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Abstract

Nowadays, electronic computers use a “binary” numbering system, as opposed to “ternary’
logic, which is closer to the way the human brain thinks. In this paper, the symmetric ternary
system is applied to membrane computing for the first time. By combining the symmetric ter-
nary system with membrane computing, this paper provides a more suitable arithmetic oper-
ation method for bio-computers, which breaks through the limitations of the traditional binary
system in complex operations, and has a great potential for application in artificial intelli-
gence and automatic learning in particular. The P System we designed include: M* for sym-
metric ternary addition, M* for symmetric ternary multiplication, and I’ for symmetric ternary
division. The operation process of each P System was explained through examples, and
their feasibility and effectiveness were verified through simulation software, UPSimulator.
The system we designed can be further applied to symmetric ternary applications.

1 Introduction

Existing computers use a “binary” numbering system, which, despite the simplicity of its
computational rules, is not a perfect representation of what humans really think. In contrast,
“ternary” logic is much closer to the way the human brain thinks.

Ternary is the base 3 for the system, generally has two forms of expression: one is to “0”,
“17, “2” as the basic character form of expression. One is a representation with “-17, “0”, “1” as
the base character, and this representation is also known as symmetric or balanced ternary. In
general, we do not have only “true” and “false” answers to questions, but also “I don’t know”.
In symmetric triadic logic, the symbol “1” represents “true”; the symbol “-1” represents “false”;
the symbol “0” represents “I don’t know”. Obviously, this logical expression is more in line
with the development trend of computers in artificial intelligence, which provides the possibil-
ity of fuzzy arithmetic and autonomous learning for computers. The logic of symmetric ter-
nary is usually applied to decision-making [1], such as voting with “yes”, “no”, or “abstain”;
trading with “buy”, “sell”, or “wait-and-see”; double-entry bookkeeping reflects the thinking of
symmetric ternary; SQL database system adopts three-valued logic, which is the application of

symmetric ternary.
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However, ternary logic is not a new emphasis. Ternary computers have long had a prece-
dent in the history of computer development. As early as the 1950s and 1960s, a group of
researchers at Moscow State University designed the first ternary computers in the history of
mankind, “Ceryns” and “Cerynb 70”. The “Cerynp” computers used symmetric trigonometry
instead of normal trigonometry [2]. Symmetric ternary logic circuits are not only faster and
more reliable than binary logic circuits, but also require less equipment and power. One of the
characteristics of symmetric ternary code is symmetry, i.e., the consistency of the opposite
numbers, so that, unlike binary code, there is no concept of an “unsigned number”. As a result,
the architecture of a ternary computer is much simpler, more stable, and more economical.
The instruction system is also easier to read and very efficient. At the same time, symmetric
ternary can represent integers more naturally than binary, with fewer integer digits of smaller
absolute value (omitting the zero before the first non-zero digit). The numbers it records can
express the full range of integers, and the introduction of “-1” eliminates the need for an extra
minus sign for negative numbers. Its corresponding logic circuits are “negative voltage”, “zero
voltage” and “positive voltage”.

As computer technology continues to advance, symmetric ternary logic has once again
attracted the attention of the scientific community. As chips are made smaller and smaller,
semiconductors are gradually moving closer to the realm of quantum. Difficult problems like
quantum tunneling, where we might have to put in a very large amount of effort to possibly
improve efficiency a little bit, might have to start opening up other paths. And ternary, right
now, is being resurrected in forms other than electronic computers. The electronic computer
has only two base states, on and off. But photonic computers, there are light intensity, wave-
length, phase, propagation direction and polarization of five states. Professor Yi Jin of Shang-
hai University, starting from the basic principles of constructing computers and the basic
characteristics of light, for the first time combined light intensity and polarization direction to
represent the three-valued information, and utilized the spinning effect of liquid crystals and
polarizers to realize the interconversion and migration of the three optical states, which put
forward a brand-new theory of optical computers—Ternary Optical Computer (referred to as
the TOC) [3]. In 2019, Chinese physicist Guangchan Guo and his team successfully completed
the transmission of a ternary quantum signal called “qutrit”, which is the first successful ter-
nary study by scientists in the quantum field [4].

Meanwhile, membrane computing has gradually become a popular research area in bio-
computing. Membrane computing (also known as P System) is a new branch of natural com-
puting, which is a new model of computation based on the abstraction of the structure and
function of living cells and the collaboration of cell population such as tissues and organs. It is
a computational model proposed by the Professor Gh.Pdun in 1998 [5]. After Gh.Paun pub-
lished his paper “Computing with membranes” in 2000 [6], it marked the birth of membrane
computing as a research field. Since its introduction, membrane computing has attracted
extensive attention from the scientific community, covering a wide range of disciplines or
fields such as computer graphics and linguistics [7], biology [8], automation [9], and econom-
ics [10], and has rapidly evolved into a field of scientific research with great potential, and its
development provides a rich computational framework for bio-computing.

With the intensive research on membrane computing, several studies have been devoted to
the development and optimization of P System for arithmetic operations. Adrian Atanasiu
designed arithmetic cell-like P System [11]. G.Ciobanu [12] designed arithmetic P System
based on natural coding to realize arithmetic operations, which greatly simplified the mem-
brane system structure. Ping Guo et al. [13] designed multi-layer membrane P System to real-
ize arithmetic operations and reduce the computational complexity. Haiyan Zhang et al. [14]
designed a single-layer membrane P System to realize arithmetic operations, which further
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simplifies the membrane structure and improves the computational efficiency. Minghong Luo
etal. [15] designed a multi-layer membrane P System to realize arithmetic operations with
signed numbers. Ping Guo et al. [16-18] designed single-layer membrane P System to realize
expression evaluation in the integer domain. Hong Zhang et al. [19] implemented basic arith-
metic operations in the domain of rational numbers using P System. Kong, Y. et al. [20] inves-
tigated fundamental problems in fraction representation and arithmetic-fraction
simplification. However all the above studies are based on binary or decimal.

While most research is still focused on binary and decimal systems, the potential of ternary
is gradually emerging. Symmetric ternary is used in a number of applications due to its unique
properties. Inspired by the balanced-ternary concept, Ji L et al. [21] demonstrates the reconfi-
gurable generation of order-controllable vortices via cascaded N-layer meta surfaces. Faghih E
et al. [22], for the first time, considers balanced ternary advantages to achieve a more efficient
design for quantum multipliers as the main component in arithmetic blocks.

There are also many scientists who have devised arithmetic operations related to symmetric
ternary. Ratan Kumar et al. [23] designs ternary logic circuits for nanoelectronics applications,
the digital multiplier circuit is developed using Pseudo n-type carbon nanotube field effect
transistors (CNTFETs). Based on the parallel carry-free TW-MSD adder, Yunfu S et al. [24]
proposed a parallel R4-MSD square root algorithm, which is designed and implemented on
the protype SD16 of ternary optical computer. Malik A et al. [25] proposes carbon nanotube
field effect transistor (CNTFET)-based ‘exact’ and ‘approximate’ ternary full adders (TFA).
Vudadha C [26] presents a new methodology to implement ternary Conditional Sum Adders
(CSA) using CNFETs.

Although ternary has shown its potential for applications in several fields, its combination
with membrane computing is still under-explored. And balanced ternary may become the most
suitable number system for bio-computers. The study of arithmetic P System based on symmet-
ric triples for membrane computing is of great academic and practical importance for the reali-
zation of a general-purpose bio-computer. The innovations of this paper mainly include:

1) Applying the symmetric ternary number system to membrane computing and designing a
symmetric ternary arithmetic operation cell-like P System.

2) Dynamically creating cell membranes to realize arbitrary digit ternary arithmetic
operations.

3) The symmetric ternary arithmetic operation system designed in this paper is simulated in
UPSimulator (UPS), which is a simulator proposed in [27]. And the idea and feasibility of
the algorithm are verified by examples.

The rest of the paper is organized as follows, Section 2 introduces the biological basis of
membrane computing, describes the definition of cell-like P System. And then briefly intro-
duces symmetric ternary and its arithmetic rules. Section 3 designs and implements an arith-
metic P System based on symmetric ternary and detailing the rule execution process. Section 4
gives examples to elaborate the execution flow of the rule and verifies the correctness of the
rule design through experimental simulation on computer. Section 5 summarizes the work
accomplished in this paper and presents issues for future refinement.

