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Abstract

Background

The geographic footprint of Lyme disease is expanding in the United States, which calls for

novel methods to identify emerging endemic areas. The ubiquity of internet use coupled

with the dominance of Google’s search engine makes Google user search data a compelling

data source for epidemiological research.

Objective

We evaluated the potential of Google Health Trends to track spatiotemporal patterns in

Lyme disease and identify the leading edge of disease risk in the United States.

Materials and methods

We analyzed internet search rates for Lyme disease-related queries at the designated mar-

ket area (DMA) level (n = 206) for the 2011–2019 and 2020–2021 (COVID-19 pandemic)

periods. We used maps and other exploratory methods to characterize changes in search

behavior. To assess statistical correlation between searches and Lyme disease cases

reported to Centers for Disease Control and Prevention (CDC) between 2011 and 2019, we

performed a longitudinal ecological analysis with modified Poisson generalized estimating

equation regression models.

Results

Mapping DMA-level changes in “Lyme disease” search rates revealed an expanding area of

higher rates occurring along the edges of the northeastern focus of Lyme disease. Bivariate

maps comparing search rates and CDC-reported incidence rates also showed a stronger

than expected signal from Google Health Trends in some high-risk adjacent states such as

Michigan, North Carolina, and Ohio, which may be further indication of a geographic leading
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edge of Lyme disease that is not fully apparent from routine surveillance. Searches for

“Lyme disease” were a significant predictor of CDC-reported disease incidence. Each 100-

unit increase in the search rate was significantly associated with a 10% increase in inci-

dence rates (RR = 1.10, 95% CI: 1.07, 1.12) after adjusting for environmental covariates of

Lyme disease identified in the literature.

Conclusion

Google Health Trends data may help track the expansion of Lyme disease and inform the

public and health care providers about emerging risks in their areas.

Introduction

Lyme disease is a bacterial infection whose causative agent is transmitted by the bite of infected

Ixodes species ticks, which are found widely in northern temperate regions of the world. In the

United States, the responsible tick vectors are Ixodes scapularis in the east and Ixodes pacificus
in the west. Most cases are reported in the Northeast, Mid-Atlantic, and Upper Midwest

regions and, to a lesser extent, along the Pacific coast [1, 2]. Since Lyme disease was first identi-

fied in the late 1970s, its incidence has increased steadily, and it is now the most reported vec-

tor-borne disease in the country. Due in part to climate and land use changes, ticks that may

carry Lyme disease-causing bacteria are expanding their geographic reach [3], sparking con-

cern about their future impact on human health. In the United States, surveillance of Lyme dis-

ease in humans is based on case definitions published by Centers for Disease Control and

Prevention (CDC). Cases are reported passively, relying on health care providers or laborato-

ries to initiate reports to health departments, as opposed to being actively sought out. Passive

surveillance has been known to suffer from significant underreporting [4]. It is not designed to

capture every case and may have low sensitivity for detecting newly affected geographic areas.

Moreover, publication of case data is delayed by one or more years, making it difficult to track

trends and emerging endemic areas in real time. The impact of the COVID-19 pandemic on

Lyme disease infections and case reporting has also been unclear [5].

In recent years, there has been growing interest in data sources that may complement tradi-

tional disease surveillance. Data from insurance claims and electronic health records are now

commonly used in Lyme disease research [2, 6–10]. Researchers are also turning to search

engine and social media data, which are now readily available through application program-

ming interfaces (APIs). These and other internet-based data sources form the toolkit of the

emerging fields of infodemiology and infoveillance [11]. Although Twitter data research has

grown more recently [12–14], the literature linking internet-based data to Lyme disease has

largely focused on Google Trends, a publicly available tool that allows users to look up the rela-

tive popularity of a search query. Given that Google commands more than 90% of the search

engine market [15], this tool can provide valuable insights into what people are searching for

online. Seifter et al. [16] used Google Trends to show that the search query “Lyme disease” was

most popular in spring and summer months, when reported cases are known to peak, and in

cities and states where the disease is endemic in the United States. Couper et al. [17] found

that searches for “ticks” were a statistically significant predictor of Lyme disease incidence

between 2004 and 2017, although Google Trends was not the focus of their research. Others

have separately explored spatial and temporal trends in Lyme disease-related search queries

[18–21]. To our knowledge, no one has investigated spatial trends over time. A spatiotemporal
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analysis of Google Trends data may provide insights into both where and the degree to which

public interest or concern in Lyme disease is changing over time. We hypothesized that the

identification of these areas may help detect the “leading edge” [22] of Lyme disease in the

United States, or the expanding geographic boundary that separates existing high-risk areas

and areas where risk is currently increasing.

In the current study, we utilized data from the Google Health Trends API [23], which has

advantages over Google Trends for comparing geographic locations over time, to 1) explore

designated market area (DMA)-level trends in searches for “Lyme disease” and “tick bite” for

the 2011–2019 and 2020–2021 (COVID-19 pandemic) periods and 2) assess the predictive

power of searches on CDC-reported Lyme disease incidence rates between 2011 and 2019.

Materials and methods

Materials

Lyme disease-related search query data. Although public Google Trends data are com-

monly used in infodemiology research, they are not appropriate for spatiotemporal analyses

because of the way that Google normalizes search volumes and rescales them to a 0–100 index

[24]. This indexing makes the data too coarse to allow for meaningful analysis of search behav-

ior at the level needed to assess changes across space and time. Google Health Trends is an

alternative resource that is available to researchers through a private API. The API data are

quantitatively different from public Google Trends data. They are still normalized but they are

not scaled [25], making comparisons across geographic locations and time periods possible.

The API returns a query fraction, or search rate, which represents the probability of a search

session containing a case-insensitive search query (e.g., “Lyme disease”/”lyme disease”) in a

specified location and time period. For readability, the query fraction is presented as the num-

ber of searches per ten million searches. The absence of 0–100 scaling also makes repeated

sampling more meaningful. Google Health Trends data are based on a random sample of all

Google searches, which refreshes daily, so multiple samples may be averaged to obtain a more

reliable estimate of a search query’s popularity [24].

We used the R package gtrendR [26] to extract annual query fractions for the search queries

“Lyme disease” and “tick bite” from the Google Health Trends API. We considered including

other Lyme disease-related queries in our study but did not do so for the following reasons.

First, most symptom-related queries (e.g., “fever” or “headache”) are not specific to Lyme dis-

ease. Second, less commonly searched queries (e.g., “bull’s-eye rash”) tend to return mostly

missing values (i.e., no or low search volume) at the DMA level. Finally, the Google Health

Trends API’s daily quota limit only allowed us to sample one query’s worth of data per day, so

adding more queries would have significantly extended our data collection.

The smallest spatial unit for which Google makes search query data available is the DMA,

which is a grouping of counties. There are 206 DMAs in the contiguous United States; they are

typically defined by their largest metropolitan area and may include suburbs and other outly-

ing areas. Google Health Trends data date back to 2004, although the literature warns that data

quality in earlier years may be worse because internet use was not as widespread and Google

faced more competition from other search engines [24, 27–29]. We first dated our API

requests back to 2004 to assess early data quality. We determined that both missing and outlier

values dropped substantially after 2010; in fact, anomalously large query fractions were no lon-

ger present beginning in 2011. Although we could find no other studies that addressed tempo-

ral quality of DMA-level Google Health Trends data, our finding was consistent with the

literature’s suggestion that pre-2007 and even pre-2014 Google Trends data may be less reliable

prior to the introduction of the iPhone and the eclipse of desktop browsing by mobile
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browsing, respectively [24, 28]. Therefore, we removed pre-2011 observations from the data

and restricted our data set to 2011–2021.

