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Abstract

Background

Mast cells (MCs) are multifaceted immune cells that are capable of recognizing and
responding to various stimuli by releasing an array of cytokines. We aimed to use human
cord blood-derived mast cells (hCBMCs) as a model to evaluate different conditions under
which chemokines and growth factors are expressed and secreted as mediators upon stim-
ulation with the alarmin interleukin-33 (IL-33).

Methods

hCBMCs were stimulated with 10 ng/mL or 20 ng/mL of recombinant human IL-33 (rhIL-33)
for 6 h (acute) or 24 h (chronic). The mRNA expression of chemokines and growth factors
was analyzed using microarrays, and the mediators released in the supernatant were evalu-
ated using a multiplex assay.

Results

The mRNA expression levels of C-C chemokine ligands (CCL) CCL1, CCLS5, granulocyte
macrophage colony-stimulating factor (GM-CSF), and macrophage inflammatory protein
(MIP)-4/CCL18 were upregulated under all conditions. In contrast, C-X-C motif chemokine
ligand (CXCL) CXCL8 and CCL24 levels increased only under acute (6 h) and prolonged
(24 h) conditions, respectively. Moreover, high levels of CXCL8, MIP-1a, and MIP-1(8 were
secreted during acute inflammation, whereas the release of GM-CSF and CXCLS9 proteins
increased under all four conditions.
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Conclusions

This study highlights the sentinel role of MCs in mounting a specific immune response
against a pathogenic-like stimulus in a timely and dose-dependent manner and is relevant
for improving inflammatory treatment options.

Introduction

Mast cells (MCs) are immune cells that play a key role in connecting innate and acquired
immune systems. In humans, MCs originate from the bone marrow cluster of differentiation
(CD)34" hematopoietic stem cells, circulate in the blood as CD117" committed progenitors
[1], and complete their differentiation into CD34 CD117"Fc Epsilon Receptor I (FceRI)Y
cells in the tissue [1, 2]. MCs are found in all tissues and their phenotypes are generally classi-
fied according to the combination of proteases contained within their granules. MCs found in
connective tissue contain chymase and tryptase, whereas MCs in mucosal tissue only contain
chymase. MCs play a key role in hypersensitivity reactions as they release numerous pro-
inflammatory mediators (histamine, leukotrienes, and chemokines) in response to allergens
through immunoglobulin E (IgE)-FceRI crosslinking [3, 4]. In addition to their role in hyper-
sensitivity, MCs recognize and respond to innate signals and cytokines.

Interleukin-33 (IL-33) belongs to the IL-1 family of pro-inflammatory cytokines. It is
released from epithelial and endothelial cells following necrosis and activates MCs via interleu-
kin 1 receptor-like 1 (IL1RL1)/ suppression of tumorigenicity 2 (ST2) surface receptors [5, 6].
IL-33 amplifies the inflammatory response of mast cells, leading to increased release of media-
tors. This effect was notably observed when mast cells activated by the severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) spike protein or complement peptides were co-stimu-
lated with IL-33 [7, 8]. C-C chemokine ligands (CCL) CCL2 and CCL5 are released by MCs
upon IL-33 stimulation, and thus contribute substantially to inflammation [9]. Both CCL2 and
CCLS5 promote the accumulation of macrophages and granulocytes in the airways of asthma
patients, thereby increasing the severity of airway inflammation [10, 11].

However, a comprehensive understanding of the mediators released by MCs in response to
IL-33 stimulation has yet to be achieved. This study leveraged high-throughput microarrays
and multiplex enzyme-linked immunosorbent assay (ELISA) to evaluate chemokines and
growth factors expressed and secreted by human cord blood-derived mast cells (hCBMCs) in
response to acute and chronic stimulation with IL-33.

