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Abstract

Mitogen-activated protein kinase 1 (MAPK1) is a serine/threonine kinase that plays a crucial
role in the MAP kinase signaling transduction pathway. This pathway plays a crucial role in
various cellular processes, including cell proliferation, differentiation, adhesion, migration,
and survival. Besides, many chemotherapeutic drugs targeting the MAPK pathway are used
in clinical practice, and novel inhibitors of MAPK1 with improved specificity and efficacy are
required. Hence, targeting MAPK1 can be crucial to control metastasis in cancer therapeu-
tics. In this study, we utilized a structure-guided virtual screening approach to screen a
library of thousands of natural compounds from the ZINC database. The Lipinski rule of five
(RO5) was used as a criterion for the primary selection of natural compounds. The screened
compounds were prioritized based on their binding affinity, docking scores, and specificity
towards the kinase domain of MAPK1 during the molecular docking process. Subsequently,
the selected hits underwent rigorous screening that included the identification of potential
pan-assay interference compounds (PAINS), ADMET evaluation, and prediction of pharma-
cological activities using PASS analysis. Afterwards, we performed a comprehensive inter-
action analysis to explore the binding prototypes of the screened molecules with the key
residues within the MAPK1 kinase domain. Finally, selected molecules underwent extensive
all-atom molecular dynamics (MD) simulations for a time duration of 200 nanoseconds. The
study pinpointed three natural compounds with ZINC database IDs ZINC0209285,
ZINC02130647, and ZINC02133691 as potential inhibitors of MAPK1. The study highlights
that these compounds could be explored further in preclinical and clinical investigations to
develop anticancer therapeutics.

1. Introduction

In humans, the MAPK1 gene encodes the protein mitogen-activated protein kinase 1 (MAPK
1), often referred to as ERK2. Ras/Raf/MEK/ERK is the key signaling pathway cascade that
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combines external clues from cell surface receptors with gene expression and protein regula-
tion from several cellular components [1]. It is a highly conserved serine-threonine kinase that
is involved in various biological processes. It can independently transduce extracellular signals
into the cells to control the expression of related genes [2]. Therefore, it is essential for many
physiological events, including metabolism, development, memory formation, and immunity.
MAPKI1 is the subfamily of the MAPK pathway. It has abnormal expression in various cancer-
ous diseases, as suggested by previous research [3]. Additionally, it has been noted that HeLa
cell interference with MAPK1 expression can dramatically reduce cancer cell growth and trig-
ger cell death. According to certain studies, cervical cancer cells’ ability to undergo the epithe-
lial-mesenchymal transition (EMT) may be strongly aided by the activation of the MAPK1
signalling pathway [4].

One of the biggest problems with public health is cancer. It is a complicated disease with a
wide range of etiologies, symptoms, and prognoses. Each year, millions of people are affected
by the various cancers worldwide. According to the assumption by the International Agency
for Research on Cancer (IARC), there would be 16.4 million deaths associated with cancer-
related disease and 29.5 million new cases could be noticed globally in 2040, an increase of
roughly 1.6-1.7 times from 2018 predictions [5]. The scientific and pharmaceutical communi-
ties have focused a great deal of emphasis on protein kinases in the past ten years to develop
small molecule inhibitors. MAPK1 is a dual-specificity kinase that needs both serine and thre-
onine residues to be phosphorylated to become catalytically active. MAPKI1 is a member of the
class of dual-specificity kinases [6]. MAPK1 creates a point of convergence for numerous
upstream pathways, providing a powerful inhibitory effect. The identification of MAPK1
inhibitors may have implications for several diseases, most notably cancer progression. Here,
we implicated a structure-based rational drug design approach for targeting MAPK1 in order
to find new leads that may have a potent inhibitory effect [7]. The structural organization of
MAPKI is shown in Fig 1.

Nowadays, drug development is a multifaceted process involving academia, industry, and
innovative approaches. Academic institutions contribute significantly, with success rates
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Fig 1. Cartoon and surface representation of MAPKI1 protein structure highlighting ATP binding site and active
site indicating key functional regions critical for its biological activity.

https://doi.org/10.1371/journal.pone.0311954.g001
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varying across phases (Phase I: 75%, Phase II: 50%, Phase III: 59%, NDA (New Drug Applica-
tion)/ BLA (Biologics License Application) phase: 88%). Challenges persist, but innovations
like artificial intelligence and in vitro technologies aim to accelerate research and development.
Drug repurposing and molecular-level disease understanding also play key roles. The future
lies in personalized, effective, and non-toxic drug design [8].

