
RESEARCH ARTICLE

Citrate-modified bacterial cellulose as a

potential scaffolding material for bone tissue

regeneration

Rabiu SalihuID
1,2,3*, Saiful Izwan Abd Razak1,4, Mohd Helmi SaniID

2, Mohammed

Ahmad WsooID
5, Nurliyana Ahmad Zawawi2, Shafinaz Shahir2

1 Centre for Advanced Composite Materials, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia,

2 Faculty of Science, Department of Biosciences, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia,

3 Department of Microbiology and Biotechnology, Federal University Dutse, Dutse, Jigawa, Nigeria,

4 Faculty of Engineering, Bioinspired Device and Tissue Engineering Research Group, School of Biomedical

Engineering and Health Sciences, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia, 5 Department of

Chemistry, College of Science, University of Raparin, Ranya, Kurdistan Region, Iraq

* salihu.r@fud.edu.ng

Abstract

Bacterial cellulose (BC) is a novel biocompatible polymeric biomaterial with a wide range of

biomedical uses, like tissue engineering (TE) scaffolds, wound dressings, and drug delivery.

Although BC lacks good cell adhesion due to limited functionality, its tunable surface chem-

istry still holds promise. Here, hydroxyapatite (HA) was incorporated into a citrate-modified

BC (MBC) using the biomimetic synthesis in simulated body fluid (SBF). Fourier transform

infrared (FTIR) spectroscopy, X-ray diffraction (XRD), field emission scanning electron

microscopy (FE-SEM), thermal gravimetric analysis (TGA), and compressive modulus were

used to characterize the biomineralized MBC (BMBC) samples. Using 3-(4,5 dimethylthia-

zol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl) -2H-tetrazolium (MTS), trypan blue

dye exclusion (TBDE), and cell attachment assays on osteoblast cells, the developed

BMBC have shown good cell viability, proliferation, and attachment after 3, 5, and 7 days of

culture and therefore suggested as potential bone tissue regeneration scaffolding material.

Introduction

Diseases, injuries, and trauma were the significant causes of tissue damage and degeneration

that often require treatments to speed up the regeneration, repair, and/or replacement of the

damaged tissue [1,2]. Patient-to-patient rejection, cross-infection risk, and limited donor avail-

ability were the major drawbacks facing the previously established methods (autograft, allo-

graft, and xenograft), hence the need for alternative treatment options [3–5].

Tissue engineering (TE), an interdisciplinary field of study harnessing the knowledge of

biology, biochemistry, clinical medicine, material and pharmaceutical sciences, and engineer-

ing, is one of the alternative options that involves the use of cells, mostly seeded on a three-

dimensional (3D) carrier material (the scaffold) with appropriate growth factors to mimic the

extracellular matrix (ECM) of the native tissue [3,6]. The success of TE is tightly connected to
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an appropriate scaffold that enables easy cell attachment and adequate energy transfer for the

cells to proliferate and differentiate [6–8]. Bone tissue engineering (BTE) is an essential aspect

of TE and a promising alternative to the traditional treatment methods for critical bone defects

due to trauma, infection, and tumor resection. It relies mainly on a bioactive scaffold with suf-

ficient mechanical integrity to tolerate the bone remodeling process [6,9].

Advancement in material science and engineering has led to unveiling the potential appli-

cation of polymeric biomaterials as scaffolds for TE. This is due to the tunability of their prop-

erties to resembling the ECM of a native tissue [10], as well as biodegradability and

biocompatibility [11]. Bacterial cellulose (BC) is one of the explored polymeric biomaterials in

biomedicine [12,13] due to its fascinating properties such as excellent tensile strength, high

purity, degree of polymerization, and crystallinity index [14–16]. While a native BC lacks suffi-

cient bioactivity, and osteoconductivity as a BTE scaffold, its hydroxyapatite (HA) composite

was found to support in vitro osteoblast cell attachment, proliferation, and alkaline phospha-

tase (ALP) expression [17–19]. Composite scaffolds of HA with other polymeric biomaterials

have also been reported to support cell attachment, proliferation, and differentiation [20–23].