Materials and methods
Sample collection

Umbilical cord blood was collected from healthy donors after obtaining informed consent
from December 02, 2020 to September 04, 2021. This study was approved by the Biomedical
Ethics Unit, Faculty of Medicine, King Abdulaziz University (KAU, Approval Number 590-
20). To yield sufficient cell numbers, each sample consisted of cord blood pooled from to 2-3
donors. CD34" hematopoietic stem cells were isolated using Lymphoprep (1.077 g/ml, Axis
Shield, Oslo, Norway), followed by CD34 microbead labelling and magnetic-activated cell sort-
ing (Miltenyi Biotec Inc., Bergisch Gladbach, Germany).
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hCBMC culture and stimulation by IL-33

CD34" hematopoietic stem cells were cultured in AIM-V medium (Thermo Fisher Scientific,
Waltham, MA, USA) supplemented with recombinant human interleukin-6 (rhIL-6, 50 ng/
mL; Thermo Fisher Scientific) and stem cell factor (rhSCF, 100 ng/mL; Miltenyi Biotec Inc.)
for 8-10 weeks to support their differentiation. hCBMCs were characterized by MC phenotyp-
ing using the flow cytometric MC-specific markers BV421 mouse anti-human CD117,
PerCP-Cy5.5 mouse anti-human CD23, APC mouse anti-human CD203¢, FITC mouse anti-
human CD45, and BV510 FCeR1a (BD Biosciences, Franklin Lakes, NJ, USA, S1 and S2 Figs);
cell imaging using Giemsa and toluidine blue to visualize the granules; and gene set enrich-
ment analysis to test possible dysregulation in molecular pathways, as previously reported [2].
hCBMCs were treated under four different conditions: stimulated with either 10 or 20 ng/mL
recombinant human IL-33 (rhIL-33; Sino Biological, Beijing, China) and then incubated for 6
h or 24 h in a humidified cell culture chamber at 37°C with 5% CO,. The rhIL-33 concentra-
tions used were in the range commonly used for assessing inflammatory effects. The two dif-
ferent incubation periods address immediate, acute, and prolonged inflammatory responses,
respectively.

Multiplex evaluation of chemokines and growth factors released by
hCBMCs

The levels of chemokines and growth factors in hCBMC culture supernatants were measured
using the Human Cytokine Magnetic 30-Plex Panel (Novex® Invitrogen, Thermo Fisher Sci-
entific; Catalogue number: LHC6003M) according to the manufacturer’s guidelines and ana-
lyzed using the MAGPIX® instrument (Luminex Corporation, Austin, TX, USA). Each
condition was set up in triplicate and each triplicate was measured four times.

Total RNA isolation and microarray hybridization

Total RNA was isolated using the RNAeasy Mini Kit (Qiagen, Hilden, Germany), followed by
on-column DNase digestion with the RNase-free DNase set (Qiagen) according to the manu-
facturer’s instructions. Two biological replicates for microarray experiments were assessed
using Affymetrix Gene Chip Human Gene 1.0 ST arrays (Thermo Fisher Scientific), according
to the manufacturer’s instructions, as previously described [2]. Subsequently, the arrays were
scanned using an Affymetrix GeneChip® scanner 3000 7G, and the resulting raw CEL files
were subjected to quality control and analyzed using Transcriptome Analysis Console (TAC)
software (Thermo Fisher Scientific). The generated datasets were submitted to NCBI's Gene
Expression Omnibus (GEO) and are accessible under accession number GSE224089.

Gene set enrichment analysis

The WEB-based Gene SeT AnaLysis Toolkit (WebGestalt) was used to perform the functional
enrichment analysis [12]. Here, the gene set enrichment analysis (GSEA) method and Gene
Ontology (GO) [13, 14] functional database were used to annotate the biological processes
associated with a set of all 53 chemokines and growth factors detected in hCBMCs by Affyme-
trix Gene Chip Human Gene 1.0 ST arrays (Thermo Fisher Scientific). The parameters used
for the analysis were as follows: the minimum number of IDs in each category was set to five,
the maximum number of IDs was set to 2000 and the number of maximal permutations was
set to 1000. The top five positively enriched categories were ranked based on p-value and
enrichment score (ES).
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Statistical analysis

Transcriptome data were analyzed using TAC and are represented as Log2 fold change (FC)
when samples or groups of samples were compared. Significance was calculated using TAC’s
built-in empirical Bayes and was defined as FC > 2 and p < 0.05.

