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Abstract

Predicting learning achievement is a crucial strategy to address high dropout rates. How-

ever, existing prediction models often exhibit biases, limiting their accuracy. Moreover, the

lack of interpretability in current machine learning methods restricts their practical applica-

tion in education. To overcome these challenges, this research combines the strengths of

various machine learning algorithms to design a robust model that performs well across mul-

tiple metrics, and uses interpretability analysis to elucidate the prediction results. This study

introduces a predictive framework for learning achievement based on ensemble learning

techniques. Specifically, six distinct machine learning models are utilized to establish a base

learner, with logistic regression serving as the meta learner to construct an ensemble model

for predicting learning achievement. The SHapley Additive exPlanation (SHAP) model is

then employed to explain the prediction results. Through the experiments on XuetangX

dataset, the effectiveness of the proposed model is verified. The proposed model outper-

forms traditional machine learning and deep learning model in terms of prediction accuracy.

The results demonstrate that the ensemble learning-based predictive framework signifi-

cantly outperforms traditional machine learning methods. Through feature importance anal-

ysis, the SHAP method enhances model interpretability and improves the reliability of the

prediction results, enabling more personalized interventions to support students.

Introduction

In recent years, Massive Open Online Courses (MOOCs) have gained global popularity for

providing free, high-quality learning resources and enhanced support for students [1]. How-

ever, despite high enrollment rates, the persistent challenges of high dropout rates and low

engagement during the learning process remain significant [2].

Machine learning (ML) technologies have emerged as promising tools to tackle student

attrition by predicting learning achievement [3, 4]. Numerous studies have focused on devel-

oping ML algorithms for this purpose [5–9]. However, these algorithms face challenges in fea-

ture processing and optimal algorithm selection due to varying data perspectives and

objectives in data mining [10, 11]. The predictive accuracy of these algorithms often suffers

because optimal hyper-parameter settings depend heavily on dataset characteristics, necessitat-

ing customized configurations for optimal performance [12].
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Predicting potential academic vulnerabilities among students using artificial intelligence

frameworks is crucial for devising targeted interventions. Moreover, understanding the pre-

dictive models’ explanations provides valuable insights into the underlying reasons for stu-

dents’ vulnerabilities, facilitating personalized interventions tailored to their specific needs

[13].

This study tackles the crucial task of identifying students at risk of dropping out and pro-

poses targeted interventions to mitigate their academic challenges. It advocates two main strat-

egies: first, employing an ensemble learning approach that leverages the strengths of diverse

predictive models to enhance the accuracy of learning achievement predictions; and second,

utilizing model-agnostic explanatory techniques to pinpoint specific student features associ-

ated with academic risks.

Specifically, this research proposes a prediction model based on stacking ensemble learning.

Stacking ensemble models typically employ heterogeneous learners to develop multiple base

models concurrently, followed by the construction of meta learner to aggregate the final pre-

diction outcomes [14].

The proposed model is rigorously trained and verified through experimental methodologies

and comprehensive outcome analyses to demonstrate its effectiveness in accurately predicting

learning outcomes. Furthermore, the study introduces a model-agnostic technique utilizing

the SHAP (SHapley Additive exPlanations) [15], an innovative method to interpretability anal-

ysis. This method is anticipated to provide new insights into pedagogical interventions by

offering a deeper understanding of the model’s predictions.

To summarize, the main contributions and novelty of our work are as follows:

• We developed a robust ensemble learning model that integrates six distinct machine learn-

ing models (K-Nearest Neighbor, Naive Bayes, Random Forest, Gradient Boosting Decision

Tree, eXtreme Gradient Boosting, and Multi-Layer Perceptron) as base learners, with Logis-

tic Regression as the meta learner. This model effectively addresses the biases and limitations

of previous methodologies.

• To enhance the interpretability of our predictions, we employed the SHapley Additive exPla-

nation (SHAP) for feature importance analysis. This allowed us to identify critical factors

influencing learning achievement, providing actionable insights for more precise and tar-

geted interventions.

• The effectiveness of the proposed model was verified through experiments on the XuetangX

dataset. The proposed model outperforms traditional machine learning and deep learning

methods in terms of prediction accuracy.

The remainder of this paper is structured as follows: The Related work section reviews pre-

vious studies and the foundation for this research. The Ensemble learning achievement predic-

tion and explanation of prediction results section outlines the overall research framework and

provides details of the proposed model structure. The Experimental design and result analysis

section presents the setup, experiments conducted, and a detailed analysis of the results

obtained. The Conclusions and limitations section summarizes the key findings of the study

and discusses the limitations and potential areas for future research.

Related work

Learning achievement prediction

Predictive features. Predicting learning achievement involves leveraging various learner

features, which can be categorized into demographic information and online behavioral data.
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Demographic information typically includes factors such as gender, age, and educational back-

ground, while online behavioral data encompasses metrics like video consumption, time spent

on course materials, and participation in online activities.

Studies such as [16] have leveraged demographic factors like age, gender, and prior aca-

demic performance to forecast learning outcomes. These approaches employed interpretable

machine learning techniques to identify factors contributing to poor performance and inte-

grated rule-based risk models to enhance prediction accuracy.

Another study [17] focused on basic learner information to predict learning achievement.

This research presented a two-stage predictive model development process aimed at improv-

ing recognition accuracy and supporting educators in implementing diverse teaching practices

to enhance student learning outcomes.

Additionally, research by [18] incorporated features like gender, age, and residential status

into a nonlinear State Space Model tailored for predicting student dropout. This model

emphasized the evolving latent state of students in open and distance education settings,

highlighting the importance of ongoing student status monitoring.

However, these studies often rely on static input features that do not account for dynamic

learning processes, serving more as early warning systems prior to actual learning engagement.

They often fail to capture the behaviors of learners during their learning activity, thereby limit-

ing prediction accuracy.

In contrast, online interaction data emerged as a critical predictor of learning achievement,

offering insights into individual learning quality [19, 20]. For instance, [21] used Logistic

Regression (LR) to extract features from learners’ interactions with video lectures and assign-

ments, predicting learning performance based on these behaviors. Similarly, [22] employed

Random Forest (RF) to model learning achievements using online clickstream data.

