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Abstract

River hydrology shapes the sources, concentration, and stoichiometry of organic matter

within drainage basins. However, our understanding of how the microbes process dissolved

organic matter (DOM) and recycle nutrients in tropical rivers needs to be improved. This

study explores the relationships between elemental DOM composition (carbon/nitrogen/

phosphorus: C/N/P), C and N uptake, and C mineralization by autochthonous bacterioplank-

ton in the Usumacinta River, one of the most important fluvial systems in Mexico. Our study

investigated changes in the composition and concentration of DOM and evaluated carbon

dioxide (CO2)production rates (C–CO2) through laboratory experiments. We compared

three sites representing the middle and lower river basins, including their transitional zones,

during the rainy and dry seasons. After incubation (120 h at 25˚C), the DOM decreased

between 25% and 89% of C content. Notably, the initial high proportion of C in DOM in sam-

ples from the middle–forested zone and the transition led to elevated C–CO2 rates (>10 mg

l−1 day−1), in contrast to the lower initial C proportion and subsequent C–CO2 rates (<7 mg

l−1 day−1) in the lower river basin. We also found that dissolved organic carbon uptake and

NO3
− and NH4

+ production were higher during the dry season than in the rainy season. The

low water flow in the river during the dry season accentuated the differences in elemental

composition and microbial processing of DOM among the sites, while the high water flow of

the rainy season homogenized these factors. Our findings indicate that microbial metabo-

lism operates with reduced efficiency in C-rich environments like forests, particularly when

faced with high C/N and C/P ratios in DOM. This study highlights the influence of the tropical

hydrological regime (rainy and dry seasons) and the longitudinal changes in the river basin

(middle and lower) topography and land cover on microbial metabolism by constraining

DOM characteristics, emphasizing the crucial role of elemental ratios in river DOM

processing.
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Introduction

Rivers can receive, transform, and outgas significant amounts of terrestrial–derived organic

matter. Recent studies indicate that inland waters contribute approximately 0.9 Pg C yr−1 to

global oceans. This figure is significantly lower than the 2.9 Pg C yr−1 originating from terres-

trial sources and the 1.9 Pg C yr−1 released into the atmosphere [1]. These differences suggest

that the decomposition of organic matter by heterotrophic prokaryotes, along with other abi-

otic processes like photomineralization and terrestrial inputs of CO2 [2], plays a crucial role in

the fluvial C evasion, as they mineralize organic matter into CO2 through respiration, espe-

cially in the tropics [3, 4]. A large quantity of CO2 flows through tropical inland waters, indi-

cating the importance of microbial activity to C cycling in these regions [5].

The influence of dissolved organic matter (DOM) and inorganic nutrients on C mineraliza-

tion should change along the rivers. Inputs of nitrogen (N) and phosphorus (P) can either

raise respiration rates, reduce biomass, or elicit negligible reactions among planktonic and

benthic microbial communities [6–8]. In small upland streams, the assimilation of nutrients

from sediment pore spaces amplifies nutrient cycling within the riverbed compared to the

water column [9]. Furthermore, the quantity of particulate organic matter (POM) affects the

influence of dissolved nutrients on microbial respiration because microbial extracellular

enzymes produce monomers with the available nutrients by degrading large biomolecules in

the POM [10, 11]. However, recent findings indicate that these metabolic processes predomi-

nantly occur within the water column rather than the riverbed in large rivers (fifth order or

above). This is attributed to the enhanced surface area for contact between the water and sus-

pended sediments found further downstream [12, 13]. Thus, the influence of stream order on

microbial processing of organic matter in the water column needs more research efforts.

The availability of organic matter changes with landscape characteristics along basins and

according to precipitation levels [5]. The supply of both labile (e.g., a 5% increase as sucrose)

and recalcitrant (e.g., lignin and cellulose) terrestrial DOM can increase respiration and biotic

CO2 emissions in upland river reaches bordered by upland forests and soils rich in organic mat-

ter [14, 15]. Moreover, primary production in lowland rivers yields short–term biologically

reactive organic carbon [16]. These autochthonous inputs are high in the dry season when low

precipitation leads to ample water residence time and a low water discharge that prompts pri-

mary productivity [17]. In contrast, rainy season precipitation exports terrestrial–derived DOM

from the watershed [18]. Precipitation seasonality (rainy vs. dry season) can dictate the meta-

bolic rhythms of tropical aquatic ecosystems [19, 20]. Understanding how variation in organic

matter supply affects the microbial C mineralization at larger (e.g., cross-regional) scales will

help to elucidate global C cycling and how it may respond to climate change [5, 19, 21].

According to ecological stoichiometry, elemental DOM composition (i.e., C/N/P ratios)

changes microbial metabolism since an excess or depletion of elements affects the use of

ingested C [22, 23]. Microbes must invest energy to adjust these elemental ratios to maintain

homeostasis within their biomass, whose growth is usually limited by N, P, or both compared

to C according to resource stoichiometry [24–26]. For instance, bacteria prioritize enzyme

production over somatic growth to access scarce nutrients [27, 28]. The C/N/P ratios in

organic matter significantly affect microbial decomposition and C mineralization rates [29,

30], varying according to the source of organic matter along rivers. Autochthonous inputs, like

phytoplankton, exhibit low C/N and C/P ratios, whereas allochthonous inputs, such as wood

and leaves, feature high C/N and C/P ratios [31]. Although studies of ecological stoichiometry

have shown the effect of nutrient depletion on microbial metabolism, they have not yet

addressed the consequences of stoichiometric imbalance due to an elevated proportion of one

element over the others [32, 33].
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acuáticos epicontinentales: papel en la dinámica del

carbono y emisiones de gases de efecto
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The Usumacinta River is among the principal tropical fluvial systems of North America in

terms of discharge and length. According to recent findings, the sources of POM transported

along the river change seasonally: there is abundant allochthonous POM input during the

rainy season, which changes to an elevated autochthonous production in the dry season [34,

35]. These sources also vary according to the topography: the middle basin’s high relief and

steep slopes promote significant allochthonous POM input by runoff, whereas the lower slope

of the lowland river reaches favors autochthonous POM production [35]. As this POM from

diverse sources breaks down, the composition of DOM must inevitably shift during fluvial

transport [31, 36].