2 Research foundation
2.1 Cell-like P system

The cell-like P System is one of the most basic and earliest proposed model of membrane com-
puting [6], and an abstract schematic of the cell-like P System is shown in Fig 1. The
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Fig 1. The structure of cell-like P system [6].
https://doi.org/10.1371/journal.pone.0312778.g001

membrane computing model divides a cell into multiple regions with a hierarchical structure,
and the boundary of each region is the membrane. The outermost membrane, called the skin,
separates the entire membrane system from its external environment, and the region outside
the skin is the environment. If there are no other membranes within the membrane, it is called
the basic membrane [28]. Each membrane represents a region; the region of a basic membrane
is the space it contains; the region of a non-basic membrane refers to the space between the
membrane itself and the membrane it directly contains. Regions contain objects represented
by multi-sets, and objects evolve by executing reaction rules: objects are converted into other
objects that can reach a certain membrane, which can also be dissolved or split. The execution
of rules follows a nondeterministic and parallel character. The time when there are no rules to
be executed in the region is called downtime, and the results of the computation are sent in the
specified membrane or environment.

Membrane structures can be represented by generalized tables. A membrane is denoted by
a pair of brackets ‘[]’, with the subscripts of the brackets denoting the label of the membrane.
The basic membrane i is denoted as [;]; if membrane i contains membrane k inside, the mem-
brane structure is denoted as [;[]x];- The membrane structure of Fig 1 can be represented by
the generalized table [1 [2], [3]5 [4 [5]5 [6 [8]s [9]ols [7]7]4]1.

A cell-like P System of degree m (m > 1) is defined as formula (1) [6].

H: (V7#7w17""wm’Rl7‘"7Rm7p1’p2""7pm7i0) (1)

where:
1. Visa finite non-empty alphabet, whose elements are objects;
2. pisamembrane structure containing m membranes, where m is called the degree of IT;

3. w; € V* (1 <i < m), denotes the multiset of objects contained inside region i in the mem-
brane structure y. V* is the set of arbitrary strings consisting of characters in V;

4. R; (1 <i< m)isafinite set of evolutionary rules inside region 7 in the membrane structure
p, the evolutionary rules are binary groups (u, v), usually written as u — v, where, uisa
string in V" and V" is a set of non-empty strings in V¥, v =1+ or v =173, here v/ is a string
on the set {a,,.., @, by, |a € V,1<j<m},Jisaspecial character that does not belong

to V, when a rule contains , the membrane is dissolved after executing the rule, the length
of u is known as the radius of the rule u — v;
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5. p; (1 <i<m), denotes a partial order relation in R;;
6. i,is anumber between 1 and m where the output of results in IT.

In this paper, the initial grid refers to the P System that has not yet started the computation.
When operands are sent into the P System, which triggers the rules to be executed, the compu-
tation starts. The P System at a certain time slice in the computation is called the configuration
at that moment. As rules are executed, the configuration of the P System will change until
there are no rules left to be executed.

In every membrane structure, the rules will be enforced according to the following two
principles:

1) Uncertainty. The P System will follow the principle of uncertainty when executing rules,
which means that when there are n evolutionary rules in the membrane that can be exe-
cuted at the same time, the P System randomly selects some of the rules to be implemented
and the objects in the system to be evolved and chooses the rule that governs this evolution
in a non-deterministic way [28].

2) Maximum Parallelism. In the P System, each step of the computation follows the principle
of maximum parallelism, which means that all the rules that can be executed must be exe-
cuted at the same time.

2.2 Symmetric ternary

The symmetric ternary was inspired by Gauss’s idea of the simplest set of weights. The sim-
plest set of weights problem is as follows: How should the simplest set of weights be designed
for weighing an object of any integer gram weight with weights on a balance. Usually when
weighing an object with weights on a balance, the object to be weighed is placed on one side
of the balance pan and the weights on the other side. Gauss proposed that the simplest set of
weightsis 1, 3,9,27,...,3", ... grams, and that the weights can be placed on either side of
the balance pan when weighing an object. It can be shown that the formula for weighing an
object of any integer gram weight with the simplest set of weights is expressed as follows
[29]:

K=a3 +a, 3"+ - +a3" +4a,3" (2)

Where K is any positive integer, 3%, 3", .. ., 3!, 3 is the weight of each weight, the coeffi-
cients a,, a,_1, - . ., dy, dp is one of —1,0,1. “1” represents that the weight is placed on the other
side of the balance pan of the object to be weighed, “—1” represents that the weight is placed on
the same side of the object to be weighed. And “0” means that the weight does not participate
in the weighing. The 3", 3", .. ., 3!, 3° are used to represent the mass of the weights are
viewed as bit-weights, and ignoring the bit-weights, any positive integer K can be expressed in
the following form [29]:

K=a,a,,,...,a,4,. (3)

n) “'n—17

Where a,,, a,,_1, . . ., a1, ap is one of —1,0,1. To avoid confusion, —1 is generally denoted by T,
and Z or z under special conditions. In this paper, we denote —1 by T. This representation of
an arbitrary integer K by a string of numbers consisting of the various coefficients is called
symmetric ternary.
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Symmetric ternary system has many advantages, first of all, it has both positive and negative
number elements, which can be expressed as positive or negative numbers by the same Eq (2).
The sign of the first digit can be used to determine whether K is positive or negative; i.e., when
the first digit is positive, K is positive, and when the first digit is negative, K is negative. The
quadratic operations for symmetric ternary are also simple, and Tables 1-4 shows the qua-
dratic rules for symmetric ternary.

Table 1. Addition in symmetric ternary.

+ TT TO T1 T 0 1 1T 10 11
11 0 1 1T 10 11 1TT 10T 1T1 10T
10 T 0 1 1T 10 11 ITT 1T0 -
1T Tl T 0 1 1T 10 11 - -
1 TO Tl T 0 1 1T - - -
0 TT TO T1 T 0 1 - - -
T11 TT TO T1 T 0 - - -
Tl T10 T11 TT - - - - - -
TO T1T T10 - - - - - - -
TT TO1 - . - - - - - -
https://doi.org/10.1371/journal.pone.0312778.t1001
Table 2. Subtraction in symmetric ternary.
- TT TO T1 T 0 1 1T 10 11
TT 0 T T1 TO TT T11 T10 T1T T01
TO 1 0 T T1 TO TT T11 T10 T1T
T1 1T 1 0 T T1 TO TT T11 T10
1 10 1T 1 0 T T1 TO TT T11
0 11 10 1T 1 0 T T1 TO TT
1TT 11 10 1T 1 0 T T1 TO
T1 1T0 1TT 11 10 1T 1 0 T T1
TO 1T1 1T0 1TT 11 10 1T 1 0 T
TT 10T 1T1 1TO 1TT 11 10 1T 1 0
Note: Left column minus top row
https://doi.org/10.1371/journal.pone.0312778.t002
Table 3. Multiplication in symmetric ternary.
* TT TO T1 T 0 1 1T 10 11
11 T11T TTO T10 TT 0 11 10T 110 1TT1
10 TTO T00 T10 TO 0 10 1TO 100 -
1T T01 T10 1T 1 0 1T 11 - -
1 TT TO T1 T 0 1 - - -
0 0 0 0 0 0 0 - - -
11 10 1T 1 0 T - - -
T1 10T 1T0 11 - - - - - -
TO 110 100 - - - - - - -
TT 1TT1 - - - - - - - -

https:/doi.org/10.1371/journal.pone.0312778.t003
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Table 4. Division in symmetric ternary.

/
TT
TO
T1
T
0

1
1T
10
11

TT

TO
1.1
1
1.T
0.1
0
0.T
T.1
T
T.T

Note: Left column divided top row

https://doi.org/10.1371/journal.pone.0312778.t1004

T1 T 0 1 1T 10 11
1T 11 00 TT T1 T.T T
1.1 10 -00 TO T.T T T.IT
1 1T 00 T1 T T.1 T.1
0.1 1 00 T 0.T 0.T 0.T1
0 0 NaN 0 0 0

0.T T +00 1 0.1 0.1 0.1T
T T1 +00 1T 1 1.T 1.T
T.T TO +00 10 1.1 1 1.T1
T1 T +00 11 1T 11

3 Arithmetic P system based on symmetric ternary system
3.1 Addition and subtraction

According to the definition of cell-like P System, an addition and subtraction arithmetic P Sys-
tem based on symmetrical ternary can be defined as:

I = (thawuleaRvpaio) (4)

Where:

V={a,b,¢T,0,1,sfE Y}

= [l[Ml]Ml]l;

wy = {Y}

Wy, = i

iy consists of M, and his submembrane to hold the output;

p=12

R=R URy;

Ry ={ri: (T — (a, My), 1), r5: (0 — (b, My), 1), r3: (1 — (¢, My), 1),

ry: (sY— E, 1), 7rs: (E— (E, M), 1)}

RMl = {71 : (af - T[f]7 1)7 ry: (bf - O[f]7 1)7 T3 (Cf - 1[f]> 1>7

r4: (Ef — E[f], 1), rs: (a — (a, in), 2), rs: (b — (b, in), 2), 12 (c — (¢, in), 2),

rg: (aE — T(E, in), 1), ro: (bDE — O(E, in), 1), r1o: (cE — 1(E, in), 1),

11: (02— 0, 1), 71: (0T — T, 1), r153: (01 — 1, 1), 714: (T> — 1(T, in), 1),

r15: (T1 — 0, 1), r16: (1> — T(1, in), 1)};

In this case, the correspondence of objects is as follows. The augend numbers T, 0, 1 are
represented as objects a, b, ¢ when they enter membrane M; from membrane 1. Objects g, b, ¢
reach to the membrane where object fis located, and are converted to objects T, 0 and 1 after
reacting with f. In this way, the incoming objects g, b, and ¢ will only react if they enter the
membrane where fis located, thus enabling dynamic modeling and the storage of the augend
numbers from low to high in membrane M, and its submembranes. Object s is used to indicate
the end of the augend input and to generate E with Y in Membrane 1. The purpose of E is two-
fold: to signal that the system is ready to input the addend, and to convert the addend to T, 0,
and 1 so that it can be added to the augend.

