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Abstract

The escalating generation of household medical waste, a byproduct of industrialization and

global population growth, has rendered its transportation and logistics management a criti-

cal societal concern. This study delves into the optimization of routes for vehicles within the

household medical waste logistics network, a response to the imperative of managing this

waste effectively. The potential for environmental and public health hazards due to improper

waste disposal is acknowledged, prompting the incorporation of contamination risk, influ-

enced by transport duration, waste volume, and wind velocity, into the analysis. To enhance

the realism of the simulation, traffic congestion is integrated into the vehicle speed function,

reflecting the urban roads’ variability. Subsequently, a Bi-objective mixed-integer program-

ming model is formulated to concurrently minimize total operational costs and environmental

pollution risks. The complexity inherent in the optimization problem has motivated the devel-

opment of the Adaptive Hybrid Artificial Fish Swarming Algorithm with Non-Dominated Sort-

ing (AH-NSAFSA). This algorithm employs a sophisticated approach, amalgamating

congestion distance and individual ranking to discern optimal solutions from the population.

It incorporates a decay function to facilitate an adaptive iterative process, enhancing the

algorithm’s convergence properties. Furthermore, it leverages the concept of crossover-

induced elimination to preserve the genetic diversity and overall robustness of the solution

set. The empirical evaluation of AH-NSAFSA is conducted using a test set derived from the

Solomon dataset, demonstrating the algorithm’s capability to generate feasible non-domi-

nated solutions for household medical waste recycling path planning. Comparative analysis

with the Non-dominated Sorted Artificial Fish Swarm Algorithm (NSAFSA) and Non-domi-

nated Sorted Genetic Algorithm II (NSGA-II) across metrics such as MID, SM, NOS, and CT

reveals that AH-NSAFSA excels in MID, SM, and NOS, and surpasses NSAFSA in CT,

albeit slightly underperforming relative to NSGA-II. The study’s holistic approach to waste

recycling route planning, which integrates cost-effectiveness with pollution risk and traffic

congestion considerations, offers substantial support for enterprises in formulating sustain-

able green development strategies. AH-NSAFSA offers an eco-efficient, holistic approach

to medical waste recycling, advancing sustainable management practices.
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1. Introduction

Under the combined pressure of industrialization and population growth, global waste genera-

tion is increasing alarmingly [1]. Medical waste, in particular, has become an urgent environ-

mental problem due to its potential environmental and health risks. The widespread use of

disposable medical devices by the healthcare industry, a non-negligible part of the waste

stream, further exacerbates the challenge of environmental sustainability. Although the health-

care sector is increasingly adopting environmentally friendly materials, it still faces difficulties

in achieving sustainable recycling and reuse.

The expansion of the medical waste disposal market, especially in China, is evident from

the analysis of market size statistics and forecasts from 2018 to 2029, as shown in Fig 1 [2,3].

These figures not only reveal the growth in market size but also reflect the urgent need for

effective management solutions. With changing demographics, especially aging and increasing

demand for home care services, the generation of household medical waste has risen signifi-

cantly, which poses a serious threat to public health, safety, and the environment. It has there-

fore become essential to put in place stringent measures for the segregation and management

of household medical waste, especially in dealing with sharps and accidental blood exposure.

Fig 1. China medical waste disposal market size statistics and forecast, 2018 to 2029.

https://doi.org/10.1371/journal.pone.0311582.g001
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Household medical waste is usually classified into four main categories: chemical, pharma-

ceutical, hazardous, and infectious waste, of which about 10 to 25 percent are biotoxic, corro-

sive, infectious, or unsafe. Improper disposal may lead to environmental pollution and disease

transmission, posing a threat to human health [4,5]. For example, during the COVID-19 pan-

demic, used protective gear that was improperly discarded could have led to socio-environ-

mental problems due to contamination and disease transmission [6]. It is worth emphasizing

that when hazardous household medical waste is mixed with other household waste, the entire

waste becomes hazardous. For example, contaminated protective gear such as masks may

transmit diseases to staff and waste collectors when they are usually discarded with household

waste. Household medical waste recycling is therefore an important waste collection and man-

agement service.

Due to the rapid increase in the volume of household medical waste, systematic manage-

ment of the waste is problematic. Globally, many countries have problems in the management

of household medical waste, and these problems add to the complexity and urgency of man-

agement [7–12]. These problems include illegal secondary sales, arbitrary disposal, mixing

with household waste, and may even involve black industry chains [13]. To address these chal-

lenges, the World Health Organization (WTO) has provided an exhaustive reference manual

on medical waste management, details of which are available at https://www.who.int/news-

room/fact-sheets/detail/health-care-waste. This manual covers many aspects of the proper dis-

posal of medical waste and emphasizes global co-responsibility. Therefore, the safe disposal

and effective management of household medical waste is not only an important issue of envi-

ronmental protection and public health but also a key to safeguarding human health and eco-

logical security. This study aims to examine in depth the current situation, challenges, and

possible improvement strategies in the management of household medical waste, to provide a

scientific basis for formulating more effective management measures.

The main contribution of this paper is to improve the household medical waste recycling

process through a scientifically rigorous vehicle path optimization method. Enhancing vehicle

route planning provides strong support to establish a safe, efficient, and ecologically sound

medical waste management system. Therefore, based on the characteristics of household medi-

cal waste, this paper develops a vehicle path problem for household medical waste recycling.

The problem takes into account the hazards that may be caused to the local community and

the environment during the transport of household medical waste recycling, especially consid-

ering that the number of pollutants spilled varies with the wind speed and the amount of

waste. To more closely match the actual urban traffic conditions, a road congestion factor was

introduced and parameterized in the study to simulate the actual traffic congestion. By analyz-

ing the distribution and collection points of household medical waste, the collection routes of

vehicles are optimized to reduce unnecessary traveling distances, thus reducing the total

expenditure while mitigating the impact of environmental pollution. This also responds to the

pragmatic requirement of balancing fiscal efficiency and ecological protection.

Furthermore, in this paper, an Adaptive Hybrid Artificial Fish Swarm Algorithm with

Non-Dominated Sorting (AH-NSAFSA) is developed to solve the proposed model. The algo-

rithm evaluates and ranks the solution set using a non-dominated ranking technique to deter-

mine the most appropriate solution. To improve the performance of the algorithm, several

innovations are introduced in this study, including a decay function for the three parameters

of the artificial fish field of view, the step size, and the crowding factor, which works together

to improve the convergence speed and search accuracy of the algorithm. In addition, an elimi-

nation behavior was introduced through the crossover operation to ensure the diversity of the

population and the quality of the solution. To ensure the effectiveness of the proposed model

and algorithm, 31 nodes were selected from the RC101 category of the Solomon dataset for
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testing. The experimental results of the algorithm were evaluated and discussed through a

comprehensive series of experiments that not only validated the effectiveness of the model and

algorithm but also demonstrated the potential of the algorithm in solving practical problems.

In conclusion, by proposing and validating a bi-objective optimization model, this study pro-

vides an innovative solution to the household medical waste recycling pathway problem,

which helps to reduce operational costs and mitigate environmental pollution, thus promoting

sustainable development.