We used the same API request parameters to extract multiple samples on different days

because the random sample of searches on which Google Trends query fractions are based

changes daily. Stephens-Davidowitz & Varian [24] note that researchers may average different

samples if very precise results are needed, but that Google’s sample is large enough that differ-

ent samples should yield similar results. The variability that we observed among our early sam-

ples seemed to warrant repeated sampling. We noted a sample size of 30 from a few Google

Trends studies that mentioned resampling [30–33], perhaps based on the minimum sample

size rule of thumb in statistics, and agreed that 30 was a reasonable number to balance data col-

lection time and confidence in the accuracy of the data.

Each daily sample contained the annual query fractions over all available years (2004–2021)

for all 206 DMAs. Before averaging the 30 samples for each DMA-year combination, we

inspected the data and noticed that the API sometimes returned missing values (NAs), which

are returned when the absolute number of searches in a particular location and time period is

below an unreported privacy threshold [24]. Although Google refers to these missing values as

zeros, the true query fraction is likely greater than zero. Missing values are more likely to be

returned in less populated locations and earlier time periods [24]. We observed this in our

samples for earlier years and noted that, in DMAs with many missing values across the 30 sam-

ples, the non-missing query fractions were highly variable and, in some cases, anomalously

large. In addition to calculating the average of non-missing samples, we tallied the missing

samples so that we could assess data quality by year. Surprisingly, some DMAs returned all

missing values between 2004 and 2021; the result of absolute searches never meeting the pri-

vacy threshold, this meant that we could not calculate any averages for four DMAs in the

“Lyme disease” data and 30 DMAs in the “tick bite” data. As expected, these DMAs tended to

be less populated and located in low Lyme disease incidence states. The four DMAs with miss-

ing “Lyme disease” data were in Texas, Nebraska, and Montana and had no or very low Lyme

disease incidence. The 30 DMAs with missing “tick bite” data were located across the country,

with the highest number located in the South; Lyme disease incidence in these areas was typi-

cally below five cases per 100,000 people. It is likely that a lower frequency of “tick bite”

searches compared to “Lyme disease” searches, combined with smaller populations, contrib-

uted to the higher number of DMAs with missing “tick bite” data.

Although 30 samples allowed us to explore and address data issues (i.e., outliers and miss-

ingness) in an unfamiliar data source; ultimately, when comparing query fraction variability

across five samples to variability across 10, 15, and up to 30 samples, more samples were not

critical. To test for differences in variability, we randomly selected five, 10, and 15 of the 30

possible samples and calculated the coefficient of variation (CV) of the averaged “Lyme dis-

ease” query fractions for each group, including a group with all 30 samples. We then per-

formed a one-way ANOVA test with CV as the dependent variable and number of samples

group as the independent variable. We replicated the random sample selection and ANOVA

test 1,000 times and averaged the P value of all tests. We found no significant difference

(P = 0.229) in the average CV among groups, which was around 6%. S1 Fig shows the distribu-

tion of CV across the four groups for one of the replications. Google’s changing random sam-

ple of searches may introduce concerns about sampling error, as Google does not disclose

specifics about its sampling design. However, in our case, we agree with Stephens-Davidowitz

& Varian [24] that Google’s sample is likely large enough that a single to a few samples give a

reliable estimate of “Lyme disease” search rates. Particularly after removing pre-2011 observa-

tions from our data, query fractions were not identical, but similar across samples, with some

DMAs and years showing more variation than others. We still view repeated sampling as a
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responsible use of Google Health Trends data given its relative novelty; however, the value

gained from repeated sampling likely depends on the researcher’s particular search query, time

and location parameters, and methods.

Our use of the Google Health Trends API complied with Google’s terms of service and

responsible use guidelines, which included non-commercial use and sharing of raw data in

summary form only.

Reported Lyme disease incidence rate data. We obtained county-level, CDC-reported

Lyme disease cases between 2011 and 2019 from the Johns Hopkins Lyme and Tickborne Dis-

eases Dashboard and aggregated them to the DMA level [34, 35]. Data for 2020–2021 were not

yet available at the time of analysis. Nearly all counties were located within a single DMA, but

we identified seven counties that were each split between two DMAs. For these counties, we

calculated the amount of overlap and for each year assigned a proportion of cases to either

DMA (see S1 Table). This was a crude fix, but we did not have enough information (e.g., finer-

scale Lyme disease data) to produce more accurate estimates. Only one of the counties (Oneida

County, New York) was in the eastern half of the country where Lyme disease is most com-

mon; the other six counties were in Arizona, California, and New Mexico and had very few

reported cases. We also aggregated county-level population estimates from the Census Bureau

[36] to the DMA level to calculate the incidence rate of reported Lyme disease cases per

100,000 people.

Environmental data. To determine if a modeled relationship between searches and

reported incidence rates remained significant after adjusting for other covariates, we included

a selection of environmental factors that have been associated with Lyme disease in the litera-

ture [17, 37–41]. These landscape and climate factors may act as limiting factors for ticks and

human-tick interactions. For landscape covariates, we used elevation, forest cover, and open

space vegetation cover (i.e., lawn grasses and other vegetation in developed settings). Defini-

tions of non-forest vegetation vary across the literature and may depend on study area; we

used open space vegetation as our study area was the contiguous United States and other vege-

tation classes (e.g., herbaceous) have very low coverage in the eastern United States, where

Lyme disease is most common, relative to the rest of the country. We also included Normal-

ized Difference Vegetation Index (NDVI) as an annual measure of vegetation density. For cli-

mate covariates, we used annual and seasonal temperature and precipitation. The

appropriateness of environmental predictors at the DMA level was also a consideration in our

selection. For example, a measure of overall forest cover was included, but more detailed forest

metrics, such as patch size and edge density, did not seem meaningful when summarized over

such a large spatial unit.

We obtained a digital elevation model with 30-m resolution from the United States Geolog-

ical Survey (USGS), a 2016 land cover classification raster with 30-m resolution from the

National Land Cover Database, annual maximum NDVI rasters with 250-m resolution from

USGS, and gridded monthly total precipitation and mean temperature data with 4-km resolu-

tion from the PRISM Climate Group at Oregon State University [42–44]. We used ArcGIS Pro

version 3.1 [45] to calculate DMA-level characteristics including average elevation, percent

land cover by class (2016), average maximum NDVI (2011–2019), and annual and seasonal

precipitation and average temperature (2011–2019). Seasonal calculations were based on mete-

orological seasons (e.g., Spring: March-May).

Statistical analyses

We generated descriptive statistics for CDC-reported Lyme disease and Google Health Trends

query fractions. We stratified statistics by region (see Table 1 for region definitions) and three-
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year time periods to show potential spatiotemporal variation. Although CDC had not yet pub-

lished 2020–2021 Lyme disease data, we summarized the Google Health Trends data over this

period to illustrate search trends during the COVID-19 pandemic. We also calculated each

DMA’s percent change in query fractions between 2011 and 2019 to estimate where search

interest has been changing. We excluded 2020–2021 from this calculation to remove the

potential impact of the pandemic. Due to some interannual fluctuation in query fractions, we

estimated the percent change between 2011 and 2019 using 2011 as the start value and a linear

weighted moving average of 2017–2019 as the end value. In other words, 2019 was weighted

Table 1. Designated market area-level characteristics between 2011 and 2021.