In this study, we screened about ~22000 natural compounds that were taken from the
ZINC database. A molecular docking-based virtual screening approach was utilized to get the
high-affinity molecules that can bind with the MAPK1. We conducted ADMET analysis, fol-
lowed by PASS (Prediction of Activity Spectra for Substances) analysis, on the chosen com-
pounds. Subsequently, we screened the compounds based on their specific interactions with
the MAPK1 binding pocket by utilizing the top hits generated. Furthermore, for deeper
insights into the dynamic behavior of the protein and its complex, all-atom MD simulations
were performed for the time duration of 200 ns [9].

In recent years, a few MAPKI1 inhibitors have been developed and are under clinical evalua-
tion, as suggested by previous studies [10]. Multiple methods have recently been combined to
develop diverse classes of MAPK1 inhibitors to control different types of cancer [11]. How-
ever, the MAPKI inhibitors currently on the market are not specific and can have both on-
and off-target effects. Therefore, safe and effective MAPK1 inhibitors must be developed for
the treatment of cancer and its related disorders. Our approach of using the ZINC database for
structure-based virtual screening for the discovery of potent MAPK1 inhibitors for the devel-
opment of therapeutic compounds for the treatment of cancer. After the necessary changes,
the identified molecule with better pharmacological characteristics can be further assessed for
the development of selective MAPK1 inhibitors [12].

2. Material and methods
2.1. Computational resources

A systematic approach of structure-guided virtual screening based on molecular docking and
simulation studies was carried out using various bioinformatics software, such as InstaDock
[13], Discovery Studio Visualizer [14], GROMACS [15], and PyMOL [16]. The RCSB-Protein
Data Bank (PDB), pkCSM server, QtGrace, SigmaPlot, SwissADME, and other tools were uti-
lized for data interpretation and retrieval. The 3-dimensional structure of the protein was
retrieved from the RCSB Protein Data Bank (https://www.rcsb.org/) with PDB ID: 8AQJ at the
resolution of 1.12 A. We have used PyMOL to process the structure by isolating the kinase
domain from all coordinates and examining the structure and heteroatoms. Water molecules
and co-crystallized ligands were removed from the initial coordinates. The structure of
MAPKI1 was further refined by remodelling all the missing residues, followed by adding the
hydrogen atom to the polar group, and then the appropriate atom types were assigned for the
docking-based screening in InstaDock. The library containing ~22000 RO5 filtered com-
pounds was taken from the ZINC database for screening [15, 17].

2.2. Molecular docking-based virtual screening

Molecular docking is a computational technique that determines a most suitable orientation of
a molecule while binding to its receptor. It is used to see interactions of ligands with the recep-
tor, typically proteins [18]. In this study, docking was carried out to obtain the binding affinity
and the best conformational pose of the selected compounds for the MAPK1. Molecular dock-
ing was performed on the high-performance workstation with Intel i7, the 14th generation,
with 28 CPU cores and a Windows 10 operating system. In this investigation, protein-ligand
docking was conducted using InstaDock with blind search space with a grid size of 75 A, 60 A,
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and 80 A for X, Y, and Z coordinates, respectively. The center of the grid was set to X: —1.85,
Y: 5.23, Z: 38.32 axes. Furthermore, based on the ligand efficiency and energy values, the dock-
ing result was filtered. Discovery Studio Visualizer and PyMOL were used to visualize the
structures for the investigation of bound conformation and various interactions between
MAPKI1 and selected compounds.

2.3. Pharmacokinetic evaluation

It was not expected that the annual increase in newly developed structures would be accompa-
nied by a rise in the number of drugs that are commercialized in the market. Poor pharmaco-
kinetic characteristics of the compounds have been a reason for this [19]. Thus, appropriate
screening filters for ADMET parameters are crucial. In this study, the compounds obtained
from docking were analyzed based on their physicochemical and ADMET properties using the
SwissADME [20] and pkCSM web servers [21].

2.4. Interaction analysis

The exploration of 2D interactions offers valuable insights into residual interactions, inhibitory
patterns, and bond types between receptors and ligands. This analysis was facilitated using Dis-
covery Studio Visualizer, followed by validation using PyMOL to confirm the binding and
interaction patterns of three selected compounds identified through PASS analysis [22]. The
resulting out files of these three compounds revealed a total of 27 docked conformations,
which were evaluated by analyzing interacting residues as an initial step. Hydrogen bonding
and other interactions, such as pi-pi bonds, are essential for drug development because they
improve the structural stability, catalysis, and biological activity characterization of receptors
on ligand binding [23]. Hydrogen bonds to catalytically important residues can stabilize the
transition state of the enzymatic reaction, thereby lowering the activation energy required for
the reaction to proceed. This stabilization is crucial for enhancing the efficiency of the interac-
tion. These hydrogen bonds often result in stronger interactions between the ligands and the
target protein, leading to higher binding affinity. This is because the catalytically important
residues are typically located in key positions within the active site, where they can form opti-
mal interactions with the ligand. Also, they can contribute to the selectivity of the ligand for
the target protein. The angle and distance cut-off for hydrogen bonds between donor (D) and
acceptor (A) were set to 3.5 A and 150-180°, respectively. These hydrogen bonds can help
maintain the proper conformation of the enzyme’s active site, ensuring that it remains in an
optimal state for the interaction.

