1 T 0 1 - - -

T T11 TT T0 T1 T 0 - - -

T1 T10 T11 TT - - - - - -

T0 T1T T10 - - - - - - -

TT T01 - - - - - - - -

https://doi.org/10.1371/journal.pone.0312778.t001

Table 2. Subtraction in symmetric ternary.

- TT T0 T1 T 0 1 1T 10 11

TT 0 T T1 T0 TT T11 T10 T1T T01

T0 1 0 T T1 T0 TT T11 T10 T1T

T1 1T 1 0 T T1 T0 TT T11 T10

1 10 1T 1 0 T T1 T0 TT T11

0 11 10 1T 1 0 T T1 T0 TT

T 1TT 11 10 1T 1 0 T T1 T0

T1 1T0 1TT 11 10 1T 1 0 T T1

T0 1T1 1T0 1TT 11 10 1T 1 0 T

TT I0T 1T1 1T0 1TT 11 10 1T 1 0

Note: Left column minus top row

https://doi.org/10.1371/journal.pone.0312778.t002

Table 3. Multiplication in symmetric ternary.

* TT T0 T1 T 0 1 1T 10 11

11 T11T TT0 T10 TT 0 11 10T 110 1TT1

10 TT0 T00 T10 T0 0 10 1T0 100 -

1T T01 T10 1T 1 0 1T 11 - -

1 TT T0 T1 T 0 1 - - -

0 0 0 0 0 0 0 - - -

T 11 10 1T 1 0 T - - -

T1 10T 1T0 11 - - - - - -

T0 110 100 - - - - - - -

TT 1TT1 - - - - - - - -

https://doi.org/10.1371/journal.pone.0312778.t003
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3 Arithmetic P system based on symmetric ternary system

3.1 Addition and subtraction

According to the definition of cell-like P System, an addition and subtraction arithmetic P Sys-

tem based on symmetrical ternary can be defined as:

Pþ ¼ ðV; m;o1;oM1
;R; r; i0Þ ð4Þ

Where:

V = {a, b, c, T, 0, 1, s, f, E, Y};

m ¼ ½
1
½M1
�M1
�
1
;

ω1 = {Y};

oM1
¼ ff g;

i0 consists of M1 and his submembrane to hold the output;

ρ = 1, 2;

R ¼ R1 [ RM1
;

R1 = {r1: (T! (a, M1), 1), r2: (0! (b, M1), 1), r3: (1! (c, M1), 1),

r4: (sY! E, 1), r5: (E! (E, M1), 1)};

RM1
¼ fr1 : ðaf ! T½f �; 1Þ; r2 : ðbf ! 0½f �; 1Þ; r3 : ðcf ! 1½f �; 1Þ;

r4: (Ef! E[f], 1), r5: (a! (a, in), 2), r6: (b! (b, in), 2), r7: (c! (c, in), 2),

r8: (aE! T(E, in), 1), r9: (bE! 0(E, in), 1), r10: (cE! 1(E, in), 1),

r11: (02! 0, 1), r12: (0T! T, 1), r13: (01! 1, 1), r14: (T2! 1(T, in), 1),

r15: (T1! 0, 1), r16: (12! T(1, in), 1)};

In this case, the correspondence of objects is as follows. The augend numbers T, 0, 1 are

represented as objects a, b, c when they enter membrane M1 from membrane 1. Objects a, b, c
reach to the membrane where object f is located, and are converted to objects T, 0 and 1 after

reacting with f. In this way, the incoming objects a, b, and c will only react if they enter the

membrane where f is located, thus enabling dynamic modeling and the storage of the augend

numbers from low to high in membrane M1 and its submembranes. Object s is used to indicate

the end of the augend input and to generate E with Y in Membrane 1. The purpose of E is two-

fold: to signal that the system is ready to input the addend, and to convert the addend to T, 0,

and 1 so that it can be added to the augend.

Let us assume that the augend is anan−1. . .a1 and the addend is bmbm−1. . .b1. Then we illus-

trate the use of the rules inP+ by adding these two numbers.

Table 4. Division in symmetric ternary.

/ TT T0 T1 T 0 1 1T 10 11

TT 1 1.1 1T 11 -1 TT T1 T.T T

T0 1: �T1 1 1:�1 10 -1 T0 T:�T T T: �1T
T1 1:�T 1.T 1 1T -1 T1 T T.1 T:�1
T 0: �1T 0.1 0:�1 1 -1 T 0:�T 0.T 0: �T1
0 0 0 0 0 NaN 0 0 0 0

1 0: �T1 0.T 0:�T T +1 1 0:�1 0.1 0: �1T
1T T:�1 T.1 T T1 +1 1T 1 1.T 1:�T
10 T: �1T T T:�T T0 +1 10 1:�1 1 1: �T1
11 T T.T T1 TT +1 11 1T 1.1

Note: Left column divided top row

https://doi.org/10.1371/journal.pone.0312778.t004
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(1) Input of the augend:

We input one bit of the augend every two time slices from low to high. First a1 is sent into

membrane 1.

• Case 1: a1 = T. Executing rule r1 in R1, object T is converted to object a and sent into mem-

brane M1. Executing rule r1 in RM, object a and object f are consumed with T produced, a

new membrane M2 is created at the same time, and f is sent into membrane M2.

• Case 2: a1 = 0. Executing rule r2 in R1, object 0 is converted to object b and sent into mem-

brane M1. Executing rule r2 in RM, object b and object f are consumed with 0 produced, a

new membrane M2 is created, and f is sent into membrane M2.

• Case 3: a1 = 1. Executing rule r3 in R1, object 1 is converted to object c and is sent into mem-

brane M1. Executing rule r3 in RM, object c and object f are consumed with 1 produced, a

new membrane M2 is created, and f is sent into membrane M2.

Object ai (1 < i< n) is sent into membrane 1, converted to object a, b, or c (R1: r1 * r3),

and enters membrane M1, then continues into the inner membrane (RM: r5 * r7) until it

reaches membrane Mi where it is consumed with f and produces object T, 0, or 1 (RM: r1 * r3).

The last object an is input to the system with s. Object s is used to indicate that the augend

has been fully entered. Rule r4 in R1 is executed, object s is consumed with Y and E produced,

indicating that the system is ready to input the addend, while E enters Membrane M1.

(2) Input of the addend:

Object b1 is sent into membrane 1.

• Case 1: b1 = T, rule r1 in R1 is executed, object T is converted to a to enter membrane M1.

Object a is consumed with E (RM: r8), a is converted to T to be preserved in membrane M1,

and E enters the inner membrane M2.

• Case 2: b1 = 0, executing rule r2 in R1. Object 0 is converted to b and is sent into membrane

M1. Object b and E are consumed (RM: r9), generating 0 to remain in membrane M1 and E is

sent into membrane M2.