Most studies within the MOOCs context have prioritized behavioral data for predicting

learning outcomes [23, 24]. However, both behavioral data and demographic information are

crucial predictors of learning achievement. Therefore, this paper integrates demographic

information and online behavioral data to predict learning achievement.

Prediction models. The development of learning achievement prediction models involves

a diverse range of machine learning methods extensively studied by researchers. These models

can be categorized into two primary groups: traditional machine learning algorithms and

ensemble learning methods.

Traditional machine learning algorithms. Marbouti [25] employed LR, Decision Trees

(DT), Naive Bayes (NB), K-Nearest Neighbor (KNN), Artificial Neural Networks (ANN), and

Support Vector Machines (SVM) to develop a robust model aimed at identifying learners at

risk of failure. Their study highlighted the challenge of accurately identifying both successful

and unsuccessful learners across different algorithms.

Howard [26] systematically compared the performance of common prediction algorithms,

including RF, SVM, ANN, and KNN, among others. Their findings indicated that RF yielded

the most effective results.

In another investigation [27], DT, LR, NB, and RF algorithms were evaluated to recom-

mend an optimal choice for predicting dropout. The study concluded that straightforward

algorithms could achieve reliable accuracy in identifying predictors of dropout.

Similarly, a study [28] utilized RF, SVM, DT, NB, KNN, and LR for classification tasks, with

RF demonstrating superior performance in detecting students susceptible to dropout, achiev-

ing an accuracy rate of 94.14%.

These studies underscore the efficacy of machine learning in addressing student learning

achievement prediction. However, the choice of prediction algorithm depends on the
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perspective of data observation, mining objectives, and research context, making it challenging

to determine a universally superior algorithm for online learning achievement prediction.

The objective of employing machine learning technology in building learning achievement

prediction models is to achieve high accuracy, strong generalization ability, and robustness

through rigorous training. Nonetheless, in practical applications, machine learning models

often exhibit biases that hinder them from fully meeting operational requirements.

Ensemble learning methods. Ensemble learning stands as a critical approach in machine

learning, combining multiple weak learners to form a robust model with improved accuracy

and generalization capabilities [29, 30]. Methods like Bagging, Boosting, and Stacking are par-

ticularly effective in improving model performance and addressing both classification and

regression tasks.

Bagging and Boosting are homogeneous ensemble methods, which rely on using the same

base learning algorithm across multiple iterations. Conversely, Stacking is a heterogeneous

ensemble approach that employs diverse base learners in parallel, combining their outputs

through a meta learner to generate the final prediction [31]. This approach increases model

diversity and enhances generalization, offering distinct advantages over homogeneous ensem-

ble methods.

Ensemble learning algorithms have broad applications across various fields. For example,

recent models like Deepstacked-AVPs, iAFPs-Mv-BiTCN, pAVP_PSSMDWT-EnC, iACP--

GAEnsC, and CACP, developed by Akbar et al. [32–36], significantly enhance peptide identifi-

cation and prediction by integrating advanced feature selection techniques and optimized

algorithms. These models have proven to be highly valuable in pharmaceutical design and

research. Similarly, Ullah et al. [37] developed the DeepAVP-TPPred model, which improves

antiviral peptide prediction using a novel binary tree growth algorithm.

These examples highlight the wide-ranging applicability and impact of ensemble learning

methods across different domains, demonstrating their effectiveness in addressing complex

problems through model integration and optimization.

Data preprocessing. Data preprocessing is a critical step in building predictive models for

learning achievement, involving tasks such as data cleaning and transformation. This section

discusses two key aspects of data preprocessing: addressing class imbalance and performing

data transformation.

In learning achievement prediction research, student grades are central indicators of aca-

demic performance and serve as targets for both regression and classification tasks. However,

datasets used for modeling often exhibit class imbalance, with students achieving extremely

low or high grades representing only a small portion of the overall data. The class imbalance

issue can severely affect the predictive performance of the learning achievement prediction.

Many studies in the field proceed with modeling based on imbalanced datasets without

directly addressing this issue. For example, Al-Musharraf et al. [38] categorized course grades

into five classes for learning achievement prediction but observed a disproportionately small

number of students in the highest performing class (Class A). Only a few researchers have

explored resampling strategies to mitigate the impact of data imbalance on predictive models.

For instance, Romero et al. [39] applied random oversampling to rebalance their dataset and

assessed the performance of predictive models before and after resampling. Their findings

revealed that while resampling improved the performance of some algorithms, its effects varied

across different models.

Therefore, identifying the optimal sampling strategy to enhance the effectiveness of predic-

tive models, particularly in the context of the unique characteristics of educational data,

remains an area that requires further research and exploration.
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Model interpretability analysis

In balancing the trade-off between predictive accuracy and interpretability, previous research

has primarily focused on enhancing interpretability by identifying significant predictors using

traditional statistical methods. For instance, one study [40] emphasized the importance of stu-

dent attributes in predicting academic success through variable importance analysis, highlight-

ing that active participation in forums during video lectures positively correlates with course

success. Similarly, another study [41] employed Bayesian algorithms to identify age and schol-

arship as crucial predictors of learning achievement.

While these studies offer valuable insights into key features, they often fall short in explain-

ing how these features specifically contribute to predictions, underscoring the need for further

advancements in model interpretability.

To bridge this gap, Lundberg [15] introduced SHAP, a comprehensive framework designed

to enhance the interpretability of machine learning models. SHAP calculates linear additive

contributions for each feature variable across samples, providing detailed explanations. Unlike

traditional feature importance analyses, SHAP offers both global and local interpretability.

Globally, it ranks feature importance, identifies key predictors influencing predictions, and

assesses the qualitative impact of features on outcomes. Locally, SHAP elucidates the specific

role of each feature in predicting outcomes for individual samples, significantly enhancing the

reliability of predictions.

In this study, we integrate ensemble learning algorithms with the interpretable machine

learning framework offered by SHAP to construct a predictive model for learning achieve-

ment. This combined approach not only improves predictive accuracy but also provides robust

interpretability, making it highly effective for identifying nuanced factors that influence learn-

ing outcomes.

