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Abstract

This study investigates the spatio-temporal evolution of agricultural carbon emission effi-

ciency (ACEE) in China and its relationship with agricultural economic growth (AEG). The

results indicate several findings: Firstly, between 2012 and 2021, China’s agricultural car-

bon emission efficiency exhibited an upward trend, with the mean value increased from

0.349 to 0.807. Furthermore, the distribution pattern shifted from a dispersed, point-like dis-

tribution to an aggregated and continuous distribution. Secondly, the average agricultural

carbon emission efficiency in China following a decreasing order: South China, Northwest

China, Southwest China, East China, North China, Central China and Northeast China.

Thirdly, the relationship between agricultural carbon emission efficiency and the agricultural

economy in China has transitioned from weak decoupling to negative decoupling. Based on

these findings, this study proposes some recommendations to enhance agricultural carbon

emission efficiency and promote its decoupling from agricultural economic growth. These

recommendations aim to achieve low-carbon and high-efficiency development of

agriculture.

1 Introduction

Global warming, resulting from massive greenhouse gas (GHG) emissions, poses a signifi-

cant threat to human development. The reduction of carbon emissions has become an issue

of utmost importance for many countries. According to a report released by the Food and

Agriculture Organization of the United Nations (FAO) at the COP26 Climate Summit on

November 8, 2021, global greenhouse gas emissions from agriculture and food production

have increased by 17% over the past 30 years. Carbon emissions from agricultural activities,

such as farming and crop cultivation, have become major contributors to global greenhouse

gas levels [1]. Moreover, global climate change, caused by greenhouse gas emissions, pose a

threat on agriculture development [2]. In light of this threat, urgent action is required to

reduce carbon emissions. However, developing countries face particular challenges in imple-

menting carbon reduction strategies in agriculture due to limited technology, knowledge

and financial resources. China, as the largest developing country, is also the largest emitter of

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0311562 October 10, 2024 1 / 13

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Zhao X, Yang D, Duan X (2024) Temporal

and spatial evolution characteristics and

decoupling trend of Chinese agricultural carbon

emission efficiency. PLoS ONE 19(10): e0311562.

https://doi.org/10.1371/journal.pone.0311562

Editor: Xufeng Cui, Zhongnan University of

Economics and Law, CHINA

Received: February 14, 2024

Accepted: September 21, 2024

Published: October 10, 2024

Copyright: © 2024 Zhao et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the article and its Supporting information

files.

Funding: This paper was funded by Anhui Province

Social Sciences Innovation Program: Research on

the Assessment and Enhancement of Low Carbon

Governance Level of Local Governments under the

“Dual Carbon” Goal (2023CX060).

Competing interests: The authors have declared

that no competing interests exist.

https://orcid.org/0000-0002-0508-5379
https://doi.org/10.1371/journal.pone.0311562
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0311562&domain=pdf&date_stamp=2024-10-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0311562&domain=pdf&date_stamp=2024-10-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0311562&domain=pdf&date_stamp=2024-10-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0311562&domain=pdf&date_stamp=2024-10-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0311562&domain=pdf&date_stamp=2024-10-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0311562&domain=pdf&date_stamp=2024-10-10
https://doi.org/10.1371/journal.pone.0311562
http://creativecommons.org/licenses/by/4.0/


carbon. China’s agricultural production alone accounts for 16% to 17% of the global green-

house gases generated by agriculture [3]. Thus, it is imperative to find effective ways to

reduce agricultural carbon emissions while maintaining stable agricultural economic growth.

Although existing studies have examined agricultural carbon emissions, their spatial and

temporal distribution, agricultural landscapes and agricultural carbon emission efficiency

[4–6], there has been limited analysis of the relationship between agricultural carbon emis-

sion efficiency and agricultural economic development. It is crucial to explore effective ways

to improve the efficiency of agricultural carbon emissions while promoting the development

of agriculture. Therefore, this study aims to assess China’s agricultural carbon emission effi-

ciency and further analyze its decoupling relationship with agricultural economic growth.

This paper not only provides insights into promoting sustainable agriculture in China, but

also offers invaluable inspiration for other developing country to develop low-carbon

agriculture.

The subsequent sections of this study are structured as follows: The second part reviews rel-

evant literature on agricultural carbon emission efficiency, the third part introduces the

research methodology and data sources, the fourth part analyzes the agricultural carbon emis-

sion efficiency and its relationship with the agricultural economy in China, and the fifth part

summarizes the research results and puts forward targeted suggestions, and also discusses the

limitations of this paper.