• Case 3: b1 = 1, executing rule r3 in R1. Object 1 is converted to c to enter M1, then object c is

consumed with E (RM: r10) and object 1 produced to stay in membrane M1, and E enters

membrane M2.

The next object bi (1 < i�m) follows a similar pattern to b1. It is sent into membrane 1

first, and then converted to object a or b or c (R1: r1 * r3), entering membrane M1. Object bi
continues into the inner membrane (RM: r5 * r7) until it reaches membrane Mi. Then it is

consumed with E to produce object T, 0 or 1 (RM: r1 * r3).

(3) Addition:

The process of addition is simultaneous with the input of the addend. When b1 reaches

membrane M1, the addition operation can be performed without having to wait for the addend

to be fully input. Two numbers are added bit-wise from low to high and may produce carrying.

The possibilities of ai + bi (1� i�min{n, m}) in anan−1. . .a1 and bmbm−1. . .b1 are as follows:

• Case 1: 0 + 0 = 0 (RM: r11);

• Case 2: 0 + T = T (RM: r12);

• Case 3: 0 + 1 = 1 (RM: r13);

• Case 4: T + T = T1 (RM: r14);

• Case 5: T + 1 = 0 (RM: r15);
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• Case 6: 1 + 1 = 1T (RM: r16).

For Case 4 and Case 6 that have generated feeds, the high bit of the result is sent into the

inner membrane and the low bit is left in the original membrane.

The result of the addition is saved in the membrane M1, . . ., Mk (k� 1) from low to high.

The example of addition in Section 4.1.1 provides a more concrete demonstration of the

implementation of the rules. In the addition P System P+, symmetric ternary numbers

“n + m” require at most 3n + 4m time slices for addition.

The subtraction P System simply changes the rule r1 in R1 to (T! (c, M1)), and r3 to (1!

(a, M1)), the operations are all consistent with addition, so we won’t go into too much detail

here.

3.2 Multiplication

According to the definition of cell-like P System, a multiplication arithmetic P System based

on symmetrical ternary can be defined as:

P∗ ¼ ðV; m;o1;oM1
;R; r; i0Þ ð5Þ

Where:

V = {a, b, c, T, 0, 1, A, B, C, x, y, z, p, q, r, u, n, s, f, E, Y};

m ¼ ½
1
½M1
�M1
�
1
;

ω1 = {Y};

oM1
¼ ff g;

i0 consists of M1 and his submembrane to hold the output;

ρ = 0, 1, 2;

R ¼ R1 [ RM1
;

R1 = {r1: (T! (a, M1), 2), r2: (0! (b, M1), 2), r3: (1! (c, M1), 2),

r4: (Tn! un(a, M1), 1), r5: (0n! un(b, M1), 1), r6: (1n! un(c, M1), 1),

r7: (sY! En, 1), r8: (E! (E, M1), 1), r9: (u! (u, M1)|T, 0),

r10: (u! (u, M1)|0, 0), r11: (u! (u, M1)|1, 0)}

RM1
¼ fr1 : ðaf ! A½f �; 1Þ; r2 : ðbf ! B½f �; 1Þ; r3 : ðcf ! C½f �; 1Þ;

r4: (a! (a, in), 2), r5: (b! (b, in), 2), r6: (c! (c, in), 2), r7: (aE! x(E, in), 1),

r8: (bE! y(E, in), 1), r9: (cE! z(E, in), 1), r10: (Ax! 1(px, in), 1),

r11: (Bx! 0(qx, in), 1), r12: (Cx! T(rx, in), 1), r13: (Ay! 0(py, in), 1),

r14: (By! 0(qy, in), 1), r15: (Cy! 0(ry, in), 1), r16: (Az! T(pz, in), 1),

r17: (Bz! 0(qz, in), 1), r18: (Cz! 1(rz, in), 1), r19: (xf! [f], 1),

r20: (yf! [f], 1), r26: (ru! C(u, in), 1), r27: (02! 0, 1), r28: (0T! T, 1),

r29: (01! 1, 1), r30: (T2! 1(T, in), 1), r31: (T1! 0, 1), r32: (12! T(1, in), 1)}

In this case, the correspondence of the objects is as follows.

The multiplicand numbers T, 0, and 1 are represented as objects a, b, and c when they enter

membrane M1 from membrane 1. They reach the membrane where object f is located, and are

converted to objects A, B and C after reacting with f. They are converted to objects p, q, and r
when they are multiplied by the multiplier and move toward the inner membrane.

The multiplier numbers enter the membrane M1 also represented by the objects a, b, and c.
When they arrive in the membrane where E is located, they are represented by the objects x, y,

and z after reacting with E. Objects s, f, E, and Y act in the same way as addition. Object n is to

control the generation of u, which converts the shifted multiplicands p, q, and r into the objects

A, B, and C.
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Let us assume that the multiplicand is anan−1. . .a1 and the multiplier is bmbm−1. . .b1. We

illustrate the use of the rules in P* by multiplying two numbers.

(1) Input of the multiplicand:

We input one bit of the multiplicand from low to high every two time slices. First, object a1

is sent into membrane 1.

• Case 1: a1 = T, executing rule r1 in R1, object T is converted to a and is sent into membrane

M1. Object a is consumed with f (RM: r1), a is converted to A to stay in membrane M1 and a

new membrane M2 is generated, and f enters into membrane M2.

• Case 2: a1 = 0, executing rule r2 in R1, object 0 is converted to b and is sent into membrane

M1. Object b is consumed with f (RM: r2), b is converted to B to stay in membrane M1 and a

new membrane M2 is generated, and f enters into membrane M2.

• Case 3: a1 = 1, executing rule r3 in R1, object 1 is converted to c and is sent into membrane

M1. Object c is consumed with f (RM: r3), c is converted to C to stay in membrane M1 and a

new membrane M2 is generated, and f enters into membrane M2.

The rules for the execution of the multiplicand ai (1 < i< n) are similar to the rules for a1.

Object ai is sent into membrane 1 first, then it is converted to object a, b or c into membrane

M1. It continues into the inner membrane until it reaches membrane Mi where it is consumed

with f to produce object A, B or C. The highest bit of multiplicand an is sent in membrane 1

with object s, which is used to indicate that the multiplicand has been completely imported.

Rule r7 in R1 is applied, object s is consumed with Y to produce E and n, signaling that it is

ready to send in the multiplier. At the same time, E is sent into membrane M1, and n stays in

membrane 1 for the production of u.

(2) Input of the multiplier:

Object b1 is sent into membrane 1.