Let us assume that the augend is a,,a,,_;. . .a; and the addend is b,,,b,,_;. . .b;. Then we illus-
trate the use of the rules in IT" by adding these two numbers.
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(1) Input of the augend:
We input one bit of the augend every two time slices from low to high. First a, is sent into
membrane 1.

« Case 1: a; = T. Executing rule ry in R, object T is converted to object a and sent into mem-
brane M. Executing rule r, in Ry, object a and object fare consumed with T produced, a
new membrane M, is created at the same time, and fis sent into membrane M,.

o Case 2: a; = 0. Executing rule r, in R;, object 0 is converted to object b and sent into mem-
brane M;. Executing rule r, in Ry, object b and object fare consumed with 0 produced, a
new membrane M, is created, and fis sent into membrane M,.

« Case 3: a; = 1. Executing rule r; in R, object 1 is converted to object ¢ and is sent into mem-
brane M;. Executing rule r; in R, object ¢ and object fare consumed with 1 produced, a
new membrane M, is created, and fis sent into membrane M,.

Object g; (1 < i < n) is sent into membrane 1, converted to object a, b, or ¢ (Ry: r; ~ 13),
and enters membrane M, then continues into the inner membrane (Ry: 75 ~ r,) until it
reaches membrane M; where it is consumed with fand produces object T, 0, or 1 (Rpz: 11 ~ 713).

The last object a,, is input to the system with s. Object s is used to indicate that the augend
has been fully entered. Rule r, in R is executed, object s is consumed with Y and E produced,
indicating that the system is ready to input the addend, while E enters Membrane M;.

(2) Input of the addend:

Object b, is sent into membrane 1.

« Case 1: b; = T, rule r; in R, is executed, object T'is converted to a to enter membrane M;.
Object a is consumed with E (Ryy: 13), a is converted to T to be preserved in membrane M,
and E enters the inner membrane M,.

o Case 2: b; = 0, executing rule r, in R;. Object 0 is converted to b and is sent into membrane
M. Object b and E are consumed (Ry: 1), generating 0 to remain in membrane M; and E is
sent into membrane M,.

« Case 3: b; = 1, executing rule 75 in R;. Object 1 is converted to ¢ to enter M, then object c is
consumed with E (Ry: 719) and object 1 produced to stay in membrane M;, and E enters
membrane M,.

The next object b; (1 < i < m) follows a similar pattern to b;. It is sent into membrane 1
first, and then converted to object a or b or ¢ (R;: r; ~ r3), entering membrane M;. Object b;
continues into the inner membrane (R, 75 ~ r,) until it reaches membrane M;. Then it is
consumed with E to produce object T, 0 or 1 (Ryz: 17 ~ 13).

(3) Addition:

The process of addition is simultaneous with the input of the addend. When b, reaches
membrane M;, the addition operation can be performed without having to wait for the addend
to be fully input. Two numbers are added bit-wise from low to high and may produce carrying.
The possibilities of a; + b; (1 < i < min{n, m}) in a,4,_;...a; and b,,b,,_;. . .b, are as follows:

e Case1: 0+ 0 =0 (Ryz: 111);
e Case2:0+ T =T (Ry: 112);
e Case3:0+1=1(Rp:13);
e Case4: T+ T=T1 (Ry: 114);
e Case5: T+1=0(Ry:115);
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e Case6:1+1= 1T(RM 7'16).

For Case 4 and Case 6 that have generated feeds, the high bit of the result is sent into the
inner membrane and the low bit is left in the original membrane.

The result of the addition is saved in the membrane Mj, . .., My (k > 1) from low to high.
The example of addition in Section 4.1.1 provides a more concrete demonstration of the
implementation of the rules. In the addition P System IT", symmetric ternary numbers
“n+ m” require at most 3n + 4m time slices for addition.

The subtraction P System simply changes the rule r; in R, to (T — (¢, M;)), and r3 to (1 —
(a, My)), the operations are all consistent with addition, so we won’t go into too much detail
here.

3.2 Multiplication

According to the definition of cell-like P System, a multiplication arithmetic P System based
on symmetrical ternary can be defined as:

I = (V,H7(UprlaR7p7i0) (5)
Where:
V={a,b,, T,0,1,A, B,C, %, y, 2, p. 4 1 th 1, f, E, Y},
n= [1[M1]M1]1;
w; = {Y};

Wy, = b

ip consists of M; and his submembrane to hold the output;

p=0,1,2;

R=R,UR,;

Ry ={r;: (T — (a, My), 2), r2: (0 — (b, M), 2), r3: (1 — (¢, My), 2),

rq: (Tn — un(a, My), 1), rs: (0n — un(b, My), 1), rs: (1n — un(c, My), 1),

r7: (sY — En, 1), rg: (E — (E, My), 1), ro: (u — (4, My)| 7, 0),

r10: (u — (4, My)lo, 0), rip: (u — (u, My)|1, 0)}

Ry, ={r : (af = Alf],1),r,: (bf — BIf], 1),y : (¢f — C[f], 1),

rq: (a — (a, in), 2), r5: (b — (b, in), 2), rs: (¢ — (¢, in), 2), ry: (aE — x(E, in), 1),

rg: (bE — y(E, in), 1), re: (cE — z(E, in), 1), r1o: (Ax — 1(px, in), 1),

i (Bx — 0(gx, in), 1), rip: (Cx — T(rx, in), 1), r13: (Ay — 0(py, in), 1),

14t (By — 0(qy, in), 1), r15: (Cy — 0(ry, in), 1), rig: (Az — T(pz, in), 1),

172 (Bz — 0(qz, in), 1), rig: (Cz — 1(rz, in), 1), r19: (xf — [f], 1),

20 (0f = [fl, 1), 12t (ru — Clu, in), 1), 127 (0> = 0, 1), r2: (0T — T, 1),

r29: (01 — 1, 1), 730 (T> — 1(T, in), 1), r31: (T1 — 0, 1), r35: (12 — T(1, in), 1)}

In this case, the correspondence of the objects is as follows.

The multiplicand numbers T, 0, and 1 are represented as objects a, b, and ¢ when they enter
membrane M, from membrane 1. They reach the membrane where object fis located, and are
converted to objects A, B and C after reacting with f. They are converted to objects p, ¢, and r
when they are multiplied by the multiplier and move toward the inner membrane.

The multiplier numbers enter the membrane M, also represented by the objects a, b, and c.
When they arrive in the membrane where E is located, they are represented by the objects x, y,
and z after reacting with E. Objects s, f, E, and Y act in the same way as addition. Object n is to
control the generation of u, which converts the shifted multiplicands p, g, and r into the objects
A, B,and C.
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Let us assume that the multiplicand is a,a,,_;. . .a; and the multiplier is b,,,b,,,_;. . .b;. We
illustrate the use of the rules in TT* by multiplying two numbers.

(1) Input of the multiplicand:

We input one bit of the multiplicand from low to high every two time slices. First, object a,
is sent into membrane 1.

o Case 1: a; = T, executing rule r; in R,, object T'is converted to a and is sent into membrane
M. Object a is consumed with f (Ryz: 71), a is converted to A to stay in membrane M; and a
new membrane M, is generated, and f enters into membrane M,.

o Case 2: a; = 0, executing rule r, in Ry, object 0 is converted to b and is sent into membrane
M. Object b is consumed with f (R 15), b is converted to B to stay in membrane M; and a
new membrane M, is generated, and f enters into membrane M.

o Case 3: a; = 1, executing rule 3 in R;, object 1 is converted to ¢ and is sent into membrane
M. Object c is consumed with f (Ry: 73), ¢ is converted to C to stay in membrane M; and a
new membrane M, is generated, and f enters into membrane M,.

