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Abstract

Surveillance of antimicrobial resistance (AMR) is a crucial strategy to combat AMR. Using

routine surveillance data, we could detect and control hospital outbreaks of AMR bacteria as

early as possible. Previously, we developed a framework for automatic detection of clusters

of AMR bacteria using SaTScan, a free cluster detection tool integrated into WHONET.

WHONET is a free software used globally for microbiological surveillance data manage-

ment. We applied this framework to data from the Japan Nosocomial Infections Surveillance

(JANIS), one of the world’s most comprehensive and largest national AMR surveillance sys-

tems. Although WHONET-SaTScan has several cluster detection algorithms, no published

studies have compared how different algorithms can produce varying results in cluster

detection. Here, we conducted a comparison to detect clusters of vancomycin-resistant

enterococci (VRE), which has been rare in Japan, by analyzing combinations of resistance

to several key antimicrobials (“resistance profiles”) using the comprehensive national rou-

tine AMR surveillance data of JANIS and validated the detection capabilities of each algo-

rithm using publicly available reports of VRE clusters. All publicly reported VRE hospital

outbreaks were detected as statistical clusters using the space-time uniform algorithm

implemented in WHONET-SaTScan. In contrast, only 18.8% of the publicly reported out-

breaks were detected using another algorithm (space-time permutation). The space-time

uniform algorithm was also effective in identifying hospital wards affected by outbreaks

attributed to specific resistance profiles. Although half of the publicly reported outbreaks

were attributed to VRE resistant to five particular antimicrobials, four other resistance pro-

files also contributed to the outbreaks, highlighting the diversity of AMR bacteria within

these occurrences. Our comparison revealed a clear advantage in using an algorithm

(space-time uniform) for detecting VRE clusters in WHONET-SaTScan based on national

surveillance data and further demonstrated the capability to distinguish detected clusters

based on resistance profiles.
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Introduction

Antimicrobial resistance (AMR) is a critical global public health issue. As stated in the World

Health Organization (WHO) global action plan on AMR in 2015, AMR surveillance is a cru-

cial strategy for assessing the burden of AMR and improving the detection and control of

emerging bacterial resistance and outbreaks locally, nationally, and globally [1]. In hospitals,

infection control teams (ICTs) and medical microbiologists typically conduct AMR surveil-

lance and evaluate and improve infection prevention and control (IPC) practices. However,

many hospitals face difficulties in regularly and comprehensively monitoring the trends of

potential AMR bacteria clusters due to a shortage of infection control practitioners (ICPs).

Given this situation, the development of automated AMR outbreak detection based on routine

surveillance data can be helpful in early identification of potential clusters of AMR bacteria.

Previously, we developed a framework for the automatic detection of clusters of AMR bac-

teria in hospitals [2] based on national AMR surveillance data in Japan. These data are stored

in one of the largest AMR surveillance systems in the world, the Japan Nosocomial Infections

Surveillance (JANIS), and covering the largest number of hospitals. As of January 2023,

approximately 3000 hospitals were voluntarily participating in the JANIS Clinical Laboratory

module, which collects all routine microbiological test results of both symptomatic and asymp-

tomatic patients monthly through an online platform [3, 4]. Our previous study using JANIS

database from 2015 to 2016 applied the cluster detection tool SaTScan [5], integrated into

WHONET, a free microbiological surveillance data management software used in over 130

countries since 1989 [6], for the first time in an Asian country and across approximately 1000

hospitals. The framework using WHONET-SaTScan and the national AMR surveillance data

in JANIS automatically detected clusters of AMR bacteria, many of which were validated and

closely related to the findings from real-time practice [2].

