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Abstract

Most of the modern natural language processing (NLP) techniques are based on the vector
space models of language, in which each word is represented by a vector in a high dimen-
sional space. One of the earliest successes was demonstrated by the four-term analogical
reasoning task: what is to C as B is to A? The trained word vectors form “parallelograms”
representing the quadruple of words in analogy. This discovery in NLP offers us insight into
our understanding of human semantic representation of words via analogical reasoning.
Despite successful applications of the large-scale language models, it has not been fully
understood why such parallelograms emerge by learning through natural language data. As
the vector space model is not optimized to form parallelograms, the key structure related to
geometric shapes of word vectors is expected to be in the data, rather than the models. In
the present article, we test our hypothesis that such parallelogram arrangement of word vec-
tors readily exists in the co-occurrence statistics of language. Our approach focuses more
on the data itself, and it is different from the existing theoretical approach trying to find the
mechanism of parallelogram formation in the algorithms and/or vector arithmetic operations
on word vectors. First, our analysis suggested that analogical reasoning is possible by
decomposition of the bigram co-occurrence matrix. Second, we demonstrated the formation
of a parallelepiped, a more structured geometric object than a parallelogram, by creating a
small artificial corpus and its word vectors. With these results, we propose a refined form of
distributional hypothesis pointing out an isomorphism between a sort of symmetry or
exchangeability and word co-occurrence statistics.

1 Introduction
1.1 Distributional hypothesis

‘Evolution’ of the language processing capability of machines has dramatically accelerated in
the decade beginning 2012. The accuracy of machine translation has reached the human level
or perhaps greater than that of educated non-native speakers. These successes of machine-
learning language models have suggested how natural languages are organized.
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The distributional hypothesis [1] considers language as an organized system that exhibits
the capability of determining a class of words given the context of a word to be determined.
This theoretical idea of the distributional hypothesis postulates that words that occur in similar
contexts tend to have similar meanings. For example, “an apple” and “a banana” are both
allowed to appear in similar contexts, e.g., “she eats for breakfast” and “___is a fruit”.
However, they may not appear in similar contexts of “a bus” and “a train”, e.g., “she takes ____
home”. When we think of the fill-in-the-blank problem “John eats ____for breakfast”, words
that refer to something edible and common in breakfast would be selected by the context of
the blank. The fill-in-the-blank problem, or its variants, are commonly encountered in every-
day communication. For example, when a speaker cannot come up with the name of some-
thing on their mind, the speaker often instead says its attributes or properties. The listener
then guesses the name of something which has those characteristics. Imagine that a child says
“fruit”, “red”, “juicy”, “sour”, and so on—you may recall “apple” or “strawberry”. This phe-
nomenon can be considered an instance of the distributional hypothesis in communication.
This inference seems to be (partly) possible because of the distributional structure of our
language.

1.2 Distributional models of language

One pervasive method of implementing the distributional hypothesis is counting the co-occur-
rence of words in pairs, triplets, or n-grams. Such naive co-occurrence counting has, however,
a few technical issues: the combinatorial space of word pairs is too large to sample sufficiently
(e.g., a bigram (pair) table of word-word co-occurrence has 10" cells for 10® word types),
which results in the underestimation of co-occurrence probability. Thus, one needs further
compressed representations of the co-occurrence table, in which the compressed representa-
tions hopefully preserve the distributional structure of the words in the table and the language.
Latent Semantic Analysis (LSA) [2] is one of the earliest such attempts. The underlying idea of
LSA is that a sparse co-occurrence matrix M can be approximated by vector representation of
words, called word vectors. The transformation of a co-occurrence matrix to a word vector
representation is called word embedding. It has been demonstrated that word vector algorithms
can solve linguistic tasks, albeit that their performance was limited (see [3] for review).

More recently, Mikolov et al. [4] discovered that four-term analogy problems can be solved
accurately using their artificial neural network, called skip-gram, which is an instance of the
word2vec class of models. The word2vec models have become common word embedding
models in recent years. Four-term analogy problem questions “what is to C as B is to A?”
denoted by, A : B :: C: what. Formally, the model needs to predict word d given the triplet of
query words a, b, and c. For example, the question, man : woman :: king: ___, expects the
answer ‘queen’. Importantly, word2vec was not optimized to solve these four-term analogy
questions, but rather to predict the context words for each target word—making it a form of
the fill-in-the-blank problem. However, with learned word vectors, €.g., Viings Vman> Vwoman>
one can answer the analogy task by vector arithmetic viing — Vman + Vwoman & Vqueen- This four-
word relationship is often referred to as parallelogram [5] due to its geometric shape in the vec-
tor space. Thus, such high performance in the four-term analogy is considered a consequence
of learning more general statistical properties of language. Since analogical reasoning requires
not only syntactic but also semantic aspects of language, their successes in the analogy task
have been viewed as strong support for the distributional hypothesis. And since analogy, at
least in a strong form such as that discussed in [6], was considered to be uniquely human, this
discovery had a strong impact on a variety of research fields. This discovery in NLP offers/
recalls an important question to be answered from the view-point of computational linguistics
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and cognitive science: the four-term analogy task is a kind of semantic task, and its solutions
offered by the vector space models would provide insight into our understanding of the
human semantic representation of words via analogical/relational reasoning.

To solve analogy problems, word2vec needs to successfully extract latent and distributional
structures of the language, which is represented in the vector form. It has not fully understood
why such a parallelogram emerges by learning through natural language data. The word vector
models are in general not optimized to form any specific arrangement of word vectors, but are
rather optimized to approximate co-occurrence statistics. Since Mikolov et al. [4]’s discovery,
researchers of related fields have been attracted to resolve this “mystery” of parallelogram
formed in word2vec. Many NLP researchers noted the learning algorithm proposed by Miko-
lov et al. [4] to address a technical problem in training a word2vec model: its computation of
the conditional probability distribution of ‘context words’ given a ‘center word’ is intractable
when the vocabulary size is quite large. The technique proposed by Mikolov et al. [4] for this
problem is called negative sampling, which makes this computation tractable. Since word2vec
is basically an artificial neural network of typical form, most researchers of related fields con-
sider that a new negative sampling algorithm is essential to acquire a word vector representa-
tion capable of solving analogy tasks (e.g., [7-9]). The current consensus (see, e.g., [3]) in NLP
is provided by Levy, Goldberg, & Dagan [7, 10]. They formally analyzed the negative sampling
algorithm and claimed that the analogy performance of word2vec could be explained as result-
ing from the factorization of the PPMI (positive pointwise mutual information) matrix, where
PPMI is one of the most popular preprocess of the co-occurrence matrix in NLP.

In the present article, we take a distinct approach that focuses more on data rather than the
model and/or leaning algorithms. Conversely, most of the existing theoretical studies
described above focused on models/algorithms rather than data. We hypothesized that a paral-
lelogram arrangement of word vectors readily exists in the co-occurrence statistics of language:
in other words, the models/algorithms only mirror parallelograms presented in data but do
not learn parallelograms not presented in data. Our original motivation in conducting the
present research was to understand aspects of the nature of human language via the distribu-
tional hypothesis [1] connecting the syntactic and semantic spaces of our language with statis-
tical regularity. Our hypothesis may be interpreted as a refinement of Harris’s distributional
hypothesis in which we specify how co-occurrence statistics are related to semantic and syntac-
tic aspects of language (e.g, man : king :: woman : queen, and, man : men :: king : kings,
respectively).