• Case 1: b1 = T, rule r4 in R1 is applied, object T and n are consumed to produce u, n, and a,

object a is sent into membrane M1. Rule r7 in RM is applied, object a is converted to x to stay

in membrane M1, and E enters membrane M2.

• Case 2: b1 = 0, rule r5 in R1 is applied, object 0 and n are consumed to produce u, n, and b,

object b is sent into membrane M1. Rule r8 in RM is applied, object b is converted to y to stay

in membrane M1, and E enters membrane M2.

• Case 3: b1 = 1, rule r6 in R1 is applied, object 1 and n are consumed to produce u, n, and c,
object c is sent into membrane M1. Rule r9 in RM is applied, object c is converted to z to stay

in membrane M1, and E is sent into membrane M2.

The multiplier bi (2� i�m) performs similar rules to b1. Object bi is sent into membrane

1, then it is converted to object a, b, or c into membrane M1. It continues into the inner mem-

brane until it reaches membrane Mi where it is consumed with E and produces object x, y, or z.

(3) Multiplication:

Multiplication of two numbers involves both multiplication and addition operations, and

these rules are performed simultaneously. When object b1 is sent into membrane M1, it is pre-

pared for multiplication operations with anan−1. . .a1.

Multiplication possibilities of b1 × a1 are as follows:

• Case 1: T × T = 1 (RM: r10);

• Case 2: T × 0 = 0 (RM: r13);
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• Case 3: T × 1 = T (RM: r16);

• Case 4: 0 × T = 0 (RM: r11);

• Case 5: 0 × 0 = 0 (RM: r14);

• Case 6: 0 × 1 = 0 (RM: r17);

• Case 7: 1 × T = T (RM: r12);

• Case 8: 1 × 0 = 0 (RM: r15);

• Case 9: 1 × 1 = 1 (RM: r18).

Taking the case of “T × T = 1” as an example, Rule RM: r10 signifies that object A is con-

sumed with x to produce 1, which is retained in the original membrane. Object A is converted

to p and sent into membrane M2 along with object x. The conversion of object A to p and its

movement into the inner membrane serves to: 1) Avoid confusion with the multiplicand

object in the next layer of the membrane; 2) Allow the result of the multiplication to directly

contribute to addition operations in the original membrane. After the input of b2, object u will

first be sent to membrane M1 (RM: r9 * r11), where u will convert p back to A (RM: r24) before

b2 is sent into membrane M2, enabling b2 to multiply with object A.

Object b1 is sent to membrane M2 to multiply by a2. The result of the calculation is retained

in the original membrane, a2 is converted and sent into membrane M3 along with the multipli-

cand b1. This process continues until b1 enters membrane Mn. After multiplication by an, the

converted b1 and an arrive at membrane Mn+1, where f is located. Object b1 is consumed with

f (RM: r19 * r21), producing a new membrane Mn+2, and f is sent into the new membrane to

prevent spillage.

After the input of b2, object u will be sent into membrane M1 first (RM: r9 * r11). Object u
will convert the multiplicand from object p, q, or r to object A, B, or C (RM: r24 * r26) before b2

is sent into membrane M2. In membrane M2, object b2 multiplies with a1, and the product is

then added to the result of b1 × a1 according to rules (RM: r27 * r32). b2 then continues into

the inner membrane for further reactions. The next objects bi (3� i�m) also react according

to the earlier described rules.

The final result is stored sequentially in membranes M1, . . ., Mk (k� 1). The multiplication

example in Section 4.1.2 demonstrates the concrete implementation of the rules. In the multi-

plication P System P*, symmetric ternary numbers “n ×m” require at most 3n + 4m + 3 time

slices to complete the multiplication operation.

3.3 Division

According to the definition of cell-like P Systems, a division arithmetic P System based on

symmetrical ternary can be defined as:

P= ¼ ðV; m;o1;oM1
;R; r; i0Þ ð6Þ

Where:

V = {a, b, c, T, 0, 1, A, B, C, K, M, N, H, V, k, x, i, v, r, u, g, s, f, e, E, Y, X};

m ¼ ½
1
½M1
�M1
�
1
;

ω1 = {Y};

oM1
¼ ff g;

i0 consists of M1 and his submembrane to hold the output;

ρ = 0, 1, 2, 3, 4, 5;

PLOS ONE An arithmetic operation P system based on symmetric ternary system

PLOS ONE | https://doi.org/10.1371/journal.pone.0312778 November 1, 2024 11 / 30

https://doi.org/10.1371/journal.pone.0312778


R ¼ R1 [ RM1
;

R1 = {r1: (T! (a, M1)|Y, 1), r2: (0! (b, M1)|Y, 1), r3: (1! (c, M1)|Y, 1),

r4: (T! (c, M1), 2), r5: (0! (b, M1), 2), r6: (1! (a, M1), 2),

r7: (sY! E(s, M1), 1), r8: (E! (E, M1), 1), r9: (sK! eK, 2),

r10: (K! Nk|e, 1), r11: (ke! e(k, M1), 1), r12: (N!M|e, 1),

r13: (M!H|e, 1), r14: (H! K|e, 1), r15: (xe! X(V, in), 0),

r16: (vX! XV(k, in), 1), r17: (V! (V, in), 1), r18: (kX! X, 0)}

RM1
¼ fr1 : ðaf ! T½f �; 1Þ; r2 : ðbf ! 0½f �; 1Þ; r3 : ðcf ! 1½f �; 1Þ;

r4: (a! (a, in), 2), r5: (b! (b, in), 2), r6: (c! (c, in), 2),

r7: (aE! A(E, in), 1), r8: (bE! B(E, in), 1), r9: (cE! C(E, in), 1),

r10: (0k! T, (k, in)|A, 3), r11: (0k! 0, (k, in)|B, 3), r12: (0k! 1, (k, in)|C, 3),

r13: (Tk! 1, (Tk, in)|A, 3), r14: (Tk! T, (k, in)|B, 3), r15: (Tk! 0, (k, in)|C, 3),

r16: (1k! 0, (k, in)|A, 3), r17: (1k! 1, (k, in)|B, 3), r18: (1k! T, (1k, in)|C, 3),