In the aforementioned study, the statistical significance of a cluster was evaluated by Monte

Carlo hypothesis testing, in which the space-time permutation algorithm was used to estimate

the expected number of cases under the null hypothesis of the cluster. However, other algo-

rithms are also available in the WHONET-SaTScan, and no published studies have compared

how different algorithms can produce varying results in cluster detection. In this study, we

compared the performances of two different algorithms for cluster detection of vancomycin-

resistant enterococci (VRE) using the comprehensive national routine AMR surveillance data

from JANIS. VRE are rare in Japan [7], but their incidence is sufficiently high to be monitored

[8] using outbreak detection algorithms. We examined combinations of resistance to several

key antimicrobials (“resistance profiles”) [9] for detecting and distinguishing VRE clusters in

WHONET-SaTScan. Additionally, we used publicly available reports on VRE clusters to vali-

date the detection capabilities of each algorithm.

Materials and methods

Data preparation

All inpatient and outpatient data fields (e.g., facility code, encrypted patient ID, specimen ID,

specimen reception date, specimen type, sex, date of birth, ward, department, and antimicro-

bial susceptibility testing results) for all specimens collected between January 2016 and Decem-

ber 2021 were extracted from the JANIS database, which stores both culture-positive and

culture-negative diagnostic test and surveillance sample results, excluding data on antimicro-

bial usage. The data from the JANIS database were accessed for research purposes on 4 July

2023. Authors had no access to information that could identify individual participants during

or after data collection. Data between 2016 and 2017 were used as historical baselines for
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subsequent years, as described below. The percentage of hospitals voluntarily participating in

JANIS was 23.1% of all 8,412 hospitals in 2018 and 26.7% of all 8,300 hospitals in 2021 across

Japan [10]. The data of 1,896 hospitals were selected from the JANIS database because they

had continuously provided JANIS with their microbiological data between 2018 and 2021.

Hospitals with 200 or more beds showed a higher proportion of participation in JANIS than

those with fewer than 200 beds (54.4% vs. 14.6%).

Given that VRE are generally rare in Japan, in the initial stage of data preparation, we

extracted data from 142 hospitals in which the number of patients with VRE was�5 during

the 4 years. For each patient with VRE, isolates not obtained during inpatient care were

excluded from further analysis. The extracted data were converted to the WHONET format

using a “JANIS to WHONET data parser” and imported into WHONET, a free software pro-

gram developed and supported by the WHO Collaboration Centre for Surveillance of Antimi-

crobial Resistance.

Selection of a core set of antimicrobials and hospitals

Given that antimicrobial susceptibility test (AST) practices between facilities were not identi-

cal, and not all antibiotics were tested on every isolate, we sought to ascertain a subset of anti-

microbials that were relatively consistently tested across hospitals and over the study period.

This subset of antimicrobials can be used to construct “resistance profiles” (combination of

AST results) that could be compared between facilities and over time. We used WHONET to

tabulate the number of susceptibility tests for each antimicrobial drug stratified by Enterococ-
cus species in each of the 142 hospitals. Among several Enterococcus species, we focused on E.

faecium in the subsequent analyses because this species constitutes the majority of VRE isolates

in Japan and shows a higher rate of resistance to vancomycin (VAN) compared to E. faecalis.
Specifically, rate of resistance to VAN in E. faecium is 2.6% (1,686 out of 65,363 isolates) for E.

faecium, which is higher than 0.0063% (9 out of 142,300) for E. faecalis across 2,289 hospitals

participating in JANIS in 2022 [10]. The high competency of resistance acquisition increases

its impact as a causative pathogen of serious hospital-associated infections [11–14]. The JANIS

surveillance system is based solely on phenotypical antimicrobial susceptibility testing. The

automated antimicrobial susceptibility testing methods are mostly used for phenotypically

testing vancomycin susceptibility in Japanese hospital laboratories. According to recent geno-

mic surveillance in Japan (https://jarbs.net), only 0.93% of the phenotypically vancomycin

resistant E. faecium did not agree with genotypic testing results. Hereafter, VRE will refer only

to vancomycin-resistant E. faecium in this study. Postprocessing the tabulated results using

WHONET identified a core set of five antimicrobials, all of which were tested for E. faecium in

96 out of the 142 hospitals: VAN, teicoplanin (TEC), levofloxacin (LVX), minocycline (MIN),

and erythromycin (ERY). Besides VAN, the selection of the other four antimicrobial drugs was

based on specific considerations. Teicoplanin, another glycopeptide, is commonly used as an

alternative to VAN for treating VRE cases with renal dysfunction in Japan. Regarding LVX,

enterococci acquire high-level resistance to quinolones through several mechanisms [12].