1.3 What structure in the co-occurrence matrix enables analogical
reasoning?

Word analogy relations emerging in word embedding have been extensively investigated in
the literature. While there is abundant research into how word analogy works [8, 11-13], few
studies have analyzed linguistic regularities in corpora. Chiang et al. [14] show that the major
source of linguistic regularity in a corpus is not the direct, i.e., syntagmatic, co-occurrence
information. In an effort to seek the source of statistical cues of analogy relations, Chiang et al.
manipulated direct co-occurrence information by modifying the training corpus for language
models, specifically by removing/replacing sentences in the original corpus that contain ana-
logical word pairs in their analogy test set, e.g., France : Paris. They reported that analogy per-
formance degraded only marginally. It is noteworthy that Chiang et al. [14] attempted to
ascribe the parallelograms of word vectors to the co-occurrence statistics, and their finding
suggests that one of major factors forming the parallelograms is likely due to across-sentence
statistical regularity, rather than within-sentence co-occurrence.
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In this study, we focus on the relationship between statistical regularity in a corpus and
geometric patterns of word vectors learned through it. As suggested in [14], some kind of co-
occurrence statistics at the sentence level would be correlated to the formation of parallelo-
grams in word vectors. Thus, this study aims to answer the following questions: (1) are the par-
allelograms in word vectors formed mainly by corpus statistics, rather than specific properties
of learning algorithms? And (2) if the answer to Question (1) is yes, what is the condition in
the sentence level necessary to form the analogical relationship between word vectors?

To answer Question (1), we test the hypothesis that the raw co-occurrence frequency has
sufficient information for the analogy task, and thus gives a minimal data set, which holds the
essence of the natural corpus, and is simple enough to analyze mathematically. Although this
hypothesis has been partly validated elsewhere (such as [15]), we revisit this assumption and
add more empirical evidence in Section 3 and 4.

Next, to answer Question (2), we take a constructive approach in which a small artificial
corpus is built and closely analyzed in Section 5. Although word-to-word direct co-occurrence
can be manipulated easily in a natural corpus, it is not straightforward to manipulate sentence-
by-sentence statistics, as these may reflect underlying natural contexts. With our constructive
approach, we can systematically manipulate sentence level statistics and analyze their effect on
the formation of parallelograms in word vector space.

Note that our goal of this corpus analysis in Section 3 is not to propose an algorithm to
achieve better analogical performance, but to provide support/evidence for the distributional
hypothesis directly; i.e., word co-occurrence information itself correlates with semantics via
word analogy. Besides, Section 4 provides further evidence that the negative sampling algo-
rithm is sufficient but not necessary for word analogy. These provide a justification for the the-
oretical analysis of raw co-occurrence structure in Section 5.

Connecting the co-occurrence matrix to analogical parallelograms directly naturally leads
to a constructive approach: simulation to test which type of co-occurrence may embed a paral-
lelogram in the word vector space. Thus, we take the two types of complementary approaches,
namely data-driven analysis of the co-occurrence matrix, and constructive simulation by creat-
ing and manipulating a small corpus. In this theoretical analysis, we provide a necessary and
sufficient condition to form analogical parallelopipeds in such a small corpus. While most
research provides sufficient algorithms for linguistic tasks, little research provides necessary
conditions for even small tasks.

In the following, we briefly introduce the word2vec model in Section 2, followed by an anal-
ysis of a co-occurrence matrix in Section 3, word2vec models without negative sampling in
Section 4, and the constructive approach in Section 5. Lastly, we discuss future directions
toward an understanding of the semantic nature of the underlying word co-occurrence.

2 word2vec and analogy
2.1 The word embedding algorithm

Here, we briefly introduce the key ideas of word2vec, specifically the skip-gram and the con-
tinuous bag-of-words artificial neural network architecture, as that knowledge will be
required in the succeeding sections. The word2vec models consist of three layers, n input
nodes, d hidden nodes, and n output nodes, where # is the vocabulary size. Initially, every
word w in vocabulary W is represented by a so-called one-hot vector e, of length n. Given a
long sequence of words represented by one-hot vectors, the goal of optimization is to obtain
a d dimensional compressed representation v, called a word vector, for every word w € W,
where d < n. Denote by w, a word at the position ¢ in the corpus. The skip-gram word2vec
model seeks the corpus to identify every sequence (Wy_, - . ., W1, Wy, Wii1s - - ., Weak), the k

PLOS ONE | https://doi.org/10.1371/journal.pone.0312151  October 21, 2024 4/25


https://doi.org/10.1371/journal.pone.0312151

PLOS ONE

Distributional hypothesis as isomorphism

preceding and k following context words around the center word w,. Then, the model is
trained to optimize the latent word vectors {v,},, ¢ w» for each w; to predict all their context
words w, = (W,_j, ..., W,_,, W,,...,W,,) simultaneously throughout the corpus. Regarding
the continuous bag-of-words model, this model is trained to predict the center word w; given
the context words. Mikolov et al. [4] defined for the word2vec models the conditional proba-
bility of occurrence y in the context of x as follows:

exp(vy V)

ZWEW exp (VW ! vx)

P(ylx) = ; (1)
where v, - v, is the inner product of word vectors v, and v,.

If the vocabulary size n is small enough, this artificial neural network can be trained with
the classic error back-propagation procedure. However, this is intractable if vocabulary size n
is quite large. Mikolov et al. [4] therefore introduced the negative sampling algorithm to han-
dle computation of the denominator of the above equation. Their computational experiments
suggested that the skip-gram type and continuous bag-of-words type are comparable for many
linguistic tasks, although computational cost of the continuous bag-of-words type is 2k times
cheaper than that of the skip-gram type. In this paper, we will use the continuous bag-of-
words type, which is the default option of the Python library Gensim.

2.2 Analogical reasoning procedure

Using a trained word2vec, Mikolov et al. [4] demonstrated that it can solve their four-term
analogy questions. Consider, for example, the problem, man : woman :: king: ___, and the cor-
rect answer is “queen”. Given the word vectors Viman, Vwoman» Viking for the cue words, decide the

. . . .. . . ViV,
most likely word y by calculating the cosine similarity measure cosine(v,,v,) = ——2— for all
w0 Vy) = Tollivl
words x:
v, = argmax cosine(Vin, — Vian t Vwomans Vi) (2)
vy @ xeW\A

where the set of the query words A = {man, woman, king} is excluded from the set of answer
candidates W, the whole vocabulary or its subset. The response is defined correct, if y = queen,
i.e., the word vector v, is Vqyeen- The overall percentage of correct responses is about 66% for
the 19,544 questions. This hardly seems attributable to chance alone, as the probability of cor-
rect responses is by chance 1/(n — 3), where n is vocabulary size, when assuming uniformly
random choices over all candidates.

If any model answers correctly for a quadruple using Eq (2), these four word vectors may
have to form a parallelogram in the vector space. Indeed, Mikolov et al. [4] graphically showed
the presence of parallelograms in a lower-dimensional subspace.