2.5. Molecular dynamics simulations

The virtual screening discoveries led to the molecular mechanics level, where we conducted a
200 ns MD simulation on three selected compounds along with free state MAPK1 at 300 K.
Simulation were done using GROMACS software employing the Chemistry at Harvard Mac-
romolecular Mechanics (CHARMM) forcefield [24]. For each compound, topologies and
force field parameters were developed by using CGenFF (https://cgentf.com/). Each ligand-
MAPK1 system was simulated in a virtual cubic box of water with a dimension of 10 A and sol-
vated by using gmx solvate module in the TIP3P water model. The TIP3P model is relatively
simple, consisting of three interaction sites, which makes it computationally efficient. TIP3P is
very compatible with the CHARMM force field, making it a better choice for MD simulation.
All systems were energy-minimized using the steepest descent algorithm followed by charge
neutralization. The temperature of all systems was gradually heated from 0 to 300 K over a
1000 ps equilibration phase at constant volume under periodic boundary conditions. The final
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MD run of 200 ns was performed on all the systems. Quality check metrics, such as kinetic
energy, volume, density, and enthalpy, were used to authenticate the obtained simulations for
MAPKI1 and its ligand complexes [18]. The simulated GROMACS trajectories generated on
parameters including RMSD (root mean square deviation), RMSF (root mean square fluctua-
tion), Rg (radius of gyration), SASA (solvent accessible surface area), PCA (principle compo-
nent analysis), and others, for each residue with respect to time function, wherein QtGrace
plotted graphs to illustrate MAPK1 residual interaction and stability on ligand binding [25].

3. Results and discussion
3.1. Molecular docking-based virtual screening

A library of ~22000 compounds from the ZINC database was utilized for a comprehensive
strategy of virtual screening to discover MAPK1 selective inhibitors. After the docking run, the
docking software created log files and out files for each compound, which included affinity
scores and docked poses, respectively. It helps eliminate compounds based on unsuitable bind-
ing affinities, docking score, and binding position [26]. The virtual screening suggested a sig-
nificant number of promising hits with a high binding affinity towards the MAPK1 binding
cavity, making them suitable candidates for additional screening for MAPKI1 inhibitors [27].
The filtering of docked output revealed 100 hits out of 22000 compounds with a significant
binding affinity to MAPK1 ranging from —12.0 to —10.3 kcal/mol (S1 Table). Since a higher
binding affinity value indicates a more stable receptor-ligand complex, we anticipate increased
stability in the complexes created using these 100 selected compounds [28]. Table 1 shows the
binding affinity of the top 10 compounds selected based on their physicochemical and phar-
macokinetics properties and a control molecule. Structures of these compounds are shown in
S2 Table. The docking results revealed that the chosen compounds have a great ability to bind
MAPK]1 with substantial ligand efficiency. These findings suggested that the molecules that
were chosen could be turned into novel MAPK1 inhibitors for therapeutic development in
cancer treatment.

3.2. Physicochemical and pharmacokinetic properties

To evaluate the ADMET profile of the top ten selected compounds and a control molecule,
Ulixertinib, we used the pkCSM online server. The SMILE strings of all structures were
obtained from Discovery Studio Visualizer and used as input to predict ADMET properties
[29]. A ligand’s physicochemical and pharmacokinetic characteristics may determine whether

Table 1. Selected hits and a control molecule with their docking scores with MAPK1.

S. No. Ligand
ZINC02161110
ZINC02161108
ZINC03844856
ZINC02092851
ZINC02161106
ZINC02119958
ZINC04083885
ZINC03839446
ZINCO02130647
ZINC02133691

11. Ulixertinib (control)

https://doi.org/10.1371/journal.pone.0311954.t001

0P NN [ [ WD

—
=4

Binding free energy (kcal/mol) pKi Ligand efficiency (kcal/mol/non-H atom)
-11.6 8.51 0.3053
-11.2 8.21 0.2947
-11.1 8.14 0.3083
-11.0 8.07 0.3056
-10.9 7.99 0.2868
-10.8 7.92 0.3375
-10.7 7.85 0.3147
-10.6 7.77 0.2865
-10.5 7.70 0.31
-10.4 7.63 0.3059
-9.2 6.75 0.3172
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Table 2. ADMET properties of the 10 selected natural compounds and a control molecule.