The following is an arrangement of the study’s contents to provide a theoretical framework

for the following investigation. Section 2 will thoroughly classify the pertinent medical waste

recycling reverse logistics literature. In Section 3, the research challenge of this work will be

elucidated in greater detail, and a mathematical model of home medical waste recycling will be

constructed to perform a quantitative assessment of the significant components of the recy-

cling process. Based on the accepted mathematical model and the conventional artificial fish

swarm algorithm, Section 4 will In Section 4, an adaptive hybrid artificial fish swarm algorithm

with non-dominated sorting is presented to increase recycling efficiency and optimize the

recycling path. In Section 5, numerical experiments will be designed to verify the viability and

efficacy of the proposed model and algorithm. In Section 6, the key findings of this study will

be summarized, and future research directions will be considered to provide a more effective

and scientific solution for the recycling management of household medical waste.

2. Literature review

2.1 Related studies

The current increase in medical waste generation poses challenges for cities regarding the

management of collection, treatment, recycling, and disposal. Collection, transportation, treat-

ment, and recycling are significant medical waste management costs. The medical waste col-

lection problem is a variant of the Vehicle Route Problem (VRP). If medical waste is not

disposed of properly, it may have adverse effects on the environment and human health [14].

Medical waste management is a reverse logistics management problem designed for medical

waste. When medical waste logistics is problematic, there will be persistent environmental and

human health risks [15], such as respiratory diseases, carcinogenicity, and other problems

[16]. In response to the inherent risks entailed in the transportation of medical waste, academi-

cians have explored and examined the reverse logistics pertaining to the collection of such

waste. For example, SHI et al. discussed the importance of medical waste management. They

proposed a new mixed-integer linear programming model to improve the reverse logistics net-

work design for medical waste management, aiming to effectively manage medical waste and

reduce its environmental and public health risks [17]. Wang et al. addressed the problem of

reverse logistics network design for municipal medical waste by combining the grey prediction

model GM (1,1) and a MO-optimization model. They proposed a dynamic approach to make

facility allocation decisions for a medical waste reverse logistics network [18]. Alizadeh et al.

considered forward and reverse logistics networks, emphasizing medical waste sorting and

recycling while considering biological risks [19]. Nikzamir et al. proposed a new medical waste

siting pathway problem, considering the stochastic nature of pollution emission during the

transportation of medical waste from medical centers to treatment centers, and proposed a

Multi-Objective Water Flow Algorithm (MOWFA) based on the analytical hierarchy process

(AHP) to solve the problem [20]. Kargar et al. considered the uncertainty in the amount of

medical waste generated and used a fuzzy goal-planning approach to deal with the uncertain

parameters in the model [21]. Torkayesh et al. proposed a MO-optimization model consider-

ing economic, environmental, and social aspects to facilitate the application of sustainability
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objectives in healthcare waste management systems [22]. Govindan et al. applied queuing the-

ory for the first time to trucks managing waiting times at processing centers, considering both

vehicle paths and center locations, and used a scenario-based approach to deal with uncertainty

in waste generation [23]. Kargar et al. proposed a tri-objective function model and validated the

model with a real-life case study in Iran [24]. Singh et al. proposed a two-stage hybrid decision-

making framework for selecting third-party reverse logistics providers and optimizing order

allocation in the post-epidemic era [25]. Wang et al. proposed a BVM-based risk assessment

model for identifying and controlling key risk factors in the reverse logistics of medical waste

[26]. Wang et al. proposed a medical waste collection path optimization model considering

infection risk and multiple disposal centers, aiming to minimize the maximum infection risk

and transportation cost [27]. Nasreddine proposed a new medical waste transport model based

on the Multi-Compartment Vehicle Routing Problem (MC-VRP), which separates hazardous

waste from non-hazardous waste along the transport route [28]. Lin et al. proposed an adaptive

MO algorithm for the problem of the path of an electric vehicle in the management of medical

waste [29]. Hajer et al. studied the task of transporting healthcare waste (HCW) and presented,

for the first time, a route planning problem based on multi-chamber vehicles to minimize the

total distance traveled in the context of HCW transport [30]. Qi et al. developed a three-tiered

recycling network model to investigate the establishment of a professional medical waste reverse

logistics network [31]. Considering routine and public health emergencies, Zhu et al. investi-

gated optimizing a reverse logistics network for healthcare waste under uncertain supply-

demand conditions [32]. A route optimization problem for medical waste collection with tem-

porary storage risk and sequential uncertain service requests was introduced by Zhang et al.

[33]. Zhang et al. proposed a time window model for the multi-cycle medical waste recycling

vehicle path problem for the municipal medical waste problem. They designed an improved

neighborhood search algorithm to improve efficiency and reduce the carbon footprint [34].

Many scientists have adopted new approaches to address the issue of medical waste man-

agement. Zhao et al. applied data mining techniques and intelligent algorithms to construct a

multi-period emergency disposal logistics network optimization under uncertainty conditions

model, taking into account the uncertainties in the amount of medical waste generated and the

region’s population density [35]. Keyvan et al. developed a planimetric clustering routing

method to optimize healthcare waste collection using a Geospatial Information System (GIS)

[36]. Zineb et al. proposed a novel healthcare waste management system based on collabora-

tion and technological advances, using XAI technology and vehicle optimization algorithms to

improve waste management efficiency [37]. Kaviya et al. propose a sustainable, green, circular

economy model for controlling waste and emissions in healthcare systems using AI technology

and drone technology [38]. Some scholars have established a reverse logistics optimization

model with local characteristics by considering various local factors. Anna et al. discussed the

importance of logistics constraints in medical waste management systems. Using Poland as an

example, they analyzed the impact of legal requirements, organizational factors, and economic

aspects [39]. Budak et al. proposed a new reverse logistics optimization model for the specific

case of Turkey and examined the impact of waste volume changes on the optimal reverse logis-

tics network through sensitivity analysis [40]. He et al. discussed the logistics of medical waste

collection in China and proposed a design and optimization method to improve the medical

waste collection network [41]. Pereira et al. discussed the phenomenon of household waste

medicines (HWM), its impact on the environment and public health, and the reverse logistics

system in Brazil [42]. Balci et al. designed a multi-purpose reverse logistics network to manage

healthcare waste generated in Istanbul [43]. Dhingra et al., for the first time, identified and

analyzed the challenges of adopting blockchain technology in healthcare waste management

by combining the BWM and DEMATEL methodologies in the context of healthcare in India
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[44]. Trivedi et al. proposed an optimization model based on objective planning to manage

recycling operations for medical waste generated during mass immunization campaigns [45].

On the other hand, scholars have addressed the problem of medical waste collection during

pandemic outbreaks. Yu et al. innovatively proposed a model for managing medical waste dur-

ing the COVID-19 outbreak and demonstrated the application of the model through a case

study [46]. Tirkolaee et al. addressed the pandemic healthcare waste collection and transporta-

tion problem during the pandemic and proposed a sustainable model considering cost-effec-

tiveness and environmental impacts [47]. Luo et al. investigated the problem of reverse

logistics network design for infectious medical waste (IMW) during the COVID-19 outbreak

and proposed a collaborative multi-participant (public center hospitals, disposal facilities,

logistics providers, and government) location and path optimization model [48]. Erdem et al.

designed a sustainable logistics network for collecting and transporting hazardous medical

waste generated during the COVID-19 pandemic, introducing an electric medical waste col-

lection vehicle path problem to optimize the routes and shifts of the electric vehicles while con-

sidering the choice of charging technology [49]. Liu et al. combined a SEIRD dynamic model

and particle swarm optimization algorithm to propose a flexible emergency logistics network

model to adapt to real-time changes in the epidemic region [50]. Karatas et al. explored trans-

portation and location planning problems that arise during epidemics and their solutions [51].