The rules for the execution of the multiplicand a; (1 < i < n) are similar to the rules for a;.
Object g; is sent into membrane 1 first, then it is converted to object a, b or ¢ into membrane
M,. It continues into the inner membrane until it reaches membrane M; where it is consumed
with fto produce object A, B or C. The highest bit of multiplicand g4,, is sent in membrane 1
with object s, which is used to indicate that the multiplicand has been completely imported.
Rule r, in R, is applied, object s is consumed with Y to produce E and #, signaling that it is
ready to send in the multiplier. At the same time, E is sent into membrane M, and # stays in
membrane 1 for the production of u.

(2) Input of the multiplier:

Object b, is sent into membrane 1.

o Case 1: b; = T, rule ry in R is applied, object T'and n are consumed to produce u, n, and 4,
object a is sent into membrane M;. Rule r, in Ry, is applied, object a is converted to x to stay
in membrane M, and E enters membrane M,.

« Case 2: b; =0, rule r5 in R, is applied, object 0 and # are consumed to produce u, n, and b,
object b is sent into membrane M;. Rule rg in Ry, is applied, object b is converted to y to stay
in membrane M, and E enters membrane M,.

o Case 3: b; = 1, rule rg in R, is applied, object 1 and # are consumed to produce u, n, and c,
object c is sent into membrane M;. Rule o in Ry, is applied, object c is converted to z to stay
in membrane M;, and E is sent into membrane M,.

The multiplier b; (2 < i < m) performs similar rules to b;. Object b; is sent into membrane
1, then it is converted to object g, b, or ¢ into membrane M;. It continues into the inner mem-
brane until it reaches membrane M; where it is consumed with E and produces object x, y, or z.

(3) Multiplication:

Multiplication of two numbers involves both multiplication and addition operations, and
these rules are performed simultaneously. When object b, is sent into membrane Mj, it is pre-
pared for multiplication operations with a,a,,_;. . .a;.

Multiplication possibilities of b; x a; are as follows:

e Case 1: Tx T=1 (Ryz: 110);
e Case2: Tx0=0(Ry:113);
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e Case3: Tx 1=T(Ry:76);
e Case4: 0x T=0(Rpi: 711);
e Case5:0x0=0(Ryz:714);
e Case6:0x1=0(Ryz:117);
e Case7:1x T=T (Rys r12);
o« Case8:1x0=0(Ry:r5);
e Case9:1x1=1(Ryz:115).

Taking the case of “T'x T'= 1" as an example, Rule R, 11, signifies that object A is con-
sumed with x to produce 1, which is retained in the original membrane. Object A is converted
to p and sent into membrane M, along with object x. The conversion of object A to p and its
movement into the inner membrane serves to: 1) Avoid confusion with the multiplicand
object in the next layer of the membrane; 2) Allow the result of the multiplication to directly
contribute to addition operations in the original membrane. After the input of b,, object u will
first be sent to membrane M; (Rys: t9 ~ r11), where u will convert p back to A (Ry: 24) before
b, is sent into membrane M,, enabling b, to multiply with object A.

Object b, is sent to membrane M, to multiply by a,. The result of the calculation is retained
in the original membrane, g, is converted and sent into membrane M; along with the multipli-
cand b;. This process continues until b; enters membrane M,,. After multiplication by a,,, the
converted b; and a,, arrive at membrane M,,,;, where fis located. Object b; is consumed with
f(Rpg: 119 ~ 721), producing a new membrane M,,,,, and fis sent into the new membrane to
prevent spillage.

After the input of b,, object u will be sent into membrane M, first (Ryz: 19 ~ r11). Object u
will convert the multiplicand from object p, g, or 7 to object A, B, or C (Ryz: 124 ~ 126) before b,
is sent into membrane M,. In membrane M,, object b, multiplies with a;, and the product is
then added to the result of b; x a; according to rules (Ryz: 727 ~ 73;). b, then continues into
the inner membrane for further reactions. The next objects b; (3 < i < m) also react according
to the earlier described rules.

The final result is stored sequentially in membranes M, . . ., M (k > 1). The multiplication
example in Section 4.1.2 demonstrates the concrete implementation of the rules. In the multi-
plication P System IT*, symmetric ternary numbers “n X m” require at most 3n + 4m + 3 time
slices to complete the multiplication operation.

3.3 Division

According to the definition of cell-like P Systems, a division arithmetic P System based on
symmetrical ternary can be defined as:

= <V7:u7wl7wM]>R7p7 i) (6)
Where:
V: {a’ b’ C’ T’ 0’ l’A’ B’ C’ K’ M’ N’ H’ V’ k’ x’ i) V) r’ u’g’ S’ﬁ e, E’ Y’X};
w= [Ml]Ml]l;
w; ={Y}

Wy, = b
iy consists of M; and his submembrane to hold the output;
PZO, 1)2)3)435;
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R=R UR,;

Ry ={ri: (T — (a, My)|y, 1), 12: (0 — (b, M) |y 1), 13: (1 — (¢, Mi)|y> 1),

rg: (T — (¢, My), 2), 15: (0 — (b, My), 2), 76 (1 — (a, M), 2),

r7: (sY — E(s, M1), 1), rg: (E — (E, M), 1), r9: (sK — €K, 2),

r10: (K — Nk|,, 1), r1y: (ke — e(k, My), 1), r12: (N — M|, 1),

r13: (M — H|,, 1), 114: (H — K], 1), 1150 (xe — X(V, in), 0),

r1e: (WX — XV(k, in), 1), r17: (V — (V, in), 1), r1g: (kX — X, 0)}

Ry, = {ry: (af = TIf],1),m, : (bf — Of], 1), 72 (f — 1[f], 1),

ry: (a — (a, in), 2), r5: (b — (b, in), 2), rs: (¢ — (¢, in), 2),

r7: (aE — A(E, in), 1), rg: (bE — B(E, in), 1), ro: (cE — C(E, in), 1),

r10: (Ok — T, (k, in)| 4> 3), 112 (0k — 0, (k, in)|p, 3), r12: (0k — 1, (k, in)]|c, 3),

r13: (Tk — 1, (Tk, in)|a, 3), r14: (Tk — T, (k, in)|p, 3), r15: (Tk — 0, (k, in)|c, 3),

r16: (1k — 0, (k, in)|a, 3), 1172 (1k — 1, (k, in)|p, 3), rig: (1k — T, (1k, in)|c, 3),

T19: (02 = 0, 2), 720: (0T — T, 2), 723: (01 — 1, 2), 135 (T* — 1(T, in), 2),

7231 (T1 — 0, 2), r24: (12 — T(1, in), 2), r25: (s — (s, in), 1),

126 (s — g(u, out)|f, 0), r57: (0k — 0(k, in), 4), rys: (Tk — T(k, in), 4),

r29: (1k — 1(k, in), 4), r39: (U0 — Su, 1), r3;: (u0k — Su(k, in), 0),

T30: (U — x| 4, 0), 1330 (U — x|, 0), 1341 (U — x|, 0), 135 (xk — (ix, out), 1),

136t (x = (x, out), 2), r37: (0i — 1(i, out)| 4, 1), r38: (0i — 0(i, out)|p, 1),

t39: (08 — T(i, out)|c, 1), r40: (Ti — 0, out)|a, 1), r41: (Ti — T(i, out)|p, 1),

ta2: (Ti — (T, in)1(i, out)|c, 1), r43: (1i — (1, in) T(i, out)| 4, 1),

t4q: (1i — 1(3, out)|p, 1), r45: (1i — 0(i, out)|c, 1),

ra6: (v — (v, out)|14, 1), 147: (v — (v, out)|op, 1), 145: (v — (v, out) |7, 1),

ra0: (v — (v, out)|yp, 1), 750: (v = (v, out)|oc, 1), 7512 (v — (1, out) |y, 1),

st (V - (7’, Out)|0Aa 1)) T's3: (V - (7’, Out)|TB> 1): 54t (V - (7‘, Out)lTA> 1):

rss: (r — (r, out), 1), rs¢: (V — (v, out)| 0), r57: (V — (V, in), 1),

rsg: (gk — [1g], 0), r59: (1g — 1[g], 1), 7eo: (fk — f(1, in), 1)}

In this case, the correspondence of some substances is as follows. The dividends T, 0, 1 are
represented as the objects a, b, c when they enter the membrane M; from the membrane 1.
When they arrive in the membrane where fis located, and are represented as the objects T, 0, 1
after reacting with f. The divisors T, 0, 1 enter membrane M, as objects ¢, b, a, and arrive in the
membrane where E is located. They are represented as objects A, B, C after reacting with E.
Objects s, f; E, and Y function in the same way as addition. Objects K, M, N, H, e are used to
control the generation of object k. Object u is used to determine whether the digits of the divi-
dend are equal to the divisor.

