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Abstract

Dengue is a vector-borne disease that has increased over the past two decades, becoming

a global public health emergency. The transmission of dengue is contingent upon various

factors, among which climate variability plays a significant role. However, there remains

substantial uncertainty regarding the underlying mechanisms. This study aims to investigate

the spatial and temporal patterns of dengue risk and to quantify the associated risk factors in

Valle del Cauca, Colombia, from 2001 to 2019. To achieve this, a spatio-temporal Bayesian

hierarchical model was developed, integrating delayed and non-linear effects of climate vari-

ables, socio-economic factors, along with spatio-temporal random effects to account for

unexplained variability. The results indicate that average temperature is positively associ-

ated with dengue risk 0-2 months later, showing a 35% increase in the risk. Similarly, high

precipitation levels lead to increased risk approximately 2-3 months later, while relative

humidity showed a constant risk within a 6 months-lag. These findings could be valuable for

local health authorities interested in developing early warning systems to predict future risks

in advance.

Introduction

Dengue is a widespread vector-borne disease caused by the dengue virus, which is primarily

found in tropical and subtropical regions, particularly in urban and semiurban areas. The inci-

dence of dengue has risen significantly in the last two decades, becoming a global public health

concern due to its health and economic impacts [1]. In 2023, it was estimated that half of the

world’s population was at risk of dengue, with 100 to 400 million infections occurring annu-

ally. In the Americas, there were over four million reported cases in 2023, with an incidence

rate of 456 cases per 100,000 inhabitants, marking a 115% increase compared to the average of

the previous five years [2].
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Dengue viruses are transmitted to people through the bite of an infected Aedes species

(Aedes aegypti or Aedes albopictus) mosquito. The spread of these mosquitoes is influenced by

several factors such as social, economic and climatic conditions, particularly impacting vulner-

able populations in low-income urban areas [3]. Numerous studies have demonstrated the

relationship between vector-borne diseases and socioeconomic factors, identifying key deter-

minants such as the lack of access to water, which results in water storage practices, along with

inadequate sanitation services, poor sewage and waste management that creates ideal breeding

grounds for Aedes aegypti mosquitoes. Additionally, education, income, age, access to care are

known to strongly influence the susceptibility to these diseases [4–7].

Climate’s impact on health, particularly in relation to infectious diseases like dengue, has

been studied by multiple authors [8, 9]. Studies found that climate change can affect patho-

gens, hosts, and the transmission environment of these diseases. For example, the develop-

ment, behavior, and survival of the Aedes mosquitoes depend on temperature and humidity,

while precipitation is necessary for egg laying [10]. Studies suggest that mosquito densities are

highest at temperatures between 15˚C and 32˚C [11–13] with a non-linear relationship due to

the harmful effects of very high temperatures on mosquito eggs. After a rainy season, an

increase in mosquito densities is expected, but this depends on the accumulation and intensity

of rainfall. Intense rainfall can actually reduce mosquito populations by washing away eggs

and larvae [11, 14].

Colombia provides a suitable habitat for the primary mosquito vector of dengue, Aedes
aegypti, which is widespread across the country. In Colombia, disability-adjusted life years

(DALY) caused by dengue are between 9845.9 and 13584.2 DALY per million inhabitants in epi-

demic years [15]. Last year, the country reported the highest frequency of severe dengue cases in

South America, with a 100% increase compared to 2022 [16]. Therefore, dengue generates a

very high cost to the Colombian healthcare system and economic expenses for the population.

In dengue studies conducted in Colombia, a prominent approach involves the use of gener-

alized linear mixed models that incorporate spatial and temporal variability using linear effects

of covariates and random effects [17–19]. However, these models overlook the complexity of

the relationships between dengue and the covariates utilized by assuming linear effects. This

research aims to analyze the effects of climate and socio-economic factors on dengue risk in

Valle del Cauca, Colombia, considering non-linear and delayed effects as well as spatial and

temporal random effects to model residual variation.

Materials and methods

Study area

Colombia is a country with over 52 million inhabitants, organized into 32 departments and

1104 municipalities. One of its departments, located in the southwest of the country, is the

Valle del Cauca (Fig 1), with a population of 4.6 million in 42 municipalities, 5 subregions, and

an area of 22,195 km2 (at 3.56˚ N, 74.30˚ W, and 1561m above sea level). Its territory stretches

from the Pacific coast, through the Western and Central Andes. It is characterized by an inter-

tropical climate with two dry seasons per year (December to February and June to September)

and two rainy seasons (March to May and October to November). However, the Pacific subre-

gion stands out with high precipitation, averaging around 231 rainy days per year and a brief

dry season in January and February.