Yaspal et al. introduced a data-driven approach to digital transformation. They used a MO-

optimization model to manage healthcare waste, focusing on strategies to reduce the accumu-

lation of healthcare waste [52]. Nosrati et al. introduced the concept of epidemic disruption to

determine the amount of waste generated in network facilities. They formulated a bi-objective

mixed integer linear programming model for designing a reverse logistics network for health-

care waste management under uncertainty and epidemic disruption [53]. Naeme et al. consid-

ered the uncertainty in waste generation rates associated with COVID-19, using a plausibility-

based likelihood planning approach to deal with the uncertainty [54]. Elham et al. proposed a

complex integer linear programming model based on the Cuckoo optimization algorithm to

design a reverse logistics network for COVID-19 waste management [55]. Cao et al. proposed

a digital twin-driven, robust two-layer optimization model for the COVID-19 medical waste

location-transport problem [56]. A hybrid two-step approach combining infectious disease

modeling and multi-criteria decision-making for predicting and transporting infectious medi-

cal waste during the COVID-19 pandemic was presented by Li et al. [57]. For the management

of medical waste during the COVID-19 outbreak, Kannan et al. developed a two-objective

mixed-integer linear programming model [58]. Hamed et al. COVID-19 medical waste man-

agement is optimized using objective and robust possibility planning [59]. Eren et al. investi-

gated the problem of safe distance-based vehicle routing for medical waste collection during

the COVID-19 pandemic, combining safety scores and total transport distances [60]. Cao et al.

proposed a sustainability-oriented integrated location-transport optimization problem for

multi-phase, multi-type disaster medical waste during the COVID-19 pandemic [61]. Mei

et al. developed a multi-period medical waste emergency reverse logistics network siting

model to account for the characteristics of medical waste volume growth during the COVID-

19 epidemic [62]. Cao et al. investigated how to optimize a two-stage medical waste transport

network during the COVID-19 outbreak, considering factors such as the choice of multiple

vehicles, sustainability, and the probability of infection [63].

In solving the problem of reverse logistics of medical waste, scientists have used various

approaches. Alireca et al. developed three new multi-objective optimization algorithms for

solving the non-permutation flow-shop scheduling problems: the Multi-objective Ant Lion

optimization algorithm (MOALO), the Multi-objective Keshtel Algorithm (MOKA) and

Multi-objective Keshtel and Social Engineering Optimizer (MOKSEA), and experimentally
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adjusted the algorithm parameters to optimize the model [64]. Alireca et al. implemented the

Accelerated Benders decomposition algorithm to address the complexity of the model for a

portfolio-based closed-loop supply chain network for Dairy products and used the weighted

sum method (WSM), augmented ε-constraint (AEC), and fuzzy Mult objective programming

(FMOP) to deal with the bi-objectivity of the model [65]. In addition to the Multi-Objective

Water Flow Algorithm (MOWFA) [20], Best-Worst Method (BWM) [26], Multi-Attribute

Decision-Making Approach (MADMA) [25], Enhanced Epsilon Constraints Approach [48],

Adaptive Large Neighborhood Search (ALNS) [49], Particle Swarm Optimization (PSO) [50],

Cuckoo Optimization Algorithm (COA) [55], etc.

2.2 Research gap analysis and contributions

In summary, the existing literature provides a solid foundation for an in-depth study of house-

hold medical waste transport logistics. S1 Table. demonstrates some of the previous research

results. Through a meticulous literature review, this paper draws the following conclusions:

1. the inadequacy of pollution risk research: In the field of medical waste transport logistics,

insufficient attention has been paid to the risk of pollution in the transport process, and

most of the existing studies simplify the pollution risk into a single-factor function for esti-

mation, failing to capture the multidimensional characteristics of the risk comprehensively.

2. Neglect of Household Medical Waste Recycling: Existing studies have generally neglected

the importance of household medical waste recycling, which may be related to the insuffi-

cient understanding of the characteristics of household source waste and its potential

impact on the environment and public health.

3. Translation problems in MO-optimization studies: When considering MO-medical waste

transportation problems, existing studies tend to reduce MO problems to single-objective

problems, showing a lack of research on true MO-optimization methods.

Based on these findings, this study identifies key research directions and challenges in

household medical waste transport logistics networks, especially considering realistic con-

straints such as pollutant emissions, road congestion, and wind speed.

Consequently, the main contributions of this study are summarized as follows:

1. the multi-objective mixed integer planning (BOMIP) model is extended to design a vehicle

routing problem for household medical waste recycling, which can simultaneously optimize

the total cost and the risk of environmental pollution.

2. road congestion is considered and incorporated into the vehicle speed function to fit the

differences in vehicle speeds on different roads during real urban transport.

3. the impact of environmental pollution caused during the recycling of household medical

waste is considered.

4. A pollution risk function was proposed to assess the magnitude of pollution risk by the total

number of people affected. The influence of the amount of leaked pollution, the number of

inhabitants along the route, the transport time, and the wind speed on the assessment of the

pollution risk is also taken into account.

5. For the proposed vehicle path problem of multi-objective household medical waste recy-

cling, the Adaptive Hybrid Artificial Fish Swarm Algorithm with Non-dominated Sorting

(AH-NSAFSA) is proposed. To improve the performance of the algorithm, a decay function

as well as a cancellation behavior is introduced in the proposed algorithm.
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3. Problem formulation

A Bi-objective mixed-integer programming (BOMIP) model is developed in this section, and

the household medical waste recycling routing problem is introduced. The challenge of rout-

ing medical waste recycling for households is explained in Section 3.1. The parameters and

decision variables that will be incorporated into the formulation are covered in Section 3.2. A

vehicle speed function is proposed in Section 3.3 to mimic the state of traffic congestion in the

city. To account for the effects of the recycling trucks on the surrounding community and the

environment during the transportation process, Section 3.4 suggests a pollution risk function.

A pollution risk function that considers the recycling trucks’ effects on the surrounding com-

munity and environment is shown in Section 3.4. In Section 3.5, a two-objective mixed-integer

programming model is developed for the household medical waste recycling routing problem.

When the appropriate constraints are met, the model minimizes the transportation risk and

the overall cost of transportation.

3.1 Problem description

A collection center and sufficient vehicle fleets aiming at recycling household medical waste

are required to solve the vehicle route problem and maximize the recycling of household medi-

cal waste while considering road congestion. Each residential node’s position, the collection

center’s location, and the volume of medical waste produced are all known. It is crucial to

remember that the collection center is where the cars must begin. Furthermore, a few pre-

sumptions were maintained, including that all the cars were of the same make and model and

that driver and load had no effect on the car’s speed. Second, vehicle damage and the time

spent loading and unloading medical waste should have been considered during vehicle collec-

tion. Thirdly, there is contamination in the collected home medical waste. Lastly, specific

home nodes can independently transport the medical waste to the collection center. To recycle

domestic medical waste, this mathematical model for vehicle path optimization seeks to reduce

fixed costs, transfer costs, incentive costs, fuel costs, and pollution risks.