Object u is converted to x when it encounters the divisor. Object k produced after the divi-
dend and the divisor digits are the same, will be consumed with x and i produced. Object i con-
verts the dividend to the state it was in when it was just the same number of digits as the
divisor. Send V from membrane 1 into the innermost submembrane of membrane M,. If the
dividend is greater than the divisor, return v to membrane 1 to produce k, and continue with
the addition; if it is less than that, return r to indicate that no more addition can be performed.
At the end of the reaction, the quantity of k is the decimal representation of the quotient, and g
converts the quantity of k to symmetric ternary.

In this paper, division of two numbers is actually accomplished by iterative subtraction,
where the divisor is subtracted from the dividend. The cycle of subtraction continues until the
dividend is less than the divisor. The number of rounds of subtraction is the quotient, and the
remaining dividend that cannot be subtracted anymore is the remainder. In symmetric ter-
nary, subtraction is converted to addition by simply changing the non-zero bit of the divisor to
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its opposite, i.e., 1 to T'and T to 1. So, we can change iterative subtraction to iterative addition.
The following modules are used in the Division P System:

e Module 1 (Ry: r; ~ rgand Ryz: r; ~ 1) is the input of dividend and divisor. The dividend is
input and stored in each layer of the membrane as “T, 0, 17, and the non-zero bit of the divi-
sor is turned into its opposite and stored in each layer of the membrane as “A, B, C”.

Module 2 (Ry: 119 ~ t24) is the iterative addition of the dividend and the opposite of the
divisor. When the number of bits of the dividend is greater than the number of bits of the
divisor, no judgment is required to perform the addition operation.

Module 3 (R, 137 ~ t45) is a module that restores the dividend to the state when the num-
ber of digits of the dividend is the same as the number of digits of the divisor. And at the
same time, object k is consumed in its entirety, and the generation of k is suppressed in

Membrane 1.

Module 4 (Rys: 746 ~ 757) is a module that determines whether the dividend is greater than
the divisor. If the dividend is greater than the divisor, the addition continues; if it is less, the
reaction stops.

Let us assume that the dividend is a,,a,,_;. . .a; and the divisor is b,,,b,,,_;. . .b; (where n >
m), and we illustrate the use of the rules in TT' below by dividing two numbers.

(1) Input of the dividend:

First, a, is sent into membrane 1.

o Case 1: a; = T, rule r; in R is applied, and object T'is converted to a in the presence of Y and
is sent into membrane M;. Rule r; in R, is executed, and a is converted into T while a new
membrane M, is created, and f enters membrane M,.

o Case2: a; =0, rule r, in R, is applied, and object 0 is converted to b in the presence of Y and
is sent into membrane M;. Rule r, in R, is executed, and b is converted into 0 while a new
membrane M, is created, and f enters membrane M,.

o Case 3: a; = 1, rule r; in R, is applied, and object 1 is converted to c in the presence of Y and
is sent into membrane M. Rule r; in R, is executed, and c is converted into 1 while a new
membrane M, is created, and f enters membrane M,.

Object a; (1 < i < n) is sent into membrane 1 and converted to object a, b, or ¢ into mem-
brane M;. Then it continues into the inner membrane until it reaches membrane M; where it
is consumed with fand is converted to object T, 0 or 1. The last bit of the dividend a,, is sent in
with object s to indicate that the dividend has been fully entered. When object s enters mem-
brane 1, rule r; in R is applied. Object E is produced, signaling the system that it is ready to
enter the divisor, while s is sent into membrane M;. After that, object s continues into the
inner membrane (R,;: 7,5) until it reaches membrane M,,. In membrane M, object s is con-
verted to u and g (Ry: rp6) catalyzed by f. Object u is exported to membrane M,,_; (Rys: 126),
and g stays in membrane M,,.

(2) Input of the divisor:

Object b, is sent into membrane 1:

o Case 1: b; = T. Rule r, in R, is executed, and object T is converted to ¢ in membrane M.
Then, rule ro in Ry, is applied, object ¢ is converted to C, and E enters membrane M,.

o Case 2: b; = 0. Rule 75 in R, is executed, and object 0 is converted to b in membrane M;.
Then, rule rg in Ry, is applied, object b is converted to B, and E enters membrane M,.
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o Case 3: b; = 1. Rule 74 in R, is executed, and object 1 is converted to a in membrane M;.
Then, rule 7, in Ry, is applied, object a is converted to A, and E enters membrane M,.

Object b, (2 < i < m) is sent into membrane 1, then it is converted to object g, b, or ¢ into
membrane M. It continues into the inner membrane until it reaches membrane M; where it is
consumed with E to produce object A, B, or C. The highest bit of the divisor b,, is sent into
membrane 1 with object s. When s is sent into membrane 1, rule ry in R; is applied, object s is
consumed with K to produce E and K, which is used to produce object k.

(3) Division:

When the divisor is fully sent into the system, object k is produced in Membrane 1 (R;: o
~ T10)> and k is sent into membrane M, to trigger addition. Then one k is produced every
three time slices into membrane M; (Ryz: 19 ~ 714)-

The possibilities of a; + b, are as follows:

e Case1: 0+ T=T (Ry: 110);
e Case2:0+0=0(Ry:11);
e Case3:0+1=1(Ryz:r2);
o Case4: T+ T=T1 (Ryp 113);
o Case5: T+0=0(Ry:r14);
e Case 6: T+ 1=0 (Rpz: 115);
e Case7: 1+ T=0(Ry:76);
e Case8:1+0=1(Ry:17);
e Case9: 1+ 1=1T (Rpp: 11g).

For cases 4 and 9 that generate feeds, the high bit of the result is sent into the inner mem-
brane and the low bit remains in the original membrane.

Taking “0+T = T” as an example, the rule R, 1o indicates that 0 is consumed with k in the
catalysis of A, generating T to remain in membrane M, and k to enter membrane M,. The divi-
sor, serving as a catalyst, remains unchanged to ensure that the size of the dividend decreases
while the divisor remains the same.

When the first round of addition is completed and the first object k reaches the membrane
M,,,1, where objects g and fare also present. The rule rsg in Ry, is executed to convert k to 1
and create a new membrane M,,,,, sending 1 and g into membrane M,,,,. Then, rule r5¢ in Ry,
creates a new membrane M,,,; and sends g into membrane M,,,; to prevent result overflow.
Thereafter, object f converts the k of membrane M,,,; to 1 (Rys: 7o), sending it into membrane
M,,,, and converting the quotient to a symmetric ternary number. Object g encountering
object 1 creates a new membrane, preventing overflow.

As addition proceeds, the dividend a,,a,,_;. . .a; decreases, and when a,, = 0, object u dis-
solves the membrane M,, (R, 130). This continues until # dissolves the membrane M,,,.;, and
encounters the divisor (Rys: 735 ~ 734). At this point, the bits of the dividend and the divisor
are the same. Further additions should then check if the dividend is greater than the divisor,
allowing addition to continue only if this condition is met. However, membrane 1 still pro-
duces one k every three time slices, which requires reversing the additions done after the num-
bers have the same number of digits and eliminating the k produced, sending a signal to stop k
production in membrane 1.
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When the digits of the dividend and divisor align, object u is converted to x. x is then trans-
ported out of the membrane (R, 136) until it encounters k or reaches membrane 1. If x meets
k, rule Ry: 135 is enacted to produce i and x. Object i reverses the addition performed for this k
(Rar: 137 ~ 145), and x continues to membrane 1. Upon reaching, rule R;: ry5 is executed, gener-
ating X and V. X regulates k production, while V moves to membrane M,,,;, converting to v
catalyzed by f (Rys: 156). v assesses whether the dividend exceeds the divisor, returning to mem-
brane 1 if greater, or sending r to indicate that no further addition can be done (Rys: 746 ~ 7s4).

When v returns to membrane 1, rule ri4 in R, is executed, producing k and sending it to
membrane M, for further addition, while V continues into membrane M,,,,, converted to v by
f- The process iterates until r returns to membrane 1, signaling the cessation of reactions.