Research question

Building on an extensive review of existing literature, this study aims to develop an ensemble

learning strategy for predicting learning achievement, with a strong emphasis on interpretabil-

ity. To achieve this goal, the research is organized around two primary sub-questions:

Research Question 1: How can an ensemble learning framework be designed to accurately

predict learning achievement?

Research Question 2: How can the results of ensemble learning predictions be effectively

interpreted using the SHAP method?

By addressing these sub-questions, this research seeks not only to enhance the accuracy of

learning achievement predictions through ensemble learning but also to provide comprehen-

sive interpretability of model outcomes using advanced machine learning techniques. This

dual focus is essential for identifying critical factors influencing learning achievement and

enabling informed interventions in educational settings.

Ensemble learning achievement prediction and explanation of

prediction results

Research framework

This study proposes an ensemble learning approach to predict learning achievement by utiliz-

ing behavioral data from learning activities and student demographic information. It employs

six independent machine learning models—KNN, NB, RF, GBDT, XGBoost, and MLP—as

base learners, with Logistic Regression (LR) serving as the meta learner to construct a stacking

ensemble model. The research methodology includes data analysis, model training using
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learner profiles and interaction data, evaluation of prediction accuracy against baseline mod-

els, and interpretation of results using the SHAP method, as illustrated in Fig 1. This frame-

work aims to enhance prediction accuracy while providing insights into the factors

influencing learning outcomes, thereby facilitating targeted educational interventions.

Data analysis. Research context and participants. This study utilized data sourced from

XuetangX (https://www.XuetangX.com), encompassing 59,581 learners across six courses: Cir-

cuit Principles (I) (courseid: TsinghuaX-20220332_1X-_), Circuit Principles (II) (courseid:

Fig 1. Research framework.

https://doi.org/10.1371/journal.pone.0312124.g001
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TsinghuaX-20220332_2X-_), Data Structures (courseid: TsinghuaX-30240184_1X-_), History

of Chinese Architecture (courseid: TsinghuaX/80000901_1X_), Financial Analysis and Deci-

sion (Fall 2013) (courseid: TsinghuaX-80512073X-_), and Financial Analysis and Decision

(Spring 2014) (courseid: TsinghuaX-80512073_2014_1X-_). Four of these courses were con-

ducted from October 10, 2013, to January 2014, and two from March to June 2014, each span-

ning a duration of 10 weeks.

A demographic analysis of the learners, depicted in Fig 2, revealed that 67% of participants

were male and 33% were female, with ages primarily ranging between 20 and 50 years old. The

educational background distribution included 28,605 learners with a bachelor’s degree, 9,159

with a master’s degree, 7,094 with an associate’s degree, 4,662 with a high school diploma, and

994 with a doctoral degree. The data utilized in this study comprised both learner demographic

information and behavioral data collected during the courses.

A comprehensive overview of the learner data is summarized in Table 1. For the prediction

phase, data from all 59,581 learners were utilized, among whom 3,155 learners obtained a pass

certificate, while the remaining 56,426 learners did not receive a certificate.

In this study, the total MOOC score ranges from 0 to 100. Learners who score between 60

and 100 receive a passing certificate, while those scoring below 60 do not receive a certificate.

The relationship between learning achievement and certificate attainment is shown in Table 2.

Among the learners in this dataset, 3,155 (5.29%) received a passing certificate, while 56,426

(94.77%) did not. The certificate attainment rate of 5.29% is consistent with typical MOOC

patterns, which generally range between 3.5% and 7.3%.

Feature histogram. Regarding the learning behavioral data, histograms were generated to

depict the frequency distributions of watch counts and the number of posts. These histograms

Fig 2. Statistics of participants.

https://doi.org/10.1371/journal.pone.0312124.g002

Table 1. Details of the dataset.

Leaner data Feature Description

Demographic information Gender The learner’s gender.

Age The learner’s age.

Educational background The learner’s level of education.

Behavioral data Watch count The number of videos watched by learners.

Watch time Duration of video watched by learners.

Number of posts The number of posts learners have made on the forum.

Number of quizzes The number of times the learner takes the quiz.

Academic performance Quiz score Learner’s scores on assignments and quizzes.

https://doi.org/10.1371/journal.pone.0312124.t001

PLOS ONE Ensemble learning for predicting achievement with explanation

PLOS ONE | https://doi.org/10.1371/journal.pone.0312124 January 2, 2025 7 / 25

https://doi.org/10.1371/journal.pone.0312124.g002
https://doi.org/10.1371/journal.pone.0312124.t001
https://doi.org/10.1371/journal.pone.0312124


specifically illustrate the frequency of video clicks and forum postings by learners in each

course, as shown in Fig 3. From these figures, it is evident that learners in certain courses, such

as History of Chinese Architecture (courseid: TsinghuaX/80000901_1X_), Financial Analysis

and Decision (Spring 2014) (courseid: TsinghuaX-80512073_2014_1X-_), and Financial Anal-

ysis and Decision (Fall 2013) (courseid: TsinghuaX-80512073X-_), demonstrate higher levels

of engagement in forum activities. This observation underscores their active participation in

discussions within these courses.

Correlation analysis. Correlation analysis uses statistical indicators to quantify the degree of

linear association between continuous variables. Common methods include creating scatter

plots, constructing scatter plot matrices, and calculating correlation coefficients. In bivariate

correlation analysis, the Pearson correlation coefficient, Spearman correlation coefficient, and

Kendall’s tau coefficient are commonly used. This paper utilizes the Pearson correlation coeffi-

cient to evaluate the strength of the relationships between dependent and independent vari-

ables. The Pearson correlation coefficient is given by Eq (1):

r ¼
Pn

i¼1
ðxi � �xÞðyi � �yÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1
ðxi � �xÞ2

Pn
i¼1
ðyi � �yÞ2

q ð1Þ

The Pearson correlation coefficient was employed to analyze the raw data, which included

eight independent variables and one dependent variable related to learning achievement

Table 2. Learning achievement.