S. No.

O 0[N O (U1 9N

-
o

11.

Compound ID

ZINC02161110
ZINC02161108
ZINC03844856
ZINC02092851
ZINC02161106
ZINC02119958
ZINC04083885
ZINC03839446
ZINC02130647
ZINC02133691

Ulixertinib (control)

Absorption Distribution Metabolism Excretion Toxicity
(GI absorption) (BBB permeability) (CYP2D6 inhibitor) (OCT2 Substrate) (AMES/Hepatoxic)
94.81 -0.25 No No No
94.81 -0.25 No No No
100 -1.02 No No No
100 -0.97 No No No
94.81 -0.25 No No No
100 —-0.55 No No No
95.77 -0.12 No No No
91.19 -1.3 No No No
98.95 —-0.83 No No No
96.36 -0.95 No No No
88.28 —-0.84 No No Yes

https://doi.org/10.1371/journal.pone.0311954.t002

it would make a good drug candidate and how likely it would succeed in clinical trials. The
results of the finding show that every molecule met Lipinski’s rule of five, which is a key for-
mula for determining a drug’s likelihood [30]. To assess the ADMET characteristics and
PAINS filter of the chosen hit compounds from the docking study, we used two tools, pkCSM
and SwissADME [31].

The top 10 selected ligands exhibit the highest binding affinity and specificity towards the
active site of MAPK1. Table 2 shows that these compounds have been selected for their favour-
able ADMET properties and lack PAINS features. All the compounds have shown significant
binding affinity, surpassing that of the known control, Ulixertinib, indicating these are making
a more stable complex with MAPK1. Also, Ulixertinib was found to be hepatotoxic after an
ADMET analysis. Out of 10, the top three compounds were prioritized based on their biologi-
cal activities like antineoplastic, kinase inhibitory and anti-inflammatory activities with con-
siderably high Pa values. Overall, the results demonstrate that the ten compounds have
favorable physicochemical characteristics without any PAINS patterns, indicating that they
may be effective leads for drug development [32].

3.3. PASS analysis

PASS state that compounds with P, > P; is considered to be the desired ones to show specific
biological activity. The P, (probability to be “Active”) value indicates the probability that the
compound will exhibit a specific biological activity. Whereas P; (probability to be “Inactive”)
indicates the probability of the compound not showing any specific activity [33]. PASS predicts
multiple biological activity types simultaneously based on chemical compound structures.
Before chemical synthesis and biological testing, PASS prediction is a helpful method for fore-
casting the biological activity profiles of the molecules. The Way2Drug online server per-
formed a PASS analysis on all selected compounds to predict biological activity, i.e., anti-
cancer activities, to provide potential therapeutic leads for MAPK1-mediated cancer [34].
PASS analysis results showed that the three selected compounds, ZINC02092851,
ZINCO02130647, and ZINC02133691, showed favorable biological properties (Table 3). These
compounds may act as an anti-inflammatory, antineoplastic, kinase inhibitor, phosphatase
inhibitors, TP53 expression enhancer, and apoptosis agonists, which suggests that the eluci-
dated compounds may possess great potential in anticancer activities and inhibiting kinase
activity. The reference inhibitor Ulixertinib showed MAPK]1 inhibitory potential, which vali-
dates the ability of the PASS server to predict.
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Table 3. Biological properties of natural compounds predicted via PASS server.

S. No. Ligand ID Pa value Pi value Biological activity
1. ZINC02092851 0.53 0.04 Anti-inflammatory
0.41 0.09 Antineoplastic
0.30 0.05 Antineoplastic (breast cancer)
2. ZINCO02130647 0.40 0.14 TP53 expression enhancer
0.39 0.07 Kinase inhibitor
0.38 0.08 Apoptosis agonist
3. ZINC02133691 0.86 0.00 Anti-inflammatory
0.57 0.05 Antineoplastic
0.39 0.00 Antineoplastic (brain cancer)
4. Ulixertinib 0,614 0,004 MAP kinase 1 inhibitor
0,291 0,023 Antineoplastic (liver cancer)
0,297 0,154 Antineoplastic

https://doi.org/10.1371/journal.pone.0311954.t003

3.4. Interaction analysis

Interactions analysis provides important information about inhibitory patterns, bond types,
and residual interactions between ligands and the protein. The compounds ZINC02092851,
ZINCO02130647, and ZINC02133691 were found to interact with the crucial residues of the
MAPKI1 binding site (Fig 2). A detailed binding pattern of ZINC02092851 (yellow),
ZINC02130647 (green), and ZINC02133691 (magenta) is illustrated in Fig 2A. The figure
shows that these compounds interact with GIn105, Lys54, and Glu71 (ATP binding sites) of
MAPKI1, which is crucial for its activity (Fig 2B). The structural representation shows that
compounds are bound into the deep binding pocket cavity of MAPK1 (Fig 2C) [35].