The remainder of the division is stored in membranes M, .. ., M;, and the quotient in
membranes M;,y, ..., M¢(f> i + 1). The division example in Section 4.1.3 allows a more con-
crete demonstration of the implementation of the rule. In the division P System IT/, the sym-
metric ternary numbers of n/m (n > m) bits require the following time slices to implement the
division operation: The time slices required by the input module is 37 + 3m — 2, The time slices
required by the iterative addition module is 4i, The time slices required by the revert module is
2m, The time slices required by the evaluation module is (2m + 3)j, where i + j = quotient, i is
the quotient that results when the number of dividend digits is greater than the divisor, and j is
the quotient that results when the number of dividend digits is equal to the divisor. The effi-
ciency of the system will be greatly improved when the number of dividend digits is much
larger than the divisor.

3.4 Comparison of computational efficiency

In this section, we analyse and compare P systems proposed in recent years for basic arithmetic
operations, the results are shown in Table 5. The statistics include the number of rule types
used for the four basic operations (addition, subtraction, multiplication, and division), and the
number of time slices required to complete the operations. In [13, 14], m and n respectively
represent the two decimal numbers used in the operation, and n = max {m, n}. In this paper, m
and n respectively represent the two symmetric ternary numbers used in the operation, and n
= max {m, n}.

In Table 5, the arithmetic P systems designed in [13-16] are all decimal based. And instead
of considering the input of data, the numbers to be computed are directly put into the mem-
branes. In other words, they did not take into account the input of computational data. [13]
designed an arithmetic P system based on a multi-layer membrane, and [14] designed an arith-
metic P system based on a single membrane In [15] the time slices of the operations is not
given, only it is mentioned that the complexity of these operations in P system is “linear”.

Table 5. Time slices required and number of rule types used for four arithmetic approaches.

Article Rule type Add Sub Mul Div
[13] 5/5/6/11 O(n) O(n) O(m) O(n)
[14] 2/1/11/12 0o(1) 0o(1) O(max (n,m)) linear
[15] 39/39/29/34 linear linear linear linear
[16] 3 or 4/4/11/10 - - -

This Work 21/21/43/78 O(4m) O(4m) O(4m) O(3n)

Note: The ‘Rule type’ column is represented in the form of A/B/C/D, where A represents the number of rules used
for addition. Similarly, B, C, and D denote the number of rule types used for subtraction, multiplication, and

division, respectively.

https://doi.org/10.1371/journal.pone.0312778.t005
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Since [16] discusses arithmetic operation and arithmetic expression evaluation in transition P
system based on rules with priority, no arithmetic operations are performed. Therefore, the
time slices required for arithmetic operations is marked with ‘-.

From the above analysis, it can be seen that this paper not only considers the input of the
data, the dynamic generation and dissolution of the membrane, but also introduces the sym-
metric ternary number system, which eliminates the influence of the operational sign on the
calculation. The arithmetic operation P system designed in this paper is more novel and has a
wider application scenario.

4 Simulation and validation of rules

This section is based on Section 3 to further validate the correctness of the rules in the P Sys-
tem. The rules in Section 3 are simulated and experimented with UPSimulator [27]. The main
discussion is the simulation experiments of (1) addition: 1700 + 171 = 10T1; (2) multiplica-
tion: 1TT x 1T = 101; and (3) division: 101/1T=1TT.

4.1 Examples of symmetric ternary arithmetic operations

4.1.1 Example of addition. Here is an example of “1T00 + 1T1” to illustrate the imple-
mentation of the addition rules.

The initial state of IT* is shown in Fig 2. Firstly, objects 0, 0, T, 1 are sequentially sent into
membrane 1 every two time slices. When object 0 is input to membrane 1, it is converted to
object b and is sent into membrane M; immediately. Object b is consumed with fin membrane
M, and object 0 produced, at the same time, a new membrane M, is created with f entering
membrane M,. The next input of object 0 is converted to object b and is sent into membrane
M, which then is consumed with fand object 0 produced, and creates a new membrane M,
with fentering membrane M;. Object T is input to membrane 1, it is converted to object a and
is sent into membrane M;. Object a is consumed with fand object T produced, and creating a
new membrane My, with f entering membrane M,.

When the highest bit object 1 is input, object s is input at the same time to indicate the end
of the augend number. Objects 1 and s are input to membrane 1, and object 1 is converted to
object ¢ which is sent into membrane M,. Object ¢ is consumed with fand object 1 produced,
and creates a new membrane Ms, with fentering into membrane M. Object s is consumed
with Y in membrane 1 and E produced, which indicates that the addend number can be input

4 N

y )

N Ma)

- A

Fig 2. Initial configuration of IT*.
https://doi.org/10.1371/journal.pone.0312778.9002
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1T1

= )

Fig 3. The configuration of addend waiting for input.

https://doi.org/10.1371/journal.pone.0312778.g003

now, and at the same time, object E enters into membrane M;. Fig 3 shows the membrane
structure where the augend is input completely and the addend waits to be input.

The lowest bit of the addend, object 1, is sent into membrane 1. Object 1 is converted to ¢
and is sent into membrane M;. Object ¢ and E are consumed with object 1 produced, and
object E is sent into membrane M,. Object 1 is added to the 0 in membrane M, and the gener-
ated results is 1, which is stored in membrane M;.

Input the second bit of the addend, object T, to membrane 1. Object T'is converted to a,
which is sent into membrane M,, where it is consumed with E to generate object T. Object T'
and the object 0 in membrane M, are consumed with object T produced, which is stored in
membrane M,.

Send the last bit of the addend, object 1, to membrane 1. Object 1 is converted to ¢, which is
sent into membrane M; and reacts with E to generate object 1. Object 1 is consumed with
object T'in membrane M; and object 0 produced, which is stored in membrane M.

At this point, there are no more rules in the system that can be executed, the system stops,
and the obtained result “10T1” is saved in low to high order in M; 4 as shown in Fig 4. The
rules of the entire system run in parallel. While the augend is still moving towards the inner
membrane and building new membranes, the addend has already been input to start the addi-
tion operation. In this way, the whole system can perform the operation quickly.

4 N

1 |T |0 (1E | f

- A

Fig 4. The configuration at completion of addition.

https://doi.org/10.1371/journal.pone.0312778.g004
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Tables 6 and 7 show the process of object changes in each membrane during the whole sys-
tem run. The number of digits of the augend and the addend also has an effect on the time
slices. For example, in Table 6, it takes 23 time slices for the augend to be 1700 (four-digit
number) and the addend to be 1T1 (three-digit number). While in Table 7, it takes 24 time
slices for the augend to be 171 (three-digit number) and the addend to be 1700 (four-digit
number). Therefore, when using this arithmetic system, the one with more digits can be
selected as the augend to reduce the time slices.

4.1.2 Example of multiplication. Here is an example of “1TT x 17" to illustrate the
implementation of the multiplication rules.

The input of the multiplicand is the same as the augend, so we won’t go into too much
detail here. The multiplicand “1TT” is finally stored in the form of “AAC” in the membranes
M;, M,, M;. Object s is consumed with Object Y in membrane 1 and object E produced, at
which point the multiplier object T can be input, and E then enters the membrane M;. The
state of the membrane system when the multiplier is about to be input is shown in Fig 5.

The lowest bit of the multiplier, object T, is input. Object T is consumed with 7 to generate
u, and T'is converted to object a into membrane 1. Object a is consumed with E to produce x
while E enters the membrane M,. Object x is consumed with A to produce object 1 which is
retained in membrane M;, and A is converted to object p which enters membrane M, with x.
In membrane M,, object x is consumed with A to produce object 1 which is retained in mem-
brane M,. Object A is converted to p which enters membrane M; with x. In membrane M,
object x is consumed with C to produce T to be retained in membrane Mj, and C is converted

Table 6. Process of object changes in each membrane during the addition. (1T00+1T1).

Time Slice Membrane 1 M1 M2 M3 M4 M5
0 Y f

1 oY f

2 Y bf

3 Y 0 f

4 oY 0 f

5 T Ob f

6 Y 0 bf

7 TY 0 f

8 Y 0Oa 0 f

9 Y Oa f

10 1sY 0 af

11 E Oc 0 T f

12 1 OE 0C T f

13 0cE 0 cT f

14 01 OE T 1 f
15 T la OE T 1 f
16 1 OE T 1 f
17 1 OEa T 1 f
18 1 1c oT TE 1 f
19 1 T TE 1 f
20 1 cT TE 1 f
21 1 T TEc 1 f
22 1 T T1 1E f
23 1 T 0 1E f

https://doi.org/10.1371/journal.pone.0312778.t006
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Table 7. Process of object changes in each membrane during the addition. (1T1+1T00).