Regarding ERY, resistance to macrolides is widespread among enterococci [13]. MIN resis-

tance can be transferred via specific transposons and varies among strains [15]. Moreover, all

five antimicrobial drugs were tested for E. faecium in the majority of hospitals, and we

expected the inclusion of TEC, LVX, MIN, and ERY to be useful in discriminating VRE iso-

lates in terms of AST results and resistance profiles.

The JANIS surveillance system receives all raw testing results from the participating labora-

tories, and the CLSI guidelines were used to interpret the results of antimicrobial susceptibility

testing and to categorize each isolate as susceptible or resistant to these antimicrobials [16].
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Among the 96 hospitals that routinely tested the core set of five antimicrobials, we focused on

38 hospitals with�10 patients with VRE during the study period in the following analyses

because hospitals with less than 10 patients with VRE did not have any publicly available offi-

cial reports of VRE outbreaks required for validation of detected VRE clusters.

Detection of statistical clusters with VRE using WHONET-SaTScan

Using WHONET, deduplication was conducted to create a data subset for subsequent analysis

by selecting only the first VRE isolate showing each resistance profile of a given bacterial spe-

cies per patient per surveillance period. The total number of patients with VRE was tabulated

monthly during the study period at each hospital. The number of VRE isolates showing each

resistance profile to the five core antimicrobials was also tabulated monthly for each hospital.

The batch version of the SaTScan software implemented within WHONET was used to

detect statistically significant clusters of patients from whom isolates of the same bacterial spe-

cies with identical resistance profiles were isolated [17]. SaTScan uses scan statistics that offer a

relatively simple approach for determining whether the number of cases reported for a certain

period is excessive [18]. We used the simulated prospective mode of WHONET-SaTScan, an

iterative series of prospective analyses conducted over the length of the study period. This

approach is not designed to detect longitudinal trends in baseline rates but to detect statisti-

cally significant short-term clusters suggestive of outbreaks meriting immediate response. In

this study, the statistical significance of a cluster was evaluated by Monte Carlo hypothesis test-

ing using both the space-time permutation and space-time uniform algorithm. The former has

been included in the first version of an integrated WHONET-SaTScan package and is regarded

as a helpful algorithm for the early detection of disease outbreaks because the probability

model does not require a population-at-risk, as case data with information about spatial loca-

tion and time are available [19]. The latter was developed for WHONET data interpretation

and designed for case data with relatively consistent baseline case numbers of time [20]. We

did not use the discrete Poisson model because it requires “Population data”, meaning that the

patient population in each geographic unit is needed for cluster detection based on geographi-

cal data. Since many hospitals do not have static patient population data, the Poisson-model

approach is not applicable for cluster detection in this study.

The parameters for running WHONET-SaTScan were selected based on previous studies

[2, 21–24]. The maximum cluster length cut-off 180 days was set, corresponding to the maxi-

mum temporal scanning window size. The statistical likelihood that the observed clusters are

due to chance alone is expressed as the recurrence interval, equal to the inverse of the p-value

[21]. The baseline period parameter (the number of days of historical data before the analysis)

was set to 730 days, i.e. 2 years. We confirmed in advance the absence of large VRE outbreaks

during the baseline period among the 15 hospitals we focus on below. The number of Monte

Carlo simulations for calculating the recurrence intervals was set to 9,999. A recurrence inter-

val threshold (a cutoff parameter in WHONET to filter out clusters detected by SaTScan) of 30

days was initially used in this study to detect clusters that one could expect to see by chance

alone at most 12 times per year for further examination and validation. A recurrence interval

threshold of 365 was subsequently used to check the robustness of the sensitivity and positive

predictive values.