3.2 Symbols and decision variables

The collecting centers are denoted by P = {1}. The group of home nodes is Q = {1,2,. . .q}. All

nodes together make up a set N = P[Q. U = {1,2,. . .,u} is the group of cars used to collect medi-

cal waste from homes. The group of home nodes represented by the letter M recycles using the

collection vehicles. E = P[M is the group of residential nodes that use the collection locations

and the recycling vehicles.

The fixed expense paid when medical waste is collected by a collection truck is denoted by

CK. The expense associated with gathering every medical waste unit is denoted by CT. The

price of fuel per unit is indicated by COF. PR stands for the reward that the household node

receives when it transports its medical waste to the collection center. AWj is the quantity of

medical waste produced at home by node j. q is the number of nodes in a home. The distance

dij is the difference between nodes i and j. u represents the number of collection cars. The max-

imum load and range of the vehicles collected are indicated by letters D and L, respectively. v is

the collection vehicles’ typical driving speed. The time it takes to get from node i to node j is

indicated by tij. m is the total number of vehicles employed for collecting.

The load of the collection vehicle k between node i and node j is denoted by pk
ij. pd is the

amount of fuel used by the car when it is fully loaded and traveling at an average speed per

unit of distance. p0 is the amount of fuel used per unit of distance driven by the car when it is

not carrying any weight and is moving at a regular speed. POPij is the number of people living
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between nodes i and j. βj is the self-delivery utility index of the residential node j. ηj is the self-

delivery habit bias coefficient of the household node j. The maximum distance dmax between

each home node and the collecting center is indicated. The minimum distance dmin between

each home node and the collecting center is indicated. The maximum quantity of medical

waste generated by a home between its nodes is denoted by AWmax. The minimum quantity of

medical waste generated by a home between its nodes is denoted by AWmin. The utility thresh-

old for household nodes to deliver medical waste to collection centers on their own is repre-

sented by the symbol ω.

lj is a 0–1 variable if node j delivers household medical waste to the collection center on its

own, lj = 1, otherwise, lj = 0. f k
j denotes a 0–1 variable if the household node j is serviced by a

collection vehicle, f k
j ¼ 1, otherwise, f k

j ¼ 0. gk
ij is a 0–1 variable if the collection vehicle k trav-

els from node i to node j, gk
ij ¼ 1, otherwise, gk

ij ¼ 0. hk
j is a 0–1 variable if the collection vehicle

k travels from the collection center to the household node j, hk
j ¼ 1, otherwise, hk

j ¼ 0.

3.3 Construction of vehicle velocity function

With the increase in the number of household automobiles, the frequency of road congestion

increases, and even when a car accident occurs, the congestion on the road can be even worse.

In the process of transporting household medical waste, there is a particular risk of contamina-

tion from medical waste leakage. Traffic congestion seriously affects the speed of household

medical waste transportation, and the pollution risk of household medical waste will change

with traffic congestion. To simplify the study, the road congestion coefficient α is introduced

to react to the degree of traffic congestion, where α2[0,1). α = 0 indicates that the traffic on the

road is unimpeded. When α is closer to 1, it indicates that the road section is more congested.

Improvements are made based on the known function for calculating the speed of vehicle

travel in the case of road congestion, and the function of vehicle travel speed is obtained as

shown in Eq (1).

v0 ¼ ð1 � aÞ � vþ ð1 �
ea

8:14
Þ � a� v ð1Þ

Where v0 denotes the collection of vehicle travel speeds in the presence of road congestion.

3.4 Construction of pollution risk function

Vehicles used to collect infectious medical waste usually follow a certain standard. When vehi-

cles are used to collect infectious medical waste, they usually need to be equipped with contain-

ers made of metal or high-density plastic. These containers are usually rigid, impermeable,

puncture-proof, and tamper-proof [20]. However, not all countries meet these standards due

to factors such as the high cost of the container and the fact that it is not easily made. If the

requirements are unmet, there is a high risk of impacting the surrounding environment while

transporting contaminated medical waste in vehicles.

During the transportation of household medical waste, the risk of transportation arises

mainly from the leakage of pollutants, which in turn affects the surrounding population

around the transportation, and the number of pollutants inhaled by the population reflects the

level of risk of contamination during the transportation process. The majority of the contami-

nants examined in this study are airborne. The amount of home medical waste transferred, the

vehicle’s trip time, and the surrounding environmental factors all have a significant impact on

how these toxins disperse. The primary analysis is on how leaking toxins move throughout the

atmosphere, exposing nearby populations through inhalation or lifting. To reflect the degree
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of environmental hazards and the potential number of victims of the collection vehicle during

transportation, this paper sets the risk of household medical waste pollution(ERP), which is

the product of the amount of escaped pollution from household medical waste(CON), the

number of surrounding inhabitants(POP), and the transportation time(t) during transporta-

tion, i.e.,

ERP ¼ CON � POP� t ð2Þ

As a result of wind speed, the rate of dissipation of escaping pollutants from household

medical waste is faster than when there is no wind. The dissipation rate of pollutants increases

with the increase of wind speed. Assuming that the contaminants are uniformly distributed

around the collection vehicle, the amount of contamination from leaking household medical

waste can be expressed by Eq (3).

CONij ¼ ð1 � yijÞ � pk
ij � g ð3Þ

Where θij2[0,1] denotes the wind speed between node i and node j, and as θij converges more

to 1, then the wind speed increases. pk
ij is the amount of household medical waste loaded by the

vehicle k as it travels between node i and node j. γ is the contamination rate per unit of house-

hold medical waste.

If ξij is the population density per unit of distance in the path between node i and node j,
then the total population affected at a distance dij between node i and node j is as follows:

POPij ¼ xij � dij ð4Þ

Substituting Eqs (3) and (4) into Eq (2), the risk of household medical waste contamination

can be obtained as follows:

ERP ¼
X

i2E

X

j2E

ð1 � yijÞ � pk
ij � g� xij � dij ð5Þ

3.5 Mathematical model

In this paper, the BOMIP model is proposed for the vehicle path problem in a household med-

ical waste recycling logistics network to determine the routes of vehicles collecting household

medical waste, estimate the total cost of this logistics network, and assess the pollution impact

of household medical waste. To better fit the actual transportation environment, a vehicle

speed function is introduced to simulate the vehicle’s traveling speed on different road sec-

tions. The model considers two different objective functions, i.e., the total cost of the recycling

logistics network and the risk of contamination. The formulas of the proposed model are given

below:

(1) Total Cost of the Recycling Logistics Network

Eq (6) is the first objective function in the bi-objective mixed integer model developed in

this paper, whose goal is to minimize the total cost of the network. This objective function is

formulated by summing Eqs (6. a) through Eq (6. d). Eq (6. a) is the fixed cost of use incurred

when a collection vehicle is dispatched.

Minimize Z1 ¼ CK �m ð6:aÞ

Eq (6. b) represents the transfer costs incurred by collection vehicles for the transfer of

household medical waste.

þCT �
X

j2Q

AWj � ðq �
X

j2Q

ljÞ ð6:bÞ
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Eq (6. c) is the cost of collecting the fuel consumption incurred during the operation of the

vehicle.

þCOF �
X

k2K

X

i2E

X

j2E

FCk
ij � dij � gk

ij ð6:cÞ

Eq (6. d) is the incentive received by the household node for taking household medical

waste to the collection center on its own.