Hydroxyapatite (HA) is an inorganic calcium phosphate mineral (Ca10(PO4)6(OH)2 found

to constitute almost 50% (by weight) of a bone [24,25]. It is a well-known mineral for develop-

ing bioactive scaffolds for BTE due to its outstanding osteoinductive, osteoconductive, and cell

adhesive potentials [26–28]. However, the nonuniform dispersibility and low nucleation of

HA on the BC’s surface due to insufficient functionality are still challenges [29].

While attempts have been made to improve the bioactivity and poor cell attachment associ-

ated with cellulose scaffolds through the incorporation of HA [4,6,18,30–33], the nucleation of

HA is said to be dependent on the material’s surface chemistry. It is established that the

hydroxyl (–OH) groups of cellulose have a very poor HA induction compared to carboxyl (–

COOH) groups [34,35], which could be the basis for the low HA nucleation leading to poor

cell attachment on the BC’s surface. We therefore hypothesized that the CA-modification

could introduce more carboxyl groups, which in turn enhances the HA nucleation ability and

improves the modified BC’s (MBC) bioactivity sufficient to support osteoblast cell growth and

proliferation.

Benefits of the biomimetic synthesis of HA in simulated body fluid (SBF) include cost-effec-

tiveness and eco-friendliness. Moreover, HA can be uniformly deposited on a material’s sur-

face without heat treatment, particularly if the material has a conducive surface chemistry [36].

To our knowledge, surface modification with CA and hydroxyapatite biomineralization of the

CA-modified BC in simulated body fluid (SBF) is less reported. Here, we synthesize the HA

crystals on the modified BC (MBC) samples through the SBF immersion method. The biomi-

neralized MBC (BMBC) samples were characterized by attenuated total reflectance Fourier

transform infrared (ATR-FTIR) spectroscopy, X-ray diffraction (XRD), field emission scan-

ning electron microscopy (FE-SEM), and thermal gravimetric analysis (TGA). The BMBC

samples have shown enhanced HA nucleation ability and improved physicochemical and

mechanical properties compared to the unmodified samples. Moreover, improved biocompat-

ibility and bioactivity were observed for the BMBC to human osteoblast cell lines based on the

MTS, Trypan blue dye exclusion (TBDE), and attachment assays.

Materials and methods

Bacterial cellulose (BC) sheets were purchased from a local Nata de Coco-producing company

(Happy Alliance) in Malaysia. Citric acid monohydrate powder (C6H8O7.H2O), sodium

hydroxide (NaOH) pellets, MTS (3-(4,5 dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-

2-(4-sulfophenyl)-2H-tetrazolium) reagent, glutaraldehyde (25%), and ethanol (99.5%) were
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purchased from Sigma Aldrich. Sodium chloride (NaCl), sodium hydrogen carbonate

(NaHCO3), potassium chloride (KCl), di-potassium hydrogen phosphate trihydrate

(K2HPO4�3H2O), magnesium chloride hexahydrate (MgCl2�6H2O), hydrochloric acid (HCl),

calcium chloride (CaCl2), and sodium sulphate (Na2SO4), and tris(hydroxymethyl)amino-

methane (CH2OH)3CNH2) were all purchased from Merck. Dulbecco’s Modified Eagle

Medium (DMEM), Fetal Bovine Serum (FBS), penicillin-streptomycin, Trypsin-EDTA solu-

tion (TrypLE™ Express), Trypan blue dye, and phosphate buffered saline (PBS) were purchased

from Gibco Life Technologies, USA.

Bacterial cellulose modification

The citric acid modification and characterization of the BC were as reported in our published

work [37]. However, for the fact that the study is targeted towards biomedical application,

modified samples showing high water absorption/swelling rate were selected for the biominer-

alization process. Briefly, purified BC samples were immersed in two different molar concen-

trations (0.0375 M and 0.075 M) of citric acid (CA) solution in ion-exchanged distilled water

(diH2O). Samples were allowed to stand for 24 h at 45˚C, then cured at 140˚C for 2 h. Another

BC sample was treated under the same condition with diH2O only; this served as the control

sample. All samples were then removed and rinsed with diH2O until the pH reached 5–6.

After this, samples were tagged as BC (pristine), MBC0.03 (0.0375 M), and MBC0.07 (0.075

M) and freeze-dried for characterization [37].