r19: (02! 0, 2), r20: (0T! T, 2), r21: (01! 1, 2), r22: (T2! 1(T, in), 2),

r23: (T1! 0, 2), r24: (12! T(1, in), 2), r25: (s! (s, in), 1),

r26: (s! g(u, out)|f, 0), r27: (0k! 0(k, in), 4), r28: (Tk! T(k, in), 4),

r29: (1k! 1(k, in), 4), r30: (u0! δu, 1), r31: (u0k! δu(k, in), 0),

r32: (u! x|A, 0), r33: (u! x|B, 0), r34: (u! x|C, 0), r35: (xk! (ix, out), 1),

r36: (x! (x, out), 2), r37: (0i! 1(i, out)|A, 1), r38: (0i! 0(i, out)|B, 1),

r39: (0i! T(i, out)|C, 1), r40: (Ti! 0(i, out)|A, 1), r41: (Ti! T(i, out)|B, 1),

r42: (Ti! (T, in)1(i, out)|C, 1), r43: (1i! (1, in)T(i, out)|A, 1),

r44: (1i! 1(i, out)|B, 1), r45: (1i! 0(i, out)|C, 1),

r46: (v! (v, out)|1A, 1), r47: (v! (v, out)|0B, 1), r48: (v! (v, out)|TC, 1),

r49: (v! (v, out)|1B, 1), r50: (v! (v, out)|0C, 1), r51: (v! (r, out)|1C, 1),

r52: (v! (r, out)|0A, 1), r53: (v! (r, out)|TB, 1), r54: (v! (r, out)|TA, 1),

r55: (r! (r, out), 1), r56: (V! (v, out)|f, 0), r57: (V! (V, in), 1),

r58: (gk! [1g], 0), r59: (1g! 1[g], 1), r60: (fk! f(1, in), 1)}

In this case, the correspondence of some substances is as follows. The dividends T, 0, 1 are

represented as the objects a, b, c when they enter the membrane M1 from the membrane 1.

When they arrive in the membrane where f is located, and are represented as the objects T, 0, 1

after reacting with f. The divisors T, 0, 1 enter membrane M1 as objects c, b, a, and arrive in the

membrane where E is located. They are represented as objects A, B, C after reacting with E.

Objects s, f, E, and Y function in the same way as addition. Objects K, M, N, H, e are used to

control the generation of object k. Object u is used to determine whether the digits of the divi-

dend are equal to the divisor.

Object u is converted to x when it encounters the divisor. Object k produced after the divi-

dend and the divisor digits are the same, will be consumed with x and i produced. Object i con-

verts the dividend to the state it was in when it was just the same number of digits as the

divisor. Send V from membrane 1 into the innermost submembrane of membrane M1. If the

dividend is greater than the divisor, return v to membrane 1 to produce k, and continue with

the addition; if it is less than that, return r to indicate that no more addition can be performed.

At the end of the reaction, the quantity of k is the decimal representation of the quotient, and g
converts the quantity of k to symmetric ternary.

In this paper, division of two numbers is actually accomplished by iterative subtraction,

where the divisor is subtracted from the dividend. The cycle of subtraction continues until the

dividend is less than the divisor. The number of rounds of subtraction is the quotient, and the

remaining dividend that cannot be subtracted anymore is the remainder. In symmetric ter-

nary, subtraction is converted to addition by simply changing the non-zero bit of the divisor to
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its opposite, i.e., 1 to T and T to 1. So, we can change iterative subtraction to iterative addition.

The following modules are used in the Division P System:

• Module 1 (R1: r1 * r8 and RM: r1 * r9) is the input of dividend and divisor. The dividend is

input and stored in each layer of the membrane as “T, 0, 1”, and the non-zero bit of the divi-

sor is turned into its opposite and stored in each layer of the membrane as “A, B, C”.

• Module 2 (RM: r10 * r24) is the iterative addition of the dividend and the opposite of the

divisor. When the number of bits of the dividend is greater than the number of bits of the

divisor, no judgment is required to perform the addition operation.

• Module 3 (RM: r37 * r45) is a module that restores the dividend to the state when the num-

ber of digits of the dividend is the same as the number of digits of the divisor. And at the

same time, object k is consumed in its entirety, and the generation of k is suppressed in

Membrane 1.

• Module 4 (RM: r46 * r57) is a module that determines whether the dividend is greater than

the divisor. If the dividend is greater than the divisor, the addition continues; if it is less, the

reaction stops.

Let us assume that the dividend is anan−1. . .a1 and the divisor is bmbm−1. . .b1 (where n�
m), and we illustrate the use of the rules in P/ below by dividing two numbers.

(1) Input of the dividend:

First, a1 is sent into membrane 1.

• Case 1: a1 = T, rule r1 in R1 is applied, and object T is converted to a in the presence of Y and

is sent into membrane M1. Rule r1 in RM is executed, and a is converted into T while a new

membrane M2 is created, and f enters membrane M2.

• Case 2: a1 = 0, rule r2 in R1 is applied, and object 0 is converted to b in the presence of Y and

is sent into membrane M1. Rule r2 in RM is executed, and b is converted into 0 while a new

membrane M2 is created, and f enters membrane M2.

• Case 3: a1 = 1, rule r3 in R1 is applied, and object 1 is converted to c in the presence of Y and

is sent into membrane M1. Rule r3 in RM is executed, and c is converted into 1 while a new

membrane M2 is created, and f enters membrane M2.

Object ai (1< i< n) is sent into membrane 1 and converted to object a, b, or c into mem-

brane M1. Then it continues into the inner membrane until it reaches membrane Mi where it

is consumed with f and is converted to object T, 0 or 1. The last bit of the dividend an is sent in

with object s to indicate that the dividend has been fully entered. When object s enters mem-

brane 1, rule r7 in R1 is applied. Object E is produced, signaling the system that it is ready to

enter the divisor, while s is sent into membrane M1. After that, object s continues into the

inner membrane (RM: r25) until it reaches membrane Mn. In membrane Mn, object s is con-

verted to u and g (RM: r26) catalyzed by f. Object u is exported to membrane Mn−1 (RM: r26),

and g stays in membrane Mn.

(2) Input of the divisor:

Object b1 is sent into membrane 1:

• Case 1: b1 = T. Rule r4 in R1 is executed, and object T is converted to c in membrane M1.

Then, rule r9 in RM is applied, object c is converted to C, and E enters membrane M2.

• Case 2: b1 = 0. Rule r5 in R1 is executed, and object 0 is converted to b in membrane M1.

Then, rule r8 in RM is applied, object b is converted to B, and E enters membrane M2.
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• Case 3: b1 = 1. Rule r6 in R1 is executed, and object 1 is converted to a in membrane M1.

Then, rule r7 in RM is applied, object a is converted to A, and E enters membrane M2.

Object bi (2� i�m) is sent into membrane 1, then it is converted to object a, b, or c into

membrane M1. It continues into the inner membrane until it reaches membrane Mi where it is

consumed with E to produce object A, B, or C. The highest bit of the divisor bm is sent into

membrane 1 with object s. When s is sent into membrane 1, rule r9 in R1 is applied, object s is

consumed with K to produce E and K, which is used to produce object k.

(3) Division:

When the divisor is fully sent into the system, object k is produced in Membrane 1 (R1: r9

* r10), and k is sent into membrane M1 to trigger addition. Then one k is produced every

three time slices into membrane M1 (RM: r10 * r14).