þPR�
X

j2Q

AWj � lj ð6:dÞ

FCk
ij in Eq (6. c) is the amount of fuel consumed per unit of distance traveled by collection

vehicle k from node i to node j, calculated as shown in Eq (7).

FCk
ij ¼ ð

v � v0ij
v

�
�
�
�

�
�
�
�þ 1Þð

pd � p0

D
pk

ij þ p0Þ ð7Þ

(2) Pollution Risk

The second objective function of the model is represented by Eq (8), which aims to mini-

mize the impact of pollution risks on the surrounding population.

Minimize Z2 ¼ ERP ð8Þ

The model is subject to:

X

i2E

gk
ij ¼

X

l2E

gk
jl 8k 2 U; 8j 2 E; i 6¼ j; j 6¼ l ð9Þ

Constraint (9) is a constraint on the continuity of the vehicle path.

X

k2U

f k
j ¼ 1 8j 2 M ð10Þ

Constraint (10) implies that a household node that recycles via a collection vehicle is served

by one and only one collection vehicle.

X

j2M

gk
ij ¼ f k

i 8i 2 M; 8k 2 U ð11Þ

X

i2M

gk
ij ¼ f k

j 8j 2 M; 8k 2 U ð12Þ

Constraints (11) and (12) ensure that household nodes for recycling via collection vehicles

can only exist on one transportation route.

X

j2M

X

k2U

f k
j ¼ q �

X

i2Q

li ð13Þ

Constraint (13) ensures that household nodes that are recycled through collection vehicles

are served by collection vehicles.

X

i2M

gk
ih �

X

j2M

gk
hj ¼ 0 8h 2 M; 8k 2 U ð14Þ

Constraint (14) ensures that only one home node or collection center is connected to a
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home node both before and after it in the travel path formed by the collection vehicle.

X

j2M

hk
j � u 8k 2 U ð15Þ

Constraint (15) guarantees that the number of collection vehicles dispatched from the col-

lection center does not exceed the total number of collection vehicles.

X

j2M

X

k2U

gk
ij � 1 8i 2 P ð16Þ

Constraint (16) ensures that at least one collection vehicle departs from the collection cen-

ter.

X

i2P

X

j2M

gk
ij � 1 8k 2 U ð17Þ

Constraint (17) indicates that each collection vehicle departs from the collection center at

most once.

X

j2M

AWj � f k
j � D 8k 2 U ð18Þ

Constraint (18) ensures that the amount of household medical waste loaded on the collec-

tion vehicle does not exceed the maximum load capacity of the vehicle.

X

j2M

gk
ij ¼

X

j2M

gk
ji 8i 2 P; 8k 2 U ð19Þ

Constraint (19) ensures that the collection vehicle departs from the collection center and

returns to the collection center upon completion of the collection task.

v0ij ¼ ð1 � aijÞ � vþ ð1 �
eaij

8:14
Þ � aij � v ð20Þ

Constraint (20) calculates the speed of travel between two nodes of the collected vehicles in

case of road congestion.

tij ¼
dij

v0ij
ð21Þ

Constraint (21) calculates the time consumed to collect vehicles traveling between two

nodes.

X

i2E

X

j2E

dij � gk
ij � L 8k 2 U ð22Þ

Constraint (22) indicates that the total distance traveled by the collection vehicle does not

exceed the maximum range of the vehicle.

bj ¼ Zj �
dmax � dij

dmax � dmin
þ ð1 � ZjÞ �

AWj � AWmin

AWmax � AWmin
ð23Þ

Constraint (23) calculates the self-delivery utility metric of household nodes to quantify the
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willingness of household nodes to self-deliver medical waste to collection centers.

lj ¼
1 bj � o

0 bj < o
ð24Þ

(

Constraint (24) determines whether the household node sends the household medical

waste to the collection center by itself.

4. Solution approach

The vehicle path problem is known to have the NP-hard property alone, which means that

finding an optimal solution to the large-scale problem is complex [66]. In addition, the two

objective functions of the proposed model in this study contradict each other, so it is reason-

able to use a MO-meta-heuristic algorithm to solve the problem. Therefore, in this paper, we

develop an adaptive hybrid artificial fish swarming algorithm with non-dominated ordering,

which differs from the classical artificial fish swarming algorithm in several aspects.

4.1 Representation scheme for solutions

The choice of solution representation scheme is one of the important factors that affect the

complexity and required computational time of an intelligent optimization algorithm. Using a

proper solution representation scheme can guide the algorithm to find more likely candidate

solutions. We used the widely used natural number-coding method for artificial fish. If the

number of generating nodes is L and the number of transit vehicles is K, the coding length at

this point is L×K, and the coding is done by randomizing all the integers in [1,L×K]. Then the

form of the code can be expressed as [X1,X2,X3,� � �,XL×K], where Xj represents the number

whose position index is j in the code. If there are four generating nodes and two transshipment

vehicles, the code for one possible artificial fish is [3,5,7,8,1,2,6,4].

The decoding process converts the representation of the solution into a meaningful solution

and obtains the objective function value. By decoding the artificial fish, it is possible to deter-

mine which generating node should be provided with collection service by which transit vehi-

cle and it is possible to derive the order in which each transit vehicle provides collection

service to the generating node. It is known that the representation of the artificial fish can be

obtained by encoding the natural numbers [X1,X2,X3,� � �,XL×K]. The generating node i corre-

sponding to the position located at the position j in the encoding and the collection vehicle m
providing collection service to this node can be calculated by using Eqs (25) and (26).

i ¼ Sj �
Sj � 1

L

� �

� L ð25Þ

m ¼
Sj � 1

L

� �

þ 1 ð26Þ

Where bc is denoted as rounding down. At this point, the generating node and the transship-

ment vehicle corresponding to each position in the artificial fish can be obtained. The specific

flow of decoding is shown in S1 Fig., which yields which transshipment vehicle should perform

the collection service for each generating node and the collection order of each vehicle for the

generating node.
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4.2 Artificial fish swarming algorithm

The Artificial Fish Swarming Algorithm (AFSA) proposed by Li et al. is a swarm intelligence

optimization algorithm that simulates the behaviors of fish, such as foraging, aggregation, and

tail chasing [67]. In AFSA, fish often gather in the vicinity of waters that contain large amounts

of nutrients. The artificial fish swarming algorithm simulates the behaviors of foraging, tail-

chasing, and swarming based on the fish’s ability to gravitate toward food and avoid dangers

to achieve the goal of optimization. Each artificial fish performs swarming behavior as per (29)

and tail-chasing behavior as per (30), depending on its current environment. If no improve-

ment is obtained, the foraging behavior is performed according to Eq (31). If there is still no

improvement, random behavior is performed according to Eq (32).

Xj ¼ Xi þ visual� RandðÞ ð27Þ

Xc ¼

Xnf

j¼1

Xj

nf
ð28Þ

Xnext ¼ Xi þ
Xc � Xi

kXc � Xik
� step� RandðÞ ð29Þ

Xnext ¼ Xi þ
Xmax � Xi

kXmax � Xik
� step� RandðÞ ð30Þ

Xnext ¼ Xi þ
Xj � Xi

kXj � Xik
� step� RandðÞ ð31Þ

Xnext ¼ Xi þ step� RandðÞ ð32Þ

Wherein Eq (27) indicates that the positional alternation is performed, i.e., the artificial fish Xj

within the current field of view is randomly selected, and Eq (28) calculates the center position

of all the artificial fish within the current perceptual range. Where Xi denotes the current posi-

tion of the artificial fish i, Xj denotes the position of the artificial fish j within the field of view,

Rand() is the random number of (0,1) within the interval, nf denotes the number of all artificial

fish within the field of view of the artificial fish j, and Xnext denotes the new better position of

the artificial fish achieved after performing positional updating.