Time Slice Membrane 1 M1 M2 M3 M4 M5 M6
0 Y f

1 1Y f

2 Y cf

3 Y 1 f

4 TY 1 f

5 Y la f

6 Y 1 af

7 1sY 1 T f

8 E 1c T f

9 0 1E Tc f

10 1Eb T cf

11 10 TE 1 f

12 0 1 TE 1 f

13 1b TE 1 f

14 1 TEb 1 f

15 T 1 TO 1E f

16 la T 1E f

17 1 Ta 1E f

18 1 1 T 1Ea f

19 1c T 1T Ef

20 1 cT 0 E f
21 1 T Oc E f
22 1 T Ec f
23 1 T 1 Ef
24 1 T 1 E f

https://doi.org/10.1371/journal.pone.0312778.t007

to r which is sent into membrane M, with x. Object x and fin the membrane M, are consumed
to create a new membrane Ms, while fis sent into membrane M5 to prevent the result from

overflowing.

At this point, the objects “CCA” are converted to “ppr” and moved one layer into the mem-
brane. In fact, when object T is sent into the membrane system to carry out the above bio-
chemical reaction, object 1 is also sent into the membrane to start the calculation. Fig 6 shows

1T

-

En

-

Fig 5. The configuration of IT* when the multiplier is about to be input.

https://doi.org/10.1371/journal.pone.0312778.9005
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Fig 6. The configuration of [T* when the multiplier is input completely.

https://doi.org/10.1371/journal.pone.0312778.g006

the state of the membrane system when object 1 has just been sent into the membrane, and
object T has just arrived in the membrane M, about to undergo the next calculation, and these
calculations are in parallel.

When object 1 is input, object u will be sent into membrane M, and reach membrane M,,
which converts p to A. It continues to move to the inner membranes, converting p and r to A
and C. Object 1 is converted to ¢ to be sent into membrane M,, which is consumed with E to
generate z. Object z is consumed with A to produce T, and Object A is converted to p, which is
sent into membrane M3 with z. Object T is consumed with the previously generated object 1
and object 0 produced. In membrane M;, object z and A are consumed to produce T, and then
A is converted to p along with z into membrane M,. Object T in membrane Mj is consumed
with the previously generated T to produce objects T1, with 1 retained in membrane M; and T
as a feed into membrane M,. In membrane M,, object z is consumed with C to produce 1, and
then Cis converted to r along with z into membrane Ms. Object 1 in membrane M, is con-
sumed with the previously fed T to generate 0 to be retained in membrane M,. Object x is con-
sumed with fto create a new membrane Mg while fis sent into membrane M.

At this point, the reaction was completed. The result “1010” is preserved in the membranes
M, to M, as shown in Fig 7.

c‘// )

2 =

Fig 7. The configuration at the completion of multiplication.

https://doi.org/10.1371/journal.pone.0312778.9007
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Table 8. Process of object changes in each membrane during the multiplication.

Time Slice Membrane 1 M1 M2 M3 M4 M5 M6
0 Y f

1 TY f

2 Y af

3 Y A f

4 TY A f

5 Y Aa f

6 Y A af

7 1sY A A f

8 En Ac A f

9 Tn AE Ac f

10 un AEa A cf

11 un Ax AE C f

12 lun 1 AEpx C f

13 1n lu 1pE Cpx f

14 un 1c 1pEu Tp rxf

15 un 1 1AEc Tpu r f
16 un 1 1Az TAE ru f
17 un 1 1T TAEpz C uf
18 un 1 TTEp Cpz f
19 un 1 1Ep Tlp rzf
20 un 1 1Ep Op f f

https://doi.org/10.1371/journal.pone.0312778.t008

Table 8 shows the process of object changes in each membrane as the entire system runs,
taking a total of 20 time slices.

4.1.3 Example of division. Here is an example of “101/1T” to illustrate the implementa-
tion of the division rules.

The input of the divisor is the same as the augend. When the highest bit of the dividend,
object 1, is sent into membrane 1 with object s, s is consumed with Y to produce E. At the
same time, s will enter the membrane M; until it reaches the membrane M,. Object s is con-
verted to u and g catalyzed by f. Object u is transported to membrane M;, where the highest bit
of the dividend is located. Object g remains in membrane M,. When E is detected in the sys-
tem, the divisor can be entered. First input T, Object T is converted to ¢ into membrane M.
Object c and E are consumed to generate C, and E is sent to membrane M,. Input 1 and s,
Object 1 is converted to object a into membrane M,. Object a and E are consumed to generate
A, and E is sent to membrane M;. Object s and K are consumed to generate object e and K.
Object e and K execute the rules 7o to 14 in Ry, and one k is produced every four time slices.
Then k is sent into membrane M, to trigger addition operation. The state of the membrane
system when all the divisors are sent into membrane M, is shown in Fig 8.

The first k enters membrane M;, object 1 and k are consumed to generate 1 and T in the
presence of C, then 1 enters membrane M, as a feed along with k. Object k then triggers addi-
tion in membrane M,, and so on, and finally will reach membrane M,. Object k and g in mem-
brane M, are consumed to create a new membrane Ms, and object 1 and g enters membrane
Ms. And then 1 and g are consumed to create a new membrane Mg and g is sent into mem-
brane M.

After three rounds of addition, the highest digit of the dividend turns to 0. Object u detects
0, dissolves the current membrane, and the objects in membrane M, fall into membrane M,.
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Fig 8. The configuration when all divisors are input to membrane M;.

https://doi.org/10.1371/journal.pone.0312778.g008

Object u detects the highest digit of the divisor in membrane M,, indicating that the digits of
the dividend and the divisor are now the same. At this point it is not possible to directly per-
form the addition operation, but to compare the dividend and the divisor before deciding
whether it is possible to perform the addition. However, the system continues to produce the
object k, and the configuration of the system when the fourth K is generated is shown in Fig 9.

First, we have to restore the addition operation after the third k, and send a signal to mem-
brane 1 to stop producing k. Object u is converted to x catalyzed by A, and k will be consumed
to avoid another addition operation. At the same time, object i will be produced, which will
restore the dividend to the state where it did three addition operations (Ry:73; ~ r45). Eventu-
ally object i and x will be transported to membrane 1, where x is consumed with e to prevent
the generation of k, and produce X and V. Object V is sent into membrane M,, object V is con-
sumed to produce v catalyzed by f. Object v is sent to membrane M; to compare the dividend
and the divisor. If the dividend is greater than the divisor, then X produces k to continue the
addition.

In this example, the first round of testing determines that the dividend is greater than the
divisor, so object v is sent to membrane 1. Rule 14 in membrane 1 is executed, producing k
which is sent into membrane M, to perform addition. At the same time V is produced to pre-
pare for the second round of testing. The second round of testing detects that the dividend is

/Nke/ f %

1C |1A [OuEk| f |T| 1 (g

———

Fig 9. The configuration when the fourth k is just generated.
https://doi.org/10.1371/journal.pone.0312778.g009
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Fig 10. The configuration at the completion of division.

https://doi.org/10.1371/journal.pone.0312778.9010

still greater than the divisor and sends v to membrane 1, performing the same steps as above.
The third round of testing judges that no more addition can be performed, returning r to
membrane 1.

At this point, there are no more rules in the system to execute and the system stops. The
result of the quotient is saved in membranes M, g, and if there is a remainder, it is saved in
membranes M, ;. In this example, there is no remainder. The quotient “1TT” is preserved in
the membranes M, ¢ as shown in Fig 10.

Table 9 shows the process of object changes in each membrane as the division system runs.
Due to space constraints, only a portion of the table is shown. It takes a total of 51 time slices.

4.2 Simulation of addition

For the simulation of IT", the rules in IT" are described in UPLanguage [27]. The membrane
class “M” (i.e., membrane 1) is defined to contain the membrane class “Add”, membrane class
“B” and membrane class “C”. Membrane classes B and C are used to input the augend and
addend respectively. The overall membrane structure is as follows:

Environment {

Membrane M ml {
Object Y;
Membrane Add Al {

Object f;

}

Membrane B Bl {
Object O, B, T, I, s;
}

Membrane C C1 {
Object C, T, I;

}

Where ‘Object’ is used to specify the objects used in the simulation. The above rules indi-
cate that initially the membrane m1 contains one object Y, the membrane A, contains one
object f, the membrane B, contains objects O, B, T, I, s, and the membrane C, contains objects
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Table 9. Process of object changes in each membrane during the division.