The possibilities of a1 + b1 are as follows:

• Case 1: 0 + T = T (RM: r10);

• Case 2: 0 + 0 = 0 (RM: r11);

• Case 3: 0 + 1 = 1 (RM: r12);

• Case 4: T + T = T1 (RM: r13);

• Case 5: T + 0 = 0 (RM: r14);

• Case 6: T + 1 = 0 (RM: r15);

• Case 7: 1 + T = 0 (RM: r16);

• Case 8: 1 + 0 = 1 (RM: r17);

• Case 9: 1 + 1 = 1T (RM: r18).

For cases 4 and 9 that generate feeds, the high bit of the result is sent into the inner mem-

brane and the low bit remains in the original membrane.

Taking “0+T = T” as an example, the rule RM: r10 indicates that 0 is consumed with k in the

catalysis of A, generating T to remain in membrane M1 and k to enter membrane M2. The divi-

sor, serving as a catalyst, remains unchanged to ensure that the size of the dividend decreases

while the divisor remains the same.

When the first round of addition is completed and the first object k reaches the membrane

Mn+1, where objects g and f are also present. The rule r58 in RM is executed to convert k to 1

and create a new membrane Mn+2, sending 1 and g into membrane Mn+2. Then, rule r59 in RM

creates a new membrane Mn+3 and sends g into membrane Mn+3 to prevent result overflow.

Thereafter, object f converts the k of membrane Mn+1 to 1 (RM: r60), sending it into membrane

Mn+2 and converting the quotient to a symmetric ternary number. Object g encountering

object 1 creates a new membrane, preventing overflow.

As addition proceeds, the dividend anan−1. . .a1 decreases, and when an = 0, object u dis-

solves the membrane Mn (RM: r30). This continues until u dissolves the membrane Mm+1, and

encounters the divisor (RM: r32 * r34). At this point, the bits of the dividend and the divisor

are the same. Further additions should then check if the dividend is greater than the divisor,

allowing addition to continue only if this condition is met. However, membrane 1 still pro-

duces one k every three time slices, which requires reversing the additions done after the num-

bers have the same number of digits and eliminating the k produced, sending a signal to stop k
production in membrane 1.
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When the digits of the dividend and divisor align, object u is converted to x. x is then trans-

ported out of the membrane (RM: r36) until it encounters k or reaches membrane 1. If x meets

k, rule RM: r35 is enacted to produce i and x. Object i reverses the addition performed for this k
(RM: r37 * r45), and x continues to membrane 1. Upon reaching, rule R1: r15 is executed, gener-

ating X and V. X regulates k production, while V moves to membrane Mm+1, converting to v
catalyzed by f (RM: r56). v assesses whether the dividend exceeds the divisor, returning to mem-

brane 1 if greater, or sending r to indicate that no further addition can be done (RM: r46 * r54).

When v returns to membrane 1, rule r16 in R1 is executed, producing k and sending it to

membrane M1 for further addition, while V continues into membrane Mm+1, converted to v by

f. The process iterates until r returns to membrane 1, signaling the cessation of reactions.

The remainder of the division is stored in membranes M1, . . ., Mi, and the quotient in

membranes Mi+1, . . ., Mf (f> i + 1). The division example in Section 4.1.3 allows a more con-

crete demonstration of the implementation of the rule. In the division P System P/, the sym-

metric ternary numbers of n/m (n�m) bits require the following time slices to implement the

division operation: The time slices required by the input module is 3n + 3m − 2, The time slices

required by the iterative addition module is 4i, The time slices required by the revert module is

2m, The time slices required by the evaluation module is (2m + 3)j, where i + j = quotient, i is

the quotient that results when the number of dividend digits is greater than the divisor, and j is

the quotient that results when the number of dividend digits is equal to the divisor. The effi-

ciency of the system will be greatly improved when the number of dividend digits is much

larger than the divisor.

3.4 Comparison of computational efficiency

In this section, we analyse and compare P systems proposed in recent years for basic arithmetic

operations, the results are shown in Table 5. The statistics include the number of rule types

used for the four basic operations (addition, subtraction, multiplication, and division), and the

number of time slices required to complete the operations. In [13, 14], m and n respectively

represent the two decimal numbers used in the operation, and n = max {m, n}. In this paper, m

and n respectively represent the two symmetric ternary numbers used in the operation, and n
= max {m, n}.

In Table 5, the arithmetic P systems designed in [13–16] are all decimal based. And instead

of considering the input of data, the numbers to be computed are directly put into the mem-

branes. In other words, they did not take into account the input of computational data. [13]

designed an arithmetic P system based on a multi-layer membrane, and [14] designed an arith-

metic P system based on a single membrane In [15] the time slices of the operations is not

given, only it is mentioned that the complexity of these operations in P system is “linear”.

Table 5. Time slices required and number of rule types used for four arithmetic approaches.

Article Rule type Add Sub Mul Div

[13] 5/5/6/11 O(n) O(n) O(m) O(n)

[14] 2/1/11/12 O(1) O(1) O(max (n,m)) linear

[15] 39/39/29/34 linear linear linear linear

[16] 3 or 4/4/11/10 - - - -

This Work 21/21/43/78 O(4m) O(4m) O(4m) O(3n)

Note: The ‘Rule type’ column is represented in the form of A/B/C/D, where A represents the number of rules used

for addition. Similarly, B, C, and D denote the number of rule types used for subtraction, multiplication, and

division, respectively.

https://doi.org/10.1371/journal.pone.0312778.t005
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Since [16] discusses arithmetic operation and arithmetic expression evaluation in transition P

system based on rules with priority, no arithmetic operations are performed. Therefore, the

time slices required for arithmetic operations is marked with ‘-’.

From the above analysis, it can be seen that this paper not only considers the input of the

data, the dynamic generation and dissolution of the membrane, but also introduces the sym-

metric ternary number system, which eliminates the influence of the operational sign on the

calculation. The arithmetic operation P system designed in this paper is more novel and has a

wider application scenario.

4 Simulation and validation of rules

This section is based on Section 3 to further validate the correctness of the rules in the P Sys-

tem. The rules in Section 3 are simulated and experimented with UPSimulator [27]. The main

discussion is the simulation experiments of (1) addition: 1T00 + 1T1 = 10T1; (2) multiplica-

tion: 1TT × 1T = 101; and (3) division: 101/1T = 1TT.

4.1 Examples of symmetric ternary arithmetic operations

4.1.1 Example of addition. Here is an example of “1T00 + 1T1” to illustrate the imple-

mentation of the addition rules.