Through laboratory experiments, the present study aims to elucidate the effect of the sea-

sonal and spatial variations of elemental DOM composition and inorganic nutrients and par-

ticulate organic carbon (POC) concentrations on the potential C mineralization and chemical

transformation of DOM by the native bacterioplankton communities of the Usumacinta

River. We aim to investigate the relationship of the potential C mineralization with the ele-

mental composition and concentration of DOM and the concentration of inorganic nutrients

among middle, transition, and lower sites of the river basin and in dry vs. rainy seasons. We

hypothesize that the potential C mineralization would 1) relate positively to the stoichiometric

imbalance of DOM with a greater proportion of C compared to N and P since the microbes

adjust their metabolism for the use of non–limiting C (i.e., low C use efficiency) to obtain N

and P (e.g., by enzyme production), 2) increase in the middle site because of the higher pro-

portion of C in the DOM associated with allochthonous inputs from the forested landscape,

and 3) increase in the rainy season due to allochthonous DOM input derived from the basin.

By identifying the factors influencing microbial C mineralization along the Usumacinta River,

we contribute to a better understanding of the C dynamics involved in DOM processing

within a tropical riverine ecosystem.

Materials and methods

Site description

The Usumacinta River originates in the Guatemalan mountain region (upper basin), from

where it flows via the middle and lower basins from the southern Mexican border with Guate-

mala northward before discharging into the south of the Gulf of Mexico (Fig 1). The Usuma-

cinta River basin covers around 56,000 km2. The river’s total length within the Mexican

territory is 1,100 km [37]. The neighboring Grijalva River joins the Usumacinta 15 km before

the river mouth. The average joint discharge is about 2,678 m3 s−1.

The basin is characterized by a tropical wet climate with annual average temperatures and

precipitation of 8–12˚C and 5,000 mm, and 26–30˚C and 1,500 mm in the mountainous upper

and lowland lower basins, respectively [40]. From June to October, the rainy season presents

extreme weather events such as tropical storms and cyclones, resulting in precipitation exceed-

ing 2000 mm per month and seasonal flooding in the lowlands. From November to May, the

dry season presents rainfall below 1000 mm per month [40]. Nevertheless, there has been an

increase in the likelihood of extreme precipitation events in the basin in the last fifty years

attributed to climate change [41].

The Usumacinta River basin includes two Central American geomorphological provinces

[42]: karst mountains composed of limestone and dolomite (i.e., the “Sierra de Los Cuchuma-

tanes” and “Los Altos de Chiapas”) and the coastal lowland plains (a low gradient zone with

knolls and hollows) composed of sedimentary rocks with alluvial and lacustrine formations.

Tropical and subtropical evergreen forests cover the mountainous zone, while tropical rain-

forests cover the lowlands. The middle basin contains the “Selva Lacandona” in the “Montes
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Azules” Biosphere Reserve, the most extensive rainforest in Mesoamerica. One of Mesoameri-

ca’s largest and most important wetlands in the lower basin, the “Pantanos de Centla” Bio-

sphere Reserve, extends over 3,028 km2. However, agricultural activities and cattle production

have caused rainforest losses in both the middle (�17%) and lower (�32%) watersheds in

recent years [43, 44].

Field sampling

We performed two field surveys in the Usumacinta River: the first in April–May 2019 (dry sea-

son) and the second in October–November 2019 (rainy season). These surveys were con-

ducted during what can be considered typical meteorological periods, according to recent

annual and monthly precipitation records in the region [45]. Precipitation in 2019 was 1,767

mm, for an interquartile range (IQR) of 1,653–2,175 in the last 35 years. This year presented

monthly rates of 63 ± 63 mm in the dry season (for an IQR of 32–96 mm) and 265 ± 82 mm in

the rainy season (for an IQR of 220–343 mm).

Three sampling sites were selected along the middle and lower basins of the Mexican reach

of the river (Fig 1 and Table 1): (1) an upriver site in the Lacantún River (Lacantún; 137 m a.s.

l.) located within the “Montes Azules" Biosphere Reserve in the middle basin; (2) an intermedi-

ate site in the Usumacinta River near the town of Balancán (Balancán; 5 m a.s.l.) at the

Fig 1. Sampling sites (Lacantún, LCN; Balancán, BLN; Centla, CNT) at the Usumacinta River basin, southern Mexico. The basin contour was elaborated

using free digital products and services [38, 39]. The U.S. Geological Survey and the National Geospatial Program provide map services and data.

https://doi.org/10.1371/journal.pone.0311750.g001
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transition point between the high relief (middle basin) and the meander zone (lower basin);

and (3) a downriver site (Centla; 1 m a.s.l.) located at the confluence of the rivers Usumacinta

and Grijalva in the “Pantanos de Centla" Biosphere within the lower basin. In contrast to the

Usumacinta River, the Grijalva River features four dams (La Angostura, Chicoasén, Malpaso,

and Peñitas) along its course, as well as the presence of anthropogenic activities with a high

impact on water conditions (i.e., pastures, cropland, and urban development). No permits for

scientific fieldwork in non-natural protected areas (e.g., Usumacinta River) were required.