The accuracy of the protein level data is represented as mean + standard deviation (SD).
The variance between the IL-33-induced groups and the control was calculated using two-way
analysis of variance (ANOVA) followed by Tukey’s multiple comparisons test, and p < 0.05
was considered statistically significant. Statistical analyses were performed, and graphs were
generated using GraphPad Prism 9.3.1 (GraphPad Software, San Diego, CA, USA).

Results
rhIL-33 induced the expression of chemokines in hCBMCs

The overall transcriptome of hCBMCs in response to rhIL-33 was evaluated and compared to
that of untreated controls using Affymetrix microarray technology. Table 1 shows the differen-
tial expression of the chemokines at the mRNA level. rhIL-33 potently increased the mRNA
expression of CCL1, CCL5, and CCL18 (FC > 2, p < 0.05) in both acute and prolonged condi-
tions, represented by exposure to rhIL-33 for 6 and 24 h, respectively. Moreover, the mRNA
expression of C-X-C motif chemokine ligand 8 (CXCL8/IL-8) was significantly elevated after 6
h of stimulation, while that of CCL24 was significantly elevated after 24 h.

hCBMC:s released chemokines in response to rhIL-33

Evaluation of the released chemokines in the supernatant of hCBMCs using a multiplex assay
did not reveal a change in the release of CCL5 or CCL11, despite the increase in the former’s
mRNA expression (Fig 1A and 1B); however, a potent increase in the release of CXCL8 was
observed after stimulation with IL-33 for 6 h, which dropped significantly after 24 h of expo-
sure (p < 0.05; Fig 1C). Moreover, CXCL9 was significantly elevated in the hCBMC superna-
tant after 6 h and 24 h of stimulation with IL-33 compared to the control (Fig 1D).

Differential expression of growth factors and macrophage inflammatory
chemokines by hCBMC:s in response to rhIL-33

The mRNA expression of growth factors was analyzed, revealing an increase in the expression
of colony-stimulating factor 2 (CSF2), encoding granulocyte-macrophage colony-stimulating

Table 1. mRNA expression of chemokines in hCBMCs in response to acute and prolonged rhIL-33 stimulation.

10 ng/mL for 6 h vs CTRL 10 ng/mL for 24 h vs CTRL 20 ng/mL for 6 h vs CTRL 20 ng/mL for 24 h vs CTRL
Gene symbol FC P-value FC P-value FC P-value FC P-value
CCL1 28.08 8.69E-06*** 25.88 1.06E-05*** 34.88 5.29E-06™** 33.72 5.70E-06***
CCL5 3.2 0.0252* 3.54 0.0172* 4.27 0.0087** 5.4 0.0038™*
CCL11 -1.18 0.3768 -1.37 0.1068 -1.23 0.2748 -1.3 0.1704
CCL18; MIP-4 7.02 0.0146* 11.41 0.0046** 8.37 0.0095** 12.42 0.0037**
CCL24 2.67 0.1265 4.22 0.0362* 3.26 0.0738 4.22 0.0361*
CXCLS; IL-8 7.75 0.0151* 2.28 0.2562 9.57 0.0093** 2.7 0.1775
CXCL9 -1.02 0.8314 -1.04 0.7061 -1.05 0.6672 -1.04 0.6858

mRNA expression was analyzed using microarray and TAC software. Fold change (EC).