2.3 Analogy test set

The Google analogy test set was constructed by Mikolov et al. [4] to examine analogy perfor-
mance, and is now commonly used as one of the benchmark problems in NLP. It contains 905
unique words and consists of a total of 19,544 problems in 14 problem categories, of which
45% are semantic (5 categories, e.g., Capital-city and Family) and 55% syntactic (9 categories,
e.g., Comparative and Plural). For example, man : woman :: king :: queen in the Family cate-
gory, and car : cars :: eye : eyes in the Plural category. It was systematically generated to contain
every combination and permutation of word pairs in each problem category. For each problem
A :B:: C:D, the set also contains its symmetric variant C: D :: A : B. Thus, achieving a very
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high analogy performance indicates that word vector models represent systematically both
semantic and syntactic relations of words of the language.

3 Analogical reasoning with an almost-raw co-occurrence matrix

As introduced in Section 1.2, past studies exploring the analogical reasoning based on the
word2vec or others [8-10] have essentially hypothesized and concluded that word2vec or
other transformations such as PPMI is crucial to having good analogy performance. In this
study, however, we hypothesize that a raw co-occurrence matrix itself or its matrix decomposi-
tion is sufficient for analogical reasoning.

3.1 Method

To test our hypothesis, we directly counted the frequencies of pairwise co-occurrence of all
words in the English Wikipedia dump corpus wiki-english-20171001. During our prepro-
cessing of corpus texts, metadata of the Wikipedia articles were removed and uppercase letters
were changed to lowercase. The text data contains approximately 2.9 billion words, of which
7.6 million words are unique. The window size for word pair counting was k = 5. Although we
counted them all, algebraic operations using the full co-occurrence matrix were impossible
due to our limited available computational power. Hence, for the analogical task, we only used
the square sub-matrices corresponding to the union of the two sets of words: (1) the 905
unique words in the Google test set, and (2) the top 1,000 (or 10,000) unique words in order of
the co-occurrence frequency with the 905 words in the Google test set. This was decided in
order to (1) make it possible to answer all the analogy problems in the Google test set; and
because (2) the fundamental thesis of the distributional hypothesis, namely that co-occurrence
statistics are informative. The resulting size of the unique words, or vocabulary, was 1487 and
10072, and so the size of the sub-matrices was 1487x1487 and 10072x10072. We call these
1487-choice and 10072-choice analogy tasks. Denote this co-occurrence matrix by M € R

nxn
>0

with vocabulary size .

In NLP, it is commonly recognized that application of singular-value decomposition (SVD)
to the co-occurrence matrix improves performance of linguistic tasks. Indeed, this is the heart
of Latent Semantic Analysis, a classical method to obtain word vectors. Technically, SVD is a
decomposition of a real matrix M of arbitrary finite size to the form M = ULV, where matrix
U and V are real orthogonal matrices and the diagonal matrix X contains singular values in its
diagonal elements. The number of non-zero singular values is equal to the rank of M. SVD is
in this context commonly used to approximate and smooth M. By taking the first d columns of
Uand d rows of V' corresponding to the top d largest singular values, M, = U, X, V, approx-
imates M with the d dimensions. By taking the first d dimensions, the d dimensional word vec-
tors for n words are obtained as U, /> € R™“. Since the word2vec was trained to construct
300-dimensional word vectors, which was the number conventionally used in related research
fields, d = 300 was used in this paper.

Our co-occurrence-based models, with and without singular-value decomposition, are
listed in Table 1, including the neural network models that appear in this Section 3 and later in
Section 4. We describe components of them in more detail in Section 3.2.

Additionally, we trained our word2vec models using the sample code of the Python library
Gensim [16], in which the continuous bag-of-words type and the negative sampling algorithm
are specified by default. We used our own preprocessed text data, the English Wikipedia
dump, described above. We call this model word2vec-NS-full after its Negative-Sampling
objective. The window size k = 5 is the same. By the default option of Gensim, only the words
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Table 1. List of distributional vector space models in the present paper.

Model Word vectors

freq Raw co-occurrence frequencies

logfreq Logarithms of raw co-occurrence frequencies

ppmi PPMI-transformed co-occurrence frequencies

freq-SVD freq with SVD

logfreq-SVD logfreq with SVD

ppmi-SVD ppmi with SVD

word2vec-CE-topn word2vec trained by cross-entropy error backprop with vocabulary size n
word2vec-NS-topn word2vec trained by negative sampling with vocabulary size n
word2vec-NS-full word2vec trained by negative sampling with the full Wikipedia corpus

https://doi.org/10.1371/journal.pone.0312151.t001

that occur 100 or more times in the corpus were used for training the model. The number of
unique words was approximately 0.32 million.

Since the word2vec-NS-full model was trained to represent a vocabulary of size approxi-
mately 0.32 million from the Wikipedia corpus, it is not directly comparable with other co-
occurrence matrix models representing a substantially smaller vocabulary (of size, e.g., 1487 or
10072). In other words, the word2vec-NS-full was exposed to co-occurrence information
more/other than that contained in a small co-occurrence matrix. Thus, more information
must be compressed in the resulting word vectors of the word2vec-NS-full model. To be fair
in terms of co-occurrence information, we trained the word2vec models using an simulated
“corpus” composed of 500,000,000 sentences generated based on the unigram probability dis-
tribution U(w) and conditional probability distributions P(c|w) over a subset of the full vocab-
ulary of the Wikipedia dump corpus (see S1 Appendix for the technical details). This
intermediate simulated corpus was required for the technical reason that the Python Gensim
library only supports a text stream, or a text file, as inputs. The size of a subset of the vocabu-
lary was 1487 or 10072, depending on the 1487- or 10072-choice analogy tasks. We call these
models word2vec-NS-topn.

3.2 Results

Fig 1 shows the performances for the four-term analogy task using distributional models. Per-
formance of the word2vec-NS-full model was 75% correct responses for the 1487-choice (and
69% for the 10072-choice) analogy tasks. On the other hand, the performance of the
word2vec-NS-topn model was only 38% for 1487-choice (and 40% for 10072-choice) analogy
tasks (see Fig 2 for their performance curves). We treat these as benchmarks given by the nega-
tive sampling. Note that the former are not directly comparable in terms of analogy perfor-
mance, since the models were trained using the whole Wikipedia dump corpus whereas the
latter ones and the other co-occurrence models appearing below were constructed using only a
small top-ranked subset of the vocabulary of the corpus.