Samples were obtained by collecting superficial water (0.5 m of depth) from three points on

a transversal cross-section of the river at each site (one center point and two more equidistant

from both sides to the center) [35, 48]. The samples were mixed into a composed sample and

used to fill 2 L sterile plastic containers to the brim. These containers were stored in darkness

at 4˚C to minimize sample deterioration until subsequent physical and chemical analyses and

incubation experiments could be conducted at the laboratory.

Experimental design

The potential uptake and mineralization of dissolved C and N mediated by the autochthonous

heterotrophic bacterioplankton assemblage from each river site were evaluated in the labora-

tory through incubation experiments in darkness and under controlled temperatures. Consis-

tent with similar fluvial experiments, the incubations were prepared and initiated within 12

days of sample collection from the river. The laboratory incubations lasted five days [17, 21].

We used the same conditions and periods across all samples to ensure comparability among

treatments (i.e., sites and seasons). The river water samples from all sites were divided into two

batches. One batch was characterized by immediately analyzing physical and chemical

Table 1. Physical and land–cover features of the sampling sites of the Usumacinta River.

Characteristics (units) Lacantún (Middle basin) Balancán (Transition) Centla (Lower basin)

Localization (lat/long) 16˚16’40 "N 90˚52’18 "W 17˚45’24 "N 91˚25’31 "W 18˚24’31 "N 92˚38’58 "W

Distance (km) a 656 286 22

Elevation (m a.s.l.) b 137 5 1

Drainage basin (km2) b 15,772 66,623 127,736

Maximum depth (m) c 4–5 5–20 5–15

Current velocity (m s−1) c 0.7 ± 0.4–1.4 ± 0.1 0.6 ± 0.2–1.1 ± 0.2 0.3 ± 0.0–0.8 ± 0.1

Water discharge (m3 s−1) c 1 5–173 1,080–5,133 1,048–5,380

Water temperature (˚C) 22.4 ± 0.0–27.5 ± 0.1 25.2 ± 0.0–28.4 ± 0.1 27.4 ± 0.4–28.1 ± 1.0

Dissolved oxygen (mg l−1) 8.4 ± 0.0–9.4 ± 0.0 6.5 ± 0.0–8.3 ± 0.1 2.8 ± 1.1–5.8 ± 1.6

pH 8.1 ± 0.0–8.0 ± 0.0 7.7 ± 0.0–8.0 ± 0.0 7.5 ± 0.1–7.8 ± 0.1

Soils d Clay with base saturation and high erodibility (Luvisol,

Vertisol, Phaeozem, and Cambisol)

Hydric soil portion (Gleysol,

Vertisol, and Fluvisol)

Hydric soil portion (Gleysol,

Vertisol, and Fluvisol)

Basin’s forested area e 89% 69.8% 64.7%

Basin’s cropland area e 8.8% 26% 25.8%

Basin’s wetland area e 0.1% 0.5% 1.1%

a Distance from the Usumacinta River mouth at the urban area of Frontera
b computation with digital elevation models from the USGS dataset; m a.s.l.: meters above sea level
c average, and standard deviation values from the water column in the dry and rainy seasons [34]
d edaphology database according to World Reference Base for Soil Resources [46], and
e computation with Copernicus Global Land Service dataset (PROBA–V satellite multispectral imagery; [47]; forests encompasses open and closed forests mixing

evergreen and deciduous vegetation.

https://doi.org/10.1371/journal.pone.0311750.t001
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parameters (� 2 hours; see S1 Fig and S1 Table) before incubation. These characteristics were

considered the initial reference values (T0). The same physical and chemical variables were

analyzed in the second batch immediately after incubation (T120; S1 Fig).

The incubations were conducted in closed systems, using 1 L wide–mouth glass jars. We

placed a plastic vessel inside each jar containing 100 ml of raw and unfiltered river water from

samples and a glass vial filled with 25 ml of 0.1 N NaOH as a CO2 alkali trap for C mineraliza-

tion measurement (S1 Fig). Five glass sample jars were used per site (5 jars x 3 sites). Further-

more, three jars containing 100 ml of distilled water (instead of samples) and three jars

containing only alkali traps were used simultaneously as controls and blanks, respectively.

After the plastic vessels and alkali traps were prepared, the glass jars were sealed with airtight

lids to prevent the reaction of alkalis with CO2 in the air (i.e., atmospheric contamination).

The glass jars were randomly arranged in an oven and incubated at 25˚C to discard the

dependency of the enzymatic activity on the specific temperatures of each site and season. This

temperature falls in the range commonly used for microbial incubations and matches the mid-

range of the water temperatures previously reported for the river [34]. After 60 h of incubation,

the samples were withdrawn from the glass jars and stirred on a magnetic stirrer plate (250

rpm / 2 min) to prevent oxygen depletion. The alkalis were quickly, carefully removed, and

sealed during stirring to avoid atmospheric CO2 contamination. After mixing, the vessels and

alkalis were incubated for a further 60 h, for a total incubation period of 120 h. The duration of

this period and the stirring at the halfway point allowed the maintenance of aerobic conditions

throughout the incubations [49].

Temperature, dissolved oxygen concentration (DO), and pH were measured at T0, at the

point of stirring, and at T120 as experimental controls to identify the physical and chemical

changes affecting mineralization. Temperature and DO were measured with a luminescent

Hach HQ40D probe, and pH was measured with a digital meter equipped with a glass elec-

trode (Thermo Scientific, Orion 5 Star). Throughout the incubation, the temperature was simi-

lar among sites (23.4–24.8˚C), DO remained above 5.9 mg l−1, and pH increased slightly over

the period (differences from 0.2 to 0.9). These records indicated minor chemical and physical

changes and an oxygen demand that did not affect microbial metabolic activity by

anaerobiosis.