Learning achievement n %

Pass certificate 3155 5.29%

Non-certificate 56426 94.77%

All learners 59581 100%

https://doi.org/10.1371/journal.pone.0312124.t002

Fig 3. Feature frequency distribution histogram.

https://doi.org/10.1371/journal.pone.0312124.g003
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prediction. To visually represent the degree of correlation between these variables, a heatmap

of the correlation coefficient matrix was generated using Python. This heatmap uses color

intensity to illustrate the strength of correlations, as shown in Fig 4.

Data resampling. Addressing data imbalance is a common challenge in classification tasks,

particularly with real-world datasets like those from online learning environments. This issue

often leads to skewed distributions, where one class (e.g., dropout students) is significantly

underrepresented compared to another (e.g., students who complete their studies). Such

imbalances can distort predictive models, causing them to disproportionately favor the domi-

nant class while neglecting instances of the minority class.

Traditional evaluation metrics like accuracy can be misleading in imbalanced datasets

because high accuracy may mask the model’s inability to effectively predict the minority class.

Fig 4. Pearson correlation heatmap.

https://doi.org/10.1371/journal.pone.0312124.g004
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In dropout prediction tasks, for instance, where the number of students completing their stud-

ies is relatively small compared to those who drop out, models may incorrectly favor predicting

dropout, thereby compromising overall performance and generalization ability.

To address these challenges, various resampling techniques are employed [42, 43]. Over-

sampling involves increasing the number of minority class samples by duplicating or syntheti-

cally generating new ones, with methods like SMOTE (Synthetic Minority Over-sampling

Technique) [44] and ADASYN (Adaptive Synthetic Sampling Approach) [45] being particu-

larly popular. In contrast, undersampling involves randomly removing samples from the

majority class to balance the dataset, with techniques like Tomek links and NearMiss com-

monly used [46]. Mixed sampling combines both oversampling and undersampling to balance

class distributions more effectively [47].

Despite the availability of these resampling methods, their application and effectiveness in edu-

cational contexts, particularly in predicting student dropout, remain underexplored. It is essential

to determine which resampling approach is best suited for educational datasets characterized by

class imbalance. This study aims to fill these gaps by evaluating various resampling techniques to

enhance the predictive performance of dropout prediction models in academic settings.

Learning achievement prediction based on stacking ensemble learning. Given the intri-

cate relationships within educational data and the unique strengths of different algorithms,

this study employs ensemble learning techniques to improve the accuracy of learning achieve-

ment predictions. Specifically, we utilize the stacking ensemble approach, which combines

multiple algorithms to enhance overall model performance.

The stacking algorithm uses a hierarchical blending strategy, where various base learners

are integrated through a meta learner to boost model accuracy. To reduce overfitting, we select

logistic regression as the meta learner. The stacking model consists of two layers: the first layer

includes heterogeneous base learners, and the second layer involves the meta learner. The

training set is divided using k-fold cross-validation (CV), where each base learner’s predictions

are used as inputs for the meta learner, ultimately leading to the final prediction.

Unlike homogeneous ensemble methods that rely on similar base learners, stacking uses

diverse learners in parallel, enhancing model diversity and generalization. This makes it partic-

ularly effective for predicting learning outcomes in varied educational settings.

Originally introduced by David H. Wolpert in 1992 [48], stacking differs from Bagging and

Boosting by combining the outputs of diverse base learners through a meta learner rather than

using identical base models. This method, illustrated in Fig 5, enhances model robustness and

flexibility, making it a powerful tool in ensemble learning. The process involves splitting the

training set into k folds, training base learners on k-1 folds, and using these predictions to

train the meta learner. For this study, k was set to 5. The implementation of a two-layer stack-

ing framework involves the following four steps:

• Divide the Training Set: Split the training set into 5 folds using 5-fold cross-validation.

• Train Base Learners: Train the base learners on 4 folds and predict the 5-th fold. Repeat this

process for each fold, then concatenate the predictions to form a new training set while

retaining the original labels.

• Train Meta Learner: Train the meta learner on the new training set constructed from the

base learners’ predictions.

• Predict New Test Set: Use the trained meta learner to predict the new test set samples, yield-

ing the final predictions.
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Explanation of prediction results based on SHAP theory. In the realm of predicting

learning achievement, understanding the inner workings of machine learning algorithms is

crucial for meaningful interpretation of their predictions. Existing algorithms, often perceived

as “black boxes”, require interpretability analysis to clarify how they arrive at their predictions

[49]. This is particularly important in educational contexts, where transparency and insights

into prediction outcomes are essential for developing effective intervention strategies.

While traditional ensemble learning models excel in ranking feature importance, they often

lack in providing detailed insights into how each feature contributes to individual prediction

outcomes. To address this limitation, this study integrates SHAP theory with ensemble learn-

ing algorithms. SHAP theory enables comprehensive global importance analysis of features,

identifying key predictors that significantly influence learning achievement predictions.

Beyond merely ranking feature importance, SHAP theory elucidates the directional impact

of input features on prediction outcomes. It quantifies both positive and negative correlations

between features and prediction results, offering nuanced insights into the interactions among

features and their respective influences on learning achievement predictions. This analytical

approach not only enhances the reliability of the prediction model but also provides novel per-

spectives for designing targeted teaching interventions tailored to individual student needs.

By integrating SHAP theory with ensemble learning, this study aims to bridge the gap

between predictive accuracy and interpretability, thereby empowering educators and research-

ers with actionable insights to foster student success in educational settings.

Learning achievement prediction using ensemble learning

The proposed model. To enhance predictive accuracy in learning achievement predic-

tion, this study employs ensemble learning by integrating multiple machine learning algo-

rithms through a stacking approach. Six diverse algorithms have been selected: K-Nearest

Neighbors (KNN), Naive Bayes (NB), Random Forest (RF), Gradient Boosting Decision Tree

(GBDT), eXtreme Gradient Boosting (XGBoost), and Multi-Layer Perceptron (MLP). These

algorithms were chosen for their effectiveness in handling classification tasks and their ability

Fig 5. Flowchart of the stacking method.

https://doi.org/10.1371/journal.pone.0312124.g005
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to complement each other’s strengths within an ensemble framework. Below is a brief over-

view of each algorithm:

• K-Nearest Neighbors (KNN): KNN is a simple yet effective classification algorithm that

assigns a new data point to the most common category among its K nearest neighbors, deter-

mined by Euclidean distance.