Synthesis and characterization of HA on BC

For hydroxyapatite (HA) synthesis on both modified and pristine BC, SBF solution was pre-

pared according to Kokubo and Takadama, 2006 [38]. Samples were soaked and incubated in

the SBF at 37˚C for 1, 7, 14, and 21 days. The SBF solution was changed every 48 h to maintain

an optimal ion concentration within the solution. Samples were then removed and rinsed

gently with diH2O, then tagged as either BC (pristine) or BMBC (biomineralized BC) based on

the soaking time (Table 1). Samples were either freeze-dried or left swollen for further analysis.

Freeze-dried samples were subjected to FTIR, XRD, FE-SEM, and TGA, while the swollen

samples were subjected to compressive strength testing. Both pure and modified soaked sam-

ples were tagged based on their soaking times, as shown in Table 1. Samples showing better

HA nucleation based on the FTIR results were subjected to further characterization and were

also used for in vitro biocompatibility assays.

Fourier transformed infrared (FTIR) spectroscopy

Using an FTIR spectrophotometer (Model: PerkinElmer-Frontier™, L1280044, Waltham, MA,

USA) equipped with an attenuated total reflection system (ATR-FTIR) as in [39], samples

were scanned in a wavelength range of 4000 to 650 cm−1 and 4 cm−1 resolutions. The spectra

obtained were plotted as intensities against a wavenumber graph.

Table 1. Samples description based on the simulated body fluid (SBF) soaking period.

SBF Soaking Period Sample Description

BC MBC0.03 MBC0.07

1—day BC-S1 BMBC0.03-S1 BMBC0.07-S1

7—days BC-S2 BMBC0.03-S2 BMBC0.07-S2

14—days BC-S3 BMBC0.03-S3 BMBC0.07-S3

21—days BC-S4 BMBC0.03-S4 BMBC0.07-S4

https://doi.org/10.1371/journal.pone.0312396.t001
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X-ray diffraction (XRD)

An X-ray diffractometer (Model: Rigaku SmartLab, USA) with CuKα radiation wavelength (λ
= 0.154 nm) operated at 40 kV and 30 mA was used for the XRD analysis. Scans were made

between angles 2θ of 10˚ to 60˚ at a speed of 3˚/min.

Field-emission scanning electron microscope (FE-SEM) with energy

dispersive x-ray (EDX)

A high-resolution FE-SEM machine (Hitachi SU8020 UHR, Japan) was used for the morpho-

logical and microstructural analysis of the extent of HA nucleation on samples after being

soaked in SBF for 7 days. Freeze-dried samples were sputter-coated with a thin layer of plati-

num and scanned at a voltage of 2.0 kV at different magnifications. As for the cross-sectional

morphology, samples were broken under a liquid nitrogen to avoid fiber deformations. The

elemental quantification data was also obtained from the energy dispersive x-ray (EDX)

system.

Thermal gravimetric analysis (TGA)

A thermal analyzer (Shimadzu DTG-60H, Japan) was used to evaluate the thermal stability of

the BMBC. A freeze-dried film weighing 27 mg ± 2 mg from each sample in a platinum pan

was heated between 30˚C and 900˚C at a heating rate of 10˚C/min under a nitrogen flow rate

of 100 ml/min [40]. Samples were held at 130˚C for 10 minutes to release any absorbed mois-

ture. The weight loss upon heating and the corresponding temperature were obtained from

the analyzer, normalized as percentage weight loss (%) and plotted against the corresponding

temperature (˚C) [41].

Compressive strength

A universal testing machine (Instron 8874, Illinois Tool Works Inc., Norwood, MA, USA) was

used for the compressive strength testing. Wet and swollen samples (20 x 20 mm) were tested

at room temperature with a constant crosshead speed of 1.0 mm/min and 25 N load cell. At

least five (5) rectangular samples were tested for each treatment. The compressive modulus

was determined from the 0.2% offset at the linear region of the stress-strain curve for each

sample [42], and the result was presented as the mean standard deviation.

In vitro biocompatibility test

For a material (natural or synthetic) to be regarded as biocompatible, its response to the bio-

logical system must be evaluated. A biocompatible material should have the ability to integrate

with living tissues or cells without causing local or systemic adverse effects [43,44]. Our aim

here is to evaluate the biocompatibility of the BMBC on the human fetal osteoblast (hFOB 1.19

ATCC1 CRL 1137™) cell line. This was performed through the MTS, TBDE, and attachment

assays.