Characteristics 2011–2019 2011–2013 2014–2016 2017–2019 2020 2021

Reported Lyme disease cases, n (%)

New England 65,658 (21.1) 24,597 (26.0) 23,551 (22.1) 17,510 (15.9) NR NR

Mid-Atlantic 191,556

(61.5)

52,940 (55.8) 66,528 (62.4) 72,088 (65.5) NR NR

Midwest 46,838 (15.0) 15,263 (16.1) 14,058 (13.2) 17,517 (15.9) NR NR

South 5,098 (1.6) 1,349 (1.42) 1,790 (1.7) 1,959 (1.8) NR NR

West 2,293 (0.7) 645 (0.7) 682 (0.6) 966 (0.9) NR NR

Total in United States 311,443 94,794 106,609 110,040 NR NR

Reported Lyme disease incidence rate (reported cases per 100,000

people), mean (SD)

New England 59.2 (43.9) 54.0 (33.0) 61.5 (37.5) 62.2 (58.8) NR NR

Mid-Atlantic 39.1 (38.9) 29.7 (31.3) 38.8 (39.6) 48.8 (42.9) NR NR

Midwest 9.0 (19.8) 8.7 (23.3) 8.1 (17.4) 10.2 (18.3) NR NR

South 0.5 (0.7) 0.4 (0.5) 0.5 (0.7) 0.5 (0.7) NR NR

West 0.6 (0.9) 0.6 (0.9) 0.6 (0.9) 0.7 (0.9) NR NR

Google Health Trends query fraction (searches per 10 million searches),

mean (SD)

“Lyme disease”

New England 1,214.4

(320.4)

1,217.8

(284.8)

1,231.9

(304.8)

1,193.4

(378.7)

925.5

(150.8)

896.8

(320.1)

Mid-Atlantic 897.9 (361.2) 828.1 (346.8) 896.5 (339.1) 969.0 (386.1) 828.0

(256.7)

775.8

(301.3)

Midwest 490.9 (160.0) 440.6 (157.8) 511.8 (132.9) 520.2 (175.2) 484.8

(143.8)

436.9

(209.4)

South 368.6 (106.5) 343.7 (100.1) 402.8 (111.9) 359.4 (98.6) 351.1 (70.8) 263.2 (75.3)

West 359.9 (125.9) 324.2 (130.2) 397.9 (128.7) 357.6 (107.8) 354.9 (56.9) 266.8 (78.0)

“tick bite”

New England 296.7 (120.5) 226.2 (57.4) 282.6 (87.6) 381.4 (145.6) 331.1

(129.8)

384.6

(188.8)

Mid-Atlantic 241.6 (112.6) 178.4 (71.3) 225.4 (82.1) 321.0 (125.7) 301.6 (98.7) 307.5

(108.4)

Midwest 148.0 (76.4) 117.8 (70.6) 136.5 (57.1) 189.6 (81.0) 174.1 (74.7) 178.8 (77.8)

South 122.2 (69.0) 104.0 (56.3) 114.6 (56.2) 148.1 (83.3) 127.9 (77.5) 118.5 (69.9)

West 70.0 (40.0) 57.5 (37.1) 68.5 (38.3) 84.1 (40.3) 75.5 (39.1) 69.0 (29.5)

New England (7 DMAs): Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, and Vermont; Mid-Atlantic (29 DMAs): Delaware, Maryland, New Jersey,

New York, Pennsylvania, Virginia, West Virginia, and Washington, D.C.; Midwest (58 DMAs): Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri,

Nebraska, North Dakota, Ohio, South Dakota, and Wisconsin; South (74 DMAs): Alabama, Arkansas, Florida, Georgia, Kentucky, Louisiana, Mississippi, North

Carolina, Oklahoma, South Carolina, Tennessee, and Texas; West (38 DMAs): Arizona, California, Colorado, Idaho, Montana, Nevada, New Mexico, Oregon, Utah,

Washington, and Wyoming. Reported Lyme disease data are from CDC. NR: Not reported at time of study.

https://doi.org/10.1371/journal.pone.0312277.t001
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the most and 2017 was weighted the least, in a linear fashion. This was done to produce a

smoother–but modestly so–estimate of change in any areas where query fractions fluctuated

up or down in 2019. The calculation was performed with the movavg function in the R package

pracma [46]. To explore the hypothesis of a relationship between reported incidence rates and

searches, we created choropleth maps depicting spatial variation in the individual variables for

each year as well as bivariate choropleth maps showing spatial variation in the combination of

reported incidence rates and searches. For the bivariate maps, natural break classification was

used and adjusted slightly to ensure consistency between the three time periods.

We fit modified unadjusted and adjusted Poisson regression models to estimate the longitu-

dinal associations between the Google Health Trends and environmental covariates and

reported Lyme disease cases. Because 15% of DMAs had missing/suppressed “tick bite” query

fractions due to not meeting Google’s search threshold, and “tick bite” and “Lyme disease”

query fractions were strongly correlated (ρ = 0.75), we focused our regression analysis on

“Lyme disease” query fractions. We dropped the four DMAs with missing “Lyme disease”

query fractions, which only contributed four reported Lyme disease cases over the 2011–2019

period. Regression inference was based on a generalized estimating equation (GEE) approach

[47] to account for the repeated outcomes in each DMA and any time-varying covariates (e.g.,

query fractions and NDVI). We used population size as the regression offset to model the rate

of Lyme disease cases and an autoregressive correlation structure, which assumes that out-

comes measured closer together in time are more correlated than those measured further

apart. When fitting the adjusted model, we assessed all covariates for multicollinearity using

correlation matrices and the variance inflation factor (VIF). If multicollinearity was indicated,

we retained variables that were more strongly associated with the outcome. All significant vari-

ables from the unadjusted models were included in the adjusted model unless multicollinearity

was an issue.

We assessed residual spatial autocorrelation in each year by comparing the Moran’s I statis-

tic on the regression residuals from the population offset-only model (i.e., no covariates), the

unadjusted model with “Lyme disease” query fractions, and the adjusted multivariate model.

Moran’s I is a commonly used statistic to assess spatial autocorrelation for data aggregated to

an areal unit, like the analysis here at the DMA geography [48]. When attempting to reduce

residual spatial autocorrelation in a model, it may be appropriate to incorporate spatial lag

effects, which can help capture spillover effects of adjacent geographies. In addition to covari-

ates defined for each DMA (focal effect), we included spatial lagged covariates defined as the

average of each covariate in the immediate adjacent DMAs (spatial lag effect). Functions of the

x- and y-coordinates may also reduce residual spatial autocorrelation when large-scale spatial

trends are present. We considered linear and spline-based forms of the DMA centroid x- and

y-coordinates as covariates, to account for any general north-south and east-west trends. We

further explored geographic lack of fit of the model using local Moran’s I (i.e., a local indicator

of spatial association), which identifies DMAs and their neighbors that have model residuals

that are significantly similar in magnitude (i.e., high-high, low-low, high-low, or low-high)

[48].

Although our study area was the contiguous United States, we performed a sensitivity anal-

ysis limiting the modeled areas to DMAs in states with known high Lyme disease risk. No or

low risk was approximated by the percent of state’s counties with recorded tick populations.