For the models freq, the rows of the co-occurrence frequency matrix M were directly used
as word vectors. The models showed accuracy below 6% (and 5%). For the models logfreq,
the logarithms of the rows of M were used as word vectors; stated more precisely, log(max
{M,, 1}) for all co-occurrence frequency M, of context word y of center word x. By applying
the logarithms, the performance of the model was significantly increased, by about 40% (and
35%). Similar effects have been repeatedly reported in NLP research (see, e.g., [15]). We con-
sider the logarithm worked as a type of smoothing against Zipf’s law, which states that word
frequency follows a power law and thus high-frequency words (e.g., “the”) dominate over
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Fig 1. Four-term analogy performances of distributional models.

https://doi.org/10.1371/journal.pone.0312151.g001

lower-frequency words in the calculation of cosine similarity via inner products. Taking log-
arithm can relax this domination and so lower-frequency words can have substantial influ-
ence on calculation of the similarity of word vectors. As logfreq is comparable to
word2vec-NS-topn, this partially supports our hypothesis that information required to
solve linguistic tasks is inside the corpus data. However, there is room for further improve-
ment induced by word2vec. To eliminate this possibility, we applied SVD, a classical linear
word embedding method, to the log-frequency matrices of M. Since SVD is linear, in con-
trast with word2vec, which is nonlinear, it would be helpful to resolve the mystery of word2-
vec if we could replicate the word2vec-level performance by applying SVD only to the log-
frequency matrices. Surprisingly, the performance of the logfreq-SVD models was improved
above 61% (and 50%), which is markedly higher than word2vec-NS-topn albeit lower than
word2vec-NS-full. This result supports the other half of our hypothesis, namely that infor-
mation required for four-term analogies resides primarily inside the text data. Finally, the
performances of the ppmi and ppmi-SVD were about 54% (and 54%) and 55% (and 51%).

We note a few things here. (1) The performance of co-occurrence matrix (+ linear embed-
ding) models, such as logfreq-SVD and ppmi-SVD, is no greater than that of the
word2vec-NS-full models. Accordingly, these results do not eliminate the possibility that the
negative sampling algorithm at the real-scale vocabulary corpus can find a much better word
vector representation in practice. (2) Comparing the performance of ppmi-SVD and
word2vec-NS-topn, our results suggest that Levy, Goldberg, & Dagan [7]’s claim that the neg-
ative sampling is mostly PPMI does not appear to be the case in the present setting.

3.3 Discussion
3.3.1 Why the decomposed co-occurrence matrix is close to word2vec. If the originally
formulated word2vec models were successfully trained, the word (and context) vectors

V,, V] € R™ determine the conditional co-occurrence probability matrix P(y|x) in Eq (1).
By taking logarithm, V,, V[ € R"*" is extracted (the normalizing term is ignored), and thus the
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Fig 2. Analogy performance of the vocabulary-restricted word2vec models with negative sampling. To manipulate vocabulary size, artificial corpora
were generated from the co-occurrence statistics and used for training, instead of the original corpus.

https://doi.org/10.1371/journal.pone.0312151.g002

skip-gram model could be viewed as an approximate matrix decomposition of the form
V, V[ ~ M for unknown M. Given the results above, this suggests that “up-to-rank-d matrix
decomposition of the logarithm of M” is essentially what the word2vec models do. This
hypothesis differs from a previous study [7], which concluded that word2vec is equivalent to
the PPMI-like smoothing, or a matrix decomposition of the PPMI-smoothed matrix of M.
Our model, namely word2vec as a co-occurrence matrix decomposition, can be viewed as one
of the simplest and most straightforward implementations of the distributional hypothesis [1].

3.3.2 Related works. We remark that the logfreq-SVD model that combines logarithmic
normalization with singular value decomposition is not new. We believe that similar analyses
had been conducted repeatedly. However, since the task evaluation heavily depends on the
characteristics of the corpora analyzed, we believe that the present work may augment existing
findings and/or provide something new, in particular with regard to research aimed at charac-
terizing the latent distributional structure of language.

Indeed, Tian et al. [15] examined the Google analogy test performance by applying SVD to
the logarithmic co-occurrence matrix. They reported that their INn-SVD model achieved 52%
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in the Google test set. Unlike our case, the goal of Tian et al. [15]’s analysis was to examine
their theory of additive composition, in which they theoretically justified the use of logarithmic
normalization and singular value decomposition. However, a weakness of their analysis is that
they had to ignore approximately 45% of the Google test set, due to a limitation in the acquired
vocabulary they used from the British National Corpus, with 100 million tokens. On the other
hand, we used the English Wikipedia dump 2017 corpus, with 2.9 billion tokens, and impor-
tantly the resulting co-occurrence statistics contain all 905 unique words appear in the Google
analogy test set. Thus, we achieved performance evaluation for the whole problem set.
Although there were differences in preparation of the co-occurrence matrices, and in coverage
of the test problems, our results seem consistent with those of [15].

4 Analogical reasoning with word2vec w/o negative sampling

If the negative sampling algorithm is essential, i.e., necessary, for high-performance word
embedding for analogy tasks, word2vec models without negative sampling should show unac-
ceptably low performance. In part of the previous section, we obtained results which did not
support this by analyzing an almost-raw co-occurrence matrix as a language model. In this sec-
tion, we continue to pursue the specific goal above by directly training word2vec models (i.e.,
neural networks) with a classical error back-propagation instead of the modern negative sam-
pling. If the negative sampling is unnecessary, word2vec models with cross-entropy error
back-propagation should perform as well as other models.

4.1 Neural network training

We used the co-occurrence matrix constructed from the Wikipedia corpus to train our plain
word2vec model, instead of scanning throughout the corpus. Since the corpus is huge, the co-
occurrence matrix gives a good estimate of the joint and conditional co-occurrence probability
distributions. Using the whole co-occurrence matrix is again computationally intractable, and
hence we only used the top-ranked n = 1487 words in the 1487-choice (or n = 10072 for the
10072-choice) analogy tasks. Then, as originally formulated, a word2vec artificial neural net-
work was trained to approximate the conditional probability distributions P(c|w) calculated
from the co-occurrence matrix M of size n. The cross-entropy error is defined as its objective
function and for each w the element-wise errors are back-propagated. Center words w follow
probability distribution over n words, P(w) o< U(w)”, where U(w) is the unigram word fre-
quency distribution and 0 < @ <1 is a normalizing parameter. Since 905 words among n
words appear in the analogy test set, the neural network must be trained for almost all those
words. We call these models word2vec-CE-topn after their Cross-Entropy objective.

Choosing a smaller « increases the probability of observing low-frequency words in con-
trast to high-frequency words. Mikolov et al. [4] for example introduced a similar trick in a dif-
ferent context for choosing a good negative sampling distribution, and noted that their trick
actually works to obtain better word representations.

4.2 Results

First, we trained a model with n = 1487 and a = 1 over 50,000,000 words from P(w). The learn-
ing curves in terms of the mean-squared prediction error and analogy performance are shown
in Fig 3. The average (mean-squared) prediction errors gradually decreased and converged to
below the level 1077, and until the end, the analogy performance of this model slowly increased
to become largely saturated. The eventual performance of this model for the 1487-choice anal-
ogy task was approximately 56%, which is markedly higher than the chance level and compara-
ble to many other models in Fig 1.
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Fig 3. Learning curve and analogy performance of a word2vec model trained with back-propagation.

https://doi.org/10.1371/journal.pone.0312151.9003

Second, we trained a model with n = 1487 and o = 1/2 over 10,000,000 words. Compared
with the first model with o = 1, this second model increased analogy performance more rap-
idly and achieved the highest performance approximately 60% after only 3, 600, 000 exposures
to words (see Fig 4). Thus, the normalizing parameter a seems to work to more rapidly acquire
equally-good-performance word vectors with a small number of word exposures. This simple
empirical fact motivated us to train the third model with a larger vocabulary size.