All three compounds exhibited strong interactions with the binding cavity of MAPK1 and
its essential residues, including GIn105, Lys54, and Glu71. These residues are essential as they
are located within the ATP-binding site of the kinase domain and directly contribute to the
functionality of the active site. It is clear from Fig 3 that all these compounds show common
interactions while interacting with the binding residues (ATP-binding) of MAPK1. ATP-

» ZINC02092851- Yellow
® ZINC02130647- Green
® ZINC02133691- Magenta

Fig 2. MAPK]1 residual interaction with compounds from ZINC library. (A) Localization of compounds in MAPK1 binding cavity.
(B) Magnified interaction. (C) Surface potential representation of compounds with MAPK1 binding pocket.

https://doi.org/10.1371/journal.pone.0311954.g002

PLOS ONE | https://doi.org/10.1371/journal.pone.0311954  January 24, 2025 7/19


https://doi.org/10.1371/journal.pone.0311954.t003
https://doi.org/10.1371/journal.pone.0311954.g002
https://doi.org/10.1371/journal.pone.0311954

PLOS ONE

MAPK1 inhibitors

LEU ILE 6Ly ILE
10 156 31 o 34

MET

LYS
114

GLU
109

SER
4 ARG
67

LEU 108 LEU
156 107

THR
110

LYS

o @
GLU ILE

LyYs

ASP
167

TYR
36

GLY
169

AsP
B ILE 106

84

GLN
105

CYs

GLU
71

GLY

THR 169

& ARG
67

[ Van der waals

[ Conventional hydrogen bond
[ Carbon hydrogen bond

[ Pi-donor hydrogen bond

[ Pi-sulfur
[ Alkyl

[ Pi-alkyl
[ Pi-pi stacked

Fig 3. Representation of molecular interaction and 2D plots showing detailed interactions of (A) ZINC02092851, (B) ZINC02130647,

and (C) ZINC02133691.
https://doi.org/10.1371/journal.pone.0311954.9003

binding sites are very important for the kinase activity of the protein. These compounds may
inhibit MAPKI1 activity by binding to these critical residues [36]. The stable complexes formed
between ZINC02092851, ZINC02130647, and ZINC02133691 with MAPK]1 alter the protein’s
structure, impairing its functionality (Fig 3A-3C). Notably, these compounds displayed deep
localization and strong complementarity within the MAPK1 binding cavity, indicating their
potential efficacy in inhibiting MAPK1 binding sites and obstructing ATP accessibility to
MAPKI1 (Fig 3). The strength and specificity of the protein-ligand interactions observed in the
study are important for the therapeutic efficacy of the ligand.

3.5. Molecular dynamics simulation analysis

After the virtual screening process, we went through the structural dynamics study and stabil-
ity of MAPK1-ligand complexes through MD simulations. These simulations were carried out
on the docked complexes, encompassing three chosen hits from the ZINC library, all within
defined solvent conditions. The initial orientations of the selected compounds were employed
as starting points for the simulations, which ran for a duration of 200 ns. Throughout the sim-
ulations, a range of structural features and parameters were monitored and analyzed. This
comprehensive analysis allowed us to gain insights into the dynamic behavior of MAPK1 both
before and after interaction with the ligands, shedding light on how these interactions influ-
enced the protein’s conformational changes and stability over time [37].
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3.5.1. Structural deviation. We used the RMSD analysis for MAPKI1 and its ligand-
bound complexes with ZINC02092851, ZINC02130647, and ZINC02133691 during compre-
hensive MD simulation. The analysis aimed to assess the structural stability and conforma-
tional changes of these molecular systems over a 200 ns simulation period. Here, we found
average RMSD values of 0.21 nm, 0.31 nm, 0.24 nm, and 0.26 nm for MAPK1, MAPKI--
ZINCO02092851, MAPK1-ZINC02130647, and MAPK1-ZINC02133691, respectively
(Table 4). Fig 4 displays the structural dynamics of MAPK1 when bound to ZINC02092851,
ZINCO02130647, and ZINC02133691, which show consistent but small fluctuations. Notably,
the MAPK1-ZINC02130647 complex showed more stability with lower RMSD values when
compared to the other two complexes after the binding with MAPK1. The RMSD plot in Fig
4A depicts that the MAPK1-ZINC02130647 complex has fewer fluctuations compared to the
other two complexes [38].