We obtained county-level Ixodes tick status from CDC [49] and recoded counties as either

“reported/established” or “no records.” As no uniform or truly randomized tick sampling

regime exists in the United States, these statuses are based on data voluntarily collected and

reported by counties and should not definitively be interpreted as tick presence or absence

[49]. As DMAs comprise multiple counties that may have different statuses, for each state we
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calculated the percent of counties with recorded ticks and identified DMAs in states with low

percentages. We reran models several times by removing DMAs in states with 0% counties

reporting ticks (12 DMAs in 5 states removed), <10% (17 DMAs in 7 states removed), < 25%

(26 DMAs in 11 states), and <50% (56 DMAs in 15 states removed), to check how much geog-

raphy was a driving factor for modeled associations.

We performed all statistical analyses in R version 4.1.0 with the sf, sfdep, and geepack pack-

ages [50–53] and created all maps in ArcGIS Pro version 3.1 using DMA boundaries obtained

from the Environmental Systems Research Institute (Esri) [45, 54].

Results

Descriptive statistics

Table 1 presents summary statistics for the “Lyme disease” and “tick bite” search queries as

well as reported Lyme disease cases and incidence rates. Between 2011 and 2019, searches for

“Lyme disease” were most popular in the New England and Mid-Atlantic regions, averaging

query fractions of 1,214.4 and 897.9, respectively. Across three-year periods, “Lyme disease”

query fractions generally increased in New England, the Mid-Atlantic, and the Midwest,

although Fig 1 shows marked spatial variation in the rates of change over the 2011–2019

period. States outlined in black are classified by CDC as “high-incidence” for Lyme disease

[55]. Several DMAs in this high-incidence region experienced relative stability or even small

decreases in searches ranging from -6% to -35% with an average of -16%. Although much of

the United States posted increases in searches, a spatially contiguous grouping of DMAs

Fig 1. Designated market area-level percent change in Google Health Trends “Lyme disease” query fractions

between 2011 and 2019. State boundaries from the Census Bureau (public domain) and high-incidence state

boundaries (black) are shown for reference. DMA boundaries are the intellectual property of Esri and are used herein

with permission. Copyright © 2024 Esri and its licensors. All rights reserved.

https://doi.org/10.1371/journal.pone.0312277.g001
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showing percent increases above 50% is clearly seen in Fig 1. This darker red grouping is

located on the western side of–and just beyond the border of–the northeastern region of high-

incidence states outlined in black. This area represented a south-west expansion of the geo-

graphic region of relatively high “Lyme disease” query fractions over the 2011–2019 period.

The top three DMAs in this area were Wheeling, West Virginia-Steubenville, Ohio (+386%),

Clarksburg-Weston, West Virginia (+211%), and Bluefield-Beckley-Oak Hill, West Virginia

(+114%).

Query fractions for “tick bite” were smaller overall compared to those for “Lyme disease”

and the regional differences were not as pronounced. Searches consistently increased in all

regions and only 16 DMAs posted decreases of more than 10% over the 2011–2019 period. In

maps of DMA-level searches, the geographic area of relatively high “tick bite” searches

spanned New England, the Mid-Atlantic, the Upper Midwest, and part of the South, and was

not confined to the known geographic foci of Lyme disease.

Searches for “Lyme disease” generally decreased during the first year of the COVID-19 pan-

demic. When comparing 2020 query fractions to the 2017–2019 average; there were nearly

across-the-board decreases among DMAs located in high-incidence states, with about one-

third of these DMAs dipping more than 25% from their 2017–2019 average. The trend was less

consistent from 2020 to 2021; searches further decreased in about half of the DMAs in high-

incidence states and either remained stable or increased slightly in the other half. In the South

and West, average query fractions ticked down only slightly in 2020 but showed a larger drop

in 2021.

Fig 2 explores spatial covariation in “Lyme disease” query fractions and reported incidence

rates. The maps use a three-by-three classification system to classify DMAs as low, moderate,

or high for each variable. The breaks for low, moderate, and higher reported incidence were

0–10, 10–50, and 50+, and those for query fractions were 0–500, 500–1,000, and 1,000+. The

resulting bivariate maps show nine categories ranging from a low-low to a high-high combina-

tion of values. The three maps generally depict agreement between the two variables, but there

are some notable differences. There were rare instances of high-low combinations; one of

these was the Springfield-Holyoke, Massachusetts DMA in the 2017–2019 period and was the

result of Massachusetts not reporting cases to CDC, thereby producing a high query fraction-

low reported incidence rate combination. In all three time periods, there were DMAs in Min-

nesota and Wisconsin with either low query fraction-moderate reported incidence rate combi-

nations or moderate query fraction-high reported incidence rate combinations, suggesting

that searches were lower than expected given the number of cases reported.

Of special interest in Fig 2 were any DMAs with moderate query fraction-low reported inci-

dence rate combinations, i.e., areas where Google Health Trends produced a signal that was

stronger than expected and may indicate a leading edge. This is where the progression across

the three time periods becomes obvious with the appearance–and spread–of spatially contigu-

ous moderate-low DMAs. Interestingly, while searches were lower than expected in parts of

Minnesota and Wisconsin, they were higher than expected on the western side of Michigan in

the 2014–2016 and 2017–2019 time periods. DMAs in Virginia, West Virginia, Kentucky, Ohio,

and North Carolina also showed moderate query fraction-low reported incidence rate combina-

tions in the 2014–2016 and 2017–2019 time periods. Lastly, a grouping of moderate-low DMAs

in southern Oregon and northern California remained consistent in all three time periods.

Statistical analyses

Table 2 presents results of the unadjusted and adjusted regression analyses. For reference, an

extended summary of all model covariates is provided in S2 Table as a supplement to the
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Google Health Trends-focused descriptive statistics in Table 1. Given that query fractions ran-

ged up to 2,021.6 searches per 10 million searches, the relative risk (RR) is given per a 100-unit

increase for a more practical interpretation. In an unadjusted analysis, “Lyme disease” query

fractions were significantly associated with reported Lyme disease incidence rates (RR = 1.16,

Fig 2. Designated market area-level spatial covariation in reported Lyme disease incidence rates and Google

Health Trends “Lyme disease” query fractions using 2011–2013, 2014–2016, and 2017–2019 averages. Breaks for

low, moderate, and high incidence are 0–10, 10–50, and 50+; those for query fractions are 0–500, 500–1,000, and 1,000

+. State boundaries from the Census Bureau (public domain) are shown for reference. DMA boundaries are the

intellectual property of Esri and are used herein with permission. Copyright © 2024 Esri and its licensors. All rights

reserved.

https://doi.org/10.1371/journal.pone.0312277.g002
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95% CI: 1.12, 1.19); a 100-unit increase in the search rate was associated with a 16% increase in

Lyme disease incidence rates. Incidence rates were also significantly associated with several

environmental variables; a 3% decline in incidence rates per 25-meter increase in elevation

(RR = 0.97, 95% CI: 0.95, 0.99), a 5% increase per 1% increase in percent deciduous forest

cover (RR = 1.05, 95% CI: 1.03, 1.06), an 11% increase per 1% increase in percent mixed forest

cover (RR = 1.11, 95% CI: 1.08, 1.14), a 17% increase per 1% increase in percent open space

developed cover (RR = 1.17, 95% CI: 1.09, 1.26), an 8% increase per 0.01 increase in annual

maximum NDVI (RR = 1.08, 95% CI: 1.06, 1.10), a 1% increase per one-inch increase in sum-

mer precipitation (RR = 1.01, 95% CI: 1.01, 1.02), and a 3% decline per 1˚F increase in spring

temperature (RR = 0.97, 95% CI: 0.96, 0.98) in unadjusted analyses. The spatial lag effect of

“Lyme disease” query fractions (RR = 1.16, 95% CI: 1.11, 1.21) was significant and similar to

the focal effect. S3 Table summarizes the unadjusted results for all spatial lag covariates. When

fitting a multivariate model, multicollinearity among environmental variables prohibited

inclusion of all significant covariates. For example, elevation and NDVI were strongly

Table 2. Unadjusted and adjusted relative risks (RR) and 95% confidence intervals (CI) for designated market area-level reported Lyme disease incidence rates

(n = 202).