Analytical methods in the laboratory

Particulate fraction. Concentration of total suspended solids (TSS). TSS evaluation fol-

lowed the 2540D method [50]. The water samples (400–500 ml) were filtered in pre-weighed

Whatman GF/F glass microfiber filters (nominal pore size 0.7 μm). After filtration, the filters

were oven-dried (105˚C/48 h) and weighed. The TSS concentration was determined by sub-

tracting the filter weight before filtration from that measured after filtration and dividing the

result by the volume filtered.

Concentration of particulate organic carbon. For POC analysis, 400 and 500 ml of water

samples were filtered into pre–combusted (550˚C/4 h) Whatman GF/F glass fiber filters (nom-

inal pore size 0.7 μm) to retain particulate organic matter. The filters were then acidified with

0.1 N HCl and oven–dried (105˚C/48 h) to eliminate traces of inorganic C (e.g., carbonates).

The POC concentration in the filters was determined with a Total Carbon Analyzer (TOC CM

5012, module for solids) by combustion and coulometric detection [51].

Organic carbon in suspended solids (%OC). We calculated the percentage of POC in the TSS

as %OC = (POC�TSS) × 100. A high %OC value indicated a higher organic proportion in sus-

pended solids expected in fresh POM, such as recent debris of vascular vegetation or phyto-

plankton [52].
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Dissolved fraction. Water samples were filtered through Whatman GF/F glass microfiber

filters (nominal pore size 0.7 μm) to retain and separate the particulate from the dissolved

fraction.

Concentration of total dissolved carbon (TDC) and dissolved inorganic carbon (DIC). The

concentrations of TDC and DIC were determined in water samples by combustion and coulo-

metric detection with a Total Carbon Analyzer (Thermo Scientific, UIC Mod. CM 5012) [51].

We used a liquid module (UIC–Coulometric) for TDC and an acidification module (CM5130)

for DIC. The dissolved organic carbon (DOC) concentration was calculated by subtracting

DIC from TDC concentrations.

Concentration of total dissolved nitrogen (TDN), total dissolved phosphorous (TDP), dissolved
inorganic nitrogen (DIN), and dissolved inorganic phosphorous (referred to as soluble reactive
phosphorus, SRP). Aliquots (10 ml) of the filtrates were acid–digested at 360˚C with H2SO4,

H2O2, K2SO4, and CuSO4. After acid digestion, the Kjeldahl method was used to determine

TDN, and the molybdate–ascorbic acid reduction method was used to determine TDP [53,

54]. The extractants were then measured by colorimetry in a Bran Luebbe AutoAnalyzer III.

Inorganic forms of N and P were estimated from the water samples before acid digestion to

measure the inorganic nutrients. The phenol–hypochlorite method determined DIN concen-

tration (NO3
− and NH4

+) by colorimetric analysis in a Bran Luebbe AutoAnalyzer III [55]. We

used the molybdate–ascorbic acid method to measure the SRP concentration by colorimetric

analysis in a Bran Luebbe AutoAnalyzer III [53].

Concentration of dissolved organic nitrogen (DON) and dissolved organic phosphorus (DOP).
The DON and DOP were calculated by subtracting the inorganic forms from the total dis-

solved forms as DON = TDN − DIN and DOP = TDP − SRP.

Potential carbon mineralization. Following the hydrochloric acid titration method [49],

potential C mineralization was determined by the C emissions rate as CO2 (C–CO2) in the

incubations. The chemical balance indicated that each mole of CO2 released through microbial

mineralization was chemically trapped as sodium carbonate by reacting with two moles of

alkali (NaOH; Eq 1). After incubation, 1.5 N BaCl2 was added into the alkali traps to precipi-

tate the sodium carbonate into insoluble BaCO3 (Eq 2), as follows:

2 NaOH þ CO2 ! Na2CO3 þH2O ðEq1Þ

BaCl2 þ Na2CO3 ! BaCO3 þ 2NaCl ðEq2Þ

Alkali solutions with precipitates were then titrated with 0.1 N HCl using phenolphthalein

as an indicator:

NaOH þ HCl! NaClþH2O ðEq3Þ

The volume of acid needed in the titration indicated the quantity of alkali, which did not

react with CO2. Thus, the reacted quantity (non–reacted and initial alkali difference) repre-

sented half of the CO2 emitted from samples (Eq 1 and Eq 4). Finally, the C flux from the emit-

ted CO2 (C–CO2) was calculated as follows:

CO2 � C ¼
ðVS � VBÞ � ArC

2
� VWS � TINC ðEq4Þ

Where VS is the volume of HCl (ml) consumed by the alkali in the titration, VB is the vol-

ume of HCl consumed by the alkali of blanks. ArC is the relative atomic mass of carbon, VWS

is the volume of the water sample (ml), and TINC is the incubation period (days). The C–CO2

fluxes average in controls (10.2 ± 2.5 mg l−1 day−1 in the dry season and 8.4 ± 3.4 mg l−1 day−1
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in the rainy season) were subtracted from those for samples due to the atmospheric CO2 that

could enter the water before the incubations considering the solubility of CO2 [56] and the

water acidification [57].

Data treatment and statistical analyses

The C and N transformations between the organic and inorganic pools were evaluated by the

differences in dissolved C, N, and P between points T0 and T120, represented by the delta value

(Δ). For example, positive NO3
− and NH4

+ deltas indicated inorganic N mineralization, while

negative deltas evidenced inorganic N uptake. Likewise, the changes in DOC and DON between

points T0 and T120 (ΔDOC and ΔDON, respectively) represented the C and N taken up by

microbes from the DOM in the batch incubations [58]. Relative changes of the dissolved C, N,

and P concentrations after incubation (Δ%) were also measured as the concentration change

divided by the initial reference value (T0) and expressed as percentages for each variable.