2 Literature review

At present, the research about agricultural carbon emissions can generally be categorized into

three areas: measuring agricultural carbon emission efficiency, identifying factors that influ-

ence agricultural carbon emission efficiency and analyzing the spatial and temporal evolution

as well as the spatial effects of agricultural carbon emissions.

First of all, scholars assess agricultural carbon emissions using various evaluation meth-

ods, including input-output analysis, life cycle approach and Data Envelopment Analysis

(DEA) [7–9]. For instance, Elahi et al. used the Slacks-Based Measure model, modified

gravity model and social network analysis to evaluate carbon emission efficiency in food

production, determine spatial correlations, categorize network clusters, and identify influ-

ential drivers [10]. Wang et al. employed DEA and the Malmquist index model to measure

the carbon emission efficiency of agriculture from both static and dynamic perspectives

[11].

Secondly, researchers have explored the factors influencing agricultural carbon emission

efficiency using various methods. For example, Shi et al. applied the Kuznets curve and panel

regression model to examine the relationship between agricultural carbon emission efficiency

and the level of agricultural economy [12]. Additionally, scholars utilized the Logarithmic

Mean Divisia Index (LMDI) model to decompose the factors affecting agricultural carbon

emission efficiency, finding that agricultural industrial structure, economic development, and

urbanization positively impact agricultural carbon emission efficiency [13]. Conversely, gov-

ernment financial expenditure, agricultural planting structure, and agricultural disasters have

negative impacts [14]. Furthermore, digital technology also plays an important role in improv-

ing carbon emission efficiency [15].

Finally, regarding the spatio-temporal evolution of agricultural carbon emission efficiency,

Hou et al. used the Dagum Gini coefficient, GeoDetector model and Panel Geographically-

Temporally Weighted Regression model to examine regional differences, sources of reduction

effects in pollution and carbon emissions, identify dominant factors, and investigate their spa-

tial-temporal heterogeneity impacts [16]. Zhang et al. used the Kernel density model to analyze
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the internal dynamic evolution of agricultural carbon emission efficiency, discovering a certain

degree of spatial aggregation in northern and southern China [17]. The similarities in produc-

tion conditions in neighboring regions may lead to spatial correlation in carbon-emission effi-

ciency [18]. Tang et al. employed a spatial Markov chain study, concluding that agricultural

carbon emission efficiency exhibits club convergence. Therefore, the exploration of agricul-

tural carbon emission efficiency should consider both the regional situation and correlations

with surrounding regions [19].

In summary, the aforementioned research on agricultural carbon emission efficiency

lays the foundation for this paper. However, most of the literature focus on the impacts of

agricultural production efficiency, financial agglomeration, renewable energy consumption

and agricultural economic growth on agricultural carbon emissions, as well as the decou-

pling relationship between agricultural carbon emissions, and food production and the

decoupling effect between agricultural carbon emission intensity and agricultural develop-

ment [20–24]. There is a lack of research on the decoupling relationship between carbon

emission efficiency and agricultural economic growth. The advantage of carbon emission

efficiency is that it not only focuses on the total amount of carbon emissions, but also takes

into account economic output, energy consumption and other factors, which helps to reveal

the impact of agricultural carbon emissions on agricultural economic development more

accurately.

Therefore, the innovation of this paper lies in using the Super Slacks-Based Measure-

ment (Super-SBM) model to evaluate the agricultural carbon emission efficiency of 30

provinces in China from 2012 to 2021. Based on this evaluation, the Tapio decoupling

model is employed to explore the decoupling relationship between China’s agricultural car-

bon emission efficiency and agricultural economic growth. Through comparative the dif-

ferences among China’s seven major regions, this paper aims to reveal the spatio-temporal

evolution characteristics of China’s agricultural carbon emission efficiency and the degree

of decoupling between it and agricultural economic growth. Ultimately, this research

endeavors to provide insights for China to achieve a green and low-carbon transformation

in agriculture.

3 Research design

3.1 Super-SBM model

The traditional DEA model does not account for the relaxation of inputs and outputs during

efficiency evaluation. Additionally, it excludes undesirable outputs from its measurement

scope, leading to biased efficiency assessments due to radial and angular choices. To address

these issues, Tone proposed a non-radial and non-angular SBM model in 2001 [25]. Neverthe-

less, the SBM model may produce multiple decision-making units (DMUs) with efficiency val-

ues equal to one, complicating the comparison of efficiency levels among effective DMUs and

impacting decision-making accuracy. To resolve this problem, Tone further refined the SBM

model and introduced the Super-SBM model with non-expected outputs in 2002 [26]. This

model integrates the expected outputs into the framework of the existing model, taking into

account the relationships between inputs, outputs, and undesired outputs. The Super-SBM

model not only allows for the detailed decomposition of decision-making units, thereby

enhancing the practical applicability of the model, but also mitigates result biases caused by

radial direction and angular choices. Consequently, this study employs the Super-SBM model

to evaluate the agricultural carbon emission efficiency. The corresponding formula for the

PLOS ONE Decoupling trend of agricultural carbon emission efficiency in China

PLOS ONE | https://doi.org/10.1371/journal.pone.0311562 October 10, 2024 3 / 13

https://doi.org/10.1371/journal.pone.0311562


model can be found in formula (1).