Unadjusted Adjustedd

Characteristics RR 95% CI P value RR 95% CI P value

Focal effects

“Lyme disease” Google Health Trends query fraction (searches/10 million searches)a 1.16 (1.12, 1.19) <0.001 1.10 (1.07, 1.12) <0.001

Elevation (m)b 0.97 (0.95, 0.99) 0.004

Deciduous forest cover (%) 1.05 (1.03, 1.06) <0.001 1.01 (1.00, 1.03) 0.047

Mixed forest cover (%) 1.11 (1.08, 1.14) <0.001 1.02 (0.99, 1.05) 0.173

Open space developed (%) 1.17 (1.09, 1.26) <0.001 1.08 (1.01, 1.15) 0.024

Maximum NDVI (multiplied by 100) 1.08 (1.06, 1.10) <0.001 1.06 (1.04, 1.08) <0.001

Precipitation (in)

Winter 1 (1.00, 1.00) 0.520

Spring 1.01 (1.00, 1.01) 0.007 1.00 (1.00, 1.01) 0.170

Summer 1.01 (1.01, 1.02) 0.001 1.01 (1.00, 1.02) 0.167

Fall 0.99 (0.99, 1.00) 0.037 0.99 (0.99, 1.00) 0.065

Annual 1 (1.00, 1.00) 0.520

Average temperature (˚F)

Winter 0.99 (0.98, 1.00) 0.092

Spring 0.97 (0.96, 0.98) <0.001

Summer 0.94 (0.91, 0.96) <0.001

Fall 1.01 (0.99, 1.04) 0.170

Annual 0.96 (0.94, 0.98) <0.001

Centroid x-coordinate (km)b 1.04 (1.02, 1.05) <0.001

Centroid y-coordinate (km)b 1.05 (1.03, 1.07) <0.001

Spatial lag effects

“Lyme disease” Google Health Trends query fraction (searches/10 million searches)a 1.16 (1.11, 1.21) <0.001

“tick bite” Google Health Trends query fraction (searches/10 million searches)b,c 1.07 (1.04, 1.10) <0.001

aRelative risk is given per 100-unit increase.
bRelative risk is given per 25-unit increase.
cNot included in focal model due to missing focal observations.
dAdjusted model includes a cubic spline of the centroid y-coordinate with four degrees of freedom.

https://doi.org/10.1371/journal.pone.0312277.t002
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negatively correlated (ρ = -0.69), and seasonal temperature variables were all strongly posi-

tively correlated (0.75� ρ� 0.90). “Lyme disease” query fractions remained significant

(RR = 1.10, 95% CI: 1.07, 1.12) after adjusting for several environmental covariates. A 100-unit

increase in the search rate was associated with a 10% increase in Lyme disease incidence rates

in the adjusted model. The association between incidence rates and deciduous forest

(RR = 1.01, 95% CI: 1.00, 1.03), open space developed cover (RR = 1.08, 95% CI: 1.01, 1.15)

and maximum NDVI (RR = 1.06, 95% CI: 1.04, 1.08) also remained significant. Mixed forest

and precipitation variables were no longer significant in the adjusted model, but the direction

and size of the effects were comparable to the unadjusted models, with mixed forest showing a

larger drop in effect size. VIF did not exceed 7 in the adjusted model, indicating no serious

multicollinearity.

The Moran’s I statistic for the offset-only model was significantly positive for each year and

ranged between 0.60 and 0.78, indicating that adjacent DMAs had more similar Lyme disease

incidence rates compared to non-adjacent DMAs. The Moran’s I statistic for the unadjusted

model decreased but remained significantly positive for each year (0.55–0.67), indicating spa-

tial autocorrelation in the residuals after accounting for “Lyme disease” search rates. The Mor-

an’s I statistic for the adjusted model decreased further (0.44–0.52) but remained significantly

positive. Further attempts were made to reduce residual spatial autocorrelation by including

spatial lagged covariates, but multicollinearity between focal and lagged variables was a prob-

lem. We also experimented with functions of the DMA centroid x- and y-coordinates, keeping

in mind that some environmental covariates already captured north-south or east-west trends.

For example, there was a very strong north-south trend in spring temperature, with warmer

temperatures in the south and cooler temperatures in the north. NDVI and summer precipita-

tion especially showed strong east-west trends, with more vegetation density and precipitation

in the east. NDVI was strongly correlated with the x-coordinate (ρ = 0.71) and had a stronger

association with the outcome. After comparing how different models reduced the Moran’s I

statistic, we ultimately included a natural cubic spline of the centroid y-coordinate with four

degrees of freedom and excluded spring temperature due to multicollinearity (ρ = 0.94). The

Moran’s I statistic ranged from 0.38 to 0.48, which was smaller compared to the model without

the y-coordinate centroid. Although residual spatial autocorrelation persisted in the adjusted

model, indicating possible model misspecification, the modified Poisson (GEE) regression

inference was based on a quasi-Poisson approach with robust standard errors accounting for

overdispersion and was likely sufficient to provide proper inference with the remaining resid-

ual spatial autocorrelation.

When analyzing the model residuals via local Moran’s I, we identified significant local clus-

ters of high residuals, or regions where the model underestimated the outcome in a particular

year. S2 Fig shows an example local Moran’s I cluster map for 2019; red areas indicate areas

with high residuals surrounded by other areas with high residuals. The location and extent of

the clusters varied from year to year but frequently appeared in almost all of Pennsylvania and

Maryland and parts of Wisconsin and Minnesota (Minnesota not shown in 2019).

The sensitivity analysis restricted to areas with recorded tick presence (S4 Table) had a

small impact on the modeled relative risks and significance levels of some covariates, but the

association between “Lyme disease” search rates and incidence rates (RR = 1.09, CI: 1.07, 1.12)

remained highly significant. The removed DMAs contributed few reported Lyme disease

cases, which was expected given their tick status. Even with a 50% restriction (i.e., included

DMAs must be in states with at least 50% counties reporting ticks), the removed DMAs only

contributed about 1% of total cases over the study period. The large number of cases reported

in endemic areas appeared to drive the associations between Lyme disease, Google searches,

and environmental factors.
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Discussion

Google Health Trends reveals a geographic leading edge

We hypothesized that the geographic leading edge of Lyme disease in the United States may be

discernable from Google Health Trends data. Mapping changes in “Lyme disease” search

interest between 2011 and 2019 (Fig 1) revealed an expanding area of higher interest occurring

along the edges of the northeastern focus of the disease, supporting this hypothesis. The south-

west expansion of Lyme disease in and from this region over time is evident from larger

increases in searches in western New York, western Pennsylvania, West Virginia, and even

Ohio and Kentucky. In areas of Michigan, Ohio, Virginia, West Virginia, Kentucky, and

North Carolina, Google Health Trends data also produced a signal in recent years that was

stronger than expected when compared to CDC-reported incidence (Fig 2). This may indicate

that internet search patterns can pick up the leading edge before passive surveillance. Taken

together, Figs 1 and 2 suggest that risk may be increasing along the edges of the Northeast and

Upper Midwest foci of Lyme disease.