MTS assay. Wet and swollen biomineralized MBC (BMBC) and the unmodified BC sam-

ples (10 x 10 mm) were washed with PBS and UV sterilized in the BSC cabinet for 30 minutes

on each side. Samples were then immersed in 1 mL of CDMEM in a 24-well plate at 37˚C and

5% CO2 for 24 h, after which the medium was aspirated and seeded with 1 mL of 5 x 105/mL of

human fetal osteoblast (hFOB) 1.19 (ATCC1 CRL 11372TM) cell suspension in a fresh

CDMEM and incubated at the same condition for 3, 5, and 7 days. Wells with cells seeded in

CDMEM without the test sample were considered the controls. MTS reagent (100 μl) was then

added to all wells except the blank (media only), wrapped in aluminum foil, and incubated at
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37˚C with 5% CO2 for 3–4 h. 200 μl from each assay well was aspirated and transferred into a

96-well plate, where the absorbance was measured using a microplate reader (ELISA Micro-

plate Reader, Epoch, Biotech) at 490 nm [45]. The percentage (%) cell viability was obtained

from the average optical density readings [31] and compared with the control.

Trypan blue dye exclusion (TBDE) assay. Biomineralized BC (BMBC) and unmodified

BC samples (10 x 10 mm) were rinsed in 1 x PBS solution for 15 minutes and UV sterilized for

30 mins on each side prior to the experiment. Samples were then immersed in CDMEM for 24

h, after which the old medium was aspirated and replaced with 1 mL of cell suspension in

CDMEM. Wells with cells seeded in CDMEM without the test sample were considered the

controls. The culture was incubated at 37˚C and 5% CO2 for 3, 5, and 7 days, then detached

and suspended in CDMEM before centrifugation. The assay was performed according to [46],

where an aliquot of the cell suspension was centrifuged at 125 g for 5 minutes, and the super-

natant was discarded and then resuspended in 1x PBS. Cells in PBS were mixed with the same

volume of 5% trypan blue dye, loaded on the Neubauer chamber, observed using an inverted

optical microscope, and counted. The percentage cell viability was calculated using Eq 1

below.

Cell viability %ð Þ ¼
total no:of viable cells per ml of aliquot

total no:of cells per ml of aliquot
� 100 ð1Þ

Cell adhesion assay. Wet BMBC samples measuring 30 x 30 mm were cut in triplicate,

washed in PBS for 10 min, and UV sterilized for 30 min on each side. Samples were immersed

in CDMEM on a 6-well culture plate and incubated at 37˚C with 5% CO2 for 24 h. The old

medium was then aspirated and replaced with a 3 mL cell suspension of 1 x 105/mL, incubated

at the same condition for 3 days. Samples were then rinsed in PBS, fixed with 2.5% glyceralde-

hyde at room temperature [47], and dehydrated using 10%, 20%, 40%, and 60% graded alcohol

for 15 mins each, followed by 80%, 90%, and 100% for 30 min each [48]. Finally, the samples

were air-dried, placed on studs, and sputter coated with platinum, then viewed under the

FE-SEM system [31].

Results and discussion

Integration of BTE scaffolding materials with the bone is strongly associated with the hydroxy-

apatite layer, which is believed to enhance material adhesion to the bone [49]. Using the biomi-

metic HA synthesis in SBF, which takes advantage of the chemical interaction between Ca2+

and P5+ ions under controlled pH and temperature [50], the work aims to improve the MBC’s

bioactivity. Additionally, the physicochemical characteristics and osteoblast cell attachment

and proliferation potential of the biomineralized MBC (BMBC) were assessed, with the find-

ings reported below. The author’s future research proposal is to further demonstrate the bone

regeneration potential of the BMBC by evaluating biological markers of bone formation and

regeneration, such as proteins or RNA.

Fourier transformed infrared (FTIR) spectroscopy

The FTIR spectra presented in Fig 1 depict a comparison between the unsoaked and soaked

pure samples and the soaked modified samples at different soaking times. Plate (a) compares

the unsoaked and soaked pure BC samples. The slight differences observed in the peaks at

3680–2660 cm-1, which are mostly due to OH-stretching vibrations of water molecules [51],

could be as a result of differences in moisture content. Peaks at 1630 cm-1 due to CH-stretch-

ing vibrations tend to be more intense on the soaked than on the unsoaked samples, which
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could be the influence of hydrogen atoms on HA bonding to the carbon atoms on BC. Peaks

ascribed to phosphate (PO4) groups of the HA at 1290–034 cm-1 [30,52] seem to emerge only

on the BC-S4 sample (soaked for 21 days), which indicates that HA nucleation was very low

on pure BC samples owing to the lesser carboxylic groups (COO-) on the surface [35].