Dengue and population data

Confirmed and reported dengue cases were obtained from the public health surveillance sys-

tem (SIVIGILA) for each of the 42 municipalities in Valle del Cauca between January 2000
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and December 2019 [20]. The database included potential and confirmed cases in the labora-

tory using hemogram and immunoglobulin M [IgM] tests. Dengue data were downloaded

from the website of the National Institute of Health (INS) (available at https://www.ins.gov.co/

buscador-eventos/Paginas/Info-Evento.aspx). To calculate monthly rates, population estimates

for each municipality and year were downloaded from the National Administrative Depart-

ment of Statistics (DANE) [21].

Climate and socio-economic data

The climate variables utilized in this research included monthly average, maximum and mini-

mum temperatures (˚C), mean relative humidity (%), and accumulated monthly precipitation

(mm). These data were sourced from The Copernicus Climate Change Service (C3S, version

1.0) [22] for the period from January 2000 to December 2019. This dataset is based on hourly

ECMWF ERA5 data at the surface level, aggregated to daily time steps in the local time zone,

and corrected for finer topography at a spatial resolution of 0.1˚. The gridded data were further

aggregated by month and municipality by calculating the mean of grid boxes within a buffer

around the municipal capital, using the municipality’s area radius. Temperature indicators,

such as the range of maximum and average monthly temperatures, were computed for inclu-

sion as variables in the model. Additionally, El Niño Southern Oscillation (ENSO) obtained

using monthly Niño-1.2 and Niño-3.4 data was retrieved from the National Oceanic and

Atmospheric Administration (NOAA) [23]. This indicator is commonly used in prior studies

which relate climate and dengue in Colombia due to its proximity to Pacific coast [12, 19].

Climate data were validated using information from Cali, the capital of the department.

Specifically, data extracted from aggregated images were compared to the meteorological sta-

tion data in Cali for the period 2000 to 2014. It was found that the average, maximum, and

minimum temperatures in the images were lower than the actual values from the monitoring

station (S1 Fig). Correlations above 65% were found between the different series, indicating a

Fig 1. Geographical location of the study region, Valle del Cauca, Colombia. Basemap shapefile downloaded from https://rspatialdata.github.io/

admin_boundaries.html.

https://doi.org/10.1371/journal.pone.0311607.g001
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strong relationship. Linear regression models were used to adjust the temperature series, using

slope values equal to 1.16˚C for maximum temperature, 1.81˚C for minimum temperature,

and 1.44˚C for average temperature (S1 Table).

Socio-economic factors were obtained from the 2018 census by DANE [21]. These included

the proportion of households with water supply, the proportion of households with sewerage,

the proportion of the population residing in urban areas, and the proportion of households in

low socio-economic strata (stratum 1 and 2). This last indicator is an ordinal measure vali-

dated by the National Department of Planning, with values ranging from 1 to 6, where 1–2

represents low, 3–4 middle, and 5–6 high economic capacity. This classification is based on

household characteristics, including construction materials, housing conditions, and immedi-

ate surroundings such as access roads and sidewalks. Each house is assigned a specific stratum,

and each neighborhood is classified according to the mode [24].

Modelling framework

A spatio-temporal Bayesian hierarchical model [25] was formulated using monthly counts of

notified dengue cases for 43 municipalities in Valle del Cauca, from January 2001 to December

2019. Counts of dengue cases yst, s = 1, . . ., 42, t = 1, . . ., 228 were assumed the following nega-

tive binomial distribution:

yst j mst;k � NegBinðmst;; kÞ ð1Þ

logðmstÞ ¼ logðps aðtÞÞ þ logðrstÞ: ð2Þ

Here, μst represents the mean number of cases in each municipality s and month t, and κ is

the scale parameter. In the model, population effects are accounted by including the logarithm

of the population per 100,000 as an offset at the linear predictor scale. Thus, μst is expressed as

the yearly population per 100,000 (ps a(t), a(t) = 2001, . . ., 2019) multiplied by the dengue inci-

dence rate (ρst).
The dengue rate ρst was modeled using a combination of climate and socio-economic fac-

tors as well as spatial and temporal random effects. To select the optimal combination of covar-

iates and random effects, we compared several models using the Deviance Information

Criterion (DIC) [26] and Watanabe-Akaike information criterion (WAIC) [27]. We initially

specified a baseline model that accounted for seasonality and interannual spatial variability at

the municipality level using random effects. Subsequently, we separately added covariates

from the climate and socio-economic groups to this baseline model to select the most impor-

tant climatic variables and socio-economic factors. Finally, the variables from these two groups

that resulted in the model with the smallest DIC and WAIC were put together and added in

the model that also included the random effects.