φ ¼ min
1
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In formula (1), φ represents the target efficiency value, which corresponds to the carbon

emission efficiency of China’s agriculture; this study considers the efficiency values of n
DMUs. Each DMU is composed of an input matrix m, an expected output matrix r1, and an

undesired output matrix r2; x, yds and yuq represent inputs, desired outputs and undesired out-

puts, respectively; x, yd and yu represent input relaxation, desired output relaxation and unde-

sired output relaxation, respectively.

3.2 Designing indicator system for agricultural carbon emission efficiency

In order to evaluate agricultural carbon emission efficiency scientifically, it is necessary to

design an indicator system for agricultural carbon emission efficiency (see Table 1).

Firstly, regarding input indicators, referring to the study of Han et al. [27]. There are four

items to consider: (1) Labour, labor input is represented by the ratio of the number of people

employed in the primary industry at the end of the year in each province to the total number

of people employed at the end of the year in each province. (2) Land, the amount of land input

for agriculture is represented by the ratio of the sown area of crops in the calendar year to the

total area of the province. This ratio accounts for differences in the replanting index of each

province and the impact of fallow land in some areas. (3) Water resources, water, an essential

resource for agricultural production, is quantified by the ratio of the effective irrigated area of

agriculture to the sown area of crops in a calendar year.

Table 1. Evaluation indicator system of agricultural carbon emission efficiency.

Indicators Primary indicators Secondary indicators Unit

Input indicators Labour force Employees in the primary industry %

Land Crop sown area %

Water resource Effective irrigated area %

Agricultural materials Fertilizer 10,000 tons/thousand hectares

Pesticide 10,000 tons/thousand hectares

Agricultural film 10,000 tons/thousand hectares

Agricultural machinery power 10,000 kW/thousand hectares

Output indicators Desired output Gross value of agricultural output Billion/thousand hectares

Undesired output Agricultural CO2 emissions 10,000 tons/thousand hectares

https://doi.org/10.1371/journal.pone.0311562.t001
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(4) Agricultural materials, referring existing literature and general agriculture production

[28], four variables are used to represent agricultural materials inputs: fertilizer, pesticide, agri-

cultural film and agricultural machinery power. Fertilizer is represented by the ratio of the

total fertilizer use to the sown area of crops. Pesticide is represented by the ratio of the total

pesticide use to the sown area of crops. Agricultural film is represented by the ratio of the total

film use to the sown area of crops. Power of agricultural machinery is represented by the ratio

of the total rated power of agricultural machinery in agricultural activities to the sown area of

crops in each province.

Secondly, regarding output indicators. Referring to the research of Rehman A et al. [29],

this study uses the ratio of the annual gross value of agricultural output to the area sown in

agriculture for each province to express the desired output of carbon emission efficiency of

agriculture. For the undesired output indicator, the undesired output is characterized by the

ratio of agricultural CO2 emissions to the sown area of crops in each province, as guided by

the Guidelines for National Greenhouse Gas Emission Inventories published by the Oak Ridge

National Laboratory (ORNL), the United Nations Intergovernmental Panel on Climate

Change (IPCC), and the measured coefficients from the College of Biology and Technology of

China Agricultural University (CBTCAU).

Thirdly, this study calculates only the greenhouse gases produced by agricultural produc-

tion, including CO2 and N2O from farmland soil, agricultural irrigation, pesticides, diesel fuel,

and other sources, which are converted into standard carbon. The formula for calculating total

agricultural carbon emissions is as follows:

CT ¼
X

NiEi ð2Þ

In formula (2), CT represents the total carbon emissions of agriculture; Ni represents the

amount of carbon source i; and Ei represents the emission coefficient of carbon source i (see

Table 2).

3.3 Tapio model

In 2005, the Organization for Economic Co-operation and Development (OECD) first pro-

posed the decoupling theory, which indicated that there is no linear relationship between eco-

nomic growth and environmental pollution. However, the OECD model can be influenced by

the selected time period, making comparative analyses difficult. To address this, Tapio P et al.

proposed the Tapio decoupling model in 2005 [30]. This model introduces critical values of 0,

0.8, and 1.2, integrating both relative and absolute quantities, thus being less affected by the

selected time base period and leading to more stable measurement results [31]. This study

adopts the Tapio model to analyze the decoupling relationship between agricultural carbon

emission efficiency and the agricultural economy. The formula for the decoupling index is

Table 2. Agricultural carbon emissions sources and coefficients.