Plate (b) compares the modified BC samples (MBC0.03) at different soaking times with the

unsoaked. A similar scenario to plate (a) can be observed here with respect to the OH and CH-

stretching vibrations. All soaked samples have shown the characteristic peaks ascribed to the

PO4 groups at 1290–1034 cm-1 as opposed to the unsoaked sample [53].

Plate (c) shows a comparison between MBC0.07 samples at different soaking times versus

the unsoaked sample. Peaks ascribed to the CH-stretching and PO4 groups comparable to

those in plate (b) were also present here. A slightly sharp peak at 3100–3600 cm-1 that appears

on the BMBC0.07-S2 only is attributed to hydrogen-bonded OH-stretching vibration. The sig-

nal is rather broad, possibly due to the restriction of hydrogen bonding from a lack of molecu-

lar contact [54].

In all the groups, samples soaked for 7 days seem to have PO4 peaks comparable to those

soaked for 21 days, possibly because they can attain a maximum HA nucleation in SBF even at

7 days and were selected as the best samples. Plate (d) is therefore a comparison between the

selected samples (7 days soaking) from all groups versus the pure BC. The soaked pure BC also

displays the CH-associated peak like that of the CA-treated samples but a low intense PO4

Fig 1. Comparative FTIR spectra for (a) pure soaked (BC-S1 to BC-S4) with pure unsoaked (BC), (b) modified soaked

samples at different soaking times (BMBC0.03-S1 to BMBC0.03-S4) with modified unsoaked sample (MBC0.03), (c)

modified soaked at different soaking times (BMBC0.07-S1 to BMBC0.07-S4) with modified unsoaked samples

(MBC0.07), and (d) unmodified and modified 7-day soaked samples (BC-S2, BMBC0.03, and BMBC0.07-S2) with

unmodified unsoaked sample (BC).

https://doi.org/10.1371/journal.pone.0312396.g001
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peak like the pure unsoaked sample. It is essentially evident here that the CA modification has

influenced BC’s fiber bioactivity to reach the maximum HA nucleation at 7 days.

X-ray diffraction (XRD)

The XRD patterns of the soaked modified samples, unsoaked pure BC, soaked pure BC, and

hydroxyapatite (RRUFF ID: R060180) were presented in Fig 2. It can be observed from the

XRD patterns that the amorphous peaks associated with BC 2θ = 14.4˚ tend to disappear while

the crystalline peaks tend to emerge as the HA crystals increase. Furthermore, the crystalline

peaks associated with BC at 2θ = 22.6˚ appeared in almost all the samples, but with reduced

intensity as the CA concentration increased. This could be due to the increased amount of HA

crystals with increasing CA concentration covering the BC fiber since the soaked, unmodified

BC sample still displayed the typical peaks of BC even though it also has some HA-associated

peaks [53].

In contrast, the soaked modified samples appear to have peaks that match the HA peaks

from the RRUFF database (http://rruff.info) (ID: R060180). The appearance and intensifica-

tion of HA associated peaks (10.8˚, 25.9˚, 31.7˚, 40.6˚, 45.4˚, and 56.4˚) [55,56], as well as the

lowering of BC associated peaks [30], demonstrate the presence of HA within BC fiber

Fig 2. XRD diffraction patterns of BC, HA, BC-S2, BMBC0.03-S2, and BMBC0.07-S2.

https://doi.org/10.1371/journal.pone.0312396.g002
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networks. According to the findings, the synthesized HA is crystalline and expected to be

highly resorbable, making it suitable for biomedical applications [57].

Field-emission scanning electron microscope (FE-SEM) and energy

dispersive x-ray (EDX)

The FE-SEM images in Fig 3 displayed the extent of HA nucleation on the soaked modified

samples of the same soaking time in comparison to the soaked and unsoaked pure BC samples.