Statistical cluster detection was initially conducted at the hospital level, followed by the ward

level. As ward data were not mandatory inputs for the JANIS database, cluster detection at the

ward level was only possible in hospitals that provided ward data. For cluster detection at the

ward level, patients with VRE were divided according to ward and resistance profiles. The analy-

ses were implemented using WHONET macros and conducted separately for each hospital.
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Validation of detected VRE clusters using public reports

After statistical cluster detection using the two different scan statistical algorithms (space-time

uniform and space-time permutation), we compared the detected clusters of VRE with pub-

licly available official reports of VRE outbreaks between 2018 and 2021 in each hospital. The

Infectious Disease Control Law in Japan obliges physicians to report every symptomatic case

of VRE to a public health center which then sends these reports to the Ministry of Health,

Labour and Welfare. Only aggregated data on the number of patients are regularly made pub-

lic. However, there is no guarantee against underreporting. The absence of public reports of

outbreaks in many hospitals with relatively high numbers of VRE patients does not necessarily

indicate that no hospital outbreaks occurred in those hospitals. Generally, for the hospitals

without publicly available VRE outbreak reports, we cannot make sure whether: 1) they had

no outbreaks; 2) they had known outbreaks, but no reports are available; or 3) they had unrec-

ognized outbreaks.

Public information sources included websites of each hospital, research papers, and news-

paper articles. Hospitals with unconfirmed VRE outbreak timelines from any information

source were excluded from the comparison of statistically detected clusters in order to calcu-

late sensitivity and positive predictive value of cluster detection using WHONET-SaTScan.

Without publicly available reports, it was impossible to classify detected clusters into true and

false-positive detections. We could not use the publication date of outbreak report as a proxy

for the start date of the outbreak because the outbreak report is often published several weeks

after the exact outbreak start date.

Ethics

Data were de-identified at each hospital and submitted to JANIS. The requirement for

informed consent was waived by the Japanese Ministry of Health, Labor and Welfare (approval

number 1108–5), and anonymous retrospective data stored in the JANIS database were

exported and analyzed based on the approval according to Article 32 of the Japan’s Statistics

Act.

Results

Statistical clusters detected by resistance profiles

Through the process of selecting target hospitals (Fig 1), 15 hospitals that have been participat-

ing in JANIS since 2016 or earlier were chosen for the automated detection of statistically sig-

nificant clusters after excluding 23 hospitals lacking publicly available information on either

outbreak source or outbreak start date (“Information source of official VRE outbreak” in

S1 Table).

All 15 hospitals exhibited two or more resistance profiles between 2018 and 2021 (S2 Table),

enabling statistical cluster detection for each resistance profile compared to others observed

over time with SaTScan. Altogether, six resistance profiles were identified across 15 hospitals

(S2 Table), with five identified as forming statistically significant clusters in at least one hospital

(Table 1). For example, resistance profile 1 (RP-1) in Table 1 and S2 Table displayed resistance

to four antimicrobial drugs, excluding MIN, and accounted for 70.4–88.1% of patients with

VRE in each of the top four hospitals by VRE patient count (A-1, C-1, D-1, B-2).

Table 1 shows the number of hospitals where clusters were detected for each of the five

numbered resistance profiles using the space-time permutation and space-time uniform algo-

rithms. For each resistance profile, the number of hospitals where clusters were detected using

the space-time uniform algorithm was always greater than that using the space-time
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Fig 1. Flowchart of selecting target hospitals.

https://doi.org/10.1371/journal.pone.0312477.g001
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permutation algorithm, and all clusters detected by the space-time permutation algorithm

were also detected by the space-time uniform algorithm. The number of clusters of the RP-1

mentioned above (R(VAN), R(TEC), R(LVX), S(MIN), R(ERY)) detected by the space-time

uniform algorithm was 350 (50.9% of the total number of clusters) among 11 out of the 15 hos-

pitals (73.3%).