• Naive Bayes (NB): NB is a probabilistic classifier based on Bayes’ theorem and assumes con-

ditional independence among features. It calculates the posterior probability of each class

given the input features and predicts the class with the highest probability.

• Random Forest (RF): RF is a Bagging ensemble learning method that constructs multiple

decision trees and aggregates their predictions through voting. It reduces overfitting by ran-

domly selecting features and samples during tree construction.

• Gradient Boosting Decision Tree (GBDT): GBDT builds decision trees sequentially, with

each tree correcting the errors of its predecessor. It combines the strengths of boosting and

decision trees, achieving high accuracy but requiring careful parameter tuning.

• eXtreme Gradient Boosting (XGBoost): XGBoost is an optimized implementation of gradi-

ent boosting that enhances performance and computational speed. It uses a more regularized

model to control overfitting and is known for its efficiency in handling large datasets.

• Multi-Layer Perceptron (MLP): MLP is a type of neural network consisting of multiple lay-

ers, including input, hidden, and output layers. It learns complex patterns in data through

forward propagation and backpropagation of errors, requiring substantial computational

resources and data.

The stacking ensemble learning approach integrates diverse algorithms into a hierarchical

framework. In the first layer, each base learner (KNN, NB, RF, GBDT, XGBoost, MLP) inde-

pendently processes the input data and generates predictions. These predictions are then

passed to the second layer, where a meta learner (LR in this study) aggregates them to produce

the final prediction. The pseudocode for the proposed model is outlined below.

Algorithm 1 Pseudocode of the Stacking Ensemble Learning Model
Require: Training set D = {(x1, y1), (x2, y2), . . ., (xn, yn)}; Base
learning algorithms L1;L2; . . . ;LT; Meta learning algorithm L;
Ensure: Trained ensemble model H(x)
1: Phase 1: Training Base Learners
2: for t = 1, 2, . . ., T do
3: Train the t-th base learner ht on the full dataset D:
4: ht ¼ LtðDÞ;
5: end for
6: Phase 2: Generating Meta-Features
7: Initialize the meta-training set D0 = ;;
8: for i = 1, 2, . . ., n do . For each training instance
9: Initialize meta-feature vector zi = ;;
10: for t = 1, 2, . . ., T do . For each base learner
11: Compute prediction zit = ht(xi);
12: Append zit to zi;
13: end for
14: Add the meta-feature vector and the true label to meta-training

set:
15: D0 = D0 [ (zi, yi);
16: end for
17: Phase 3: Training Meta Learner
18: Train the meta-learner h0 on the meta-training set D0:
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19: h0 ¼ LðD0Þ;
20: Phase 4: Making Predictions with the Ensemble Model
21: Define the final ensemble model as:
22: return H(x) = h0(h1(x), h2(x), . . ., hT(x)).

Explanation of prediction results based on SHAP

In the practical deployment of machine learning models, achieving high predictive accuracy is

just the first step. Equally important is understanding why a model makes specific predictions,

as this insight is essential for refining the model’s effectiveness and gaining a deeper under-

standing of its operational logic. Such interpretability not only enhances the reliability of the

model but also supports educators and system managers in making informed decisions based

on predictive outcomes.

In the context of learning achievement prediction, interpretability goes beyond merely

identifying important features. It involves clarifying the extent of their impact and how these

features influence the model’s decision-making process. This level of interpretability is crucial

for stakeholders who need actionable insights from predictive models in educational settings.

Explainable Artificial Intelligence (XAI) has emerged as a key area of research, focusing on

developing machine learning models that are not only accurate but also transparent and inter-

pretable. The SHAP framework, introduced by Lundberg [15], addresses this need by offering

a unified approach to enhance model explainability.

Traditional machine learning algorithms often evaluate feature importance to identify key

predictors influencing outcomes. However, they are typically deficient in explaining how these

features precisely impact predictions. In contrast, SHAP provides a more comprehensive

approach: it ranks feature importance, identifies critical predictors, and quantitatively analyzes

their positive and negative correlations with prediction outcomes. Additionally, SHAP offers

insights into how each feature of a specific sample contributes to the final prediction, thereby

significantly improving the reliability and interpretability of model predictions.

SHAP accomplishes this by calculating the Shapley value for each feature, which measures

its impact on the model’s output. This methodological approach not only enhances the under-

standing of complex machine learning models but also fosters trust and acceptance among

users by making the decision-making process more transparent and accessible.

In summary, integrating SHAP into learning achievement prediction models not only

boosts their predictive capabilities but also provides stakeholders with clear insights into the

factors driving educational outcomes. This enables more informed decision-making and sup-

ports the design of targeted interventions to effectively improve learning outcomes. The Shap-

ley value of each feature is calculated as shown in Eq (2):

φi ¼
X

S�Fnfig

jSj!ðjFj � jSj � 1Þ!

jFj!
fs[figðws[figÞ � fsðwsÞ ð2Þ

Where, S is the feature subset used in the model; F represents the set of all features; fs[{i} (χs[{i})

represents the model output value for input features i and feature subsets S; fs(χs) represents

the model output value when only a subset of features S as input.

Experimental design and result analysis

This section presents and discusses the results of the experiments, which were conducted in a

Python 3.8 environment on Ubuntu 20.04, utilizing PyTorch 1.10 along with the sklearn 1.1.3,

Keras, and matplotlib libraries.
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Implementation details

To demonstrate the superior performance of the ensemble learning model developed in this

study for predicting learning achievement, we compare it with six independent prediction

models. This section provides a detailed description of the machine learning models used,

including their configurations and training processes.

• KNN: We set the number of neighbors (k) to 5 and used Euclidean distance as the metric for

calculating distances between points.

• NB: We used the Gaussian Naive Bayes variant, which is suitable for continuous data.

• RF: We employed 100 trees with the Gini impurity as the splitting criterion.