By computing the average fluctuation of all residues, the analysis of RMSF explains the local
flexibility and deviation of each residue concerning the mean residual position. The distinctive
protein backbone of all four systems, namely MAPK1, MAPK1-ZINC02092851, MAPK1--
ZINC02130647, and MAPK1-ZINC02133691, exhibit RMSF values depicting some random
peaks in RMSF profiles. Here, we found average RMSF values of 0.08 nm, 0.11 nm, 0.10 nm,
and 0.11 nm for MAPK1, MAPK1-ZINC02092851, MAPK1-ZINC02130647, MAPK1--
ZINCO02133691, respectively. The plot in Fig 4B illustrates that the complex MAPK1--
ZINCO02130647 showed more stability with a lower RMSF value than the other two complexes
throughout the trajectory. However, a stable and similar RMSF pattern was illustrated by all
three complexes during the entire simulation period [39].

3.5.2. Structural compactness. The Rg provides statistical significance to the protein’s
secondary structure folding into the tertiary structure and overall functional conformation,
which delivers insights into protein stability in a suitable biological system. The Rg generally
assesses the compactness of the protein structure by defining the RMS distance from the col-
lective center of mass of the atoms, for which a decreased Rg value indicates a compact and sta-
bilized folding during complex formation [40]. The average Rg values for Free MAPK1,
MAPKI1-ZINC02092851, MAPK1-ZINC02130647, and MAPK1-ZINC02133691 were found
to be 2.16 nm, 2.22 nm, 2.19 nm and 2.19 nm, respectively, showing an appreciable consis-
tency. The time evolution of Rg is shown in Fig 5A, wherein the plot demonstrates that all the
complexes appeared stable with consistently robust dynamics and folding, attaining a mini-
mized Rg. Among all the complexes and the free-state, MAPK1-ZINC02130647 is relatively
more stable as it shows more compactness in its structure and has relatively less Rg value.

SASA is a measure of the surface area of a protein explicitly interacting with its solvent envi-
ronment through hydrophobic and hydrophilic residual interactions, which divulge the degree
of protein folding and compactness [41]. The SASA plot is depicted in Fig 5B. The average
SASA values for free state MAPK1, MAPK1-ZINC02092851, MAPK1-ZINC02130647, and
MAPK1-ZINC02133691 complexes were calculated and quantified, depicting a nearly unaf-
fected SASA during simulations. Here, we found average SASA values of 175.98 nm?, 182.08

Table 4. The mean values of several MD parameters determined following 200 ns simulations.

System RMSD (nm) RMSF (nm) Rg (nm) SASA (nm?) #H-Bonds

MAPK1 0.21 0.08 2.16 175.98 252
ZINC02092851 0.31 0.11 222 182.08 247
ZINC02130647 0.24 0.10 2.19 178.22 247
ZINC02133691 0.26 0.11 2.19 180.23 257

https://doi.org/10.1371/journal.pone.0311954.t004
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nm?, 178.22 nm”, and 180.23 nm” for MAPK1, MAPK1-ZINC02092851, MAPK1--
ZINCO02130647, MAPK1-ZINC02133691, respectively (Table 4).

3.5.3. Dynamics of hydrogen bonds. The hydrogen bonds are a crucial factor in deter-
mining the conformational dynamics of a protein [42]. The intramolecular hydrogen bonds
were calculated for the MAPKI free structure and the MAPK]1 after binding to

B2io
“g
)
= 180
75}
<
wn
2 1 1 L 150 L 1 L
0 50000 100000 150000 200000 7¥0 50 100 150 200
Time (ps) Time (ns)
12 0.2
— \IAPK 1
m \]APK1-ZINC02092851
9l o cto1a00 0.15
m \APK1-ZINC02133691
[ o
8 6 8 01f
3F 0.05f
0 1 L 1 \ 5
) 2.1 22 23 2.4 P50 170 130 190 300
Rg (nm) SASA (nm?)