A zoom (60.0k) into the surface images revealed an uncovered fiber network typical of BC in

the unsoaked and soaked pure samples (BC and BC-S2), respectively, in contrast to the HA

crystal-covered fibers in the soaked modified samples (BMBC0.03-S2 and BMBC0.07-S2). It is

also noteworthy that the BC fiber still retains its interconnected porous network, especially for

the CA-treated samples having the highest HA nucleation. A similarity can also be observed

on the cross-sectional images. The unsoaked pure sample (BC) seems to have a clean fiber

geometry with interconnected pores, while the soaked pure sample has some traces of HA

within its fiber (closer to the periphery of the film), making it a bit compact.

On the other hand, the soaked modified samples (BMBC0.03-S2 and BMBC0.07-S2)

showed much denser HA crystals penetrating deep into the fiber. Since the HA nucleation on

the modified samples seemed to increase with the increase of CA concentration, it can be pre-

sumed that the CA treatment has improved the rate of HA nucleation on the BC, which is

much more likely due to the additional carboxyl (COO-) groups on the fiber surface

[34,35,58]. The microstructural characteristics shown here correspond with FTIR data and are

therefore expected to yield a conducive surface for osteoblast attachment and proliferation.

Energy dispersive x-ray. It can also be observed from the EDX elemental spectral peaks

in Fig 4 that the unsoaked pure sample (BC) does not contain any trace of either calcium (Ca)

or phosphorus (P), while the soaked pure (BC-S2) and modified samples (BMBC0.03-S2,

BMBC0.07-S2) all have both peaks but with varying intensities. All, including the unsoaked

pure sample, have shown sodium (Na) peaks, which could be due to either the sodium

Fig 3. Surface and cross-sectional FE-SEM images of unsoaked pure (BC), soaked pure (BC-S2), and soaked

modified (BMBC0.03-S2 and BMBC0.07-S2) samples.

https://doi.org/10.1371/journal.pone.0312396.g003
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hydroxide (NaOH) used for sample purification or the sodium contents of the SBF. All other

elements featured in the EDX peaks of the soaked samples, including the pure, could also

emerge from the SBF solution [59].

Consequently, for a biocompatible material such as BC, having a long history of being in

use for biomedical applications, the enhanced HA nucleation ability will surely improve the

bioactivity and widen its applicability in many areas of biomedicine. In BTE specifically, the

HA bonding ability of a material is an important prerequisite for it to be used as BTE scaffold-

ing material. According to Kokubo et al. [38], the bone-bonding ability of a material can be

predicted by its ability to nucleate HA on its surface in SBF.

Thermal gravimetric analysis (TGA)

The thermogravimetric curves in Fig 5 were to show the thermal behavior of the unsoaked and

soaked modified samples after the HA mineralization in comparison to the pure BC. Plates (a,

b, and c) compare the samples soaked for 7 and 21 days (S2 and S4), respectively, for the pure

and modified samples with their corresponding unsoaked samples, while plate (d) is between

the soaked pure and soaked modified samples.

Partial decomposition of only about 6% of the weight can be seen between the temperatures

of 120 and 300˚C for the unsoaked samples, while for the soaked samples, the weight loss is

about 18% between 120 and 250˚C and could be due to the release of moisture content since

HA do not dehydrate completely before decomposition [60]. The substantial weight loss of the

soaked samples occurred between 250 and 300˚C, while the unsoaked pure sample showed the

maximum at temperature between 300 and 392˚C. Despite the fact that the soaked samples

start to decompose at a lower temperature compared to the unsoaked, the soaked samples still

retained their weight (46.87–56.48%) up to a temperature of about 500˚C, most likely due to

the presence of HA that decomposes at higher temperatures than the BC [61]. It is noteworthy

that in all cases, samples soaked for 7 days have shown much similar thermal behavior with

Fig 4. Elemental maps of the unsoaked pure, soaked pure, and soaked modified samples obtained by EDX

analysis.

https://doi.org/10.1371/journal.pone.0312396.g004
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samples soaked for 21 days, indicating that the longer soaking time has less effect on the ther-

mal properties of the samples. This also corresponds with the FTIR results that the MBC can

attain its maximal HA nucleation in 7 days.