• GBDT: We used a learning rate of 0.1 and 100 boosting stages.

• XGBoost: The learning rate was set to 0.1, with a maximum depth of 4 and 100 boosting

rounds.

• MLP: We configured the MLP with one hidden layer consisting of 100 neurons, ReLU acti-

vation functions, and used the Adam optimizer for training.

• LR: We employed L2 regularization to prevent overfitting.

The detailed parameter settings and values for each model are summarized in Table 3.

In machine learning, various model evaluation strategies, such as k-fold cross-validation

(CV), jackknife, and independent testing, are employed to assess the performance of predic-

tion models. However, the jackknife test is often constrained by its extensive computational

time and the large number of calculations required. To address these limitations and improve

the model’s generalization capability while avoiding overfitting, this study utilizes the k-fold

CV method. Specifically, the training dataset is randomly divided into k non-overlapping,

approximately equal-sized subsets. The model is trained on k-1 subsets and tested on the

remaining subset in each iteration. For this study, k was set to 5. The dataset was initially split

into training and test sets with an 8:2 ratio, and 5-fold cross-validation was used to tune hyper-

parameters and validate the models.

Experimental evaluation metric

In the domain of classification tasks, evaluating the effectiveness of a model requires employ-

ing robust evaluation metrics. Precision, Recall, F1, and Accuracy are among the most

Table 3. Related parameter settings of each model.

Model Parameter Settings and parameter values

KNN n_neighbors = 5,weights=‘uniform’,algorithm=‘auto’,metric=‘euclidean’

NB var_smoothing = 1e-09

RF n_estimators = 100,criterion=‘gini’,max_depth = 5

GBDT learning_rate = 0.1,n_estimators = 100,min_samples_split = 2,min_samples_leaf = 1,

XGboost learning_rate = 0.1,n_estimators = 100,subsample = 1.0,max_depth = 4

MLP hidden_layer_sizes=(100,), activation=‘relu’, solver=‘adam’,learning_rate = 0.001

LR penalty=‘l2’,C = 1.0, solver=‘lbfgs’,max_iter = 100

https://doi.org/10.1371/journal.pone.0312124.t003
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commonly used quantitative measures to assess a classifier’s performance (see Eqs (3), (4), (5)

and (6).

Precision ¼
TP

TPþ FP
ð3Þ

Recall ¼
TP

TP þ FN
ð4Þ

F1 ¼
2� Recall� Precision
Recallþ Precision

ð5Þ

Accuracy ¼
TP þ TN

TP þ TN þ FPþ FN
ð6Þ

Experimental results

Model performance evaluation. This study conducts a comparative analysis of a learning

achievement prediction method based on stacking ensemble learning compare with six inde-

pendent machine learning models, underscoring the advantages of the stacking ensemble

approach. The six base learning models utilized are KNN, NB, RF, GBDT, XGBoost, and MLP,

with Logistic Regression (LR) serving as the meta model to form a Stacking classifier. To

address the challenges posed by imbalanced datasets during the experiments, various sampling

techniques were employed.

Detailed results and insights derived from the classifier performance are presented in

Table 4. Overall, the models demonstrated satisfactory accuracy in predicting student learning

achievements, with most achieving approximately 0.9 on the test set. Notably, the stacking

ensemble learning models outperformed the six independent machine learning models. Spe-

cifically, the ensemble learning model utilizing the OneSidedSelection resampling strategy

achieved an accuracy of 0.8520 (compared to NB: 0.6751, KNN: 0.7882, RF: 0.8395, GBDT:

0.8282, XGBoost: 0.8265, and MLP: 0.8048), surpassing all other independent models. This

model also demonstrated superior performance metrics, with a higher F1 (0.8597) and preci-

sion (0.9853) compared to the independent models.

Receiver Operating Characteristic (ROC) curves are essential tools for assessing the predic-

tive performance of models, particularly in the context of predicting learning achievement. As

shown in Fig 6, our proposed ensemble learning model achieves an impressive Area Under the

Curve (AUC) of 0.9953, outperforming both the XGBoost and MLP models. The ROC curve’s

diagonal line serves as a reference, marking the distinction between true positives and false

negatives [50]. This analysis highlights the superior accuracy and performance of stacking

ensemble learning models in educational contexts and demonstrates the effectiveness of the

stacking ensemble approach compared to individual machine learning models. The findings

provide valuable insights into the benefits of ensemble techniques for predicting learning

outcomes.

Baseline approaches. In addition to comparing against the individual machine learning

models that make up the Stacking ensemble (i.e., KNN, NB, RF, GBDT, XGBoost, and MLP),

we also conducted comparative experiments with state-of-the-art models (i.e., Song et al. [51],

Liu et al. [52], Zerkouk et al. [53]). Below is a brief overview of the baselines:
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Table 4. Learning achievement prediction results.