Comparison between statistical clusters detected using WHONET-SaTScan

and actual outbreaks reported in public records

Fig 2 shows the time course of the statistical clusters of the five resistance profiles detected

using the space-time uniform and space-time permutation algorithms in each of the 15 hospi-

tals and the onset of publicly reported outbreaks between January 2018 and December 2021.

The space-time uniform algorithm detected statistical clusters (dark blue arrows in Fig 2) in all

15 hospitals, whereas the space-time permutation algorithm detected clusters in nine of the 15

hospitals (silver arrows in Fig 2).

Comparing the detected statistical clusters with 16 actual outbreaks reported in public

reports, the space-time uniform and space-time permutation algorithms exhibited sensitivities

of 100% (16/16) and 18.8% (3/16), respectively when we used an alert threshold of 30 days for

the recurrence interval. When we changed the recurrence interval threshold (a cutoff parame-

ter in WHONET, described in Materials and Methods) from 30 to 365 days, sensitivities of

space-time uniform and space-time permutation algorithms were 93.8% (15/16) and 6.3% (1/

16), respectively (S1 Fig). The onset of the actual outbreaks (highlighted by red arrows in Fig

2) consistently corresponded with the initiation of the statistical clusters detected using the

space-time uniform algorithm (indicated by the left ends of the dark blue arrows in Fig 2).

Meanwhile, among 50 and 14 clusters detected using the space-time uniform and space-time

permutation algorithms, respectively, the positive predictive value was at least 44.0% (22/50)

for the space-time uniform algorithm and 21.4% (3/14) for the space-time permutation algo-

rithm. Of the 16 actual outbreaks, half were caused by resistance profile 2 (RP-2: resistant to all

five antimicrobials), followed by the aforementioned RP-1, causing seven outbreaks. When we

Table 1. Five resistance profiles identified as forming statistically significant clusters in at least one hospital using the space-time permutation or space-time uni-

form algorithms.

Antimicrobial susceptibility

test result

Number of hospitals with

statistical clusters*
Total number and % of

isolates with each RP

Range of number of patients for the clusters detected

by STU (minimum–maximum)

RP

number

VAN TEC LVX MIN ERY detected by

STP

detected by

STU

RP-1 R R R S R 2 (2) 11 (19) 350 (50.9%) 2–57

RP-2 R R R R R 2 (2) 9 (11) 158 (23.0%) 2–36

RP-3 R S R S R 6 (6) 8 (10) 119 (17.3%) 2–23

RP-4 R S R R R 3 (3) 7 (8) 45 (6.6%) 2–7

RP-5 R R R R S 0 (0) 1 (2) 9 (1.3%) 3–5

RP-6 R R R S S 0 (0) 0 (0) 6 (0.9%) 0

* The number of detected clusters is shown in parentheses

RP; resistance profile

STP; space-time permutation

STU; space-time uniform

The results of the antimicrobial susceptibility testing are expressed as R (resistance) or S (susceptibility) for each antimicrobial (VAN for vancomycin, TEC for

teicoplanin, LVX for levofloxacin, MIN for minocycline, and ERY for erythromycin) within each RP.