For the final model, we simulated the posterior predictive distribution of the response vari-

able using samples from the posterior distribution. This was done 19 x 12 times, leaving out a

month per year each time [28]. Then, the posterior predicted medians were compared to the

observed dengue rates. The model parameters were estimated using the integrated nested

Laplace approximation (INLA) in R [29, 30].

The baseline model for the dengue incidence rate accounted for seasonality at the munici-

pality level by including a municipality-level random effect per calendar month, and interan-

nual spatial variability by using a year-specific effect that accounted for spatially structured

and unstructured variability. Specifically,

logðrstÞ ¼ aþ bs mðtÞ þ �s aðtÞ þ ns aðtÞ; ð3Þ

PLOS ONE Climate variability on the spatio-temporal distribution of Dengue

PLOS ONE | https://doi.org/10.1371/journal.pone.0311607 October 8, 2024 4 / 13

https://doi.org/10.1371/journal.pone.0311607


where α is the intercept, and βs m(t) accounts for the seasonality at the municipality level and is

represented with a cyclic random effect of first order for each municipality and month with no

discontinuity between January in year a(t) and December in year a(t) − 1. Interannual variabil-

ity and long-term trends are accounted for using an interaction between year and spatially

structured (νs a(t)) and unstructured random effects (ϕs a(t)). This component utilized a Besag-

York-Mollie (BYM) model with a conditional autoregressive model (CAR) as a prior in the

structured spatial random effect, and an independent municipality-specific noise random

effect [31, 32]. Here, structured spatial random effects allowed for dependency between

municipalities, while unstructured random effects accommodated other unmeasured factors

in the municipalities.

The baseline model was extended by including linear effects of the socio-economic vari-

ables. Additionally, distributed lag non linear models (DLNMs) were used to include possible

non-linear and delayed associations between dengue incidence rate and climate variables since

several studies have documented this type of relationship [17, 33]. DLNMs are based on the

definition of a cross-basis obtained by the combination of two functions that account for non-

linear exposure-response effects f(x), and the lag structure of the relationship w(l) [34]. Thus,

the baseline model for dengue incidence rate was extended using non-linear exposure-lag

functions for the climatic variables f.w(x, l). Following the model employed for dengue risk in

Brazil by [17], these functions were constructed using lags betwen 0 and 6 months, and natural

cubic splines for both the exposure (two equally spaced knots) and the lag dimension (with

one internal knot at the percentile 50). We constructed the cross-basis functions for the

DLNM component using the R package dlnm in [35]. Additionally, we compared this model

with a model that included lagged linear variables using DIC and WAIC. For reproducibility,

we made data and code available at https://github.com/deliaortegalenis/Dengue-Climate.

Results

Dengue and socio-economic variables

Between 2000 and 2019, SIVIGILA registered 170,977 dengue cases, with o without warning

signs which could include abdominal pain, persistent vomiting, and mucosal bleed [36], in the

42 municipalities of Valle del Cauca. Dengue rates have increased over this period, but the

increase varies between municipalities. Additionally, the monthly pattern of dengue rates var-

ies across municipalities. For example, in some cities like Cali (the capital), Andalucia, Anser-

manuevo, Bolivar, Cartago, Dagua, and Riofrı́o, the transmission season occurs in the first

months of the year. In other municipalities, high rates can occur in any month of the year, and

this variation is not dependent on the geographical zone. The years with dengue epidemics

were 2002, 2010, 2013, 2015, and 2016 (Fig 2).

The socio-economic variables obtained in the census of 2018 show that municipalities in

the north-west and south-west of the department have the lowest percentages of access to

water supply (70–80%), residents living in urban areas (20–50%), households with sewer (70–

80%), and high percentages of households with low socioeconomic strata (50–70%) (S2 Fig).