Third, we trained a model with n = 10072 and & = 1/2 over 10,000,000 words. Since neural
network training when »n = 10072 was intractably computationally expensive, we could not
train the model with o = 1. We assume that the word representation acquired with a = 1 is as
good as that with o = 1/2 in respect to the four-term analogy test. With o = 1/2, analogy perfor-
mance of the model was again eventually approximately 59%, comparable to the n = 1487
model, after 10,000,000 exposures (see Fig 4).

4.3 Discussion

All these results suggest that the negative sampling algorithm is not essential to obtaining word
vectors suitable for analogy tasks. In other words, without negative sampling, the embedded
word vectors can solve analogy problems fairly well. In the previous section, the performance
of the word2vec-NS-topn models, trained using the negative sampling for a n = 1487 or

n = 10072 restricted artificial corpus, was about 40%. Thus, the error back-propagation algo-
rithm, or the word2vec-CE-topn models, can give better word embedding than the negative
sampling at least if the vocabulary size is tractably small. Importantly, the error back-propaga-
tion algorithm directly optimized the original objective function of the word2vec models. In
contrast, negative sampling was introduced as an computational trick by Mikolov et al. [4],
and Levy, Goldberg, & Dagan [7] analyzed it as a substantial optimization trick. Our results
here suggest that such a computational trick is not guaranteed to produce high-performance
word representation.

As seen in the previous section, it should be noted that the word2vec-NS-full models,
trained with negative sampling throughout the full Wikipedia corpus, actually achieves the
highest performance—75%—among all the models. No evidence to elucidate the ultimate rea-
son for this observation is currently available. There are at least two factors: the negative
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Fig 4. Analogy performance of a word2vec model trained with back-propagation.

https://doi.org/10.1371/journal.pone.0312151.9004

sampling and the vocabulary size. These two factors can interact. We postulate that vocabulary
size is the primary, although testing this hypothesis is computationally hard. In any case, this
observation tells us that the negative sampling algorithm is actually effective in obtaining
favorable word embedding in various applications, regardless of whether it is necessary or not,
especially when the vocabulary size is quite large, as this makes the optimization problem com-
putationally tractable.

5 Constructive approach to the parallelograms

The analysis in Section 3 suggests that there is a subspace of the co-occurrence matrix in which
a parallelogram is formed by a particular set of word vectors, as each word may have multiple
aspects. For example, “king” is more similar with “queen” on the Royalty axis, but more similar
with “man” on the Sex axis. Such a multi-aspect structure of the word “king” is considered cap-
tured by a parallelepiped, rather than a parallelogram. Although each analogy question tests a
parallelogram, a collection of analogy questions would test a parallelepiped, or a more complex
geometric object.
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In this section, we take a constructive approach to address how this parallelepiped structure
is involved with the syntactic or semantic nature of a language. Specifically, we construct a
small toy corpus, which forms an idealized parallelepiped structure among the word vectors,
and analyze what conditions would be essential to form some parallelepiped of word vectors.

5.1 Goal

The main goal of this case study is to identify the underlying relationship between a word gen-
erator system and word vector space, with a special focus on sentence-level statistical regular-
ity. In this study, the word generator is supposed to be a Markov process that generates a word
according to a certain conditional probability distribution given the previous context words.
Our analysis will address, in this toy corpus, what kind of sentence-level statistical structure in
such a word generator is isomorphic to a parallelepiped of the word vectors.

5.2 Premise

The empirical analysis reported in Section 3 and 4 suggests that the word vectors defined by
the log of the co-occurrence matrix or its low dimensional projection by singular value decom-
position is sufficient to form a parallelogram related to analogical reasoning. This finding justi-
fies the following analysis of word vectors consisting of raw co-occurrence counts, which are
the simplest form of word vectors.

5.3 Toy corpus

We created a corpus of 24 artificial sentences which are not strictly grammatical, but have a
minimal syntactic and semantic structure. Each of the sentences in this corpus consists of three
words in the form of Subject-Verb-Object (S-V-O), such as “king live palace”. Fig 5 depicts
possible S-V-O routes by line segments. The corpus consists of 17 words, consisting of 8 sub-
jects, 3 verbs, and 6 objects. Among the maximum possible 8 x 3 x 6 = 144 sentences, only

24 = 8 x 3 sentences can be generated, which implicitly represents the hypothetical semantic
relationship between the underlying concepts that these words refer to. The point of our design
is the 3 verbs shown in Fig 5 with their latent states in parentheses: (M) for male, (F) for female,
(R) for royal, (C) for civil, (S) for single, and (P) for plural. Pairs of these latent states form 3
aspects: (M) and (F) for Sex, (R) and (C) for Royalty, and (S) and (P) for Number.

5.3.1 Word embedding with uniform sentence probabilities. First, we analyzed the co-
occurrence matrix constructed for the toy corpus with each of the sentences generated with
the equal probability 1/24. We used the same co-occurrence counting scheme with a window
size k = 5, which is in this case equivalent to treating all of the words in every single sentence as
co-occurrence. In this case, the co-occurrence matrix C, up to scale and permutation similar-
ity, can be written with the two block matrices C, € R*** and C, € R’ by

05 1&3 G

, (3)
Cl—)r C;r 06,6

where C; = 4I; ® 1, and ® denotes the Kronecker product. Fig 6 illustrates this co-occurrence
matrix, Eq 3. Now to think about the parallelogram relationship, consider the sub-matrix,
denoted C, composed of the first 8 row vectors, corresponding to the 8 subject words. This
matrix C has the rank 4, and it lives in a 3 dimensional affine space. Namely, there are some lin-

early independent affine basis vectors b, b,, b,, b, € R’ such that C = A (b,, b,, b,)" + 1,b]
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Fig 5. A hidden Markov model generating the 24 sentences in the toy corpus. Any hidden state other than the verbs generates the word with probability
1. For example, the state “king” generates the word “king”. On the other hand, the two hidden states for each verb generate the same. For example, both
states “live (R)” and “live (C)” generate the word “live”. “BOS”: Beginning of Sentence, “EOS”: End of Sentence.

https://doi.org/10.1371/journal.pone.0312151.9005

with a unique matrix A € R¥®. Let C''=C (I9 - % 19‘9), and choose B := (by, by, bs) with

b, b,, b, € R’ from non-zero row vectors of C'. Then, the three dimensional coordinates of
the 8 points, i.e., A, are given by the row vectors of CB(B' B)™', in which a “parallelepiped” is
embedded, as shown in Fig 7(a). Thus, this uniform toy corpus gives a sufficient condition or
the existence of a way of embedding a parallelepiped in the co-occurrence matrix. Instead of
this basis, consider the orthogonal basis (by, by, bs) for B such that each basis vector corre-
sponds to one of the three aspects Sex, Royalty, and Number by assigning +1 for their corre-
sponding two object words (e.g., use b for Sex by setting b, . = + 1 and by gress = —1).
Embedded word vectors appear to be a parallelepiped as shown in Fig 7(b). This word embed-
ding extracted the three latent aspects of the verbs: the embedded parallelepiped is composed
of the 8 subjects in the three dimensions, each representing one of the Sex, Royalty, and Num-
ber aspects.