The artificial fish swarm algorithm has the advantages of robustness, parallelism, global

search ability, and low requirements on the initial value and the nature of the objective func-

tion. However, the algorithm also has shortcomings such as poor optimization accuracy, easy

fall into local extremes, and slow convergence speed.

4.3 Adaptive Hybrid Artificial Fish Swarming method non-dominated

sorting

This section describes the modifications to the artificial fish swarming algorithm in this study.

An Adaptive Hybrid Artificial Fish Swarming Algorithm with Non-Dominated Sorting

(AH-NSAFSA) is proposed to address the shortcomings of the artificial fish swarming algo-

rithm and the optimization search for bi-objectives.

(1) Adaptive Improvement
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One of the modifications occurred in the expression of the field of view, step size, and

crowding factor of the artificial fish. In the Artificial Fish Swarming Algorithm, the field of

view, step size, and crowding factor are all essential parameters that can have a direct impact

on the performance of the algorithm. Therefore, a decay function ρ, which varies with the

number of iterations of the algorithm as expressed in Eq (33), is introduced into the expression

of the parameters so that the field of view, step length, and crowding factor can be changed

adaptively with the operation of the algorithm, as follows:

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

expð�
d4

d3
max

Þ
dmaxdþ1

s

ð33Þ

step ¼ br� step0 þ ð1 � rÞ � stepminc ð34Þ

visual ¼ br� visual0 þ ð1 � rÞ � visualminc ð35Þ

d ¼ br� d0c ð36Þ

Where dmax and d denote the maximum number of iterations of the algorithm and the number

of generations the algorithm is currently in, respectively. step0 and stepmin denote the initial

step size and the minimum step size, respectively. visual0 and visualmin refer to the initial field

of view as well as the minimum field of view. δ0, on the other hand, denotes the initial conges-

tion factor.

(2) Non-dominated Sorting Improvement

Deb et al. proposed the technique of non-dominated sorting to find the non-dominated

solution for each iteration [68]. In the technique of non-dominated sorting, each artificial fish

is compared with the other individuals in the population, which in turn yields the Pareto fron-

tier of non-dominated sorting. A MO-optimization problem is a set of maximization or mini-

mization objectives defined in the solution space. For the proposed model with two

minimization objectives, a solution y is said to be dominated by another solution x if, for all

objectives, we have at least one objective satisfied OFVobj(y)<OFVobj(x). This means that the

solution x dominates the solution y if the value of the objective function of the solution y is less

than or equal to the value of the objective function of the solution x, and at least one of the val-

ues of the objective function of the solution y is less than the value of the objective function of

the solution x. Domination ordering divides the population into different levels, and the same

comparison is required between the dominating solutions. For this purpose, the crowding dis-

tance, i.e., the density of individuals around a given point in the population, is used, which

indicates the smallest rectangle around a given individual that contains the individual itself but

no other individuals. The population is subjected to the calculation of non-dominated order-

ing and crowding distance, and each individual in the population receives the attributes of

non-dominated ordering and crowding distance. If two individuals have different non-domi-

nated orderings, the individual with the smaller ordinal number is taken. If two individuals are

at the same level, the less crowded individual is taken.

(3) Hybrid Improvement

In addition to the above modifications, to ensure the overall quality of the population, this

paper draws on the crossover operation in the genetic algorithm to design an elimination

behavior. That is, the worst two artificial fish are eliminated, and the fitness values of the opti-

mal two artificial fish are used to generate two new artificial fish through the worst operation

of the genetic algorithm. When the algorithm proceeds to the middle and late stages, after

every certain number of iterations, all the artificial fish are sorted according to their
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nondominant ordering and crowding distance, and the worst two artificial fish are eliminated

from the process. The two optimal artificial fish are used to generate two new artificial fish to

replace the eliminated ones through the OX crossover operation. The OX crossover is per-

formed as follows:

Step 1: The starting and ending positions of the two artificial fish codes were randomly

selected, and the selected positions were the same for both artificial fish.

If two artificial fish individuals are:

FISH 1 1 2 3 4 5 6 7 8

FISH 2 2 5 4 7 6 8 1 3

At this point, the randomly selected starting and ending positions are a = 3 and b = 6, and

the segments of the crossover are:

FISH 1 1 2j3 4 5j6 7 8

FISH 2 2 5j4 7 6j9 1 3

Step 2: Mutual copying of cross-segments. That is, the cross-segment of Artificial FISH1 is

copied to the front of Artificial FISH2, and the cross-segment of Artificial FISH1 is copied to

the front of Artificial FISH2. At this point, the Artificial Fish becomes:

FISH 1 4 7 6 1 2 3 4 5 6 7 8

FISH 2 3 4 5 2 5 4 7 6 8 1 3

Step 3: Duplicate-coded spots were marked from front to back, and two new artificial fish

could be obtained by removing the second duplicate spot from the process.

New � FISH 1 4 7 6 1 2 3 5 8

New � FISH 2 3 4 5 2 7 6 8 1

S2 Fig. shows the flowchart of the proposed algorithm.

5. Computational experiment

This section provides numerical experiments to evaluate the performance of the algorithm.

The vehicle path problem is an NP-hard problem and is very complex to solve. Its complexity

increases when the number of generating nodes, collection centers, and transit vehicles is sig-

nificant. Therefore, using the swarm intelligent optimization algorithm to solve the model pro-

posed in this paper is reasonable. We coded the algorithms using MATLAB software (R2023b)

and ran the methods on an Intel Core i9 personal computer (2.20 GHz CPU) with 16 GB of

memory (RAM).

To evaluate the performance of AH-NSAFSA and compare it with the Artificial Fish

Swarming Algorithm with Non-Dominated Sorting (NSAFSA), a test problem with 31 nodes

was randomly selected from RC101 of the Solomon dataset. This includes one collection center

and 30 generator nodes. The program automatically generates the road congestion coefficient,

wind speed, population density, and self-feeding habit bias coefficients of each node in the

model. Other relevant parameter settings are shown in Table 1.
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5.1 Parametric calibration

The values of the parameters controlled by the metaheuristic algorithm can affect its optimiza-

tion search performance [68]. Therefore, in this study, the control parameters of AH-NSAFSA

are calibrated by the Taguchi Method (TM), which in turn improves the algorithm’s optimiza-

tion search efficiency. By using the Taguchi method, a large amount of information can be

obtained by conducting a minimum number of experiments [69]. In this study, a five-level

Taguchi design is considered for the parameters of AH-NSAFSA. To avoid errors caused by

different measures, the objective function values are normalized. Then, the normalized use of

the objective for the solution j (NOFV1
j and NOFV2

j ) is obtained through Eqs (37) and (38).