Several of the abovementioned states are noteworthy as they are not considered high-risk

states based on reported case data. Despite historically low reported incidence compared to

neighboring Wisconsin, the spread of Lyme disease into Michigan’s Upper Peninsula and

along Lake Michigan is documented [56], and search data suggest that incidence in the state

could be underreported. North Carolina is also significant because it is thought to be on the

leading edge of the southern expansion of Lyme disease [57, 58]. Although the expansion of

Lyme disease into Virginia is documented by surveillance data, Lantos et al. [57] point out that

North Carolina is still considered a low-incidence state based on reported case numbers. How-

ever, they predict endemic transmission in the state in coming years based on current trends.

Similarly, companion animal disease data collected by the Companion Animal Parasite Coun-

cil [59] forecast that Lyme disease risk is increasing in North Carolina. Both Figs 1 and 2 show

that Google data agree with these projections, with the Greensboro-High Point-Winston

Salem DMA bordering southwestern Virginia standing out. Higher than expected searches in

the state could suggest that not all cases were picked up by CDC surveillance in recent years,

perhaps due to low clinician awareness leading to underdiagnosis and underreporting. We

should also note Ohio, which has seen increasing Lyme disease cases in eastern counties. Its

leading edge status appears less remarked on in the literature, although an increase in Ixodes
scapularis ticks in eastern Ohio has been documented and attributed to the east-west expan-

sion of ticks from Pennsylvania [60]. In the Google data, it is difficult to isolate eastern Ohio as

the DMAs in that area overlap part of West Virginia and Pennsylvania. However, together

with Fig 1, which showed a large growth in search rates in that area, the Google data indicate

that eastern Ohio is an area to watch.

The more recent trends in leading edge states should be contrasted with southern Oregon and

northern California, which in Fig 2 consistently showed a stronger than expected signal. Although

these states are considered low-incidence by CDC, cases tend to be reported in counties in south-

ern Oregon and northern California [35]. That this region always showed low reported incidence

rates but moderate query fractions could indicate that cases were underreported between 2011

and 2019. This is less suggestive of a leading edge appearing over time; instead, Google data may

be picking up an area with stable Lyme disease but consistent underreporting.

Predictive power of “Lyme disease” searches and model limitations

Multivariate regression analysis supported a statistically significant longitudinal association

between “Lyme disease” search rates and CDC-reported incidence rates after controlling for
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environmental factors (Table 2). Together with the exploratory findings on the geographic

expansion of searches, this demonstrates the potential value of Google Health Trends as a

source of epidemiological data in the study of Lyme disease.

The findings of the regression analysis should be interpreted with care given the ecologic

nature of the study and the size of the spatial unit of analysis. The modifiable areal unit prob-

lem (MAUP) arises when spatial data are aggregated to areal units and the results of statistical

analyses are contingent on the configuration of those units [61]. Because the smallest geogra-

phy for Google Health Trends data is the DMA, we had to aggregate county-level Lyme disease

data to this larger geography. Traditionally used in the media and advertising industries,

DMAs are groupings of counties that combine metropolitan and non-metropolitan areas and

are not necessarily the most appropriate geography for studying tickborne diseases, which do

not follow administrative boundaries.

Despite finding significant associations, the regression analysis revealed a geographic lack

of fit in some high-incidence Lyme disease regions, as shown by the persistence of local spatial

clustering (S2 Fig) after accounting for Google searches and environmental risk factors. There

could be several reasons why the model did not perform well in certain areas. Perhaps the

Google Health Trends data did not produce strong enough of a signal there. For example, we

mentioned that search rates in Minnesota and Wisconsin tended to be more moderate com-

pared to those in other high-incidence states, which can be seen in Fig 2. The model’s underes-

timation of Lyme disease incidence in these states in certain years was unsurprising. The

clusters in Pennsylvania and Maryland were less expected. Although Fig 2 showed agreement

between search rates and reported incidence rates in these states, there is a certain degree of

oversimplification in bivariate maps. For example, Pennsylvania did have high search rates but

other areas with similar incidence rates had even higher search rates. There could also be other

variables and spatial processes not captured by the model that led to clusters of unexplained

variability. The analysis was further limited by the use of passive Lyme disease surveillance

data for the modeled outcome. CDC case reporting is based on county of residence, not county

of exposure. More importantly, cases are known to be underreported, and reporting practices

may vary by county and state, and from year to year. If the outcome was not uniformly and

accurately measured across the study area due to reporting differences and inevitable underre-

porting, this could contribute to the model’s geographic lack of fit. In addition to computing

overall estimates of the associations between the outcome and each covariate, we could have

explored effect modification by region. However, there were only 202 DMAs with Google

data, so we did not pursue a stratified analysis due to sample size considerations. Future work

could also explore more localized relationships between the outcome and covariates using

alternative modeling approaches, such as geographically weighted regression, generalized

additive models, and mixed effect models [62, 63].

The purpose of our modeling efforts was to determine if the association between Google

searches and CDC-reported incidence rates was significant and remained significant when

controlling for landscape and climate differences across DMAs. Although our objective was

not to advance understanding of environmental patterns on disease risk, which has been the

focus of other research conducted at more appropriate spatial scales, our results were generally

consistent with the literature [17, 37–41]. Elevation was negatively associated with Lyme dis-

ease incidence rates and NDVI, percent forest cover, and percent open space vegetation were

positively associated. As Moon et al. [38] note, non-forest vegetation on its own may not carry

a high entomologic risk but may represent edge habitats between forest and residential lawn

grasses, parks, and recreation areas that may favor tick encounters. Further exploration of this

hypothesis is better suited for smaller scale studies. Temperature was negatively associated
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with incidence rates, which is consistent with other research in which the study area is the east-

ern or contiguous United States [39] and temperatures vary considerably by region.

Geographic specificity of search queries

That higher search rates for “tick bite” were more geographically spread out was an interesting,

albeit logical, finding. Tick bites are not specific to Lyme disease and may relate to other non-

Ixodes species of ticks that have different geographic distributions. Even among the vectors for

Lyme disease, Ixodes scapularis and Ixodes pacificus, the tick habitat is known to be more geo-

graphically widespread than infection [64, 65]. Exploring both “Lyme disease” and “tick bite”

searches helped demonstrate the geographic specificity of search queries and allowed us to

select the more focal query for our analysis. This may be a consideration for other researchers

using the Google Health Trends API in spatial epidemiology applications.

Impact of the COVID-19 pandemic

We found that Lyme disease-related searches decreased in 2020, which is consistent with lim-

ited data that have been published about the impact of the pandemic on disease risk and

healthcare-seeking behavior. According to McCormick et al. [5], although survey data suggest

that Americans spent more time outdoors during the pandemic, both emergency department

visits for tick bites and laboratory testing for Lyme disease decreased. It is unlikely that this

reflected a true decrease in the risk of acquiring Lyme disease and more likely that the pan-

demic altered concern and healthcare-seeking behavior–both motivators for Google search-

ing–for non-COVID-19 issues. There is also some evidence of misdiagnosis of Lyme disease as

COVID-19 early in the pandemic due to overlapping non-specific symptoms [66, 67]. It is

conceivable that, at a time when the country was on high alert for COVID-19, people

experiencing flu-like symptoms would not have thought to search for Lyme disease.