The initial state of P+ is shown in Fig 2. Firstly, objects 0, 0, T, 1 are sequentially sent into

membrane 1 every two time slices. When object 0 is input to membrane 1, it is converted to

object b and is sent into membrane M1 immediately. Object b is consumed with f in membrane

M1 and object 0 produced, at the same time, a new membrane M2 is created with f entering

membrane M2. The next input of object 0 is converted to object b and is sent into membrane

M2, which then is consumed with f and object 0 produced, and creates a new membrane M3,

with f entering membrane M3. Object T is input to membrane 1, it is converted to object a and

is sent into membrane M3. Object a is consumed with f and object T produced, and creating a

new membrane M4, with f entering membrane M4.

When the highest bit object 1 is input, object s is input at the same time to indicate the end

of the augend number. Objects 1 and s are input to membrane 1, and object 1 is converted to

object c which is sent into membrane M4. Object c is consumed with f and object 1 produced,

and creates a new membrane M5, with f entering into membrane M5. Object s is consumed

with Y in membrane 1 and E produced, which indicates that the addend number can be input

Fig 2. Initial configuration of P+.

https://doi.org/10.1371/journal.pone.0312778.g002
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now, and at the same time, object E enters into membrane M1. Fig 3 shows the membrane

structure where the augend is input completely and the addend waits to be input.

The lowest bit of the addend, object 1, is sent into membrane 1. Object 1 is converted to c
and is sent into membrane M1. Object c and E are consumed with object 1 produced, and

object E is sent into membrane M2. Object 1 is added to the 0 in membrane M1, and the gener-

ated results is 1, which is stored in membrane M1.

Input the second bit of the addend, object T, to membrane 1. Object T is converted to a,

which is sent into membrane M2, where it is consumed with E to generate object T. Object T
and the object 0 in membrane M2 are consumed with object T produced, which is stored in

membrane M2.

Send the last bit of the addend, object 1, to membrane 1. Object 1 is converted to c, which is

sent into membrane M3 and reacts with E to generate object 1. Object 1 is consumed with

object T in membrane M3 and object 0 produced, which is stored in membrane M3.

At this point, there are no more rules in the system that can be executed, the system stops,

and the obtained result “10T1” is saved in low to high order in M1,. . .,4 as shown in Fig 4. The

rules of the entire system run in parallel. While the augend is still moving towards the inner

membrane and building new membranes, the addend has already been input to start the addi-

tion operation. In this way, the whole system can perform the operation quickly.

Fig 3. The configuration of addend waiting for input.

https://doi.org/10.1371/journal.pone.0312778.g003

Fig 4. The configuration at completion of addition.

https://doi.org/10.1371/journal.pone.0312778.g004
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Tables 6 and 7 show the process of object changes in each membrane during the whole sys-

tem run. The number of digits of the augend and the addend also has an effect on the time

slices. For example, in Table 6, it takes 23 time slices for the augend to be 1T00 (four-digit

number) and the addend to be 1T1 (three-digit number). While in Table 7, it takes 24 time

slices for the augend to be 1T1 (three-digit number) and the addend to be 1T00 (four-digit

number). Therefore, when using this arithmetic system, the one with more digits can be

selected as the augend to reduce the time slices.

4.1.2 Example of multiplication. Here is an example of “1TT × 1T” to illustrate the

implementation of the multiplication rules.

The input of the multiplicand is the same as the augend, so we won’t go into too much

detail here. The multiplicand “1TT” is finally stored in the form of “AAC” in the membranes

M1, M2, M3. Object s is consumed with Object Y in membrane 1 and object E produced, at

which point the multiplier object T can be input, and E then enters the membrane M1. The

state of the membrane system when the multiplier is about to be input is shown in Fig 5.

The lowest bit of the multiplier, object T, is input. Object T is consumed with n to generate

u, and T is converted to object a into membrane 1. Object a is consumed with E to produce x
while E enters the membrane M2. Object x is consumed with A to produce object 1 which is

retained in membrane M1, and A is converted to object p which enters membrane M2 with x.

In membrane M2, object x is consumed with A to produce object 1 which is retained in mem-

brane M2. Object A is converted to p which enters membrane M3 with x. In membrane M3,

object x is consumed with C to produce T to be retained in membrane M3, and C is converted

Table 6. Process of object changes in each membrane during the addition. (1T00+1T1).

Time Slice Membrane 1 M1 M2 M3 M4 M5

0 Y f

1 0Y f

2 Y bf

3 Y 0 f

4 0Y 0 f

5 T 0b f

6 Y 0 bf

7 TY 0 0 f

8 Y 0a 0 f

9 Y 0 0a f

10 1sY 0 0 af

11 E 0c 0 T f

12 1 0E 0C T f

13 0cE 0 cT f

14 01 0E T 1 f

15 T 1a 0E T 1 f

16 1 0E T 1 f

17 1 0Ea T 1 f

18 1 1c 0T TE 1 f

19 1 T TE 1 f

20 1 cT TE 1 f

21 1 T TEc 1 f

22 1 T T1 1E f

23 1 T 0 1E f

https://doi.org/10.1371/journal.pone.0312778.t006
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to r which is sent into membrane M4 with x. Object x and f in the membrane M4 are consumed

to create a new membrane M5, while f is sent into membrane M5 to prevent the result from

overflowing.

At this point, the objects “CCA” are converted to “ppr” and moved one layer into the mem-

brane. In fact, when object T is sent into the membrane system to carry out the above bio-

chemical reaction, object 1 is also sent into the membrane to start the calculation. Fig 6 shows

Table 7. Process of object changes in each membrane during the addition. (1T1+1T00).

Time Slice Membrane 1 M1 M2 M3 M4 M5 M6

0 Y f

1 1Y f

2 Y cf

3 Y 1 f

4 TY 1 f

5 Y 1a f

6 Y 1 af

7 1sY 1 T f

8 E 1c T f

9 0 1E Tc f

10 1Eb T cf

11 10 TE 1 f

12 0 1 TE 1 f

13 1b TE 1 f

14 1 TEb 1 f

15 T 1 T0 1E f

16 1a T 1E f

17 1 Ta 1E f

18 1 1 T 1Ea f

19 1c T 1T Ef

20 1 cT 0 E f

21 1 T 0c E f

22 1 T 0 Ec f

23 1 T 0 1 Ef

24 1 T 0 1 E f

https://doi.org/10.1371/journal.pone.0312778.t007

Fig 5. The configuration of P* when the multiplier is about to be input.

https://doi.org/10.1371/journal.pone.0312778.g005
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the state of the membrane system when object 1 has just been sent into the membrane, and

object T has just arrived in the membrane M2 about to undergo the next calculation, and these

calculations are in parallel.