*p < 0.05
**p <0.01
% 5 < 0.001.

https://doi.org/10.1371/journal.pone.0311981.t001
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Fig 1. Concentrations of chemokines measured in the hCBMC supernatant via a multiplex xMAP assay after
stimulation with 10 and 20 ng/mL of IL-33 for 6 and 24 h, in comparison to an untreated control. (a) CCL5. (b)
CCL11/Eotaxin. (c) CXCL8/IL-8. (d) CXCL9. * p < 0.05, ** p < 0.01. All experiments were performed with four
independent biological replicates.

https://doi.org/10.1371/journal.pone.0311981.g001

factor (GM-CSF). However, no changes were detected in other growth factors, namely CSF3,
epidermal growth factor (EGF), fibroblast growth factor 2 (FGF2), and vascular endothelial
growth factor A (VEGFA). Furthermore, the mRNA expression of CCL18 encoding macro-
phage inflammatory protein-4 (MIP-4) was highly elevated upon both acute and prolonged
exposure to rhIL-33, whereas no significant changes were detected in CCL3/MIP-1a, CCL4/
MIP-1B, or monocyte chemoattractant protein-1 (CCL2/MCP-1; Table 2). Further, the mRNA
expression data from microarray were summarized in S1 Table.

hCBMC:s release growth factors and macrophage inflammatory proteins in
response to rhIL-33

Evaluation of the supernatant of hCBMCs did not reveal a change in the levels of the ana-
lyzed growth factors FGF, EGF, VEGF, and G-CSF (Fig 2A-2D), except for GM-CSF, which
increased in the supernatant after both 6 and 24 h of exposure to rhIL-33 (Fig 2E). Although
the mRNA expression of CCL3/MIP-1a. and CCL4/MIP-1p was not significantly altered in
response to IL-33, a four-fold increase in CCL3/MIP-1a protein was detected in the super-
natant of hCBMCs, accompanied by an over ten-fold increase in CCL4/MIP-1f protein lev-
els after 6 h. Moreover, the increase in both MIPs decreased after 24 h of stimulation with
IL-33 (Fig 3B and 3C), whereas no significant change was detected in the release of MCP-1
(Fig 3A).
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Table 2. mRNA expression of growth factors and macrophage inflammatory proteins in hCBMCs in response to acute and prolonged rhIL-33 stimulation.

10 ng/mL for 6 h vs CTRL 10 ng/mL for 24 h vs CTRL 20 ng/mL for 6 h vs CTRL 20 ng/mL for 24 h vs CTRL
Gene symbol FC P-value FC P-value FC P-value FC P-value
CSF2; GM-CSF 7.82 0.0031** 3.73 0.0298* 10.67 0.0013** 5.45 0.0091**
CSF3; G-CSF -1.05 0.6813 -1.17 0.2397 -1.17 0.246 -1.27 0.082
EGF -1.06 0.7435 1.03 0.8812 -1.12 0.5226 -1.11 0.5534
FGF2 -1 0.997 1.04 0.7391 -1.05 0.6308 1 0.997
VEGFA 1.66 0.0545 1.01 0.9518 2.13 0.0095 1.11 0.6606
CCL2; MCP-1 -1.01 0.9504 -1.51 0.1068 1.07 0.7788 -1.31 0.2703
CCL3; MIP-1a 1.77 0.2447 1.84 0.2198 1.76 0.2498 1.81 0.2308
CCL4; MIP-1b 2.72 0.3343 1.52 0.6794 3.48 0.236 1.9 0.53

mRNA expression was analysed using microarray and TAC software. Fold change (FC).
*p <0.05

**p<0.01

% 5 < 0.001.

https://doi.org/10.1371/journal.pone.0311981.t1002

Biological processes enriched in hCBMCs in response to rhIL-33
stimulation

Enrichment analysis of chemokines and growth factors expressed by hCBMCs using WebGes-
talt revealed distinct biological processes that were enriched after acute and prolonged stimula-
tion with rhIL-33. hCBMCs exposed to 10 ng of rhIL-33 for 6 h (Fig 4A) showed enrichment
of the positive regulation of cytokine production GO:0001819 (ES = 0.901, p = 0.012), whereas
hCBMCs exposed for 24 h (Fig 4B) displayed enrichment of the positive regulation of the
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Fig 2. Concentrations of growth factors measured in hCBMC supernatant via a multiplex XMAP assay after stimulation
with 10 and 20 ng/mL IL-33 for 6 and 24 h in comparison to an untreated control. (a) FGF-B. (b) EGF. (c) VEGF/VEGF-A
ratio. (d) G-CSF/CSF3. (¢) GM-CSF/CSF2. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. All experiments were
performed in four independent biological replicates.