Fig 5. Structural compactness and folding of MAPK1 with the three selected compounds. (A) Rg plot and (B) SASA plot of MAPK1
with ZINC02092851, ZINC02130647, and ZINC02133691. Lower panels show the probability distribution function values as PDF.

https://doi.org/10.1371/journal.pone.0311954.9005
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ZINCO02092851, ZINC02130647, and ZINC02133691. The graphs were plotted throughout 200
ns to evaluate the folding dynamics of the four systems (Fig 6A). The plots show a slight
change in the number of intramolecular hydrogen bonding interactions between the free pro-
tein and the three complexes. The average hydrogen bonds formed before and after
ZINC02092851, ZINC02130647, and ZINC02133691 complexes were found to be 252, 247,
247, and 257, respectively (Table 4). The PDF for the intramolecular hydrogen bonds was also
plotted and it showed good reliability (Fig 6B). From the plots, it can be concluded that intra-
molecular hydrogen bonds in MAPK1 displayed stability throughout the simulation for all
four systems [43].

The intermolecular hydrogen bonds formed due to the interaction between the small mole-
cules and the protein were also evaluated. Stable intermolecular hydrogen bonding was
observed in all the complexes (Fig 7). The MAPK1-ZINC02092851 complex had more hydro-
gen bonds than the other two complexes and 2-4 hydrogen bonds of the MAPK1--
ZINC02092851 complex persist evenly throughout the 200 ns period (Fig 7A). The other two
complexes, MAPK1-ZINC02130647 and MAPK1-ZINC02133691 showed 1-3 persistent
hydrogen bonds in the time evolution (Fig 7B, 7C). The findings suggest that the structure of
protein-ligand complexes shouldn’t change significantly over time. Because of the stable inter-
molecular hydrogen bonding, the complexes were able to maintain their original docking loca-
tion throughout time [44].

3.5.4. Evaluation of secondary structure. Understanding a protein’s conformational
behavior and folding mechanism can be accomplished by examining the dynamics of its
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secondary structure content [45]. We calculated the secondary structural changes in the
MAPK]1 upon binding of three different compounds, ZINC0209285, ZINC02130647, and
ZINC02133691, respectively [46]. The structural components in free MAPK1 remain almost
constant and equilibrated throughout the simulation of 200 ns (Fig 8A). However, a small
change can be seen in the o-helix and B-sheets content of MAPK1 upon compound binding

Table 5. Average residues participating in secondary structure elements in MAPK1 before and after ligand binding.

Element MAPK1 MAPK1-ZINC0209285 MAPKI1-ZINC02130647 MAPKI1-ZINC02133691
Coil 82 96 94 94

B-sheet 51 50 52 51

B-bridge 2 2 2 2

Bend 34 36 33 36

Turn 40 37 37 35

o-helix 113 113 114 115

7 -helix 0 0 0 0

3,0-helix 14 13 15 14
PPII-Helix 11 0 0 0

https://doi.org/10.1371/journal.pone.0311954.t005
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(Table 5). There were minor changes in the average number of residues participating in sec-
ondary structure formation in the case of MAPK1-ZINC0209285 (Fig 8B), MAPK1--
ZINCO02130647 (Fig 8C), and MAPK1-ZINC02133691 (Fig 8D) complexes as compared to the
free MAPK1. However, no major change was seen in the secondary structure of MAPK1 upon
binding of the selected compounds, which shows strong stability of MAPK1-ZINC0209285,
MAPK1-ZINC02130647, and MAPK1-ZINC02133691 complexes. Therefore, employing this
structure-based drug design approach to develop selective MAPK1 inhibitors may pave the
way for further innovative cancer treatment approaches [47].

3.6. Principal component analysis

Principal component analysis (PCA) serves as a valuable tool for assessing conformational
changes and collective motions within protein-ligand complexes [36]. In this study, we
employed PCA to examine the conformational dynamics of both free MAPK1 and the
MAPKI1-ZINC02092851, MAPK1-ZINC02130647, and MAPK1-ZINC02133691 complexes.
The conformational sampling was conducted by projecting the Cot atoms, as depicted in Fig 9.
Notably, the essential subspaces occupied by the native form of MAPK1 structure corre-
sponded closely with those of the protein-ligand complexes. None of the complexes extended
beyond the eigenvectors (EVs) observed in the free MAPK1 structure. Of particular interest,
the MAPK1-ZINC02092851 complex covered a smaller subspace in both EV1 and EV2, which
shows a great level of stability within the complex (Fig 9E) [37].