Carbon source coefficient

Fertilizer 0.89kg C/kg

Pesticide 4.93kg C/kg

Agricultural film 5.18kg C/kg

Diesel 0.59kg C/kg

Irrigation 266.48kg C/hm2

Plough 312. 60kg C/hm2

https://doi.org/10.1371/journal.pone.0311562.t002
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shown in formula (3).

e CEE;GDPð Þ ¼
DCEE
DGDP

¼
CEEt � CEEt� 1ð Þ=CEEt� 1

GDPt � GDPt� 1ð Þ=GDPt� 1

ð3Þ

e(CEE,GDP) represents the index of the decoupling of agricultural carbon efficiency from eco-

nomic development; ΔCEE represents the rate of change in the carbon emission efficiency of

Chinese agriculture; ΔGDP represents the rate of change of growth in agricultural economic

development, and the data is derived from the gross value of agricultural production in each

province.

Based on the Tapio decoupling model [32], which categorizes decoupling into eight types,

this study uses the criteria to classify the decoupling status of agricultural carbon emission effi-

ciency and the agricultural economy (see Table 3).

3.4 Data sources

As the yearbook for 2023 has not yet been released, the analysis focuses on data from 2012 to

2021 for 30 provinces in China (excluding Hong Kong, Macao, Taiwan, and Tibet). The data

were obtained from the China Statistical Yearbook (2013–2022), China Agricultural Yearbook

(2013–2022), and China Rural Statistical Yearbook (2013–2022).

4 Analysis results

4.1 Evaluation results of agricultural carbon emission efficiency

According to The Fourth National Assessment Report on Climate Change, jointly compiled in

2022 by the Ministry of Science and Technology of China, China Meteorological Administra-

tion, Chinese Academy of Sciences, and Chinese Academy of Engineering and the study of

Sang et al., China was divided into seven regions: North China, Northeast China, East China,

Central China, South China, Southwest China, and Northwest China [33]. The Super-SBM

model with undesired outputs was used to calculate agricultural carbon emission efficiency for

each region in China from 2012 to 2021. The results for all 30 provinces are presented in

Table 4. Referring to the study of Ray S [34], agricultural carbon emission efficiency was classi-

fied into five classes: 0–0.300 (low level), 0.301–0.400 (lower level), 0.401–0.500 (medium

level), 0.501–0.800 (higher level), and more than 0.801 (high level).

Firstly, Table 4 shows that China’s average carbon emission efficiency increased from 0.349

in 2012 to 0.807 in 2021, demonstrating an improvement of 0.458. This consistent upward

trend signifies significant progress in reducing agricultural carbon emissions and transitioning

towards a more sustainable and low-carbon agriculture. Factors contributing to the

Table 3. Criteria for classifying the decoupling of agricultural carbon emission efficiency and agricultural economy.

Types of decoupling Decoupled state ΔCEE ΔGDP e

Negative decoupling Weak-negative decoupling (N) <0 <0 0�e<0.80

Strong-negative decoupling (I) >0 <0 e<0

Expansion negative decoupling (E) >0 >0 e>1.20

Decoupling Recession decoupling (R) <0 <0 e>1.20

Strong decoupling (S) <0 >0 e<0

Weak decoupling (W) >0 >0 0�e<0.80

Connect Recession Connection (G) <0 <0 0.80�e�1.20

Expansion Connection (D) >0 >0 0.80�e�1.20

https://doi.org/10.1371/journal.pone.0311562.t003
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achievement include China’s steadfast implementation of policies aimed at carbon sequestra-

tion and emission reduction, increased investment in agricultural environmental manage-

ment, advancements in agricultural science and technology, and the promotion of low-carbon

agricultural practices.

Secondly, at the provincial level, Table 4 reveals that Beijing and Shanghai have achieved a

high level of average agricultural carbon emission efficiency. Additionally, Qinghai, Fujian,

Hainan, Xinjiang, Guangdong, Guizhou, Shaanxi, and Tianjin also exhibit higher level of effi-

ciency in agricultural carbon emissions. Sichuan, Zhejiang, Chongqing, Guangxi, Yunnan,

Table 4. Carbon emission efficiency of China’s agriculture from 2012 to 2021.