RP numbers are listed in descending order of total number and % of isolates with each RP.

https://doi.org/10.1371/journal.pone.0312477.t001
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Fig 2. Time course of statistical clusters detected using the space-time uniform and space-time permutation algorithms in each of

the 15 hospitals and the onset of publicly reported outbreaks between January 2018 and December 2021. The leftmost column

represents each hospital code, which comprises a letter corresponding to the prefecture and a number denoting its order within that

prefecture, as shown in S1 Table. Each hospital row shows the initiation and conclusion dates of statistical clusters for every resistance

profile detected by WHONET-SaTScan and the onset of publicly reported outbreaks. The duration of the statistical clusters is
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changed the recurrence interval threshold from 30 to 365 days, among 41 and six clusters

detected using the space-time uniform and space-time permutation algorithms, respectively,

the positive predictive value was at least 46.3% (19/41) for the space-time uniform algorithm

and 16.7% (1/6) for the space-time permutation algorithm (S1 Fig).

Further ward-level analysis of statistical clusters detected by space-time

uniform algorithm in WHONET-SaTScan at a single hospital

Among the top three hospitals for the number of patients with VRE, further analysis was con-

ducted for Hospital D-1 because Hospital C-1 lacked ward data, and Hospital A-1 had already

published a detailed outbreak report as a research paper [8]. In Fig 3A, the monthly count of

patients with VRE is displayed, while Fig 3B illustrates the number of patients for each of the

four distinct resistance profiles alongside the duration of clusters (represented by dark blue

horizontal lines and red vertical bars) detected using the space-time uniform algorithm.

The sudden increase in the number of patients with VRE coincided with the beginning of a

publicly reported outbreak and the detection of two clusters associated with RP-1 and 2. This

result indicates that the outbreak was not entirely clonal and comprised two types of isolates

differing in susceptibility to MIN. Previously, the presence of a few patients with VRE with

RP-1 each month between January and July 2020 was detected as a cluster using the space-

time uniform algorithm. Additionally, a small number of patients with VRE with RP-3 and 4

during 3–4 months were detected as clusters.

Further ward-level analysis of Hospital D-1 is shown in Fig 4.

Ward A experienced only the statistical cluster of RP-1, whereas Ward B exhibited statisti-

cal clusters involving three types of RP-1, 2, and 3. In Wards A and B, the detected clusters of

RP-1 coincided with the beginning of the publicly reported outbreak in February 2021, despite

the difference in the length of the clusters. Another cluster of RP-1 detected in Ward A was

responsible for the cluster at the hospital level (at the right in Fig 3) between October and

November 2021. Before the beginning of the publicly reported outbreak, clusters of RP-1 were

detected in Wards A (January–February 2020) and B (January–November 2020), potentially as

early-stage signals of the actual outbreak.

Discussion

A notable finding of this study was that all publicly reported VRE outbreaks were detected as

statistical clusters using the space-time uniform algorithm implemented in WHONET-SaTS-

can. In contrast, only 18.8% of the publicly reported outbreaks were detected using the space-

time permutation model. We confirmed the robustness of the results by changing the cutoff

parameter of the recurrence interval threshold.

We previously conducted several studies for identifying clusters of infectious diseases using

WHONET-SaTScan [17, 24], in which the space-time permutation model was used most fre-

quently for detecting clusters of hospital-acquired microorganisms [21–23, 25]. However, only

a few studies have compared multiple algorithms implemented in WHONET-SaTScan [20,

22]. To date, no study has compared the sensitivity of space-time permutation and space-time

uniform algorithms for outbreak detection of AMR pathogens using national surveillance

data. Given that the space-time uniform model was created specifically for WHONET [20],

represented by arrows in light gray (detected using the space-time permutation algorithm) and dark blue (detected using the space-

time uniform algorithm). Resistance profile numbers correspond to those listed in Table 1. Red arrows indicate the start of the

outbreaks as publicly reported by various information sources. The blue dashed rectangle represents an outbreak detailed in Figs 3 and

4.

https://doi.org/10.1371/journal.pone.0312477.g002
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Fig 3. Monthly trend between January 2020 and December 2021 in Hospital D-1. (A) The number of patients with VRE. (B) The number of

patients with each of four different resistance profiles. The dark blue horizontal arrows represent the duration of the statistical clusters detected

using the space-time uniform algorithm, with monthly numbers shown as dark red vertical bars instead of blue. Resistance profile numbers

correspond to those listed in Table 1. The red arrow indicates the start of the publicly reported outbreak.