https://doi.org/10.1371/journal.pone.0311981.9002
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Fig 3. Concentrations of monocyte-targeting chemokines measured in hCBMCs’ supernatants via a multiplex
xMAP assay after stimulation with 10 and 20 ng/mL IL-33 for 6 and 24 h, in comparison to an untreated control.
(a) CCL2/MCP-1. (b) CCL3/MIP-1c. (c) CCL4/MIP-1B. * p < 0.05, ** p < 0.01. All experiments were performed in
four independent biological replicates.

https://doi.org/10.1371/journal.pone.0311981.g003

defense response GO:0031349 (ES = 0.892, p = 0.001), regulation of the inflammatory response
G0:0050727 (ES = 0.870, p = 0.003), response to IL-1 GO:0070555 (ES = 0.669, p = 0.03), and
response to tumor necrosis factor GO:0034612 (ES = 0.646, p = 0.04).

A similar pattern was observed when hCBMCs were exposed to 20 ng rhIL-33. hCBMCs
exposed for 6 h (Fig 5A) showed enrichment of positive regulation of cytokine production
(ES =0.915, p = 0.01), whereas cells exposed for 24 h (Fig 5B) showed enrichment of positive
regulation of the defense response (ES = 0.904, p = 0.003), regulation of the inflammatory
response (ES = 0.886, p = 0.005), and positive regulation of cytokine production (ES = 0.88,
p =0.04).

Discussion

This study sheds light on the interplay between MCs and IL-33 expression. These findings con-
tribute to our understanding of the roles of MCs and IL-33 in chemotaxis and immune cell
polarization during inflammation.

The release of chemokines by MCs has been previously evaluated by Emi-Sugie et al. [15] in
the mucosal MC phenotype derived from peripheral blood. Our previous study analyzed cyto-
kines released by the connective tissue MC phenotype derived from human cord blood CD34"
progenitors [2, 16]. To obtain a complementary picture, this study evaluated the release of che-
mokines and growth factors.

MC:s have previously been linked to eosinophilic asthma [17], and CCL24 (Eotaxin-2) is
known to augment inflammation by recruiting eosinophils to the airways [18]. CCL24 was sig-
nificantly increased after prolonged stimulation with rhIL-33.

PLOS ONE | https://doi.org/10.1371/journal.pone.0311981 October 21, 2024 7/13


https://doi.org/10.1371/journal.pone.0311981.g003
https://doi.org/10.1371/journal.pone.0311981

PLOS ONE

Acute and chronic impact of interleukin-33 in mast cells

[N FDR < 0.05 FDR > 0.05

positive regulation of cytokine production '
positive regulation of secretion
second-messenger-mediated signaling |
response to interferon-gamma |
divalent inorganic cation homeostasis ’
ERK1 and ERK2 cascade '
leukocyte differentiation |
myeloid cell differentiation |
positive regulation of cell mtiity
positive regulation of ion transport |
positive regulation of cell adhesion
developmental growth involved in morphogenesis
regulation of cell division
protein kinase B signaling
regulation of protein serine/threonine kinase activity
negative regulation of locomotion
negative regulation of cellular component movement
lipid modification
glycerolipid metabolic process

phospholipid metabolic process
r T T T T y T |

-20 -15 -1.0 -05

0.0
Normalized Enrichment Score

[N FDR < 0.05 FDR > 0.05

positive reguiation of defense responsa |
positive regulation of secretion
regulation of peptide secretion |
response to interleukin-1 |
response to tumor necrosis factor |
regulation of GTPase activity |
response to interferon-gamma |
ERK1 and ERK2 cascade |
regulation of vasculature development |
positive regulation of cell adhesion
protein kinase B signaling
gland development
positive regulation of growth
cell-substrate adhesion
regulation of cell-cell adhesion
developmental growth involved in morphogenesis
defense response to other organism
morphogenesis of a branching structure
ameboidal-type cell migration