We use the proportion of households with the lowest socio-economic strata (1–2) as a proxy

for vulnerable conditions, which is negatively correlated with the other variables. Specifically,

the Pearson correlation coefficient with water supply was r = −0.62 (p< 0.05), with urban pop-

ulation r = −0.52 (p< 0.05) and with sewer r = −0.51 (p< 0.05). However, the correlation

between proportion of households with water supply and proportion of residents living in

urban areas was positive r = 0.61 (p< 0.05). This indicates that in municipalities with higher

urbanization, better access to water supply is expected, but a higher population in urban areas

also increases the risk of dengue.
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Climate factors

Temperature varies between municipalities in Valle del Cauca. For instance, the mean temper-

ature in cities like Buenaventura on the Pacific coast is consistently above 29˚C almost

throughout the twelve months of the year, while in other cities like Calima, it averages around

23˚C. Maximum temperatures peak during the dry season between June and September (S3

Fig). Precipitation follows a typical pattern, with rainy months occurring from March to May

and October to November (S4 Fig). While relative humidity does not exhibit a clear temporal

pattern throughout the year, it shows variability between municipalities, with values ranging

between 61% to 87% (S5 Fig).

Effects of climate and socioeconomical variables in Dengue risk

In total, we estimated 48 models resulting from the combinations of eight climate variables

and four socio-economic factors, each comprising the random effects of the baseline model

and various combinations of climatic and socio-economic variables. We then selected the best

model based on the DIC and WAIC. Among the climate variables, the combination of precipi-

tation, mean temperature, and relative humidity yielded the lowest DIC and WAIC when con-

sidering lagged non-linear effects. We then compared this combination with linear terms and

observed that both indicators decreased with the inclusion of non-linear terms. Specifically,

DIC decreased from 44,240 to 44,070, and WAIC decreased from 44,400 to 44,213. For socio-

economic factors, including water supply, urban population, and low stratum improved the

model fit. However, due to the high and significant correlation between these factors, we

selected the second model with the lowest DIC and WAIC, resulting in the inclusion of the

water supply variable.

We then estimated using the selected climate and socio-economic variables, which led to an

improved model fit compared to both the baseline and the previously mentioned models

(Table 1). However, since the change in DIC and especially WAIC was minimal, we opted to

select the final model containing only the climate variables. We also validated the results, find-

ing that the estimated risk for the climate variables did not change between the model with

water supply and the model without it.

Fig 3 illustrates that the relative risk (RR) of dengue increases with rising mean temperatures

but after 27.5˚C the risk is below one. The highest RR of 1.40 (95% CI: 1.17–1.67) was observed

at a temperature of 26˚C with a lag between 0–2 months (Fig 4). Regarding precipitation, values

above 800 mm indicated a high risk of dengue, the highest RR was 1.22 (95% CI: 0.78–1.93) for

a value of 940 mm with a lag of 2–3 months, as shown in the contour plot in Fig 5. Finally, for

Fig 2. Dengue incidence rate in Valle de Cauca from 2001 to 2019.

https://doi.org/10.1371/journal.pone.0311607.g002
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relative humidity, the highest RR was 1.35 (95% CI: 0.69–2.64) for a value of 87% with a lag of 0

months, however, the risk is almost constant for all the lags as depicted in Fig 6.

Finally, the predicted values obtained in the out of sample posterior estimates of dengue

incidences, simulated from the final model fitted in the cross-validation process that excluded

Table 1. Model adequacy results.

Model DIC WAIC

Base model (BM): log(ρst) = α + βs m(t) + ϕs a(t) 58243.7 02792.4

BM + Mean temperature + Precipitation + Relative humidity 44070.9 44213.7

BM + Water supply + Urban population + Low stratum 44265.2 44214.8

BM + Water supply 44307.8 44466.2

BM + Mean temperature + Precipitation + Relative humidity + Water supply 44024.83 44175.8

https://doi.org/10.1371/journal.pone.0311607.t001

Fig 3. Overall exposure-response association across all lags for mean temperature.

https://doi.org/10.1371/journal.pone.0311607.g003

Fig 4. Contour plot of the exposure-lag-response association (RR) between mean temperature and risk of dengue

(compared to overall mean of 22.6˚C).

https://doi.org/10.1371/journal.pone.0311607.g004
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one month per year at a time, shows that the predicted rates vary between municipalities

where the west cities in the department have the higher rates. Epidemiological reports and

other studies conducted in Colombia have identified dengue outbreaks for 2002, 2010, 2013,

2015 and 2016 [10, 15, 16]. Our findings reveal that during these years, the highest rates were

reported across all municipalities (S6 Fig).

Discussion

In this study, we employed a spatio-temporal model to analyze the lagged and non-linear

effects of climate and socio-economic variables on dengue risk in Valle del Cauca, Colombia,

which is the second most populated department and one of the regions with the highest num-

ber of dengue cases and deaths [16]. The findings indicate that average temperature exhibited

a positive association with dengue risk 0–2 months later, showing a 40% increase in the rate.