5.3.2 Symmetry breaker against parallelepiped: Non-uniform sentence probabilities. It
is also important to demonstrate on which condition the parallelepiped embedded in a co-
occurrence matrix is broken, as such a demonstration gives a necessary condition for the paral-
lelepiped formation. To do so, we consider a variation of the toy corpus, called the non-uni-
form toy corpus, in which each probability p; to sample the i sentence is randomly assigned
from the uniform distribution over [0, 1]. Fig 7(c) shows the same set of the 8 word vectors
visualized in the same way as in Fig 7(a), for a set of non-uniform random probabilities p;.
These 8 word vectors form neither a parallelepiped nor parallelograms. As the only difference
between the uniform and non-uniform toy corpus is their sampling probability, this result sug-
gests that a certain symmetric relationship in the probability distributions is needed to hold
the parallelepiped.
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Fig 6. The co-occurrence matrix generated with the uniform sentence probability distribution. The numbers in the cells represent their relative

frequency.

https://doi.org/10.1371/journal.pone.0312151.9006

This demonstrates that some sentence-level statistical regularity is necessary to hold a paral-
lelepiped, even if within-sentence word-word co-occurrence is fixed. Remember that empirical
analysis [14] removing word-to-word co-occurrence suggests across-sentence statistical regu-
larity. Our toy corpus has some qualitatively consistent structure with this past finding.

5.4 A parallelepiped in natural co-occurrence

The demonstration with the toy corpus above suggests that a certain class of word vectors will
form a parallelepiped relationship, if the class of word vectors show independent syntactic-
semantic statistical regularities on its word usage. We test this prediction by searching whether
such a parallelepiped exists for a class of word vectors embedded in a natural co-occurrence
matrix (logfreq — SVD, size 1487). Fig 7(d) shows an example of a parallelopiped-like object
composed of word vectors corresponding to eight words in the Family category of the Google
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Fig 7. (Non-)parallelepipeds embedded in the co-occurrence matrix of (a) uniform toy corpus (b) with orthogonal basis and (c) non-uniform toy corpus.
(d) Parallelepiped embedded in the co-occurrence matrix of a natural corpus.

https://doi.org/10.1371/journal.pone.0312151.9007

test set. It is visualized in a two-dimensional subspace obtained by performing principal com-
ponent analysis of a data matrix of size 48x1487 representing the 1487-dimensional word vec-
tors for all 48 unique words in the Family category. This confirms our prediction. We
emphasize that it merely demonstrates the “existence” of a parallelopiped. The formation of
parallelopiped-like objects in high-dimensional spaces is technically hard to characterize and
so itself requires further investigation.

5.5 Necessary and sufficient conditions for a parallelepiped in co-
occurrence matrix

The requirement of the uniform sentence probability 1/24 may be too strong. In this subsec-
tion, we relax this requirement and find a necessary and sufficient condition for the co-occur-
rence matrix from the toy corpus to form a parallelepiped.
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First, let us define a parallelepiped as follows.

.
Definition 1. Let C = (clT o c ) € R**“ be the matrix with the row vectors

€1y Cyy - vy 6y € RV, The matrix C with 8 row vectors is said parallelepiped if it has some permu-
tation (i.e., automorphism of aset) p: {1, 2, ..., 8} — {1, 2, ..., 8} and satisfies

Co(1) T Sp2) = G T Sp@y = Sp(5) T Gpie) = Cpn) T Gpis)

) ~ G = (4)

(1) T ) = 2 T Cp6) = p3) T Com) = Cpe) T Cps)
With this definition of a class of parallelepiped, the following theorem states the necessary and
sufficient condition to have this class in the co-occurrence matrix.

Theorem 1. Given a sentence probability distribution (poy1, Poz> Po3s - - -» P24) for the toy cor-
pus, in Fig 5, comprised of 8 subject, 3 verb, and 6 object words, the resulting co-occurrence
matrix in Fig 8 of size 8 x 17 in terms of the 8 subject words forms a parallelepiped if and only if
the sentence probability vector (po1, Poz> Po3» - - -» P2a) Satisfies
Po1 = Po2 = Pos = P
Pos = Pos = Por = Pos
Pog = P1o = P = P12
P13 = P1y = P15 = P15
P17 = P1s = P19 = Poo
P2y = P2y = Paz = P

We describe this in details and provide a proof below.

Denote by p; the probability of generating the ith sentence. The numbering of the 24 sen-
tences is arbitrary, and so we choose the numbering system illustrated in Fig 8 in the form of a
co-occurrence matrix. For example, the sentence “king wear tie” is assigned number 1, whose
probability is po;. Since in this corpus, every subject-object pair uniquely determines one of

—
c 0 c v
c © [ Q (O] ) N o
28 §5 2885589, 5235558
) i)
S o £ 2 v o £ 2 220535 82w 8
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
kinge;q4 0 0 0 0 0 0 0 O [pox pog pi7|por O pog O piz O
Cr
queenc,40 0 0 0 0 0 O O |pos po ps| 0 pos pio 0 pig O o5
manc40 0 0 0 0 0 0 O [po2 P13 proJpoz 0 0 p13 prg O C5
womane40 0 0 0 O O O O |p6 pia Pof O pos O pa po O €6
kingses4 0 0 0 0 0 0 0 O p3s Pt p2ufpo3 0O pu O 0 px =
queenscg{ 0 0 0 0 0 0 O O |pr pr2 p2| 0 por pi2 0 0 pa2 cs
mene;40 0 0 0 0 0O O O (pos P15 P23|Pa O 0 p15 0 p23 c{
womenecg4 0 0 0 O O O O O |[pos P16 Pua| O pos 0 pis 0 P e
Fig 8. The co-occurrence matrix generated with the arbitrary sentence probability distribution. The numbers in the cells represent their probability.
The row vectors are illustrated in a low dimensional subspace.
https://doi.org/10.1371/journal.pone.0312151.g008
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the 3 verbs, and thus one of the 24 sentences, the resulting co-occurrence matrix can be
described in such a simple form, as shown in Fig 8, as a function of the sentence probability
distribution (po1, Poz, - - -» P24)- For brevity, we reuse the symbol C to denote the matrix in Fig 8
composed of the row vectors for the 8 subject words, and denote by c; the jth row vector of

C eR™.