Compressive strength

The stress-strain curve for the unsoaked and soaked pure and soaked modified BC samples is

shown in Fig 6. All the soaked samples have shown some improved mechanical properties in

contrast to the unsoaked pure BC sample. Importantly, the better compressive modulus dis-

played by the soaked is as expected, taking into account the presence of the apatite crystals fill-

ing the void spaces within the BC fiber network [30]. The low modulus seen for BMBC0.03-S2

(although within the accepted limit) [62] could be due to the spongy nature of the samples and

low apatite crystals compared to BMBC0.07-S2. The yield strength of all the samples also fol-

lowed a similar pattern with the compressive modulus, while the fracture point showed not

much difference among all the samples. The improved compressive modulus of BMBC

reported can be considered an added advantage for its application in BTE, where a minimum

compressive modulus of between 2 MPa and 50 MPa is required [62].

In-vitro biocompatibility test

Cell culture and maintenance were performed based on the standard procedure under sterile

working and incubation conditions. A class II biosafety cabinet (Thermofisher 1300 series A2)

and a CO2 incubator (Binder CB 260) were used all through the preparation and incubation of

the cultures. All consumables were of cell culture grade and were used without being

Fig 5. Comparative TGA curves to show the thermal behavior of the SBF-soaked samples compared to the

unsoaked.

https://doi.org/10.1371/journal.pone.0312396.g005
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autoclaved. Non-consumables like Schott bottles, scissors, and waste beakers were autoclaved

after finishing and before each culture cycle. Surface sterilization was maintained throughout

all the experiments using 70% ethanol to prevent cross-contamination. All cell lines used in

the research were between passages four (4) and seven (7) and were trypsinized after reaching

70–90% confluency. The images of the hFOB 1.19 cell lines cultured on CDMEM after 1, 2,

and 3 days incubation at 37 and 5% CO2 were presented in Fig 7.

MTS assay. Cells were cultured and assayed during the proliferative period and after opti-

mizing the seeding density (supplementary data). The results of the assay were statistically ana-

lyzed using a one-way ANOVA and the Turkey HSD post-hoc test. The bar charts depicted in

Fig 8 represent the viability and proliferation of the hFOB cell lines on the BMBC samples in

comparison to the control (cells + media only) and the BC. The significant difference within

the same-day culture was found only on the 3-day culture (between the control and

BMBC0.03-S2), and there was no significant difference among other samples in the same

group. No significant difference was detected within other samples in other culture days (5

and 7 days). Furthermore, there is a significant difference (P<0.01) between samples of differ-

ent culture days (3 and 5 days) and a highly significant difference (P<0.001) between the cul-

ture at 3 and 7 days (supplementary data), which could be as a result of disturbance at the

initial stage of the culture due to extracellular membrane adhesion protein synthesis [29].

It can also be observed that samples did not show any significant difference in cell viability

within almost all the groups with the control, except at 3 days. It is also noteworthy that the

untreated BC samples did not show a significant difference from the control, and this could be

due to the non-toxic nature of the BC [63,64]. The cells could still be viable through the few

Fig 6. Compressive mechanical properties for unsoaked pure (BC), soaked pure (BC-S2), and soaked modified

samples (BMBC0.03-S2 and BMBC0.07-S2).

https://doi.org/10.1371/journal.pone.0312396.g006
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culture days even though they are poorly attached to the BC, as evidently seen in Fig 10. Fur-

thermore, the CA modification and HA mineralization did not significantly affect the BC’s

biocompatibility [29] and interestingly enhanced its attachability to hFOB cells, thus could be

a good BTE scaffold [65]. The biocompatibility of BC/HA composite hydrogel to fibroblast cell

lines has also been suggested in a recent report by Athukorala et al. [66].

Trypan blue dye exclusion assay (TBDE). The results obtained for the microscopic cell

viability assay through TBDE are presented in Fig 9. It can be observed from the results that

there has not been much cell death on all the tested samples as compared to the control (100%)

after the 3, 5, and 7 days of the culture. All the treated samples have shown good cell viability,

ranging from 90 to 95% after 3 days, 93 to 97% after 5 days, and 95 to 98% after 7 days of the

culture.

This result agrees with some previous reports [18,29,30] and is in support of the non-toxic-

ity of the bacterial cellulose highlighted in Section 1. According to the ISO document (ISO

10993–5), an in vitro cell viability result� 80% for a material is proof of its non-toxicity.