Similarly, high precipitation levels accumulated in the month lead to increased risk

Fig 5. Contour plot of the exposure-lag-response association between precipitation and risk of dengue (compared

with overall mean of 152.1 mm).

https://doi.org/10.1371/journal.pone.0311607.g005

Fig 6. Contour plot of the exposure-lag-response association between relative humidity and dengue (compared

with overall mean of 72.5%).

https://doi.org/10.1371/journal.pone.0311607.g006
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approximately 2–3 months later. For humidity, the effect was more immediate without lag

time and remained relatively constant over the 6 months.

These results are consistent with multiple investigations where climate variables such as

average temperature, precipitation, and relative humidity appear to have significant effect in

explaining dengue risk [3, 5, 10, 11, 18]. In the case of average temperature, results in Colom-

bia and in the city of Cali report positive associations with lags of up to two weeks [3, 10]. For

precipitation, findings from other studies vary; in some cases, it increases the risk of dengue in

vulnerable areas [37, 38], meaning its effect is mediated by socio-economic factors such as san-

itary conditions and access to water supply and sewage systems, as water storage practices

increase the availability of habitats for Aedes aegypti larvae. In other cases, precipitation shows

a decrease in dengue risk since heavy rains could overflow outdoor containers and wash them

away, depending on the availability of tanks inside and outside households [17]. Regarding rel-

ative humidity, the expected relationship is positive, as vector feeding is more frequent during

dry periods. While many studies have evaluated this effect, some report a significant relation-

ship of mean relative humidity and rate of dengue. In Colombia, research has shown a signifi-

cant effect of this variable with a 4 week lag in one study and an 8-week lag in another [3, 5].

Regarding socio-economic variables, this study found that access to water supply improves

the model fit using DIC, which is consistent with other research where is found a relationship

between socio-economic inequalities and the incidence of such diseases in Colombia and Valle

del Cauca [4, 39]. However, the difference in DIC and WAIC between the model with this var-

iable and without it was minimal, and the estimated rate risk did not change, indicating that

this factor does not effectively control for potential confounding effects. This may be because it

does not accurately measure the percentage of households lacking continuous access to quality

water, as water cuts can be frequent. A study conducted in Brazil included the variable “water

cuts” for a more precise measurement of storage or use of alternative sources of water [17].

However, obtaining this information during the study period was not feasible for this research.

It should be noted that the estimated risks do not show large magnitudes, except for relative

humidity. Concerning temperature, the patterns remain relatively stable due to Colombia’s

absence of distint seasons, except during El Niño or La Niña events, which trigger significant

fluctuations in temperature and precipitation, respectively. Although in this study the Niño

index 1.2 or 3.4 did not impact the model fit, this differs from findings from other research

conducted in Colombia where ONI (Oceanic Niño Index) and Niño 1.2 were considered as

variables to represent the dynamics of ENSO phenomenon, and showed a strong relationship

with the incidence of arboviruses such as dengue [19, 40]. Although these findings indicate

that El Niño increases dengue cases in the country, these analyses were conducted at the

national level and not for a specific region or department, as in this study.

Dengue incidence in Valle del Cauca has been affected by interventions implemented over

the 19-year study period, particularly during years marked by epidemiological outbreaks.

Some of the interventions commonly implemented include risk communication, information

on eliminating potential habitats such as empty containers and tires, cleaning pools and tanks,

using repellent, wearing long-sleeved shirts, and using bed nets at night, along with neighbor-

hood fumigation. In 2019, the World Mosquito Program (WMP) introduced its Wolbachia

method in the city of Cali [41]. This involved releasing mosquitoes carrying Wolbachia, a bac-

terium that competes with other viruses such as dengue, Zika, chikungunya, and yellow fever,

thus impeding the viruses’ ability to reproduce within the Aedes aegypti mosquito population.

Future studies with longer time frames should consider the impact of this program in their

modeling.