NOFV1

j ¼
OFV∗

1

OFV1
j

ð37Þ

NOFV2

j ¼
OFV∗

2

OFV2
j

ð38Þ

Where OFV1
j and OFV2

j denote the first objective function value and the second objective

function value in the solution j, respectively. The optimal function values for the first and sec-

ond objectives are denoted by OFV∗
1

and OFV∗
2
, respectively. For the solution j, the total objec-

tive function value (TOFVj) is calculated from Eq (39).

TOFVj ¼
1

y� NOFV1
j þ ð1 � yÞ � NOFV2

j

ð39Þ

Where θ(0�θ�1) is denoted as the relative importance of the two objective functions, this

study is based on the idea of human-centeredness, so θ takes the value of 0.4. Next, the total

objective function value is converted into a relative percentage deviation (RPD) by using Eq

(40) [70].

RPD ¼
jTOFVj � BOFVj

BOFV
� 100 ð40Þ

S=N ¼ � 10� logð
X
ðRPD2Þ=nÞ ð41Þ

Where BOFV is the best of the total objective function values, the parameter levels that have

been considered are shown in Table 2. The signal-to-noise ratio (S/N) is calculated through Eq

(41). A more significant value of the signal-to-noise ratio represents a better quality of the con-

trol parameter. Based on the maximum signal-to-noise ratio of each control parameter, the

optimum level of each control parameter is selected. Then, the selected parameter levels are

shown in Table 3. In addition, Fig 2 depicts the average S/N plot for the test problem.

Table 1. Time-sharing tariff.

Parameter Parameter values Parameter Parameter values

u 8 cars COF ¥0.12/L

D 100kg PR ¥2/kg

L 700km p0 10L/km

v 20km/h pd 20L/km

CK ¥50/car γ 0.3

CT ¥1/kg ω 0.7

https://doi.org/10.1371/journal.pone.0311582.t001
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5.2 Performance evaluation metrics

The literature related to MO-optimization problems provides numerous metrics to evaluate

the performance of MO-optimization algorithms. Five of these metrics are used in this study

to evaluate the performance of AH-NSAFSA and NSAFSA in solving the test problems. A

description of the metrics is provided inS1 File.

5.3 Analysis of results

In this section, to validate the ability of AH-NSAFSA to solve the proposed model, we use two

algorithms, the Non-dominated Sorted Artificial Fish Swarm Algorithm (NSAFSA) and the

Non-dominated Sorted Genetic Algorithm II (NSGA-II), for comparison. Each algorithm was

run 10 times on the test algorithm, and Table 4 lists the average values of CT, MID, SM, DM,

NOS, ATA, and ATO for each of the 10 runs. An analysis of the data results leads to the follow-

ing conclusions:(1) In terms of the number of non-dominated options. AH-NSAFSA produces

a higher number of non-dominated options, which can provide a wider range of alternatives

to the decision-maker. This is evidenced by the higher NOS values, which are 4% higher for

AH-NSAFSA than for NSAFSA and 73.3% higher than for NSGA-II. (2) Metrics such as MID,

SM, and DM are not applicable here due to the limited number of non-dominated scenarios

obtained by NSGA-II. (3) The SM value reflects the consistency of the algorithm’s non-domi-

nated solutions, and a smaller value indicates a more consistent solution. The SM value of

AH-NSAFSA is 19.6% less than the SM value of NSAFSA. It indicates that AH-NSAFSA out-

performs NSAFSA in this dimension. (4) The search efficiency of the algorithm is expressed

by the MID value, and the smaller value of MID indicates that the algorithm is more efficient

in searching. The value of AH-NSAFSA is 46.9% lower than NSAFSA in terms of MID. There-

fore, the search efficiency of AH-NSAFSA is better than NSAFSA. (5) When considering the

generation of more diversified solution sets, as reflected by the DM value, a higher DM value

indicates a more diversified set of solutions generated. The DM value of AH-NSAFSA is 14.7%

lower than the DM value of NSAFSA. Therefore, AH-NSAFSA does not perform as well as

NSAFSA in terms of solution diversity. (6) The CPU occupancy time of NSGA-II in

Table 2. Levels of input parameters.

Parameter Level 1 Level 2 Level 3 Level 4 Level 5

Population size 50 75 100 125 150

Initial view 75 70 65 60 55

Minimum view 10 8 6 4 2

Initial step 75 70 65 60 55

Minimum step 10 8 6 4 2

Initial crowding factor 1 0.8 0.6 0.4 0.2

https://doi.org/10.1371/journal.pone.0311582.t002

Table 3. Tuned values of parameters.

Parameter Values

Population size 125

Initial field of view 65

Minimum field of view 8

Initial step 60

Minimum step 4

Initial crowding factor 1

https://doi.org/10.1371/journal.pone.0311582.t003
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identifying individual solutions (ATO metrics) and the entire set of solutions (ATA metrics) is

much higher than that of AH-NSAFSA and NSAFSA. (7) In terms of metrics ATO, the CPU

occupancy time of AH-NSAFSA is 13.4% less than that of NSAFSA by 13.4%. On the metric

ATA AH-NSAFSA takes 9.9% less CPU time than NSAFSA. Therefore, whether searching for

a single solution or the whole solution set, AH-NSAFSA has a better search speed than

NSAFSA.

A statistical estimation of the performance of the algorithms was done to better compare

the performance of the algorithms. The 2-sample t-test and the following hypotheses were

used for statistical comparisons. These comparisons were made based on each performance

metric at a confidence level of 95%. The original hypothesis (H0) assumes that there is no sig-

nificant difference in the values of the performance evaluation metrics for each algorithm. The

alternative hypothesis (H1) assumes the opposite. Therefore, the original hypothesis (H0) is

rejected if the p-value is less than 5% [71].

H0: There is no significant difference in the evaluation metrics of the algorithms.

H1: There is a significant difference in the evaluation metrics of the algorithms.

The two algorithms have solved ten test problems. The comparison between the algorithms

in terms of the performance metrics MID, SM, DM, CT, and NOS is discussed below.

Table 5 delineates a comparative evaluation of the performance indices of the two algo-

rithms in question: the AH-NSAFSA and the NSAFSA. The statistical findings presented in

Table 5 demonstrate that the p-values for the MID and CT metrics are below the 5% signifi-

cance threshold. This observation leads to the rejection of the null hypothesis (H0) for these

metrics, signifying a statistically significant difference between the algorithms. Specifically, it

underscores that AH-NSAFSA outperforms NSAFSA in terms of optimization efficacy and

Fig 2. The S/N ratio plot of the AH-NSAFSA in the Taguchi methodology.

https://doi.org/10.1371/journal.pone.0311582.g002

Table 4. Comparison of algorithms across metrics in test problems.

Algorithm CT MID SM DM NOS ATA ATO

AH-NSAFSA 1507.0750 94722.9618 108980.0323 173578.6395 2.6 1507.0750 579.6442

NSAFSA 1672.9965 178281.942 135625.9435 203410.1441 2.5 1672.9965 669.1986

NSGA-Ⅱ 52.5689 / / / 1.5 52.5689 35.046

https://doi.org/10.1371/journal.pone.0311582.t004
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computational expedience. Conversely, the p-values for the SM, DM, and NOS do not surpass

the 5% threshold, indicating that the null hypothesis remains tenable for these metrics. This

suggests that there is no statistically discernible disparity in performance between AH-N-

SAFSA and NSAFSA concerning the aspects above. The implication is that AH-NSAFSA does

not exhibit a significant shortfall in comparison to NSAFSA concerning the provision of a

diverse and uniformly distributed set of non-dominated solutions. In light of these findings, it

is concluded that the proposed AH-NSAFSA algorithm is efficacious in addressing the prob-

lem at hand, offering a robust optimization framework that is particularly distinguished by its

superior convergence speed and overall computational performance.