When object 1 is input, object u will be sent into membrane M1 and reach membrane M2,

which converts p to A. It continues to move to the inner membranes, converting p and r to A
and C. Object 1 is converted to c to be sent into membrane M2, which is consumed with E to

generate z. Object z is consumed with A to produce T, and Object A is converted to p, which is

sent into membrane M3 with z. Object T is consumed with the previously generated object 1

and object 0 produced. In membrane M3, object z and A are consumed to produce T, and then

A is converted to p along with z into membrane M4. Object T in membrane M3 is consumed

with the previously generated T to produce objects T1, with 1 retained in membrane M3 and T
as a feed into membrane M4. In membrane M4, object z is consumed with C to produce 1, and

then C is converted to r along with z into membrane M5. Object 1 in membrane M4 is con-

sumed with the previously fed T to generate 0 to be retained in membrane M4. Object x is con-

sumed with f to create a new membrane M6 while f is sent into membrane M6.

At this point, the reaction was completed. The result “1010” is preserved in the membranes

M1 to M4 as shown in Fig 7.

Fig 6. The configuration of P* when the multiplier is input completely.

https://doi.org/10.1371/journal.pone.0312778.g006

Fig 7. The configuration at the completion of multiplication.

https://doi.org/10.1371/journal.pone.0312778.g007
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Table 8 shows the process of object changes in each membrane as the entire system runs,

taking a total of 20 time slices.

4.1.3 Example of division. Here is an example of “101/1T” to illustrate the implementa-

tion of the division rules.

The input of the divisor is the same as the augend. When the highest bit of the dividend,

object 1, is sent into membrane 1 with object s, s is consumed with Y to produce E. At the

same time, s will enter the membrane M1 until it reaches the membrane M4. Object s is con-

verted to u and g catalyzed by f. Object u is transported to membrane M3, where the highest bit

of the dividend is located. Object g remains in membrane M4. When E is detected in the sys-

tem, the divisor can be entered. First input T, Object T is converted to c into membrane M1.

Object c and E are consumed to generate C, and E is sent to membrane M2. Input 1 and s,
Object 1 is converted to object a into membrane M2. Object a and E are consumed to generate

A, and E is sent to membrane M3. Object s and K are consumed to generate object e and K.

Object e and K execute the rules r10 to r14 in R1, and one k is produced every four time slices.

Then k is sent into membrane M1 to trigger addition operation. The state of the membrane

system when all the divisors are sent into membrane M1 is shown in Fig 8.

The first k enters membrane M1, object 1 and k are consumed to generate 1 and T in the

presence of C, then 1 enters membrane M2 as a feed along with k. Object k then triggers addi-

tion in membrane M2, and so on, and finally will reach membrane M4. Object k and g in mem-

brane M4 are consumed to create a new membrane M5, and object 1 and g enters membrane

M5. And then 1 and g are consumed to create a new membrane M6 and g is sent into mem-

brane M6.

After three rounds of addition, the highest digit of the dividend turns to 0. Object u detects

0, dissolves the current membrane, and the objects in membrane M3 fall into membrane M2.

Table 8. Process of object changes in each membrane during the multiplication.

Time Slice Membrane 1 M1 M2 M3 M4 M5 M6

0 Y f

1 TY f

2 Y af

3 Y A f

4 TY A f

5 Y Aa f

6 Y A af

7 1sY A A f

8 En Ac A f

9 Tn AE Ac f

10 un AEa A cf

11 un Ax AE C f

12 1un 1 AEpx C f

13 1n 1u 1pE Cpx f

14 un 1c 1pEu Tp rxf

15 un 1 1AEc Tpu r f

16 un 1 1Az TAE ru f

17 un 1 1T TAEpz C uf

18 un 1 0 TTEp Cpz f

19 un 1 0 1Ep T1p rzf

20 un 1 0 1Ep 0p f f

https://doi.org/10.1371/journal.pone.0312778.t008
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Object u detects the highest digit of the divisor in membrane M2, indicating that the digits of

the dividend and the divisor are now the same. At this point it is not possible to directly per-

form the addition operation, but to compare the dividend and the divisor before deciding

whether it is possible to perform the addition. However, the system continues to produce the

object k, and the configuration of the system when the fourth K is generated is shown in Fig 9.

First, we have to restore the addition operation after the third k, and send a signal to mem-

brane 1 to stop producing k. Object u is converted to x catalyzed by A, and k will be consumed

to avoid another addition operation. At the same time, object i will be produced, which will

restore the dividend to the state where it did three addition operations (RM:r37 * r45). Eventu-

ally object i and x will be transported to membrane 1, where x is consumed with e to prevent

the generation of k, and produce X and V. Object V is sent into membrane M4, object V is con-

sumed to produce v catalyzed by f. Object v is sent to membrane M3 to compare the dividend

and the divisor. If the dividend is greater than the divisor, then X produces k to continue the

addition.

In this example, the first round of testing determines that the dividend is greater than the

divisor, so object v is sent to membrane 1. Rule r16 in membrane 1 is executed, producing k
which is sent into membrane M1 to perform addition. At the same time V is produced to pre-

pare for the second round of testing. The second round of testing detects that the dividend is

Fig 9. The configuration when the fourth k is just generated.

https://doi.org/10.1371/journal.pone.0312778.g009

Fig 8. The configuration when all divisors are input to membrane M1.

https://doi.org/10.1371/journal.pone.0312778.g008
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still greater than the divisor and sends v to membrane 1, performing the same steps as above.

The third round of testing judges that no more addition can be performed, returning r to

membrane 1.

At this point, there are no more rules in the system to execute and the system stops. The

result of the quotient is saved in membranes M4,. . .,6, and if there is a remainder, it is saved in

membranes M1,. . .,3. In this example, there is no remainder. The quotient “1TT” is preserved in

the membranes M4,. . .,6 as shown in Fig 10.

Table 9 shows the process of object changes in each membrane as the division system runs.

Due to space constraints, only a portion of the table is shown. It takes a total of 51 time slices.

4.2 Simulation of addition

For the simulation of P+, the rules in P+ are described in UPLanguage [27]. The membrane

class “M” (i.e., membrane 1) is defined to contain the membrane class “Add”, membrane class

“B” and membrane class “C”. Membrane classes B and C are used to input the augend and

addend respectively. The overall membrane structure is as follows:

Environment {

Membrane M m1 {

Object Y;

Membrane Add A1 {

Object f;

}

Membrane B B1 {

Object O, B, T, I, s;

}

Membrane C C1 {

Object C, T, I;

}

}

}

Where ‘Object’ is used to specify the objects used in the simulation. The above rules indi-

cate that initially the membrane m1 contains one object Y, the membrane A1 contains one

object f, the membrane B1 contains objects O, B, T, I, s, and the membrane C1 contains objects

Fig 10. The configuration at the completion of division.

https://doi.org/10.1371/journal.pone.0312778.g010
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C, T, I. It should be noted that the UPS can’t use numbers to represent the objects, so we use

object I instead of 1, object O instead of 0. When the system starts running, it will output

objects O, O, T, and Is into membrane m1 every two time slices from membrane B. Object s
and Y are converted to E and enters all submembranes. When Object E enters membrane C,

Membrane C begins to output addend numbers.