.
Proof. Let C = (clT € ¢ ) € R¥” be the matrix with the row vectors

1x9 .
€15y, - -, € R7. Each of these row vectors contains co-occurrence counts for the 3 verbs

and 6 objects, as depicted in Fig 8. Note that each c; is originally a row vector in the space R'7,
but the frequency count for the first 8 dimension is zero, and thus neglected without loss of
generality. In the special case that p is the identity map, the necessary condition for the set of
these eight vectors to form a parallelepiped in the space R’ is given by Definition 1:

€ —Cp=0C—C =0C —C=0C —Cg
O =6G=06 =6 =0 == C . (6)

O =C6G=06—C¢G=0G—0G=0"0G

Eq (6) with nine equalities (e.g., three equations ¢; —c; =c¢3— €4, ¢} — 2 =¢5 — Cs,and ¢; — ¢ =
¢7 — cg in the first row) is expressed by a matrix product

NC = 0919 ) (7)

where N is a coefficient matrix defined by

-1 11 -1 0 0O 0 0
-1'10 0 1 -1 O 0
-11.0 0 0 O 1 -1
-11 1 -1 0 0 0 0
N=|-1 01 0 1 0 -1 0 (8)
-1 01 0 0 1 0 -1
-1 10 0 1 -1 O 0
-1 01 0 1 -1 0
-1 00 1 1 O 0 -1

Note that, for each permutation (automorphism) p: {1, ..., 8} — {1, ..., 8}, replacing (¢;, ¢,
< €8) With (¢1ys €p(2)s - - - Cp(s)) in Eq (6) gives another part of the necessary condition. Thus,
the full necessary condition for C to form a parallelepiped is to satisfy

NPC=0,, , 9)

for some permutation matrix P € {0, 118,

Any column vector of the solution matrix C for Eq (9) needs to be in the kernel of the
matrix N, ker N := {x € R® | Nx = 0,}. The rank of this kernel is 4, and it is specifically
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spanned by a basis with the vectors kg, ki, k, k3 € {0, 1}® defined by

1 1 11
1 011
1 1 01
1 0 01
K = (ko ky, kyo ks) = L1010 (10)
1 010
1100
10 0 0

Find NK = 045 and the set of the vectors ko, kj, k,, k3 is linearly independent. To have Cas a
solution of Eq (9), every column vector of PC needs to be a linear combination of the vectors
ko, k1, k, k3. To see this, decompose the matrix C by

6
.
C=> vl = (v, vy, u), (11)
i1

where (vy, v, V3, V4, Vs, V) are the last 6 column vectors of Cin Fig 8, i.e.,

pﬂl 0 pﬂf) 0 pl?
0 p05 pl(] 0 plS
p02 0 0 PIS p19

0 .0 . D
Vo= (v, vy, ¥y, ¥y, V5, V) = Por P P (12)

o o o o

p03 0 pll 0 0 p?l

0 p07 plZ 0 0 p22

P 0 0 py 0 py

0 pPs O p 0 py

and
1 1.0 0 0 0
0 01 1 00
000011
10 0 00 O
U= (uy, ty, tg, uy, s, thg) == 0 1 0 0 0 0O (13)

001 00O
0 001 00
0 00 010
00 0 0 01
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This decomposition implies that each of the vectors vy, . . ., v needs to be a linear combina-
tion of ko, k1, k, k3. Find the six identities with diagonal matrices Dy, . . ., D,
v, =D, k,
v, =D, (ko - kl)
v, = D, k,
3 372 (14)
v, =D, (k, — k)
v; = Ds k,

ve = D (k) — ky)

Vi1
with D, == . . Thus, for every i € {1, .. ., 6}, it imposes that there is some com-
Vie
mon permutation matrix P € {0, 1}**® with a pair of integer j € {1, .. ., 3} and constant b € R
such that
Py, =bk; or Pv,=b(k,—k) . (15)

Thus, Eq (15) imposes Eq (5) for any P.
Next, we derive the necessary condition on P. The condition in Eq (15) implies

V=KB , (15)
0 b 0 b, 0 b
where B = b —b 0 0 0 As every column vector of the matrix PV
“lo o b -b 0 0| Y

0o 0 0 0 b -—b
with some permutation matrix P is a linear combination of ko, k;, k,, ks (or equivalently, a per-
mutation P keeps the kernel, i.e., ker PKB = ker KB), there is a matrix A € R**® such that KA =
PV = PKB. Such A is uniquely decided by A = (K' K) 'K PKB, as (K ' K) is invertible. Thus, we
have

PKB=K(K'K) 'K'PKB . (17)
With this, there are essentially four distinct cases of necessary condition on P, as follows.

1. If BB is invertible or rank(B) = 4, we have further
PK =K(K'K)'K'PK . (18)

With this, the solution is Eq (5), and there are 48 such permutations, including the identity
above, that form the dihedral group.

2. Ifrank(B) = 3, a special case of Eq (5) is the solution that forms a parallelogram. For exam-
ple, with a permutation matrix P corresponding with the permutation p: (1,2,...,8) —
(5,6,3,4,1,2,7,8), asolution needs p,y = p,4 = 0 in addition to Eq (5). In this case, the set
of all the above permutations P forms a proper subgroup of the dihedral group.

3. Ifrank(B) = 2, a further special case of Eq (5) is the second class solution above, which
forms a line segment. For example, with a permutation matrix P corresponding with the
permutation p: (1,2,...,8)—(3,6,5,4,7,2, 1, 8), a solution needs py, = p1s = P20 = P24 =
0 in addition to Eq (5). In this case, the set of all the above permutations P forms a proper
subgroup of the permutation group of the class 2.
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4. Otherwise, p; = 0 for any integer 1 < i < 24 is the solution.

Among all the cases above, class 1 is most general, and class 4 does not satisfy the assump-
tion that p; is a probability that holds 3", p, = 1. Thus, class 4 with Eq (5) is the necessary
condition for the set of vectors ¢, ¢,, . . ., cg to form a parallelepiped. The converse, the suffi-
ciency of the condition in Eq (5), is already confirmed as noted above by observing that there
exists some group of permutation matrices P for class 1, 2, and 3.

5.6 Implication of the mathematical analysis of co-occurrence matrix

This theorem, together with its proof, reveals the core structure of the co-occurrence matrix
characterized by the dihedral group, which corresponds to the set of affine automorphisms for
the parallelepiped. Eq (5) implies that the locally unigram-like structure is embedded in the
bigram co-occurrence matrix C, if and only if the eight word vectors form a parallelepiped. In
sum, Theorem 1 identifies isomorphism between distributional symmetry across sentence
probabilities, with Eq (5) in the word generator and parallelepiped, and Eq (6) in word vector
space. Our analysis on the toy corpus identified sentence-level statistical regularity, as sug-
gested in [14]. This represents a locally uniform probability distribution over a certain subset
of sentences, i.e., Eq (5).

Although this result is limited to our toy corpus only with 24 possible sentences, it also has
an implication for more general cases. First, the rigorous result of locally uniform probability,
Eq (5), may not hold for a realistic corpus, as there is no solution for Eq (6) with noisy word
vectors. Instead, we can replace Eq (6) with minimization of some error function X;; [|c;—¢j[|,
and expect a similar relationship with Eq (5) in a large empirical corpus.

Second, our technique used in the proof—the kernel of the co-occurrence matrix for a
given constraint by the parallelepiped—can be useful for the analysis of other kinds of geomet-
ric objects. The logic based on the kernel is not limited to our small corpus, but a general large
matrix. Thus, the key question is how we can identify a latent geometric nature of an unknown
set of word vectors with no prior knowledge of its underlying structure.

Third, with regard to this question, the underlying group structure may play a key role in
identifying such latent geometric structures. Remember that our analysis showed that the co-
occurrence matrix C in our case study is characterized by a dihedral group. This observation
may be used in the reverse order—we can start with a potential group structure to characterize
an underlying nature of word vectors in the co-occurrence matrix, and identify a geometric
feature such as Eq (6).