A Principal Component Analysis (PCA) was applied using the dissolved fraction concentra-

tions at T0 to summarize the DOM variation and explore the initial chemical characteristics of

the samples. The PCA scores were correlated with TSS, POC, and %OC to identify environ-

mental patterns (e.g., river discharge, basin erosion, and primary production) and DOM sup-

ply among seasons and sites. The PCA employed Box-Cox transformations (with λ = 0.75) to

normalize the data, as well as an Euclidean similarity index, and a data correlation matrix to

ensure normality, linearity, and standardization in the ordination process. The limit of detec-

tion (LOD) for N and P, set at 0.1 and 0.3 mg l−1, respectively, was applied within the PCA for

values falling below these thresholds. A subsequent PCA focused on the dissolved fraction dif-

ferences, utilizing a correlation matrix and an iterative imputation method to account for

missing values [59]. This analysis linked the components identified in the first PCA and the

carbon dioxide (C–CO2) production rate with those derived from the second PCA. For both

PCAs, significant components were selected based on expected eigenvalues using a random

model approach (Broken Stick method).

We incorporated a linear mixed–effects model to evaluate the influence of C/N/P ratios in

the DOM on the C–CO2 production rate. This model treated seasons, sites, and C/N/P ratios

as fixed effects while considering the sample bottle as a random effect to adjust for sample

interdependence. We used linear regression models to explore the dissolved fraction variables

driving the C–CO2 rates at T0, and a stepwise regression model was specially performed on

delta values to identify the changes in dissolved nutrients explaining the C–CO2 rate variation.

We used the second PCA and the regression models to assess the first hypothesis relating C

mineralization to elemental DOM composition.

To assess the second and third hypotheses about spatial and seasonal differences of the

potential C mineralization, the DOM deltas and C–CO2 rates were compared between two fac-

tors: season with two levels (dry and rainy) and site with three levels (Lacantún—middle—,

Balancán—transition—, and Centla—lower—sites). These comparisons were made using a

mixed–design ANOVA to correct for the spatial and seasonal dependency in the samples. The

PCAs and the comparisons of factor levels were implemented in the statistical software Sigma-

Plot (v14), Past (v4.08; packages: lme4, MASS, and rstatix), and R (v 4.3.1; R Core Team,

2019). A p-value of 0.05 was used as the threshold for significance in all the tests.

Results

Initial conditions (T0)

Nutrient concentrations, especially dissolved fractions, varied more among sites in dry than

rainy seasons (S2 Table). In the dry season, the DOC in Lacantún and Balancán (representing
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the middle and transitional sites:� 21,000 μg l−1) was roughly double that of Centla (lower

site: 12,620 μg l−1). Moreover, the NO3
− decreased downriver, dropping below the LOD in

Centla, where the NH4
+ peaked. The SRP was below the LOD. Downstream, the DOC/DON

and DOC/DOP ratios declined, a trend attributed to the rising concentrations of DON and

DOP with a decrease in DOC. In the rainy season, DOC variation was negligible (7,260–

8,650 μg l−1), while NO3
−, NH4

+, and SRP increased downstream. The DOC/DON and DOC/

DOP ratios increased downstream as DON and DOP decreased.

The PCA in Fig 2 shows that the rainy season observations, with high NO3
−, NH4

+, and

SRP concentrations, are separated from the dry season observations, with high DOC, DON,

and DOP concentrations in the first component. This component positively correlates with

TSS (to the rainy season) and negatively with %OC (to the dry season; r = 0.52 and −0.75,

respectively). The second component distinguishes Lacantún and Balancán in the dry season,

with high DOC, from other observations with elevated concentrations of DON, DOP, and

NH4
+ (Fig 2). The DOC/DON and DOC/DOP ratios were generally high in the dry season.

Post–incubation (T120)

In the dry season, the ΔDOC was considerable, with lower values in the Lacantún and Bal-

ancán sites (middle and transition zones) (–14,220 ± 1,110 μg l−1 and −13,520 ± 2,160 μg l−1,

respectively) than in Centla (−9,270 ± 1,790 μg l−1; t(4) = −5.7 and t(4) = −3.2, respectively,

p< 0.01; Fig 3). This steep reduction in C in Lacantún and Balancán and a slight rise of N and

P caused a decline in the DOC/DON and DOC/DOP ratios throughout the incubation

(S2 Table). Moreover, Lacantún also had high ΔNH4
+ (18 ± 8 μg l−1) than Balancán and Centla

Fig 2. PCA of the dissolved nutrients in the Usumacinta River water samples at T0. The dissolved fraction loadings are indicated as arrows, and the

correlation of particulate variables with ordination scores is shown as dotted lines. Acronyms are given in the S1 Table.

https://doi.org/10.1371/journal.pone.0311750.g002

PLOS ONE Organic matter processing by heterotrophic bacterioplankton in a large tropical river

PLOS ONE | https://doi.org/10.1371/journal.pone.0311750 November 11, 2024 9 / 22

https://doi.org/10.1371/journal.pone.0311750.g002
https://doi.org/10.1371/journal.pone.0311750


(nearly 6 μg l−1). In the rainy season, the ΔDOC was similar among sites, with values from –6,110

to −3,950 μg l−1, though Lacantún had a higher delta than Balancán (t(4) = 3.65, p = 0.02; Fig 3).

The ΔNO3
− showed decreases from 4 to 29 μg l−1, and the ΔNH4

+ averaged −102 ± 40 μg l−1. The

DOC/DON and DOC/DOP ratios decreased after the rainy season incubation due to a loss in C

and a gain in N (S2 Table).