Limitations of Google Health Trends

A limitation of Google Health Trends as a data source is the risk of overinterpreting the clinical

significance of searches. We never know the context behind a user searching for Lyme disease-

related queries; it is impossible to distinguish between general curiosity or concern and diag-

nosis-seeking. Although higher “Lyme disease” query fractions were, as expected, concentrated

in the Northeast, Mid-Atlantic, and Upper Midwest between 2011 and 2019, Fig 1 showed that

search interest grew across much of the country during this period, which could reflect

increased Lyme disease risk as well as simply increased awareness and curiosity about the dis-

ease. Although Google Health Trends data largely showed what we hypothesized, some results

were a challenge to interpret. For example, it is unclear why the signals produced in Minnesota

and Wisconsin were more moderate compared to other high-incidence states. It is also diffi-

cult to interpret the modest decreases in search interest that a few traditionally high-incidence

DMAs experienced over time. We suspect in both cases that the different demographic make-

ups of DMAs, including age, urbanicity/rurality, internet access and usage, and health infor-

mation-seeking behaviors, could have played a role. For example, perhaps in areas of long-

established risk, residents were already more aware of Lyme disease and turned less frequently

to Google, and the Google Health Trends results should not be interpreted as signaling lower

or reduced risk.

It is worth restating here the limitations of DMAs as a spatial unit of analysis in public

health applications. DMAs may over-aggregate differences over the urban-rural continuum,

including underlying Lyme disease incidence patterns. Making Google Health Trends data

available at county or even ZIP code levels would not only allow for improved comparisons
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with public health data sets but also increase specificity when identifying emerging risk areas

for disease. In fact, researchers at Google previously predicted county-level Lyme disease risk

using licensed search data with more detailed information about individual user sessions [68].

Although the project does not appear to have continued, it shows that Google Health Trends

may not capture the full capabilities and richness of Google’s data. Of course, spatial granular-

ity must be weighed against the privacy of search engine users. As seen in the “Lyme disease”

and “tick bite” searches, Google’s privacy threshold already produces some missingness at the

DMA level in relatively low-incidence geographic areas where there are not enough searches.

This missingness would likely increase if data were made available at the county level, but at

the same time, more granular data could enhance disease surveillance where it counts most,

which is emerging counties with increasing searches.

Enhancing traditional disease surveillance

The burden of Lyme disease in the United States is increasing, but insufficient monitoring and

surveillance systems hinder the identification of emerging risk areas and contribute to a lack of

awareness among the public and health care providers. No single surveillance mechanism is

perfect, so effective disease tracking should integrate multiple data streams and balance the

strengths and limitations of each. Google Health Trends data are consistent with prior publica-

tions and reports relying on insurance claims, electronic health records, and human and veter-

inary laboratory testing data [2, 59, 69, 70] and should be considered as a complementary tool

in Lyme disease surveillance. Internet-based data present opportunities for accessibility and

timeliness. Although the data used in this study are not publicly accessible, researchers can eas-

ily obtain Google Heath Trends data with an API key from Google, and comparable, though

coarser, data are available from the public Google Trends website. All Google Trends data can

be tracked in near real time, whereas the publication of passive surveillance data can be delayed

by multiple years. Attention should be given to where Google Health Trends data are produc-

ing interesting signals. For example, this study shows a large growth in search interest in parts

of Ohio and West Virginia since 2011 as well as more recent changes in Michigan and North

Carolina. These findings may point to areas where public and physician awareness of Lyme

disease should be increased. As Boyce et al. [58] note, clinicians in emerging areas like North

Carolina may be unfamiliar with Lyme disease, leading to delayed diagnosis and treatment.

Our findings may also point to areas where other surveillance efforts should be strengthened

to confirm actual changes in acarological risk. In southern Oregon and northern California,

they may indicate a need to address suspected underreporting and lack of diagnostic recogni-

tion of Lyme disease by physicians in areas labeled as low-incidence.

As a final note, CDC implemented a revised Lyme disease case definition in 2022 that

applies to high-incidence states only. The new criteria make it less burdensome for these

states to report cases based on positive laboratory testing alone, without the need for clinical

follow-up. Low-incidence states are still required to produce positive laboratory evidence

and clinical information. Preliminary data under the new requirements are beginning to be

published and indicate a sharp increase in cases reported from high-incidence jurisdictions

and more mixed results from low-incidence ones. However, it is difficult to compare these

data to prior years and make any assumptions about changes in disease risk [71]. Moving

forward, it is unclear how the new surveillance criteria will affect the ability to detect the

leading edge of geographic expansion. Cases may be undercounted in low-incidence states,

even in areas with higher or increasing incidence. If anything, the changes in surveillance

strengthen the argument that multiple data sources should inform our understanding of

where Lyme disease is spreading.
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Conclusions

This study complements prior works that have found Google search data to be a reliable source

of epidemiological data in the study of Lyme disease. It is novel is two respects: first, we used

the Google Health Trends API to extract raw annual search rates at a small geographic scale

(DMAs), building on an existing literature that largely has used the coarser, indexed data avail-

able from the public version of Google Trends–which is not appropriate for spatiotemporal

analysis–and focused on country-level temporal trends without considering sub-country geo-

graphic variation. Second, it is the first study to investigate spatial trends in Lyme disease-

related searches over time with the aim of identifying emerging risk areas.

Our findings demonstrate the potential of Google Health Trends to track spatiotemporal

patterns in Lyme disease and help identify the geographic leading edge of disease risk.

Although Google Health Trends cannot replace traditional surveillance methods, it should be

integrated with other data sources to identify geographic areas that are becoming endemic for

Lyme disease. The public health contribution of Google Health Trends data may be significant

in informing the public and health care providers about emerging risks in their geographic

regions.

Supporting information

S1 Table. Proportional assignment of county-level Lyme disease cases to designated mar-

ket areas in split counties.

(PDF)

S2 Table. Extended descriptive statistics for model covariates.

(PDF)

S3 Table. Unadjusted relative risks (RR) and 95% confidence intervals (CI) for designated

market area-level reported Lyme disease incidence rates with spatial lag effects (n = 202).

(PDF)

S4 Table. Adjusted relative risks (RR) and 95% confidence intervals (CI) for designated

market area (DMA)-level reported Lyme disease incidence rates: Sensitivity analysis

restricted to DMAs in states with at least 50% counties reporting ticks (n = 146).

(PDF)

S1 Fig. Distribution of coefficient of variation across different Google Health Trends sam-

pling size groups.

(TIF)

S2 Fig. Local Moran’s I cluster map of the adjusted model residuals for 2019. State bound-

aries from the Census Bureau (public domain) are shown for reference. DMA boundaries are

the intellectual property of Esri and are used herein with permission. Copyright © 2024 Esri

and its licensors. All rights reserved.

(TIF)

Author Contributions

Conceptualization: Cara Wychgram, John N. Aucott, Alison W. Rebman, Frank C. Curriero.

Data curation: Cara Wychgram.

Formal analysis: Cara Wychgram, Frank C. Curriero.

Funding acquisition: Frank C. Curriero.

PLOS ONE Identifying the geographic leading edge of Lyme disease with Google Health Trends data

PLOS ONE | https://doi.org/10.1371/journal.pone.0312277 November 13, 2024 17 / 21

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0312277.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0312277.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0312277.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0312277.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0312277.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0312277.s006
https://doi.org/10.1371/journal.pone.0312277


Methodology: Cara Wychgram, John N. Aucott, Alison W. Rebman, Frank C. Curriero.

Supervision: Frank C. Curriero.

Visualization: Cara Wychgram.

Writing – original draft: Cara Wychgram.