Resampling type Resampling method Models Precision Recall F1 Accuracy

Oversampling ROS NB 0.6596 0.9191 0.7680 0.9711

KNN 0.6905 0.9393 0.7960 0.9749

RF 0.6524 0.9835 0.7845 0.9719

GBDT 0.6725 0.9816 0.7982 0.9742

XGBoost 0.7496 0.9412 0.8346 0.9806

MLP 0.7179 0.9449 0.8159 0.9778

Stacking 0.8417 0.7114 0.7914 0.9805

SMOTE NB 0.6636 0.9320 0.7752 0.9719

KNN 0.6745 0.9485 0.7884 0.9735

RF 0.6782 0.9724 0.7991 0.9745

GBDT 0.7052 0.9761 0.8188 0.9775

XGBoost 0.8063 0.8952 0.8484 0.9833

MLP 0.7184 0.9191 0.8065 0.9770

Stacking 0.8284 0.8787 0.8528 0.9842

ADASYN NB 0.6278 0.9301 0.7496 0.9676

KNN 0.6520 0.9504 0.7734 0.9710

RF 0.5882 0.9926 0.7387 0.9634

GBDT 0.6304 0.9908 0.7706 0.9693

XGBoost 0.7744 0.8897 0.8281 0.9808

MLP 0.7010 0.9265 0.7981 0.9756

Stacking 0.7887 0.8989 0.8402 0.9822

Undersampling RUS NB 0.6179 0.9007 0.7330 0.9658

KNN 0.6118 0.9761 0.7521 0.9665

RF 0.6456 0.9779 0.7778 0.9709

GBDT 0.6601 0.9890 0.7918 0.9729

XGBoost 0.6520 0.9779 0.7824 0.9717

MLP 0.6487 0.9743 0.7788 0.9712

Stacking 0.6604 0.9761 0.7878 0.9726

Tomek-Links NB 0.6649 0.9007 0.7650 0.9712

KNN 0.7882 0.8621 0.8235 0.9808

RF 0.8402 0.8603 0.8501 0.9842

GBDT 0.8284 0.8787 0.8528 0.9842

XGBoost 0.8316 0.8897 0.8597 0.9849

MLP 0.8120 0.8971 0.8524 0.9838

Stacking 0.8445 0.8787 0.8513 0.9843

EditedNearestNeighbours NB 0.5797 0.9430 0.7018 0.9614

KNN 0.7538 0.9118 0.8253 0.9799

RF 0.7771 0.9099 0.8383 0.9817

GBDT 0.7635 0.9375 0.8416 0.9816

XGBoost 0.7658 0.9375 0.8430 0.9818

MLP 0.7533 0.9375 0.8354 0.9808

Stacking 0.7764 0.9320 0.8471 0.9825

OneSidedSelection NB 0.6751 0.8824 0.7649 0.9718

KNN 0.7882 0.8621 0.8235 0.9808

RF 0.8395 0.8750 0.8569 0.9848

GBDT 0.8282 0.8860 0.8561 0.9845

XGBoost 0.8265 0.8934 0.8587 0.9847

MLP 0.8048 0.9173 0.8574 0.9841

Stacking 0.8520 0.8676 0.8597 0.9853

(Continued)
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• Song et al. [51]: This study employs a variant of the Grey Wolf Optimization (GWO) algo-

rithm to optimize the weights and biases of Multi-Layer Perceptron (MLP) models for pre-

dicting student achievement.

• Liu et al. [52]: This approach integrates Bi-LSTM with attention mechanisms and LightGBM

to predict MOOCs dropouts by effectively modeling both time series and general informa-

tion features.

• Zerkouk et al. [53]: This model uses XGBoost in combination with logistic regression to

develop a binary classification framework that accurately predicts student dropout by analyz-

ing socio-demographic and behavioral data.

The results, as summarized in Table 5 using the XuetangX dataset, consistently demonstrate

that our proposed model outperforms the other models across key performance metrics,

achieving the highest precision (0.8520), recall (0.8676), F1 (0.8597), and accuracy (0.9853).

While the other models show effectiveness in specific areas, they each have limitations that

impact their overall performance. For instance, the model in [52] does not adequately address

data imbalance, primarily focusing on video features while overlooking critical factors such as

student profiles. Similarly, the model in [53] relies exclusively on the XGBoost algorithm, lim-

iting its adaptability by not leveraging the potential benefits of ensemble methods. Addition-

ally, [51] confines its approach to using an MLP model for predicting student performance,

thereby missing the advantages of integrating multiple algorithms. Furthermore, none of these

models sufficiently tackle the crucial issue of model interpretability, which is vital for enhanc-

ing educational outcomes and aiding informed decision-making.

Our proposed stacking ensemble model effectively overcomes these limitations by integrat-

ing the strengths of various models. By employing a meta learner, such as Logistic Regression

(LR), to aggregate the outputs of multiple base learners, the model successfully balances the

simplicity of linear models with the complexity of non-linear ones, resulting in superior overall

performance. Additionally, our approach directly addresses the issue of data imbalance, ensur-

ing more accurate and reliable predictions. We also emphasize model interpretability, which is

crucial for deriving actionable insights in educational settings. This strategic integration

Table 4. (Continued)

Resampling type Resampling method Models Precision Recall F1 Accuracy

Hybrid Sampling SMOTEENN NB 0.5657 0.9577 0.7113 0.9595

KNN 0.6489 0.9614 0.7748 0.9709

RF 0.6533 0.9871 0.7862 0.9720

GBDT 0.6785 0.9816 0.8024 0.9748

XGBoost 0.7305 0.9467 0.8247 0.9790

MLP 0.7030 0.9485 0.8075 0.9765

Stacking 0.7067 0.9522 0.8113 0.9769

SMOTETomek NB 0.6619 0.9320 0.7740 0.9717

KNN 0.6675 0.9485 0.7836 0.9727

RF 0.6658 0.9816 0.7935 0.9734

GBDT 0.6996 0.9761 0.8150 0.9769

XGBoost 0.8010 0.8952 0.8455 0.9830

MLP 0.7290 0.9393 0.8209 0.9787

Stacking 0.8247 0.8732 0.8482 0.9837

https://doi.org/10.1371/journal.pone.0312124.t004
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enables our method to outperform individual models, providing more dependable and precise

predictions of learning outcomes.

Model explanation based on SHAP. This section presents the results of the interpretabil-

ity analysis conducted using the SHAP method. To illustrate the specific influence of each fea-

ture on the prediction of learning achievement, a SHAP summary plot for each feature is

introduced (Fig 7).

In Fig 7, the vertical axis represents the Shapley value for each feature, while the horizontal

axis shows the distribution of these values across the samples. Each point on the graph

Fig 6. Receiver operating characteristic curve.

https://doi.org/10.1371/journal.pone.0312124.g006

Table 5. Comparison of results with the existing model.

Models Precision Recall F1 Accuracy

Song et al. [51] 0.8347 0.8262 0.8304 0.9634

Liu et al. [52] 0.8285 0.8104 0.8249 0.9664

Zerkouk et al. [53] 0.8396 0.8294 0.8316 0.9703

Proposed Model 0.8520 0.8676 0.8597 0.9853

https://doi.org/10.1371/journal.pone.0312124.t005
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corresponds to a sample, with the color gradient (ranging from blue to red) indicating the fea-

ture’s value. The middle axis at a SHAP value of 0 signifies minimal feature importance, where

points tend to cluster. The vertical order of the features reflects their relative importance, with

the most influential features listed at the top, descending in significance toward the bottom.