Here is a brief description of the format in which the rules are written in UPS.

• Rule r1: T! (a, in all), 1; this means that object T is converted to object a and enters all sub-

membranes with priority 1.

• Rule r2: af! TAdd:a{f}, 1; this denotes that object a and f are converted to object T and cre-

ates a new membrane that inherits the rules of the Add membrane class and that object f
goes into the newly created membrane.

Rewriting the rules in Section 3.1 in the above format, the result is shown in Fig 11. Objects

I, T, O, I are retained in membranes M1,. . .,4 separately, and a total of 24 time slices are used. It

is one time slice more than the actual projection, because object E has to enter membrane C
before releasing the addition in UPS, this will consume one time slice.

Table 9. Process of object changes in each membrane during the division.

Time Slice Membrane 1 M1 M2 M3 M4 M5 M6 M7 M8

. . . . . . . . .

12 1sK 1C 0E 1 sf

13 eK 1Ca 0E 1u gf

14 Nke 1C 0Ea 1u gf

15 Me 1Ck 0A 1uE gf

16 He TC 0A1k 1uE gf

17 Ke TC 1Ak 1uE gf

18 Nke TC 0A 1uEk gf

19 Me TCk 0A 1uE gfk

20 He 0C 0Ak 1uE f 1g

21 Ke 0C TA 1uEk f 1 g

. . . . . . . . . . . . . . . . . . . . . . . .

26 Nke 1C 1A 0uEk f T 1 g

27 Me 1Ck 1AuE fk T 1 g

28 He TC 1k 1AxE f T 1 g

29 Ke TCix TAE 1f 0 1 g

30 Nke ix 1C TTAE 1f 0 1 g

31 NkiX 1CV 1AE 1Tf 0 1 g

32 NiX 1C 1AEV 0f 0 1 g

33 NiX 1C 1AE V0k 0 1 g

34 NiX 1C 1AEv 0f 0 1 g

35 NiX 1Cv 1AE 0f 0 1 g

36 NiXv 1C 1AE 0f 0 1 g

37 NiXV 1Ck 1AE 0f 0 1 g

38 NiX TCV 1k 1AE 0f 0 1 g

. . . . . . . . . . . . . . . . . . . . . . . .

51 NiXr 0C 0AE 0f T T 1 g

https://doi.org/10.1371/journal.pone.0312778.t009
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4.3 Simulation of multiplication

The membrane structure for multiplication is the same as for addition; the membrane class

“M” contains the membrane class “Mul”, membrane class “B” and membrane class “C”. Mem-

brane classes B and C are used to input the multiplicand and multiplier into membrane m1.

The overall membrane structure is as follows:

Environment {

Membrane M m1 {

Object Y;

Membrane Mul A1 {

Object f;

}

Membrane B B1 {

Object A, T, I, s;

Fig 11. Simulation of 1T00+1T1 = 10T1.

https://doi.org/10.1371/journal.pone.0312778.g011
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}

Membrane C C1 {

Object T, I;

}

}

}

Rewriting the rules in Section 3.2 with UPLanguage and running it yields the results as

shown in Fig 12. Objects I, O, and I are retained in membranes M1,. . .,3. It takes a total of 21

time slices. This duration is one time slice more than the projection because, in the UPS, object

E must enter membrane C before releasing the multiplier.

4.4 Simulation of division

For the simulation of P/, the rules of P/ are described in UPLanguage. We define a membrane

class “M” which contains the membrane class “Div”, membrane class “B” and membrane class

Fig 12. Simulation of 1TT*1T = 101.

https://doi.org/10.1371/journal.pone.0312778.g012
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“C”. Membrane classes B and C are used to input the dividend and divisor into membrane m1.

The overall membrane structure is as follows:

Environment {

Membrane M m1 {

Object Y, K;

Membrane Div A1 {

Object f;

}

Membrane B B1 {

Object I, O, C, s;

}

Membrane C C1 {

Object T, I;

}

}

}

Division includes the operation of dissolving membranes, and the rules are reformulated in

UPLanguage as follows:

• Rule r1: Ou! dissolve(u, out), 1; this rule specifies that when objects O and u are present

together, the membrane is dissolved.

• Rule r2: v! (v, out)|@O & @C, 1; this rule indicates that object v moves out only in the pres-

ence of both objects O and C.

Rewriting the rules in Section 3.3 with UPLanguage and executing the simulation yields the

results depicted in Fig 13. The sequence ITT is retained in membranes M5, M6, M7 in descend-

ing order, consuming a total of 54 time slices. This duration is three time slices longer than the

initial projection because Object E has to enter membrane C before the divisor can be released,

taking one additional time slice. Two extra time slices are consumed because, after the divi-

dend and divisor are entered, object s is then introduced into membrane 1.

5 Conclusion

Membrane computing is characterized by parallelism, distribution, and uncertainty. It has

been proved that membrane computing has equivalent computational capabilities with Turing

machines, and its powerful parallel computing capability can effectively solve the bottleneck

currently faced by electronic computers. The study of arithmetic operation system based on

membrane computing has very important academic and practical significance for the realiza-

tion of a general-purpose bio-computer.

In this paper, a symmetric ternary system is innovatively introduced, which is more adapt-

able in future bio-computers and can be closer to the natural computation of the human brain

than the traditional binary system. A dynamic membrane structure based on membrane com-

puting is designed, which makes the parallel operation of multi-digit numbers possible and

improves the computational efficiency. Simulation results show that the designed P-system is

not only suitable for basic arithmetic operations, but also can be extended to more complex

computational tasks, which provides a new direction for the development of future computing

devices.
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In the P System we designed, 21 rules are used to implement addition and subtraction,

symmetric ternary numbers “n + m” requires at most 3n + 4m time slices for addition. 43

rules are used to implement multiplication, “n �m” require at most 3n + 4m + 3 time slices

for multiplication. And 78 rules are used to implement division, n/m (n�m) require at most

3n + 5m − 2 + 4i + (2m + 3)j time slices, (i + j = quotient, i is the quotient that results when

the number of dividend digits is greater than the divisor, and j is the quotient that results

when the number of dividend digits is equal to the divisor).

Future work will focus on further optimizing the performance of the system and exploring

its applicability in more practical application scenarios. Also, we will further investigate their

general structure to make it more versatile.
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