https://doi.org/10.1371/journal.pone.0312477.g003
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Fig 4. Monthly trend of the number of patients with VRE (upper) and that of the number of patients with each of the

three resistance profiles in two different wards (Ward A and B) of Hospital D-1 between January 2020 and December

2021. The meanings of the arrows, bars, and RP numbers are the same as those in Fig 3.

https://doi.org/10.1371/journal.pone.0312477.g004
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more studies comparing the capability of AMR outbreak detection between the space-time

uniform and other algorithms, such as space-time permutation, are warranted for improving

automated AMR outbreak detection using WHONET-SaTScan. To the best of our knowledge,

this is the first study to present a comparison focusing on VRE, a rare AMR pathogen, at least

in Japan. However, we should keep in mind that the rarity of VRE cases also impacts infection

control practices, in the sense that strong preventive measures are usually implemented as

soon as a symptomatic VRE-positive case is observed. Early outbreak detection may be more

important for other bacterial species than for VRE, because strong preventive measures might

require the suspicion of an epidemic cluster for the former.

Regarding positive predictive value rather than sensitivity, a previous prospective study

conducted at a United States (US) medical center indicated that an automated surveillance sys-

tem based on the space-time permutation algorithm implemented in WHONET-SaTScan had

a low positive predictive value for detecting high-risk transmission of pathogens (including

several species) over 9 months; only 6 out of 45 high-risk clusters were detected as transmis-

sion events [26]. In the present study focusing on VRE, using the space-time uniform algo-

rithm yielded a higher positive predictive value compared to that with the space-time

permutation algorithm in the previous study. However, obtaining a precise sensitivity and pos-

itive predictive value is challenging because of the potential underreporting of actual

outbreaks.

Regarding the numerous VRE clusters detected using the space-time uniform algorithm

that were not associated with publicly reported outbreaks, several contrasting possibilities

must be considered. First, the space-time uniform algorithm could also detect clusters that

were not publicly reported, presenting a crucial advantage for early VRE cluster detection, as

shown in Figs 3 and 4 as an example of Hospital D-1. Additionally, in Hospital A-1, a cluster

was detected between March and July 2018 and another in March 2019, both predating the

publicly reported outbreak that began in May 2019. This suggests the possibility of an unre-

ported true initial outbreak in 2018, followed by a subsequent true outbreak in 2019. If the

ICPs had responded to the first outbreak, the second outbreak might have been avoided. Simi-

larly, if multiple statistical clusters were detected within a single ward or in a group of similar

or adjacent wards, it could indicate a true outbreak in that ward or group of wards, even if it

was not publicly reported. However, the detected clusters could be false positives. Alterna-

tively, we must consider the possibility that the local ICT might have been aware of these case

clusters and chose not to declare or report it as an outbreak. To disentangle these possibilities,

a future study comparing the statistical clusters detected by space-time uniform and space-

time permutation algorithms with actual outbreaks in real settings, based on prospective inter-

views with ICPs in each hospital, is warranted.

The primary difference between Figs 3 and 4 lies in the ease with which ICPs can identify

cluster alerts of VRE with distinct resistance profiles in ward-level data. However, SaTScan

may struggle to detect statistically significant clusters in the ward-level analysis. For instance,

RP-4, which was initially detected as a statistical cluster at the hospital level (Fig 3B), disap-

peared in the analysis at the ward level (Fig 4). This was because there were two patients in two

different wards, and the cluster detection using SaTScan was conducted for each ward sepa-

rately. Namely, the sensitivity of the ward-level analyses decreases when the number of isolates

becomes small due to dividing all isolates in a hospital by ward and resistance profiles.