After the incubation, the PCA of deltas in the dissolved fraction presented a first compo-

nent that was positively correlated with ΔDOC, ΔDON, and ΔDIC towards the rainy season

samples but negatively correlated with ΔNO3
− and ΔNH4

+ towards the dry season samples,

especially separating Lacantún and Balancán (X-axis scores: < −1.5 in Fig 4); in particular, the

ΔDOC in the dry season was significantly lower than in the rainy season (F(1,4) = 100.8,

p< 0.01). This component was also positively correlated with the first and second components

of the PCA at T0 and negatively with the C–CO2 rates. The second component had a positive

correlation with ΔNO3
−, ΔDON, and ΔDOP and a negative correlation with ΔDIC and ΔNH4

+

separating the samples from Lacantún and Balancán from Centla. Linear regression models

showed that the variation of the mean values of the DOC/DON ratio at T120 and the ΔDOC/

DON were directly related to the DOC/DON at T0 (S3 Table). The DOC/DOP at T0 is also

directly associated with ΔDOC/DOP.

C–CO2 rates

The C–CO2 rates of sites ranged between 5.5 and 14.2 mg l−1 day−1 on average (Fig 5). The

ANOVA indicated a significant effect of season on C–CO2 rates (F(1, 4) = 8.5, p< 0.02),

Fig 3. DOC consumption at T120 of the water samples incubations. DS: dry season; RS: rainy season. The dots represent the average. The

horizontal brackets represent significant differences among groups (see main text).

https://doi.org/10.1371/journal.pone.0311750.g003
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which were higher in the dry than in the rainy season (p = 0.03). In the dry season, the C–CO2

rates were higher in Lacantún and Balancán (12.0 ± 4.5 and 14.8 ± 2.7 mg l−1 day−1, respec-

tively) than in Centla (6.3 ± 0.7 mg C–CO2 l−1 day−1; t(4) = 3.1 and t(4) = 7.1, p< 0.05; Fig 5

and S4 Table). Conversely, no significant differences in C–CO2 rates were found among sites

in the rainy season (F (2,8) = 0.2, p = 0.81).

Based on linear regression models, the concentration of DOC at T0 explained 67% of the

variation in C–CO2 rates, with higher rates corresponding to higher DOC concentration

(Table 2). After the incubation (T120), the C–CO2 rates increased with the DOC/DOP ratio,

but the DOC/DON and DON/DOP ratios showed no effect on the C–CO2 rates (Fig 6). Based

on stepwise regression models using the deltas in the dissolved fraction, the ΔDOC and

ΔNH4
+ were the variables that best explained the C–CO2 rates variation (Table 2).

Discussion

Relationship between elemental ratios in DOM and microbial C

mineralization

The highest C–CO2 rates were observed in the samples with high initial DOC concentration

(Fig 4 and Table 2), suggesting that organic C availability boosts potential C mineralization.

Nevertheless, the low availability of dissolved nutrients could also impact microbial activity

and cause high C–CO2 rates since the high DOC concentration coincided with high DOC/

Fig 4. PCA of the dissolved nutrients’ deltas at T120 in the water samples incubations. Straight lines indicate the loadings of the variables. The dotted

lines are correlations of the components with the CO2-C rate and the components of the PCA at the initial incubation condition (T0). Acronyms are

given in the S1 Table.

https://doi.org/10.1371/journal.pone.0311750.g004
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DON and DON/DOP ratios (Fig 2). Indeed, according to the linear mixed models, the C–CO2

rates increased in line with the DOC/DOP ratio (Fig 6). This agrees with the first hypothesis

that proposed a relationship between the elemental DOM composition and C mineralization.

Similar studies have also identified elevated respiration rates in organic substrates with a sur-

plus of C and scarcity of P and N through microbial experiments that involve culturing and

incubating heterotrophic aquatic bacteria [60, 61]. These increased rates are expected to result

in heightened C mineralization, which aligns with the outcomes observed in our study.

A high proportion of C in DOM with high mineralization rates might indicate that

microbes invest more energy in mineralization to obtain limited nutrients. Sinsabaugh et al.

[62] reported that carbon use efficiency (CUE) in the microbial community decreases with an

increase in the C/N and C/P ratios of the resource. These authors defined CUE as the ratio of

C assigned for growth to the C assigned for respiration. Therefore, if the CUE has low values,

Fig 5. Variation of the potential carbon mineralization (C–CO2) at T120 in the water samples incubations. DS: dry season; RS: rainy season.

The dots represent the average. The horizontal brackets represent significant differences between groups (see main text).

https://doi.org/10.1371/journal.pone.0311750.g005

Table 2. Stepwise regression models for the C–CO2 rates at the initial (T0) and final (T120; delta values) conditions of incubations.

Condition Model df r2 F P value

T0 C–CO2 = 0.0004(DOC) 1 and 4 0.67 8.1 0.04

T120 C–CO2 = −0.07(ΔDOC) + 0.02(ΔNO3
−) −0.006(ΔNH4

+) 3 and 25 0.40 7.3 <0.01

The T0 model used a simple linear regression model. T120 model used backward stepwise with the following predictors: ΔDIC, ΔDOC, ΔDON, ΔNO3
−, ΔNH4

+, ΔDOP.

The bold indicates significative explanatory variables (p < 0.05).

https://doi.org/10.1371/journal.pone.0311750.t002

PLOS ONE Organic matter processing by heterotrophic bacterioplankton in a large tropical river

PLOS ONE | https://doi.org/10.1371/journal.pone.0311750 November 11, 2024 12 / 22

https://doi.org/10.1371/journal.pone.0311750.g005
https://doi.org/10.1371/journal.pone.0311750.t002
https://doi.org/10.1371/journal.pone.0311750


the microbial community invests more C in basal metabolism associated with producing bio-

molecules as enzymes. Consequently, the microbial community must invest energy to produce

extracellular enzymes to break down organic molecules when the DOM has high C/N and C/P

ratios [63, 64]. Other experimental studies have found constraints in microbial processing

related to elemental DOM composition in field and laboratory data for lotic environments,

such as high bacterial growth efficiency under low DOC/DON and DOC/DOP ratios [65, 66].