6. Managerial insights

This study provides innovative bi-objective modeling on an academic and practical level, pro-

viding valuable insights and implications for managers when dealing with the household medi-

cal waste recycling pathway problem. Below are some key points outlining the potential

implications of this study for managers:

1. A balanced decision-making framework: The study suggests that a decision-making frame-

work considering both operating costs and pollution risks is more comprehensive and prac-

tical than one seeking to minimize costs. This balanced approach helps companies balance

financial efficiency and environmental responsibility.

2. Green Lifestyle Advocacy: Against society’s increasing emphasis on green living and envi-

ronmental awareness, pollution risk management in the logistics network is crucial to a

company’s public image. A company’s environmental performance directly affects its per-

ception of its customers, which in turn affects its reputation, customer loyalty, and market

penetration.

3. Customized collection options: Companies should choose the most appropriate waste col-

lection option based on their operational experience, regional demographics, environmen-

tal conditions, and local government policy requirements. This customized approach

ensures that the business meets regulatory requirements while responding effectively to the

challenges of the particular environment.

4. Risk assessment and management: The study highlights the importance of assessing and

minimizing the risk of contamination when planning and implementing waste recycling

routes. Companies need to develop and implement effective risk management strategies to

minimize waste transport’s potential environmental and community impacts.

5. Application of technology and innovation: The AH-NSAFSA algorithm proposed in this

study demonstrates how advanced optimization techniques can solve complex waste recy-

cling routing problems. Managers can learn from this and explore how similar techniques

can be applied to other operational challenges.

Table 5. ANOVA was performed to test the differences between the algorithms for each indicator.

Performance measure Combined variance t State p-Value Result

MID 6.15E+09 -2.3817 0.02847 H0 is rejected

SM 1.69E+10 -0.4585 0.65208 H0 is accepted

DM 3.22E+10 -0.3716 0.71456 H0 is accepted

CT 7826.8854 -4.1937 0.000546 H0 is rejected

NOS 0.366667 0.7385 0.46970 H0 is accepted

https://doi.org/10.1371/journal.pone.0311582.t005
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6. Performance evaluation and continuous improvement: Through a rigorous evaluation of

the algorithm’s performance, elucidated a framework for the empirical validation of solu-

tion efficacy. This systematic methodology is a paradigm for managers to emulate in their

operational practices. By instituting a regimen of periodic performance assessments and

subsequent optimization of waste management protocols, they can ensure a trajectory of

perpetual enhancement. Such a dynamic approach facilitates adapting to evolving condi-

tions and refining strategies in response to new challenges and opportunities within the

domain of waste management.

7. Stakeholder communication: Companies should communicate effectively with customers,

community members, government agencies, and other stakeholders to convey their efforts

and achievements in reducing the risk of contamination in the waste recycling process.

This transparency helps build trust and support.

8. Community participation and education: Increasing public awareness and participation in

properly disposing of household medical waste can reduce improper disposal and environ-

mental pollution.

7. Conclusions

7.1 Findings

In this paper, a multi-objective household medical waste recycling vehicle routing problem is

investigated and various display factors are considered, such as the pollution impact on the

environment during the transfer of medical waste, road congestion, and self-delivery of house-

hold medical waste to the recycling center. In addition to economic considerations, environ-

mental pollution risk is also considered as an optimization objective of the model. In this

paper, the environmental pollution risk was assessed through the household medical waste

pollution risk function, and the effects of the amount of leaked pollution from household med-

ical waste, the number of residents in the surrounding area, the transport time, and the wind

speed on the environmental pollution risk were taken into account. Different vehicle speeds

not only affect the fuel consumption of the vehicle but also influence the pollution risk of

household medical waste. To better simulate the different speeds of vehicles on different roads

due to congestion on urban roads, this paper introduces the road congestion coefficient to

reflect the degree of congestion on urban roads. In addition, to solve the multi-objective

household medical waste recycling vehicle path problem, an adaptive hybrid artificial fish

swarm algorithm with non-dominated sorting (AH-NSAFSA) is proposed. The adaptive itera-

tion mechanism, by introducing a decay function, enables the algorithm to dynamically adjust

the search strategy during the iteration process, thus improving the adaptability and search

efficiency of the algorithm. The elimination behavior, which can better enable the population

to maintain a high-quality level during the search process, guarantees the quality of the algo-

rithm solution. The effectiveness of AH-NSAFSA is verified through numerical experiments

and compared with two existing state-of-the-art algorithms: the Non-dominance Sorted Artifi-

cial Fish Swarm Algorithm (NSAFSA) and the Non-dominance Sorted Genetic Algorithm II

(NSGA-II) in terms of a variety of performance evaluation indexes. The experimental results

are summarized as follows.

1. AH-NSAFSA can better solve the multi-objective household medical waste recycling path-

way problem considering pollution risk and can provide multiple non-dominated solutions

to the decision maker for selection.
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2. AH-NSAFSA is compared with NSAFSA and NSGA-II and judged by the evaluation met-

rics of multiple multi-objective optimization algorithms of CT, MID, SM, DM, NOS, ATA,

and ATO. The results show that AH-NSAFSA has better search efficiency and consistency

of non-dominated solutions, and produces a larger number of non-dominated solutions.

Due to the introduction of an adaptive iteration mechanism and elimination behavior,

AH-NSAFSA has better speed than NSAFSA in searching for a single solution and the

whole solution set.

3. The model and algorithm proposed in this paper can effectively plan vehicle paths for

household medical waste recycling.

7.2 Limitations and recommendations for future research

In this study, a two-objective mixed-integer planning model was developed by combining

both total cost and pollution risk as objectives and considering road congestion and self-deliv-

ery of household medical waste to recycling centers. The Pareto optimal solution obtained

through AH-NSAFSA helps to provide data support for the decision maker’s choice and is

more conducive to the sustainable forward development of the household medical waste recy-

cling industry. The model developed in this paper is deterministic, however, there are many

uncertainties in household medical waste management services, such as fluctuations in waste

volume, changes in traffic conditions, unpredictability of weather conditions, etc. In the next

study, incorporating uncertainty into the model parameters may improve the adaptability and

robustness of the model. This may involve probabilistic modeling, fuzzy logic, or scenario

analysis to better capture and reflect these uncertainties. Secondly, the model presented in this

paper is static. Whereas the amount of household medical waste generated and the collection

demand may change during the household medical waste recycling process, these real-time

changes can be accommodated by dynamic modeling in the future to further improve the effi-

ciency and effectiveness of waste management. In addition, more in-depth research can be

conducted on the solution effect and solution efficiency of the optimization solution algo-

rithm, and more optimization algorithms or the combination of machine learning and optimi-

zation algorithms can be used to solve the problem in the future. Finally, accidents such as

traffic accidents may be encountered during the recycling and transport of household medical

waste, and these accidents may lead to the leakage of waste, which in turn increases the risk of

environmental pollution and public health. In case of accidents, how to re-plan the path of

recycling vehicles to reduce the risk of pollution. And these accidents can be considered in

future research.
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