6 Discussion

Previously, Levy, Goldberg, & Dagan [7] suggested that, in our interpretation, the negative
sampling algorithm works as an information-theoretic pre-processing, and is thus the major
factor by which the word2vec models are capable of performing analogical reasoning in terms
of the four-term analogy test set. Thus, in our understanding, they considered that they pro-
vided an answer to the mystery of the analogy performance of the word2vec models by con-
necting the negative sampling algorithm to the PPMI transformation.

In the present paper, we revisited this suggestion by taking a distinct approach with the
hypothesis that a major factor related to the formation analogical parallelograms of word vec-
tors in a high-dimensional space can be essentially explained by the natural co-occurrence
structure. Namely, a sort of the distributional hypothesis [1] plays the primary role in forming
geometric shapes of word vectors, while the negative sampling algorithm, and/or PPMI trans-
formation, provides only a secondary/auxiliary role to represent it. Our hypothesis may sound
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trivial —garbage in, garbage-out— in an extreme case. A more appropriate question is to what
extent the almost-raw co-occurrence matrix is informative, and if is informative, how can such
geometric structure of word vectors be embedded. Thus, we first confirmed that the almost-
raw co-occurrence matrix is sufficiently informative to embedded a geometric structure
among word vectors in Section 3 and 4. Second, we then demonstrated the construction of a
geometric structure of word vectors in a co-occurrence matrix in Section 5.

In Section 3, we compared performance of the four-term analogy test among word vector
models, including our logfreq model that simply uses the logarithms of the co-occurrence fre-
quencies as word vectors. We treated this model as the simplest implementation of the distri-
butional hypothesis. We showed that our logfreq model achieves 41% and logfreq-SVD
model achieves 60% correct responses in the four-term analogy test. The latter is greatly higher
than the 40% performance of the word2vec-NS-topn model, which was trained using nega-
tive sampling with the restricted but identical vocabulary appearing in other co-occurrence
matrix models. We believe that this is the evidence to support our hypothesis that the distribu-
tional hypothesis is primary and the negative sampling is secondary. A similar result to our
logfreq-SVD had been obtained by [15], who used a co-occurrence matrix from the British
National Corpus and evaluated word analogy performance using approximately 55% of the
problems in the Google test set.

In Section 4, to obtain additional evidence, we trained an artificial neural network with
back-propagation, i.e., without negative sampling. The neural network, which was trained to
approximate a conditional co-occurrence probability matrix, achieved 60% correct responses
in the analogy test. We consider this to be the second piece of evidence supporting our hypoth-
esis that negative sampling may not be the primary source of geometric formation of word
vectors.

Our evidence suggests that the distributional structure or co-occurrence statistics of lan-
guages may have sufficient information to predict a target word from its context, as is postu-
lated by Harris [1]. This in turn indicates that scientists should primarily focus their
investigations on not the algorithm but the corpus data. Although various word embedding
algorithms have been proposed since Latent Semantic Indexing [2] and importantly shown
to work in practical linguistic tasks, our scientific understanding of the organization or
structure of languages, or even vocabulary in simple cases, still seems poor. We considered
that Mikolov et al. [4]’s discovery of parallelograms in trained word vectors with natural
corpora opened a door to grasping the organization of real-size vocabularies using the lan-
guage of geometry. However, we feel that less research has proceeded in this direction, as
many or most researchers in artificial intelligence and machine learning have focused on
algorithms rather than the structure of the natural corpus. We wanted to see progress in the
direction of the geometry of language, even allowing that methods for applying the language
of geometry to analyze the organization of vocabulary in natural corpora still appeared
immature.

This motivated us, in Section 5, to take a constructive approach to the geometry of words as
an extension of the parallelogram as an instance of the four-word relationship. We further
investigated when a parallelepiped, a 3-dimensional generalization of a parallelogram, can be
ready-made or already embedded in the co-occurrence matrix. Our approach is constructive,
i.e., we seek the conditions for a geometric object by manipulating an artificial corpus as a
source of the co-occurrence matrix. Specifically, in this paper we manipulated a probability
distribution over all possible three-term S-V-O sentences. We identified necessary and suffi-
cient conditions for sentence probabilities that the generated co-occurrence matrix embeds a
parallelepiped relationship among words. This condition suggests a symmetric structure in
sentence probability distribution, which may be called local unigram: namely, some part of
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bigram co-occurrence matrix is constrained to be a unigram-like structure, in sense that sam-
pling probability of a certain class of words is independent of a certain range of previous
words.

One of implications of symmetry in word vectors to human language processing is that
some language structure (e.g., parallelograms formed by word vectors) may be formed
through cognitive selection over time. As shown in Section 5, the parallelogram reflects
underlying symmetry in the language, and such symmetry enables us to encode the language
data in a more economic manner (i.e., symmetric structure copies one part of the data to
another, and thus it can be encoded concisely). This would allow a language and its learners
to co-evolve over generations of language learners [17, 18] —learners’ cognitive limitation
constrains language structure to be learnable with a smaller computational resource, and a
well-formed language enables its learner to predict new words, as demonstrated by analogi-
cal reasoning.

Our mathematical analysis in Section 5 describes a mechanism for how sentence-level sym-
metry in the word generator would form a geometric structure such as parallelepiped in word
vector space. Partially at least, this analysis provides an insight to understanding how across-
sentence probabilities contribute to the shape of word vectors, which Chiang et al. [14] have
suggested by their empirical data analyses.

At least some aspect of this constructive analysis may be generalizable to other cases with
various types of geometric structure embedded in larger vector spaces. We believe that this
constructive analysis may open a new way to analyze, say, distributional geometry of natural
corpora. Extraction of geometric objects in lossy and noisy natural corpora requires the devel-
opment of statistical and robust tools for analysis. Our present constructive and geometric
analysis of an artificial corpus may facilitate the development of such tools.

Finally, we should remark that our results do not rule out the possibility that the negative
sampling algorithm is actually effective in practice. Evidence supporting this possibility contin-
ues to increase (see [19] and followers). This possibility does not contradict our claim that the
distributional hypothesis is primary. To augment our claim, it is necessary to show in some
way that equal-level analogy performance can be achieved without negative sampling or any
other tricky techniques, albeit that the hurdle of computational intractability appears difficult
to overcome. Regarding negative sampling, the fact that the more vocabulary the models have
to learn the better their analogy performance serves as an interesting new mystery in terms of
language acquisition.

7 Conclusion

This study attempts to provide a theoretical account of the meaning of the parallelogram in the
vector space model. Our analysis of the co-occurrence matrix suggests that a type of co-occur-
rence matrix decomposition can provide such a parallelogram that will be useful for analogical
reasoning. This empirical observation suggests that the distributional structure of languages
may have sufficient information to allow a target word to be predicted from its context, as pos-
tulated by Harris [1]. This led us to a constructive approach to building a toy corpus that may
or may not embed a parallelepiped in the co-occurrence matrix. This numerical simulation
suggests that the parallelepiped is tightly related to a certain class of sentence probability distri-
bution, which is less restricted than uniform but more restricted than arbitrary. We provided
necessary and sufficient conditions for the sentence probability distribution to form a parallel-
epiped in a co-occurrence matrix. This geometric approach opens the door to grasping the
organization of real-size vocabularies in the language of geometry.
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