The high C mineralization rates in our results could represent a strategy for fitness

Fig 6. Effect of elemental DOM composition (C/N/P ratios) on C–CO2 rate after water samples incubations

(T120). The blue line represents a mixed–effects model, and the blue area represents its 95% confidence interval.

https://doi.org/10.1371/journal.pone.0311750.g006
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improvement by the microorganisms (e.g., exoenzyme production), indicated by a low effi-

ciency of use of C when the DOM has high C/N and C/P ratios.

Incubation resulted in a decrease in the DOC/DON and DOC/DOP ratios. Higher initial

ratios led to greater decreases. This decrease occurred due to a decline in C and a slight gain in

N and P. Other studies have observed an increase in DOC/DON and DOC/DOP ratios during

incubations of river water samples [30] or high water residence time [67] since the microbes

mineralize N and P to obtain limited inorganic nutrients from the dissolved organic pool.

However, the decrease in the resources’ DOC/DON and DOC/DOP ratios has also been

reported after microbial culturing [23] or dark incubation [68] elsewhere, especially when

DOM was rich in C [68]. This decrease was attributed to higher microbial respiration and

aligns with the match between the DOC/DON and DOC/DOP ratios decrease and the direct

relationship between the C–CO2 rate and the DOC/DOP ratio shown in this study. By the

CUE ratio, the microbes must have consumed and mineralized more C than N and P during

incubation. Since the intracellular microbial composition usually had a high N and P propor-

tion, the preferential processing of C indicates that the microorganisms utilized surplus C to

cope with the low availability of N and P. Therefore, the imbalance of C concerning N and P

within the DOM accounted for the variation in C processing by heterotrophic bacterioplank-

ton in the Usumacinta River.

Differences in microbial C mineralization among sites

The differences in DOC, DON, and DOP concentrations among the sites at the beginning of

the experiment in the dry season reflect shifts in DOM composition and quantity as the land-

scape elevation and relief change. The high DOC/DON and DOC/DOP ratios at Lacantún

(middle site) before incubation indicate that the tropical rainforest supplies considerable

amounts of organic matter to the river. Forest vegetation and soils usually export C–rich DOM

to rivers because of the high proportion of C in terrestrial plant tissues [11]. For example, Elser

et al. [22] reported that terrestrial autotrophs had C/N and C/P ratios three times higher than

that of aquatic autotrophs (36 and 10, respectively). Forests also supply low N and P to rivers

because of the retention of both within the biota on land [69], as well as the fact that the gas-

eous N loss rate is higher than the leaching rate (e.g., during denitrification) [70]. Traces of the

terrestrial influence remained as far downstream as the beginning of the lower Usumacinta

River basin since the proportion of C in the DOM in Balancán (transition site) was also high.

In contrast to the forested middle Usumacinta River basin, the agriculture, cattle production,

and urban development present in the lower basin release considerable amounts of dissolved

N and P into the river [40, 43], as has commonly been reported in other river basins [71, 72].

Our results highlight differences in DOM processing among the different sites in the dry

season, which corresponded with stoichiometric differences in the available DOM. The higher

values of DOC uptake at Lacantún and Balancán with the high C in elemental ratios imply that

the microbes use a significant amount of C when the DOM is derived from terrestrial sources

(Figs 3 and 7). This pattern is consistent with previous observations in which the microbial

uptake of DOC [73, 74] and the C mineralization [68] increase in headwaters and forested

temperate streams, especially in upland C–rich waters. The chemical characteristics of terres-

trial–derived DOM have traditionally been viewed as recalcitrant, with high DOC/DON and

DOC/DOP ratios indicating a higher content of aromatic and high–weight molecules [66];

However, our study, in line with recent evidence, suggests that the lability of this DOM to bac-

terial metabolism is contingent on the sources in the landscape. Forests can export organic

compounds of low molecular weight, such as carboxylic acids, amino acids, and carbohydrates,

that remain following partial biodegradation in soils and favor aquatic microbial DOM uptake
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[73, 75]. Other attributes of the consumed DOM composition could determine whether the

microbes allocate C from this DOM to bacterial biomass or respiration.

The higher C–CO2 rates at Lacantún and Balancán in the dry season suggest that the

microbes responded to abundant DOM with surplus C by consuming and mineralizing a sig-

nificant part of the DOC from the forested catchments (Figs 3 and 7). The metabolic strategy

of microorganisms can thus change according to the elemental composition of the DOM.

Other studies in tropical rivers have found high aquatic heterotrophic respiration driven by

DOM inputs from terrestrial environments, such as the high respiration rates at mid-elevation

streams during the dry season in forested regions of the Mara River, Kenya [19]. Indeed,

planktonic bacteria can increase their catabolism during periods with high terrestrial DOC

inputs from tropical rainforests [60]. Respiration rates in the water column of the Amazon

River, for instance, rise during the dry season as microbes inefficiently use compounds like lig-

nin and other macromolecules derived from the rainforest [15]. The DOC that arrives from

forested catchments can also constitute a substantial C pool, boosting microbial respiration in

lowland receiving waters [76], which agrees with the high C–CO2 rate recorded in this study at

Balancán. In addition to high C/N and C/P ratios, the low inorganic nutrient concentrations

matched the elevated C mineralization rates in Lacantún and Balancán, suggesting it is more

expensive for microbes to retain C within biomass under N and P limitations than to utilize it

for essential metabolic functions under excessive C availability. Thus, microbes rapidly miner-

alize the DOC by increasing respiration rates when abundant terrestrial DOM inputs from the

middle basin of the Usumacinta River enter the water column.

The similar DOC concentration among the sites in the rainy season mirrors the effect of the

high water flow and quick mobilization of DOM along the Usumacinta River towards the sea.