In this study, we used combinations of resistance to several key antibiotics (“resistance pro-

files”) to detect clusters of VRE by WHONET-SaTScan. The value of reporting and analyzing

such ‘full susceptibility profiles’ rather than each of the antibiotics of interest has recently been

highlighted [27]. Our study supports this approach and provides a model demonstrating the

utility and effectiveness of analyzing full resistance profiles in detecting outbreaks, including
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those that ICPs may have missed. Moreover, this study also aids in elucidating the diversity of

AMR bacteria within these outbreaks, which might not be exclusively clonal (comprising a sin-

gle dominant resistance profile) but rather heterogeneous, involving multiple resistance pro-

files. This approach can be used to monitor evolving microbial populations using routine

phenotypic data as a practical and inexpensive proxy for genotypic characterization [9]. How-

ever, we must consider the reproducibility of the AST results for each of the selected antimi-

crobials for the resistance profiles. For example, the reproducibility of the AST results for TEC

would affect the differences between resistance profiles 1 and 3, and those between 2 and 4,

which were only based on whether they were susceptible or resistant to TEC.

Furthermore, we cannot conclude that VRE isolates with different resistance profiles by

WHONET-SaTScan are genetically different because we did not conduct any molecular phylo-

genetic analysis of VRE. Relatedly, without molecular typing information, we cannot make

sure whether all isolates within a cluster of a specific resistance profile are from the same strain.

To address these issues, a strategy combining automated cluster detection using WHONET-

SaTScan and in-depth molecular typing technologies, including whole-genome sequencing, is

required, as previously suggested [28].

Most of our target patient population consisted of individuals colonized by VRE rather

than those with VRE infections. This was because the target patients in the JANIS database

were those from whom VRE were isolated from various samples. From a microbial and epide-

miological perspective, including colonization results is valuable because it tells you that the

microbe is moving and more patients are at risk. In a true outbreak where transmission can

reach many patients, some will be colonized, and some will show symptoms with an infection

diagnosis. Both are important with regards to outbreak detection and response. One limitation

of using surveillance isolates is that a hospital may change their sampling practices over time,

which can affect cluster detection. For example, you might have some short-term statistical

“clusters” simply because the facility changes their surveillance strategy to doing more sam-

pling. In addition, changes in laboratory testing practices for surveillance samples such as shift

from culture screening on VRE plates to molecular screening with gene probes can also affect

cluster detection.

This study had some other limitations. First, this was not a prospective study. The clinical

significance of detected clusters was solely assessed based on public reports, which might have

been affected by underreporting. Second, the criteria for collecting patient samples for culture

and AST were not identical among the facilities. This is unavoidable in the JANIS system,

wherein hospitals voluntarily provide specimen results using routine clinical samples. This

could also affect the prevalence and proportion of resistance profiles tabulated from the JANIS

data. Third, a significantly lower proportion of hospitals with fewer than 200 beds participated

in JANIS compared to those with 500 or more beds (14.6% vs. 81.8%). Thus, larger hospitals

may have a greater impact on the findings related to JANIS data than smaller hospitals. Fourth,

only 15 hospitals with 10 or more VRE patients during the study period were included in the

detailed analysis (as shown in the flowchart in Fig 1). This might be a problem in the generali-

zation of our findings, for example among hospitals with fewer VRE patients and fewer pub-

licly available reports on VRE outbreaks. Fifth, we did not have data on the exact number of

true outbreaks because of the possibility of underreporting, which could bias the calculation of

sensitivity.

Conclusion

Despite these limitations, to our knowledge, this study is the first to demonstrate the clear

advantage of using the space-time uniform algorithm for detecting VRE clusters in
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WHONET-SaTScan based on national surveillance data and showcased the capability to dis-

tinguish detected clusters based on resistance profiles. Automated detection of VRE outbreaks

is feasible for ICPs using standard computers and will prove valuable for early intervention in

VRE infection control practices.
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