Writing – review & editing: Cara Wychgram, John N. Aucott, Alison W. Rebman, Frank C.

Curriero.

References
1. Schwartz AM, Hinckley AF, Mead PS, Hook SA, Kugeler KJ. Surveillance for Lyme disease—United

States, 2008–2015. MMWR Surveill Summ. 2017; 66(22):1–12. https://doi.org/10.15585/mmw.

ss6622a1 PMID: 29120995

2. Schwartz AM, Kugeler KJ, Nelson CA, Marx GE, Hinckley AF. Use of commercial claims data for evalu-

ating trends in Lyme disease diagnoses, United States, 2010–2018. Emerg Infect Dis. 2021; 27

(2):499–507. https://doi.org/10.3201/eid2702.202728 PMID: 33496238

3. Beard CB, Eisen RJ, Barker CM, Garofalo JF, Hahn M, Hayden M, et al. Vectorborne diseases. In: The

impacts of climate change on human health in the United States: a scientific assessment. U.S. Global

Change Research Program; 2016.

4. Kugeler KJ, Schwartz AM, Delorey MJ, Mead PS, Hinckley AF. Estimating the frequency of Lyme dis-

ease diagnoses, United States, 2010–2018. Emerg Infect Dis. 2021; 27(2):616–619. https://doi.org/10.

3201/eid2702.202731 PMID: 33496229

5. McCormick DW, Kugeler KJ, Marx GE, Jayanthi P, Dietz S, Mead P, et al. Effects of COVID-19 pan-

demic on reported Lyme disease, United States, 2020. Emerg Infect Dis. 2021; 27(10):2715–2717.

https://doi.org/10.3201/eid2710.210903 PMID: 34545801

6. Adrion ER, Aucott J, Lemke KW, Weiner JP. Health care costs, utilization and patterns of care following

Lyme disease. PLOS ONE. 2015; 10(2):e0116767. https://doi.org/10.1371/journal.pone.0116767

PMID: 25650808

7. Clayton JL, Jones SG, Dunn JR, Schaffner W, Jones TF. Enhancing Lyme disease surveillance by

using administrative claims data, Tennessee, USA. Emerg Infect Dis. 2015; 21(9):1632–1634. https://

doi.org/10.3201/eid2109.150344 PMID: 26291336

8. Nelson CA, Saha S, Kugeler KJ, Delorey MJ, Shankar MB, Hinckley AF, et al. Incidence of clinician-

diagnosed Lyme disease, United States, 2005–2010. Emerg Infect Dis. 2015; 21(9):1625–1631. https://

doi.org/10.3201/eid2109.150417 PMID: 26291194

9. Tseng YJ, Cami A, Goldmann DA, DeMaria A, Mandl KD. Using nation-wide health insurance claims

data to augment Lyme disease surveillance. Vector Borne Zoonotic Dis. 2015; 15(10):591–596. https://

doi.org/10.1089/vbz.2015.1790 PMID: 26393537

10. Moon KA, Pollak J, Hirsch AG, Aucott JN, Nordberg C, Heaney CD, et al. Epidemiology of Lyme dis-

ease in Pennsylvania 2006–2014 using electronic health records. Ticks Tick Borne Dis. 2019; 10

(2):241–250. https://doi.org/10.1016/j.ttbdis.2018.10.010 PMID: 30420251

11. Infodemiology Eysenbach G. and Infoveillance: Framework for an emerging set of public health infor-

matics methods to analyze search, communication and publication behavior on the internet. J Med

Internet Res. 2009; 11(1):e1157. https://doi.org/10.2196/jmir.1157 PMID: 19329408

12. Tulloch JSP, Vivancos R, Christley RM, Radford AD, Warner JC. Mapping Tweets to a known disease

epidemiology; a case study of Lyme disease in the United Kingdom and Republic of Ireland. J Biomed

Inform. 2019; 100S:100060. https://doi.org/10.1016/j.yjbinx.2019.100060 PMID: 34384577

13. Boligarla S, Laison EKE, Li J, Mahadevan R, Ng A, Lin Y, et al. Leveraging machine learning

approaches for predicting potential Lyme disease cases and incidence rates in the United States using

Twitter. BMC Med Inform Decis Mak. 2023; 23(1):217. https://doi.org/10.1186/s12911-023-02315-z

PMID: 37845666

14. Laison EKE, Ibrahim MH, Boligarla S, Li J, Mahadevan R, Ng A, et al. Identifying potential Lyme disease

cases using self-reported worldwide Tweets: deep learning modeling approach enhanced with senti-

mental words through emojis. J Med Internet Res. 2023; 25(1):e47014. https://doi.org/10.2196/47014

PMID: 37843893

15. StatCounter. Search Engine Market Share Worldwide [Internet]. [Cited 2024 Jul 15]. Available from:

https://gs.statcounter.com/search-engine-market-share

PLOS ONE Identifying the geographic leading edge of Lyme disease with Google Health Trends data

PLOS ONE | https://doi.org/10.1371/journal.pone.0312277 November 13, 2024 18 / 21

https://doi.org/10.15585/mmw.ss6622a1
https://doi.org/10.15585/mmw.ss6622a1
http://www.ncbi.nlm.nih.gov/pubmed/29120995
https://doi.org/10.3201/eid2702.202728
http://www.ncbi.nlm.nih.gov/pubmed/33496238
https://doi.org/10.3201/eid2702.202731
https://doi.org/10.3201/eid2702.202731
http://www.ncbi.nlm.nih.gov/pubmed/33496229
https://doi.org/10.3201/eid2710.210903
http://www.ncbi.nlm.nih.gov/pubmed/34545801
https://doi.org/10.1371/journal.pone.0116767
http://www.ncbi.nlm.nih.gov/pubmed/25650808
https://doi.org/10.3201/eid2109.150344
https://doi.org/10.3201/eid2109.150344
http://www.ncbi.nlm.nih.gov/pubmed/26291336
https://doi.org/10.3201/eid2109.150417
https://doi.org/10.3201/eid2109.150417
http://www.ncbi.nlm.nih.gov/pubmed/26291194
https://doi.org/10.1089/vbz.2015.1790
https://doi.org/10.1089/vbz.2015.1790
http://www.ncbi.nlm.nih.gov/pubmed/26393537
https://doi.org/10.1016/j.ttbdis.2018.10.010
http://www.ncbi.nlm.nih.gov/pubmed/30420251
https://doi.org/10.2196/jmir.1157
http://www.ncbi.nlm.nih.gov/pubmed/19329408
https://doi.org/10.1016/j.yjbinx.2019.100060
http://www.ncbi.nlm.nih.gov/pubmed/34384577
https://doi.org/10.1186/s12911-023-02315-z
http://www.ncbi.nlm.nih.gov/pubmed/37845666
https://doi.org/10.2196/47014
http://www.ncbi.nlm.nih.gov/pubmed/37843893
https://gs.statcounter.com/search-engine-market-share
https://doi.org/10.1371/journal.pone.0312277


16. Seifter A, Schwarzwalder A, Geis K, Aucott J. The utility of Google Trends for epidemiological research:

Lyme disease as an example. Geospatial Health. 2010; 4(2):135–137. https://doi.org/10.4081/gh.2010.

195 PMID: 20503183

17. Couper LI, MacDonald AJ, Mordecai EA. Impact of prior and projected climate change on US Lyme dis-

ease incidence. Glob Chang Biol. 2021; 27(4):738–754. https://doi.org/10.1111/gcb.15435 PMID:

33150704
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