Therefore, the 90–98% reported here implies that BMBC is non-toxic to the hFOB cell lines

and thus can be used for BTE scaffolding.

Cell adhesion assay. Cell adhesion and proliferation are both influenced by the physico-

chemical properties as well as the surface functional groups of a material. Osteoblast cells,

being adherent, principally rely on cell-surface attachment to survive and proliferate. HA-

coated materials are well known as conducive surfaces for the attachment and proliferation of

bone cells [52]. The FE-SEM images in Fig 10 were to depict the hFOB attachment and prolif-

eration on the surface of the tested samples. Looking at images of the unsoaked and soaked

pure BC samples (BC and BC-S2), respectively, it can be observed that the cells have poorly

attached to the surface; as such, there has not been any noticeable proliferation. Cells appeared

to be rounded with an impaired membrane and no evidence of cell division.

Fig 7. Images of hFOB 1.19 cells cultured on CDMEM after (a) one day, (b) two days, and (c) three days. X100.

https://doi.org/10.1371/journal.pone.0312396.g007
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On the other hand, cells appeared well attached, flattened, and elongated with an intact

membrane and filopodia on the surface of the soaked modified samples (BMBC0.03-S2 and

BMBC0.07-S2), similar to what was reported in [48]. Both modified sample surfaces displayed

densely populated cells with clear evidence of cell division and proliferation. The surface of

(BMBC0.07-S2) and, to a lesser degree, (BMBC0.03-S2) is almost covered with viable cells at

their proliferative stage with an active filopodia. The enhanced cell attachment and prolifera-

tion are probably influenced by the HA deposits, as they tend to be higher on the mineralized

samples than the control [18]. This is attributed to the hydroxyl groups, which play a vital role

in HA’s inherent bioactivity and cellular interaction properties. Composites of hydrogels and

HA are advantageous for the synergistic combination of their unique properties (hydrated bio-

compatible environment and bioactivity, respectively) [67]. A similar result was recently

reported for cell attachment on BC and BC/HA [68]. Our result is also consistent with the

notion that a pure BC is inherently non-toxic [69]. As such, the cells can proliferate but are

poorly attached due to the absence of HA deposits on their surface [68,70]. Despite the small

pore diameter associated with native BC, several pore sizes have been achieved through cross-

linking/incorporation of porogens within the matrices and are also reported to support osteo-

blast survival and proliferation [6,71].

Fig 8. A bar chart of MTS assay results comparing the hFOB cell proliferation on BC, BC-S2, BMBC0.03-S2, and

BMBC0.07-S2 with the control after 3, 5, and 7 days of culture. *P< 0.05, **P< 0.01, ***P< 0.001, and degree of

freedom = 4 (obtained by one-way ANOVA, Tukey HSD test) among all groups.

https://doi.org/10.1371/journal.pone.0312396.g008
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Fig 10. Surface FE-SEM images of hFOB attachment after 3 days on the unsoaked pure (BC), soaked pure

(BC-S2), and soaked modified (BMBC0.03-S2 and BMBC0.07-S2) samples.

https://doi.org/10.1371/journal.pone.0312396.g010

Fig 9. Trypan blue dye exclusion results presented as percentage cell viability based on the control sample.

https://doi.org/10.1371/journal.pone.0312396.g009
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Conclusion

In summary, a novel biocompatible citrate-modified bacterial cellulose/hydroxyapatite scaf-

fold has successfully been developed. Citric acid crosslinking modification has enhanced the

hydroxyapatite biomineralization of the developed scaffold in SBF, which in turn improved

the bioactivity and biocompatibility of the BC sufficient to support the attachment and prolif-

eration of osteoblast cells on its surface. The modified BC was found to attain its maximum

HA nucleation after 7 days soaking in SBF solution. The apatite formation has also improved

the mechanical and physicochemical properties of the BMBC as per the characterizations.

Also, on account of the in vitro biocompatibility assessment, the modified and biomineralized

samples have demonstrated better cell proliferation and attachment compared to the control

(unmodified samples), which is attributive to the intrinsic bioactivity of the HA. The osteoblast

cell lines have attached well with filopodia and evidence of cell division after the 3 days of cul-

ture. The BMBC reported here could be exploited in biomedicine as potential bone tissue

regeneration scaffolding material.
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