3.7. Free energy landscape analysis

To gain further insights into the folding mechanisms and energetics of the protein-ligand
complexes in solvent conditions, we employed free energy landscape (FEL) analysis [48]. This
analysis sheds light on the global and local energy minima achieved by the complexes. Fig 10
illustrates the FELs of MAPK1 in native form and the MAPK1-ZINC0209285, MAPK1--
ZINCO02130647, and MAPK1-ZINC02133691 complexes [49]. The color gradients represent
the Gibbs free energy (G) in kilojoules per mol (kJ/mol). Blue/green regions are the areas of
low Gibbs free energy, corresponding to stable states or conformations that the system is most
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likely to occupy. These are often interpreted as local or global minima in the free energy land-
scape. Red regions represent the area of high Gibbs free energy, indicating less favourable or
unstable states that the system is less likely to occupy. The native form of MAPK1 shows only
one prominent basin, representing a global minimum (Fig 10A). Upon binding with
ZINC02092851 and ZINC02133691, multiple basins emerged (Fig 10B-10D). While in the
case of ZINC02130647, a single extensive basin was observed (Fig 10C). This suggests that the
global minimum of the native MAPK1 was subtly influenced by the binding of the com-
pounds. Overall, the FEL analysis underscores that the binding interactions of ZINC02092851,
ZINCO02130647, and ZINC02133691 with MAPK1 did not induce the unfolding of the protein
throughout the 200 ns simulations. This suggests the structural integrity and stability of the
MAPKI1-ligand complexes, reinforcing their potential as candidates for further investigation
and therapeutic development [50].

Opverall, natural compounds have become a focal point in virtual screening for drug discov-
ery due to their diverse chemical structures and bioactive properties [51]. For example, many
researchers screen the library of flavonoids targeting different proteins, such as phosphatidyli-
nositol 3-kinase (PI3K), Vascular endothelial growth factor receptor 2 (VEGFR2) and many
more, key targets in cancer therapy [52]. The screening process revealed that flavonoids
showed strong binding affinities to these targets, suggesting their potential as anticancer
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agents. Natural compounds have been increasingly discovered and used for cancer therapy
owing to their high molecular diversity, novel functionality, and minimal side effects. These
compounds can be utilized as chemopreventive agents because they can efficiently inhibit cell
growth, control cell cycle progression, and block several tumour-promoting signalling path-
ways [53]. Therefore, the compounds identified in this study, ZINC0209285, ZINC02130647,
and ZINC02133691, might have high potential to be used as promising candidates as MAPK1
inhibitors for the therapeutic developments against cancer due to their significant binding
potential and favorable drug-like properties.

Nonetheless, this study has several limitations that should be considered in future experi-
mental studies. As it relies entirely on computational methods and in silico predictions, the
compounds would need to be tested in vitro and in vivo to confirm their efficacy as MAPK1
inhibitors. Moreover, the study screened only a limited library of about 22,000 natural com-
pounds from the ZINC database, potentially missing other effective inhibitor candidates. The
MD simulations were run for a relatively short duration of 200 ns, which may not be sufficient
to capture all relevant conformational changes and protein-ligand interactions over longer
timescales. Additionally, the study did not assess the selectivity of the identified compounds
against other kinases or evaluate potential off-target effects. Despite these limitations, the
study provides valuable insights and a foundation for further research into potential MAPK1
inhibitors for cancer therapeutics.

4. Conclusions

MAPKI is an important player in different cancers and acts as a promising target for therapeu-
tic development. A few inhibitors of MAPK1 have been discovered to date, but more potent
and specific inhibitors of MAPK1 are required. This study used a thorough molecular dock-
ing-based virtual screening method to identify potential inhibitors of MAPKI. After conduct-
ing an initial screening of a large natural compound library, 100 possible hits were identified
that displayed a notable binding affinity to MAPK1. After doing a more detailed examination,
the number of compounds was reduced to 10. These compounds possess desirable natural fea-
tures and pharmacokinetic characteristics, which makes them highly suitable for the develop-
ment of drugs. Following the PASS analysis, three compounds were identified as having
significant potential for anticancer activity, particularly via targeting MAPK1. Detailed interac-
tion analysis demonstrated that these drugs have strong and stable contacts with key residues
within the MAPK1 binding region, implying that they can effectively suppress MAPK1 func-
tion. The structural stability and compactness of the MAPK1-ligand complexes were validated
by all-atom MD simulations, which showed minimal fluctuations and constant hydrogen
bonding interactions. The secondary structure conformation of MAPK1 remained mostly
unaltered upon interaction with the chosen compounds, suggesting the stability of these com-
plexes. The essential dynamics analysis through PCA and FEL provided additional evidence of
the strength and integrity of the MAPK1-ligand complexes. Taken together, the elucidated
compounds, ZINC02092851, ZINC02130647, and ZINC02133691, demonstrate favourable
qualities as promising inhibitors of MAPK1. The results presented here establish a solid basis
for future research and advancement of these substances as effective remedies in the treatment
of cancer.
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