The SHAP summary graph for each feature serves two primary purposes: demonstrating

global feature importance and illustrating how feature values influence predictions of learning

achievement. As shown in Fig 7, quiz score, number of posts, watch time, number of quizzes,

and watch counts emerge as the top five influential factors in predicting learning achievement.

For instance, a higher quiz score is strongly associated with a greater likelihood of course com-

pletion. Similarly, the number of quizzes, as indicated by the number of completed tests,

shows a positive correlation with learning performance [25, 54, 55]. The number of posts

ranks second, with Fig 7 confirming that increased posting activity enhances completion prob-

abilities, aligning with previous studies [56, 57]. Additionally, watch time and watch counts,

which reflect the duration and frequency of video viewing, demonstrate that greater engage-

ment with video content is positively correlated with student success in courses. These findings

highlight the critical role of active participation and focused engagement in shaping learning

outcomes, as revealed through SHAP analysis.

To evaluate the importance of SHAP-identified high-rank features on model performance,

we conducted a comprehensive ablation study. This involved systematically removing each

high-rank feature, retraining the model, and analyzing the impact on key performance metrics,

including precision, recall, F1, and accuracy. The findings, as shown in Table 6, highlight the

crucial role these features play in maintaining the model’s predictive accuracy and generaliza-

tion capability.

The results clearly demonstrate that SHAP-based high-rank features are vital for the mod-

el’s performance. The removal of any top-ranked feature leads to a noticeable decline in all

Fig 7. Model explanation through SHAP.

https://doi.org/10.1371/journal.pone.0312124.g007
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metrics, underscoring their indispensability. For instance, the elimination of critical features

like quiz score and the number of posts results in significant performance drops, emphasizing

their importance in sustaining predictive accuracy. On the other hand, removing features like

age and gender had minimal or even positive effects, suggesting that these factors might con-

tribute to unnecessary model complexity.

Overall, the study confirms that SHAP-identified high-rank features are essential for ensur-

ing the model’s robustness and high predictive accuracy. Their retention is necessary for

achieving effective generalization in educational data mining models.

Beyond the technical findings, these insights have practical applications for educators. By

focusing on the top-ranked features, educators can design more targeted instructional materi-

als, develop personalized learning plans, and optimize learning activities. For example, if stu-

dent engagement with interactive content is identified as a key factor, incorporating more

quizzes and simulations into lessons could enhance learning outcomes. Additionally, SHAP

analysis can inform feedback and assessment strategies, ensuring that feedback is both timely

and aligned with the most impactful factors on student success.

The insights from this study can also guide professional development for educators, helping

them incorporate these findings into their teaching practices. For instance, workshops on cre-

ating engaging content or managing discussion forums can leverage these insights to improve

educational practices.

In summary, integrating SHAP-based feature analysis into educational settings not only

enhances the practical relevance of our study but also demonstrates its broader impact,

enabling educators to create more effective, personalized, and engaging learning environments

tailored to their students’ needs.

Conclusions and limitations

Numerous studies have utilized early prediction methodologies to predict student perfor-

mance through machine learning and statistical analyses [58–62]. However, these efforts have

primarily concentrated on identifying the most influential features for predicting student

learning achievement. In contrast, our proposed method not only achieves high accuracy in

predicting learning performance but also provides interpretable machine learning outputs,

offering valuable insights into the factors influencing student achievement, even for non-

experts.

This research addresses key limitations of previous studies, such as inaccuracies in dropout

prediction and the lack of interpretability in prediction results, by introducing a novel

approach using ensemble learning. Specifically, our stacked ensemble learning technique

Table 6. Experimental results after removing high rank features.

Feature removal Precision Recall F1 Accuracy

Quiz score 0.8207 0.8106 0.8154 0.9609

Number of posts 0.8231 0.8025 0.8161 0.9648

Watch time 0.8336 0.8474 0.8405 0.9732

Number of quizzes 0.8371 0.8695 0.8541 0.9741

Watch count 0.8403 0.8671 0.8553 0.9747

Educational background 0.8392 0.8676 0.8547 0.9753

Age 0.8479 0.8713 0.8595 0.9802

Gender 0.8481 0.8621 0.8551 0.9818

https://doi.org/10.1371/journal.pone.0312124.t006
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integrates data from students’ online learning behavior logs and demographic information,

resulting in a predictive model with an impressive accuracy of 98.53%. Through SHAP value

analysis, we examined the impact of various features on student dropout rates, revealing that

interactions within learning activities—such as video resource usage, quiz participation, and

forum engagement—significantly influence dropout rates more than demographic factors.

While the proposed algorithm demonstrates robust and accurate predictive outcomes, espe-

cially with a large number of predictors, it is important to acknowledge its limitations. The

current research primarily relies on static data sources, lacking comprehensive multimodal

data collection and analysis. This limitation hinders the capture of implicit higher-order fea-

tures, such as learners’ motivation, cognitive engagement, and learning styles, which are

dynamic and context-dependent. To fully capture these features, specialized models like recur-

rent neural networks (RNNs) or temporal convolutional networks (TCNs) are needed, as they

are designed to handle time-varying data.

Moreover, while the model shows high predictive accuracy within the scope of this study,

its generalizability to different educational contexts and diverse student populations is yet to

be established. Further validation with varied datasets and educational settings is necessary to

ensure the model’s robustness and applicability across different scenarios.

In future research, we plan to improve prediction performance by developing more sophis-

ticated features using deep learning models. We will incorporate established theories such as

inquiry community theory, self-determination theory, and the technology acceptance model

to gather comprehensive multimodal datasets from online learning environments. These data-

sets will enable us to apply deep learning techniques to extract nuanced features like learner

motivation and learning style, enhancing our ability to identify and predict student dropout

risks early. Additionally, we intend to implement this framework as an automated solution for

academic institutions, validating its effectiveness in real-world educational settings. For

instance, the system could proactively alert at-risk students and provide educators with action-

able recommendations for timely interventions.
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