Regarding the limitations of this study, it is important to note that potential changes in epi-

demiological surveillance systems in various municipalities over a 19-year period could lead to
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imprecise data in terms of reported cases. This could bias the estimation of disease incidence

patterns. Additionally, although we worked with confirmed cases, these are not always con-

firmed through laboratory testing (around 50% were confirmed) but rather through epidemio-

logical linkage [42]. However, it is important to take into account that the database used is

publicly available from the National Institute of Health and has already undergone review and

cleaning processes [16]. Another limitation is the adjacency matrix used for the spatial random

effect, which considers adjacent municipalities as neighbors. Some municipalities, such as Bue-

naventura on the Pacific coast or Cali, which have the largest populations and the greatest con-

centration of health services, showed different behaviors from the rest. This indicates that

adjacent municipalities do not necessarily present the highest correlation. For future work, the

construction of adjacency matrices should be explored, not necessarily defined by administra-

tive boundaries. It is also important to consider that the validation process applied to the tem-

perature series from satellite images can introduce bias, increasing the temperatures in some

municipalities, as the gold standard method relied on a single station to represent the entire

region.

This model allows us to make inferences and explain the effects of climate on dengue rates.

However, while it successfully detects years with dengue epidemics, it overestimates the rates

in some other years, indicating that it is not complex enough for accurate prediction. We plan

to explore other methods, such as machine learning techniques, to construct a predictive

model [43].

In conclusion, this study quantifies the non-linear and delayed relationships between den-

gue risk and climatic and socio-economic variables considering spatial and temporal variabil-

ity in the Valle del Cauca department of Colombia. These findings could be valuable for local

health authorities interested in developing early warning systems to predict future risks in

advance. This is particularly important given the increasing frequency and intensity of extreme

climate events due to climate change, and reinforces the need for robust models that can

account the complexity of these phenomena.
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S6 Fig. Posterior predictive mean dengue rate 2001–2019. Basemap shapefile downloaded

from https://rspatialdata.github.io/admin_boundaries.html.

(TIF)

PLOS ONE Climate variability on the spatio-temporal distribution of Dengue

PLOS ONE | https://doi.org/10.1371/journal.pone.0311607 October 8, 2024 10 / 13

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0311607.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0311607.s002
https://rspatialdata.github.io/admin_boundaries.html
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0311607.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0311607.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0311607.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0311607.s006
https://rspatialdata.github.io/admin_boundaries.html
https://doi.org/10.1371/journal.pone.0311607


S1 Table. Correlation and linear regression models. Models between satellite images data

and local station.

(DOCX)

Author Contributions

Conceptualization: Delia Ortega-Lenis, Paula Moraga.

Data curation: Delia Ortega-Lenis.

Formal analysis: Delia Ortega-Lenis.

Investigation: Delia Ortega-Lenis.

Methodology: Delia Ortega-Lenis, Freddy Hernández, Paula Moraga.

Supervision: Freddy Hernández, Paula Moraga.

Validation: Delia Ortega-Lenis, David Arango-Londoño.

Visualization: Delia Ortega-Lenis, David Arango-Londoño.

Writing – original draft: Delia Ortega-Lenis, David Arango-Londoño, Paula Moraga.

Writing – review & editing: Delia Ortega-Lenis, David Arango-Londoño, Freddy Hernández,

Paula Moraga.

References
1. World Health Organization. Dengue—Global situation 2023. Available at: https://www.who.int/

emergencies/disease-outbreak-news/item/2023-DON498

2. Organización Panamericana de la Salud. Informe de la situación epidemiológica del dengue en las

Américas. 2023. Available at: https://www.paho.org/es/documentos/informe-situacion-no-3-situacion-

epidemiologica-dengue-americas-semana-epidemiologica-02

3. Morgan J., Strode C., & Salcedo-Sora J. E. Climatic and socio-economic factors supporting the co-cir-

culation of dengue, Zika and chikungunya in three different ecosystems in Colombia. PLoS Neglected

Tropical Diseases. 2021; 15(3):e0009259. https://doi.org/10.1371/journal.pntd.0009259 PMID:

33705409

4. Carabali M., Harper S., Lima Neto A. S., dos Santos de Sousa G., Caprara A., Restrepo B. N., et al.

Decomposition of socioeconomic inequalities in arboviral diseases in Brazil and Colombia (2007–

2017). Transactions of The Royal Society of Tropical Medicine and Hygiene. 2022; 116(8):717–726.

https://doi.org/10.1093/trstmh/trac004 PMID: 35088864

5. Ordonez-Sierra G., Sarmiento-Senior D., Gomez J. F. J., Giraldo P., Ramı́rez A. P., & Olano V. A. Multi-

level analysis of social, climatic and entomological factors that influenced dengue occurrence in three

municipalities in Colombia. One Health. 2021; 12, 100234. https://doi.org/10.1016/j.onehlt.2021.

100234 PMID: 33855157

6. Pavani J., Bastos L. S., & Moraga P. Joint spatial modeling of the risks of co-circulating mosquito-borne
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