Region Province 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 Averages

North China Beijing 0.574 0.671 0.687 0.755 0.815 0.840 0.843 1.018 0.899 1.482 0.858

Tianjin 0.367 0.417 0.435 0.460 0.475 0.565 0.673 0.722 0.862 1.170 0.615

Hebei 0.269 0.294 0.285 0.280 0.298 0.325 0.375 0.392 0.457 0.501 0.348

Shanxi 0.246 0.265 0.273 0.270 0.290 0.322 0.341 0.359 0.415 0.477 0.326

Inner Mongoria 0.300 0.325 0.325 0.312 0.304 0.289 0.315 0.334 0.367 0.385 0.326

Averages 0.351 0.394 0.401 0.415 0.436 0.468 0.509 0.565 0.600 0.803 0.494

Northeast China Liaoning 0.295 0.317 0.318 0.369 0.348 0.359 0.393 0.439 0.486 0.533 0.386

Jilin 0.221 0.231 0.228 0.218 0.256 0.172 0.193 0.198 0.241 0.257 0.222

Heilongjiang 0.264 0.321 0.339 0.327 0.326 0.356 0.374 0.412 0.440 0.461 0.362

Averages 0.260 0.290 0.295 0.305 0.310 0.295 0.320 0.350 0.389 0.417 0.323

Eastern China Shanghai 0.766 0.814 0.764 0.721 0.643 0.684 1.010 0.924 0.884 1.071 0.828

Jiangsu 0.306 0.324 0.340 0.378 0.380 0.397 0.401 0.420 0.457 0.511 0.391

Zhejiang 0.365 0.399 0.425 0.447 0.455 0.523 0.554 1.056 0.649 0.701 0.557

Anhui 0.179 0.185 0.194 0.197 0.211 0.226 0.227 0.240 0.286 0.321 0.227

Fujian 0.463 0.494 0.553 0.589 0.674 0.721 0.792 0.871 0.921 1.083 0.716

Jiangxi 0.203 0.243 0.258 0.295 0.317 0.333 0.364 0.403 0.437 0.466 0.332

Shandong 0.240 0.274 0.474 0.295 0.306 0.316 0.345 0.376 0.405 0.470 0.350

Averages 0.360 0.390 0.430 0.417 0.426 0.457 0.527 0.613 0.577 0.661 0.486

Central China Henan 0.245 0.257 0.277 0.289 0.304 0.325 0.364 0.404 0.473 0.517 0.345

Hubei 0.320 0.337 0.341 0.343 0.370 0.398 0.420 0.470 0.511 0.577 0.409

Hunan 0.293 0.284 0.288 0.288 0.308 0.323 0.339 0.394 0.460 0.501 0.348

Averages 0.277 0.301 0.331 0.325 0.336 0.355 0.384 0.416 0.469 0.513 0.371

Southern China Guangdong 0.458 0.505 0.529 0.560 0.641 0.673 0.752 0.871 0.943 1.112 0.704

Guangxi 0.367 0.387 0.407 0.422 0.456 0.504 0.546 0.626 0.660 0.763 0.514

Hainan 0.418 0.427 0.478 0.506 0.598 0.621 0.683 0.770 0.836 1.790 0.713

Averages 0.415 0.440 0.471 0.496 0.565 0.599 0.660 0.756 0.813 1.222 0.644

Southwest China Chongqing 0.336 0.362 0.391 0.407 0.478 0.497 0.551 0.608 0.712 0.808 0.515

Sichuan 0.415 0.428 0.450 0.478 0.538 0.581 0.610 0.652 0.707 0.784 0.564

Guizhou 0.242 0.284 0.360 0.468 0.520 0.581 0.655 0.772 0.865 2.223 0.697

Yunnan 0.268 0.304 0.323 0.321 0.334 0.349 0.422 0.522 0.570 0.687 0.410

Averages 0.315 0.345 0.381 0.418 0.468 0.502 0.560 0.639 0.714 1.126 0.547

Northwest China Shaanxi 0.473 0.533 0.583 0.584 0.628 0.660 0.707 0.781 0.916 1.087 0.695

Gansu 0.205 0.219 0.225 0.236 0.263 0.306 0.346 0.393 0.429 0.533 0.316

Qinghai 0.500 0.603 0.610 0.590 0.631 0.654 0.695 0.791 0.882 1.252 0.721

Ningxia 0.263 0.298 0.316 0.357 0.380 0.395 0.448 0.438 0.527 0.545 0.397

Xinjiang 0.623 0.626 0.574 0.599 0.601 0.635 0.703 0.730 0.827 1.148 0.706

Averages 0.413 0.456 0.462 0.473 0.501 0.530 0.580 0.626 0.716 0.913 0.567

National average 0.349 0.381 0.402 0.412 0.438 0.465 0.514 0.579 0.617 0.807 0.496

https://doi.org/10.1371/journal.pone.0311562.t004
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and Hubei demonstrate a medium level of agricultural carbon emission efficiency. On the

other hand, Ningxia, Jiangsu, Liaoning, Heilongjiang, Shandong, Hunan, Hebei, Henan,