Time Slice Membrane 1 M1 M2 M3 M4 M5 M6 M7 MS8
12 1sK 1C OE 1 sf

13 eK 1Ca OE lu gf

14 Nke 1C 0Ea lu gf

15 Me 1Ck 0A 1uE gf

16 He TC 0A1k 1uE gf

17 Ke TC 1Ak 1uE of

18 Nke TC 0A 1uEk of

19 Me TCk 0A 1uE gtk

20 He 0C 0Ak 1uE f 1g

21 Ke 0C TA luEk f 1 g

26 Nke 1C 1A OuEk f T 1 g
27 Me 1Ck 1AuE fk T 1 g
28 He TC 1k 1AxE f T 1 g
29 Ke TCix TAE 1f 0 1 g
30 Nke ix 1C TTAE 1f 0 1 g
31 NkiX 1CV 1AE ITf 0 1 g
32 NiX 1C 1AEV of 0 1 g
33 NiX 1C 1AE Vok 0 1 g
34 NiX 1C 1AEv of 0 1 g
35 NiX 1Cv 1AE of 0 1 g
36 NiXv 1C 1AE of 0 1 g
37 NiXV 1Ck 1AE of 0 1 g
38 NiX TCV 1k 1AE of 0 1 g
51 NiXr 0C 0AE of T T 1 g

https://doi.org/10.1371/journal.pone.0312778.t009

C, T, I. It should be noted that the UPS can’t use numbers to represent the objects, so we use
object I instead of 1, object O instead of 0. When the system starts running, it will output
objects O, O, T, and Is into membrane m, every two time slices from membrane B. Object s
and Y are converted to E and enters all submembranes. When Object E enters membrane C,
Membrane C begins to output addend numbers.

Here is a brief description of the format in which the rules are written in UPS.

« Rule r: T — (a, in all), 1; this means that object T'is converted to object a and enters all sub-
membranes with priority 1.

« Rule r,: af — TAdd:a{f}, 1; this denotes that object a and fare converted to object T and cre-
ates a new membrane that inherits the rules of the Add membrane class and that object f
goes into the newly created membrane.

Rewriting the rules in Section 3.1 in the above format, the result is shown in Fig 11. Objects
I, T, O, I are retained in membranes M; 4 separately, and a total of 24 time slices are used. It
is one time slice more than the actual projection, because object E has to enter membrane C
before releasing the addition in UPS, this will consume one time slice.
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|£ ] UPSimulator = (m] X
| File Settings
Save Save All
Project Simulate Editor Visualization
Select Environment To Simulate
lmbrme GLASEEE - Environment Simulation of addition. txt .
Simulation of addition. txt
anulat)l.on or H\‘xl.tul)llcatnn. T Check Grammar Initialize Environment Run to End i Run One Step
Simulation of Division. txt
Simulation Messages
Result
7
step:24 rules used @ 1 time used:0.0159ms
Environment {
Membrane m1 {
Membrane Al {
Object I:
Membrane a { |
Object T:
Membrane a {
Object O:
Membrane a {
Object E, I:
Membrane a { |
e Object f: [
Environments }
Simulation of addition. txt }
Simulation of Multiplication. txt }
Simulation of Division. txt ))
Membrane Bl {
Object ™2, b2, s, ¢'3, E, i:
}
Membrane C1 {
Object a'2, b'2, ¢"3, E, 1i:
1
Process
rules used in Bl:
rules used in Environment:
rules used in a:
|

Fig 11. Simulation of 1T00+1T1 = 10T1.

https://doi.org/10.1371/journal.pone.0312778.9011

4.3 Simulation of multiplication

The membrane structure for multiplication is the same as for addition; the membrane class
“M” contains the membrane class “Mul”, membrane class “B” and membrane class “C”. Mem-

brane classes B and C are used to input the multiplicand and multiplier into membrane m;,.
The overall membrane structure is as follows:

Environment {
Membrane M ml {

Object Y;

Membrane Mul Al {
Object f£;

}

Membrane B Bl {
Object A, T, I, s;
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}
Membrane C C1 {
Object T, I;

Rewriting the rules in Section 3.2 with UPLanguage and running it yields the results as
shown in Fig 12. Objects I, O, and I are retained in membranes M; ;. It takes a total of 21
time slices. This duration is one time slice more than the projection because, in the UPS, object
E must enter membrane C before releasing the multiplier.

4.4 Simulation of division

For the simulation of T/, the rules of IT’ are described in UPLanguage. We define a membrane
class “M” which contains the membrane class “Div’, membrane class “B” and membrane class

. |£/ UPSimulator = m] X
File Settings
|Save Save All
Project Simulate Editor Visualization
Select Environment To Simulate
l‘mbrmf Ll — Environment Simulation of Multiplication. txt .
Simulation of addition. txt
Simulation of Multiplication. txt R 3
A . — Check Grammar Initialize Environment Run One Step
Simulation of Division. txt
Simulation Messages
Result
step:21 rules used : 2 time used:0.2211ms
Environment {
Membrane ml {
Object n:
Membrane Al {
Object I:
Membrane a {
Object 0:
Membrane a {
Object E, I, p:
Membrane a {
Object 0, p:
Membrane a {
Environments 3"-‘:’“ e {
Simulation of addition. txt e ‘_i
3 2 S Object f;
Simulation of Multiplication. txt }
Simulation of Division. txt }
}
}
}
}
Membrane Bl {
Object '3, ¢'2, E, u 1i:
Process
rules used in Al:
rules used in a:
rules used in Bl: |
Fig 12. Simulation of ITT*IT = 101.
https://doi.org/10.1371/journal.pone.0312778.9012
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“C”. Membrane classes B and C are used to input the dividend and divisor into membrane m;.
The overall membrane structure is as follows:

Environment ({

Membrane M ml {
Object Y, K;
Membrane Div Al {

Object £f;
}
Membrane B Bl {
Object I, O, C, s;
}
Membrane C Cl {
Object T, I;

Division includes the operation of dissolving membranes, and the rules are reformulated in
UPLanguage as follows:

o Rule r;: Ou — dissolve(u, out), 1; this rule specifies that when objects O and u are present
together, the membrane is dissolved.

« Rule r,: v — (v, out)|@0 & @C, 1; this rule indicates that object v moves out only in the pres-
ence of both objects O and C.

Rewriting the rules in Section 3.3 with UPLanguage and executing the simulation yields the
results depicted in Fig 13. The sequence ITT is retained in membranes Ms, Mg, M in descend-
ing order, consuming a total of 54 time slices. This duration is three time slices longer than the
initial projection because Object E has to enter membrane C before the divisor can be released,
taking one additional time slice. Two extra time slices are consumed because, after the divi-
dend and divisor are entered, object s is then introduced into membrane 1.

5 Conclusion

Membrane computing is characterized by parallelism, distribution, and uncertainty. It has
been proved that membrane computing has equivalent computational capabilities with Turing
machines, and its powerful parallel computing capability can effectively solve the bottleneck
currently faced by electronic computers. The study of arithmetic operation system based on
membrane computing has very important academic and practical significance for the realiza-
tion of a general-purpose bio-computer.

In this paper, a symmetric ternary system is innovatively introduced, which is more adapt-
able in future bio-computers and can be closer to the natural computation of the human brain
than the traditional binary system. A dynamic membrane structure based on membrane com-
puting is designed, which makes the parallel operation of multi-digit numbers possible and
improves the computational efficiency. Simulation results show that the designed P-system is
not only suitable for basic arithmetic operations, but also can be extended to more complex
computational tasks, which provides a new direction for the development of future computing
devices.
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|£ | UPSimulator

File Settings
Save Save All

Project

Membrane Classes
Simulation of addition. txt
Simulation of Multiplication. txt

Simulation of Division. txt

P

Environments

Simulation of addition. txt
Simulation of Multiplication. txt
Simulation of Division. txt

Fig 13. Simulation of 101/1T = 1TT.

Simulate Editor Visualization
Select Enviromment To Simulate

Enviromnment Simulation of Division. txt

Check Grammar Initialize Environment

Simulation Messages

Run to End Run One Step

Result

T
}
step:54 rules used : 1
Environment {
Membrane m1 {
Object r, X, 1, M:
Membrane Al {
Object C, O:
Membrane a {
Object A, E, 0:
Membrane a {
Object £, O:
Membrane a {
Object T:
Membrane a {
Object T:
Membrane a {
Object I:
Membrane a {
Object g:

}
}
}
}

time used:0.106ms

Process

rules used in C1:

rules used in ml:

rules used in a:

https://doi.org/10.1371/journal.pone.0312778.9013

In the P System we designed, 21 rules are used to implement addition and subtraction,
symmetric ternary numbers “n + m” requires at most 3n + 4m time slices for addition. 43
rules are used to implement multiplication, “n % m” require at most 3#n + 4m + 3 time slices
for multiplication. And 78 rules are used to implement division, n/m (n > m) require at most
3n+5m -2 +4i + (2m + 3)j time slices, (i + j = quotient, i is the quotient that results when
the number of dividend digits is greater than the divisor, and j is the quotient that results
when the number of dividend digits is equal to the divisor).

Future work will focus on further optimizing the performance of the system and exploring
its applicability in more practical application scenarios. Also, we will further investigate their

general structure to make it more versatile.
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