-0.2 0.0 0.2 04 06 08 10 12 14 16 18
Normalized Enrichment Score

Fig 4. Biological processes enriched in hCBMCs stimulated with 10 ng rhIL-33 for (a) 6 h and (b) 24 h. The analysis
was performed using the WebGestalt software. FDR: False discovery rate.

https://doi.org/10.1371/journal.pone.0311981.9004

Furthermore, MCs are essential for defending the body and clearing viral and parasitic
infections [19, 20]. rhIL-33 elicited a strong increase in the mRNA expression of CCLI, a che-
mobkine essential for mounting an effective immune response against helminths by promoting
the survival and proliferation of group 2 innate lymphoid cells [21]. MCs also release CXCL9
upon acute stimulation with rhIL-33, which is crucial for efficient pathogen clearance because
it recruits CD4" and CD8™ T cells [22]. Moreover, CXCL8 (IL-8) levels were dramatically
increased. It is also notable that this potent neutrophil chemoattractant and activator showed a
significant decrease after 24 h, which aligns with the pivotal function of neutrophils in rapidly
mounting an immune response against viruses and bacteria [23-25].

In addition to chemokines, MCs can produce an array of growth factors, the expression
and release of which was assessed in this study in IL-33-activated MCs. GM-CSF is a growth
factor that promotes the migration and responsiveness of eosinophils, neutrophils and mono-
cytes [26-28]. The upregulation of GM-CSF is strongly associated with acute conditions. How-
ever, the upregulation of CCL18/MIP-4 was more strongly associated with prolonged
exposure. CCL18/MIP-4 recruits type-2 T helper cells (Th2) and basophils and induces media-
tor release [29].
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performed using WebGestalt. FDR: False discovery rate.
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Moreover, IL-33-activated MCs are associated with macrophage infiltration in gastric
tumors [30]. Stimulation of hCBMCs with rhIL-33 induced drastic release of CCL3/MIP-1a
and CCL4/MIP-1p within 6 h. CCL3/MIP-1a promotes monocyte chemotaxis and polariza-
tion into the proinflammatory M1 subtype [31, 32]. In contrast, CCL4/MIP-1f promotes
eosinophil chemotaxis [33]. In patients with asthma, monocytes are recruited into the airways
by the actions of CCL5 [34], which was increased in our study at the mRNA level; however, no
notable change was observed at the released protein level, suggesting distinct modulation of its
mRNA expression and protein release.

Notably, we observed a mismatch between mRNA and secreted protein levels of a number
of mediators, namely CCL1, CCL5, CCL24, CXCL8, CXCL9, CCL3/MIP-10, and CCL4/MIP-
1P. Secreted proteins have been previously reported to exhibit imperfect correlation with
mRNA levels, which can be explained by post-transcriptional regulation, individual sequences,
and gene class characteristics [35, 36].

WebGestalt analysis revealed a distinct response of hCBMCs to IL-33 under acute and pro-
longed stimulation. Acute stimulation, represented by exposure for 6 h, enriched the positive
regulation of cytokine production. This early response is consistent with IL-33’s role as a
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proinflammatory cytokine capable of stimulating the immune response [37]. However, after
prolonged stimulation for 24 h, the enrichment shifted towards processes associated with the
defense response, a crucial function of MCs [19, 20], followed by regulation of the inflamma-
tory response, including modulation of inflammation, which was also portrayed by the
decreased production of CXCL8, GM-CSF, CCL3/MIP-10, and CCL4/ MIP-1p upon pro-
longed exposure to rhIL-33. These findings highlight the multifaceted nature of the response
of hCBMC:s to rhIL-33 and the importance of considering the duration of IL-33 exposure
when studying the immune response in MCs.

Conclusions

In conclusion, this study highlights various mediators released by hCBMCs in response to
rhIL-33 stimulation. Chemokines and growth factors released by IL-33-activated MCs are
essential for mounting an effective immune response against pathogens; however, they have
also been implicated in exacerbating inflammation. Therefore, these findings not only advance
our understanding of MCs but also pave the way for exploring potential therapeutic targets for
inflammation.
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