Jiangxi, Shanxi, Inner Mongolia, and Gansu exhibit lower level of agricultural carbon emis-

sions efficiency. Anhui and Jilin, despite being major grain-producing provinces, present low

level of efficiency due to high input and carbon emissions per unit of production, as well as

low output per unit of production. What’s more, in 2012, only 3 provinces had higher agricul-

tural carbon emission efficiency, but by 2021, there were already 10 provinces with agricultural

carbon efficiency greater than 1, and 23 provinces with a relatively high level of agricultural

carbon emission efficiency. This indicates a significant improvement in China’s agricultural

carbon emission efficiency, transitioning from sporadic distribution to aggregated distribu-

tion. Considering that China is a vast country with diverse terrain and climate, it is important

to note that agricultural production methods are influenced by factors such arable land avail-

ability, labor availability, level of agricultural technology development, natural resources, and

industrial structure. These factors, in turn, affect the process of agricultural modernization and

low-carbonization in each province. Therefore, it is crucial for each region to formulate a low-

carbon agricultural development strategy based on local conditions. Overall, these findings

highlight China’s progress in improving agricultural carbon emission efficiency and emphasize

the importance of continued efforts in promoting sustainable and low-carbon agricultural

practices.

Upon examining the data presented in Table 4, it is evident that there is significant regional

variation in the efficiency of agricultural carbon emissions across different regions in China.

Generally, the southern and northwestern regions of China exhibit higher levels of agricultural

carbon emission efficiency compared to central China. The provinces with higher overall agri-

cultural carbon emission efficiency are primarily located in the eastern and southern coastal

regions, including Beijing, Shanghai, Fujian, Guangdong, Hainan, and Tianjin, as well as the

northwestern provinces of Qinghai and Xinjiang. Conversely, provinces with lower agricul-

tural carbon emission efficiency are concentrated in the central and western regions, such as

Jilin, Anhui, Gansu, and Inner Mongolia. In terms of regional comparison, South China dem-

onstrates the highest agricultural carbon emission efficiency, followed by the Northwest

China, Southwest China, East China, North China, Central China and Northeast China. The

carbon emission efficiency in South China reached 1.126 in 2021, while Northeast China’s effi-

ciency, which is currently the lowest, stands at 0.417. Furthermore, the southwest region has

experienced the most significant improvement in agricultural carbon emission efficiency, with

an increase of 0.810 over the past decade. This improvement can largely be attributed to the

active promotion of agricultural green projects in Guizhou, which have modernized the agri-

cultural production system and significantly improved the efficiency of agricultural carbon

emissions in the region. In contrast, the growth rate in the Northeast region has been slower,

with an increase of just 0.157 from 2012 to 2021. Based on these findings, it can be concluded

that there is still ample room for improvement in the efficiency of China’s agricultural carbon

emissions. Further efforts to reduce carbon emissions in the agriculture and rural sectors are

essential.

4.2 Decoupling analysis between agricultural carbon emission efficiency

and agricultural economy

Based on the research results in formula (3) and Table 4, the decoupling index between China’s

agricultural carbon emission efficiency and total agricultural output value is calculated for

2012–2021. The results are shown in Table 5.
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Table 5 reveals some characteristics of the decoupling relationship between China’s agri-

cultural carbon emission efficiency and agricultural economy from 2012 to 2021. From 2012

to 2018, China experienced weak decoupling (W) between agricultural carbon emission effi-

ciency and agricultural economy. However, from 2019 to 2021, the dominant decoupling

characteristic shifted to expansion negative decoupling (E). The decoupling index demon-

strated an upward trend, indicating a significant improvement in the decoupling status. In

2012, both agricultural carbon emission efficiency and the agricultural economy were

Table 5. Decoupling results between ACEE and AEG in China, 2012–2021.