The similar concentrations of ΔDOC, ΔNO3
−, and ΔNH4

+, along with similar C–CO2 rates,

among the sites in the rainy season suggest that the high water flow conditions along the river

act to homogenize the activity of microbes in the samples.

Fig 7. Linkages of DOM’s concentration and elemental composition with potential microbial mineralization along a tropical river system. In the dry

season, highland rainforests export abundant DOM with high C/N and C/P ratios, boosting DOC uptake and C mineralization in the river until reaching the

initial section of the lower basin. Lower DOM amount with low C/N and C/P ratios near the river mouth decreases the DOC uptake at a low C mineralization

rate. Conversely, the high water flow in the rainy season washes the microbial community out of the water column, decreasing microbial activity.

https://doi.org/10.1371/journal.pone.0311750.g007
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Changes in the microbial C mineralization between seasons

The changes in the particulate fraction variables between the dry and rainy seasons before

incubation evidenced different seasonal POM inputs in the Usumacinta River. The low TSS

and high %OC (9.2–11.1%) reflected an increase in autochthonous–derived POM in the dry

season. This increase is consistent with reports of photoautotroph growth stimulated by

decreased turbidity and increased residence time of nutrients in the water column during

reduced water flow in the Usumacinta River (e.g., phytoplankton increase) [35, 77]. The sea-

sonal dynamic of the Usumacinta River is similar to that of tropical rivers in Africa and India,

where the OC content in suspended sediments increases during low water periods and can

range from 5 to 26% [78, 79].

In contrast, the low DOC concentration in the rainy season could represent the effect of

dilution in the basin since the water discharge strongly regulates the flux and transport of

DOC in the Usumacinta River during that season [48]. Inverse relationships between DOC

concentration and water discharge can occur in temperate aquatic systems [80, 81]. The higher

TSS and lower %OC (2–3.6%) in the rainy season suggest allochthonous–derived POM enter-

ing the Usumacinta River when the river presents elevated water flow and high turbidity.

These conditions diminish primary production and autochthonous–derived organic matter.

Although elemental composition explained the spatial variation of C–CO2 rates by evidenc-

ing shifts of DOM sources, our results also show that the amount of DOM available for micro-

organisms impacts the seasonal variation of C mineralization. The decrease in DOC

concentration towards the rainy season implies a lower quantity of substrate to metabolize,

constraining microbial activity and C mineralization. Similarly, Lynch et al. [81] found a

decrease in respiration in microbial communities with low autochthonous productivity and

DOC concentrations during periods of high water flow and vice versa. Moreover, the increased

water flow in the Usumacinta River during the rainy season could wash microbiota out from

the watercourse, decreasing the number of microbes in samples taken during that time (Fig 7).

The low residence time in large tropical rivers decreases microbial DOM degradation [82]

because the increased water current decreases DOM bioavailability and washes out the plank-

tonic communities [5, 17]. Therefore, with lower DOM concentration and microbial abun-

dance, samples’ incubations in the rainy season processed less DOC and DON.

The increased availability of DOM in the dry season explained the differences in microbial

processing, which is evident in the second PCA (Fig 4). The microbes consumed more DOC

in the dry than in the rainy season, indicating that the ample supply of autochthonous–derived

DOM prompted higher microbial retention of DOC. Microbes rapidly consume DOM from

leachates of photoautotrophs or after enzymatic cleavage since these compounds, such as car-

bohydrates and carboxylic acids, favor the assimilation of C for growth. Moreover, high N and

P concentrations of photoautotrophs boost microbial degradation [11, 17, 30]. Earlier observa-

tions in tropical aquatic systems with marked hydrological seasonality also show higher DOC

uptake in the dry season or during periods with phytoplankton production [60, 74].

Moreover, the high availability of DOM with low nutrient availability before incubation

also prompted microbial mineralization of N in the dry season. Ammonification usually rises

as the availability of C increases, except when nitrification remains stable. This process agrees

with the positive delta values of NO3
− and NH4

+ in the dry season when Lacantún and Centla

had higher ΔNH4
+ but lower ΔNO3

−, while Balancán showed the opposite effect, possibly due

to higher nitrification with a lower concentration of DOC. Other studies indicate that nitrify-

ing bacteria increase their activity when heterotrophic bacteria are C–limited [83, 84]. These

results suggest that nitrification is the dominant process of N transformation in the lower

basin site during the dry season.
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Conclusions

Our findings indicate that increasing the C/N ratio and mainly the C/P ratio in DOM leads to

higher C loss due to mineralization. This effect caused a reduction in the DOC/DON and

DOC/DOP ratios as CO2 was released. Differences in elemental DOM composition between

the middle and lower basins of the tropical Usumacinta River were the main driver of the C–

CO2 rates due to the export of DOM with a high proportion of C from rainforests, as well as

autochthonous DOM production (with a low proportion of C) in the river sites surrounded by

agricultural land. This pattern only appeared in the dry season when spatial differences in

DOM availability arose under low water flow. In the dry season, the particulate fraction (TSS

and %OC) evidenced a higher availability of autochthonous–derived sources, corresponding

with higher DOC consumption and NO3
− and NH4

+ production during incubation. In con-

trast, the high water flow in the rainy season reduced DOM availability in samples, lowering

the C–CO2 rates and their variation among sites. Autochthonous–derived DOM seems more

closely related to C immobilization into biomass during microbial metabolism than C mineral-

ization. According to the differences in C–CO2 rates, DOC concentration and uptake, and the

DOC/DON and DOC/DOP ratios, our study demonstrates that the hydrological regime and

longitudinal changes in the topography and land cover of the basin directly influence the

DOM characteristics (allochthonous vs. and autochthonous) and indirectly can affect the

metabolism of heterotrophic bacterioplankton in the Usumacinta River.
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