Region Province 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

North China Beijing 0.643 (W) 1.516 (E) 0.292 (W) 1.207 (E) 1.069 (D) 0.301 (W) 0.031 (W) 2.930 (E) -8.269 (S) 4.562 (E)

Tianjin 1.051 (D) 1.361 (E) 0.605 (W) 2.607 (E) 1.065 (D) 2.230 (E) 2.593 (E) 1.423 (E) -57.022 (I) 2.988 (E)

Hebei 1.512 (E) 1.835 (E) -0.742 (S) -0.361 (S) -0.217 (S) 1.179 (W) 2.536 (W) 0.600 (D) 5.556 (E) 0.807 (W)

Shanxi 1.269 (E) 3.019 (E) 3.075 (E) 0.460 (N) -1.058 (S) 0.523 (W) 0.574 (W) 0.824 (D) 3.025 (E) 0.538 (W)

Inner Mongoria -0.035 (S) 0.935 (D) 0.029 (W) -0.651 (S) -0.653 (S) -0.590 (S) 1.073 (D) 0.890 (D) 38.077 (E) 0.209 (W)

Mean value 0.827 (D) 1.486 (E) 0.250 (W) 0.447 (W) 0.290 (W) 0.669 (W) 1.159 (D) 1.333 (E) 5.266 (E) 1.460 (E)

Northeast China Liaoning 1.308 (E) 0.982 (D) 0.064 (W) 17.573 (E) 17.968 (E) 0.454 (W) 1.137 (D) 2.063 (E) 17.157 (E) 0.934 (D)

Jilin 0.187 (W) 0.538 (W) -0.235 (S) -8.739 (S) -1.105 (S) -6.885 (S) 4.074 (E) 0.625 (W) 4.751 (E) 0.887 (D)

Heilongjiang 1.166 (D) 2.832 (E) 2.041 (E) 0.887 (G) -1.997 (S) 2.586 (E) 1.209 (E) 1.873 (E) 10.248 (E) 0.519 (W)

Mean value 0.811 (D) 1.408 (E) 0.344 (W) -2.963 (I) 1.105 (D) -0.677 (S) 1.763 (E) 1.629 (E) 6.325 (E) 1.320 (E)

East China Shanghai -3.689 (S) 0.707 (W) -0.682 (S) -0.889 (S) -0.510 (S) 0.629 (W) 5.082 (E) -1.552 (S) -1.670 (S) 1.760 (E)

Jiangsu -0.888 (S) 0.573 (W) 0.519 (W) 1.131 (D) 1.310 (E) 0.402 (W) 0.112 (W) 0.807 (D) 2.121 (E) 0.828 (D)

Zhejiang -0.270 (S) 1.087 (D) 0.932 (D) 0.574 (W) 0.581 (W) 1.376 (E) 0.556 (W) 11.779 (E) -10.801 (S) 0.555 (W)

Anhui 0.349 (W) 0.269 (W) 0.499 (W) 0.229 (W) 0.128 (W) 0.587 (W) 0.007 (W) 0.708 (W) 5.812 (E) 1.042 (D)

Fujian 1.860 (E) 0.594 (W) 1.101 (D) 0.865 (D) 0.626 (W) 0.484 (W) 0.689 (W) 1.057 (D) 1.917 (E) 1.286 (E)

Jiangxi 0.672 (W) 1.709 (E) 0.631 (W) 2.062 (E) 1.529 (E) 0.527 (W) 0.754 (W) 1.224 (E) 1.879 (E) 0.424 (W)

Shandong -0.079 (S) 1.384 (E) 10.116 (E) -4.257 (S) -6.023 (S) 0.463 (W) 1.600 (E) 1.550 (E) 2.386 (E) 1.171 (D)

Mean value -0.008 (S) 0.894 (D) 1.625 (E) -0.089 (S) -0.074 (S) 0.640 (W) 1.098 (D) 2.387 (E) 0.297 (W) 0.979 (D)

Central China Henan 1.578 (E) 0.548 (W) 0.826 (D) 0.589 (W) 0.501 (W) 0.610 (W) 1.036 (D) 1.459 (E) 17.117 (E) 1.308 (E)

Hubei 0.309 (W) 0.423 (W) 0.080 (W) 0.079 (W) 0.059 (W) 0.664 (W) 0.425 (W) 1.476 (E) -1.610 (I) 0.783 (W)

Hunan 0.724 (W) -0.301 (S) 0.168 (W) -0.006 (S) -0.008 (S) 0.516 (W) 0.638 (W) 1.655 (E) 4.111 (E) 0.870 (D)

Mean value 0.808 (D) 0.217 (W) 0.336 (W) 0.192 (W) 0.181 (W) 0.602 (W) 0.695 (W) 1.540 (E) -2.181 (I) 0.919 (W)

South China Guangdong 1.592 (E) 1.073 (D) 0.524 (W) 0.604 (W) 0.584 (W) 0.425 (W) 1.301 (E) 1.966 (E) 2.820 (E) 1.469 (E)

Guangxi 0.478 (W) 0.526 (W) 0.558 (W) 0.437 (W) 0.436 (W) 1.030 (D) 0.795 (W) 1.788 (E) 1.299 (E) 1.126 (D)

Hainan 1.005 (D) 0.173 (W) 1.116 (D) 0.702 (W) 0.609 (W) 0.373 (W) 1.089 (D) 1.499 (E) 1.934 (E) 6.775 (E)

Mean value 0.979 (D) 0.562 (W) 0.754 (W) 0.578 (W) 0.546 (W) 0.606 (W) 1.050 (D) 1.746 (E) 1.930 (E) 3.436 (E)

Southwest China Chongqing 1.179 (D) 0.640 (W) 0.650 (W) 0.414 (W) 0.325 (W) 0.347 (W) 1.433 (E) 1.114 (D) 2.806 (E) 1.110 (D)

Sichuan 0.962 (D) 0.286 (W) 0.576 (W) 1.238 (E) 0.674 (W) 0.564 (W) 0.371 (W) 0.853 (D) 1.844 (E) 0.942 (D)

Guizhou 1.199 (D) 0.948 (D) 1.769 (E) 2.012 (E) 2.527 (E) 0.766 (W) 0.982 (D) 1.944 (E) 1.849 (E) 17.548 (E)

Yunnan 0.906 (D) 0.877 (D) 0.650 (W) -0.068 (S) -0.047 (S) 0.338 (W) 1.628 (E) 2.096 (E) 1.613 (E) 1.930 (E)

Mean value 1.069 (D) 0.736 (W) 1.004 (D) 1.100 (D) 0.928 (D) 0.522 (W) 1.062 (D) 1.552 (E) 2.043 (E) 4.672 (E)

Northwest China Shaanxi 0.474 (W) 1.011 (D) 0.992 (D) 0.106 (W) 0.047 (W) 0.398 (W) 0.628 (W) 1.335 (E) 20.230 (E) 1.187 (D)

Gansu 0.912 (D) 0.603 (W) 0.357 (W) 7.720 (E) 0.843 (D) 2.615 (E) 1.270 (E) 1.793 (E) 2.986 (E) 1.762 (E)

Qinghai 1.173 (D) 1.712 (E) 0.135 (W) -0.355 (S) -0.255 (S) 0.406 (W) 0.538 (W) 1.964 (E) 4.933 (E) 3.371 (E)

Ningxia 0.843 (D) 1.436 (E) 0.938 (D) 3.069 (E) 1.670 (E) 0.254 (W) 1.376 (E) -0.329 (S) 3.683 (E) 0.220 (W)

Xinjiang 0.830 (D) 0.033 (W) -0.797 (S) 9.527 (E) 1.251 (E) 0.359 (W) 0.721 (W) 0.623 (W) 8.961 (E) 2.126 (E)

Mean value 0.819 (D) 0.921 (D) 0.260 (W) 1.125 (D) 0.541 (W) 0.585 (W) 0.875 (W) 1.115 (D) 5.414 (E) 1.670 (E)

National mean value 0.785 (W) 0.835 (D) 0.715 (W) 0.594 (W) 0.449 (W) 0.516 (W) 1.043 (D) 1.618 (E) 2.728 (E) 2.065 (E)

https://doi.org/10.1371/journal.pone.0311562.t005
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growing, with carbon emission efficiency growing at a faster rate than the agricultural econ-

omy. Notably, six provinces exhibited the best state of expansion negative decoupling (E).

After 2019, more than half of the provinces in China showcased the ideal state of expansion

negative decoupling (E). This transition from weak decoupling (W) to a more stable state of

expansion negative decoupling (E) became the general trend. The mean value of the decou-

pling index for Northwest China shifted from 1.115 (D) in 2019 to 5.414 (E) in 2020, and to

1.670 (E) in 2021. By 2021, no province was in an undesirable state of declining carbon emis-

sion efficiency while the agricultural economy was rising. It shows that the Chinese govern-

ment is paying more attention to the issue of carbon emission efficiency in the process of

agricultural production and development, and most regions have achieved significant results

in promoting eco-agriculture. However, in 2021, ten provinces still exhibited an expansion

connection (D) state and one province exhibited a weak decoupling (W) state, indicating an

unstable decoupling state between the agricultural economy and carbon emission efficiency.

Therefore, it is necessary to continue exploring production methods and technologies that

are low-carbon and low-energy-consuming to improve agricultural carbon emission

efficiency.

Secondly, there are significant variations in the decoupling relationship between agricul-

tural carbon emission efficiency and the agricultural economy across different regions. In

North China, South China, and Southwest China, there has been an upward trend with expan-

sion negative decoupling for three years. From 2012 to 2017, most areas were in a state of weak

decoupling (W), but it had been in the ideal state of expansion negative decoupling (E) since

2018. In Northwest China and Central China, weak decoupling (W) or expansion connection

(D) is the main characteristic during the ten-year sample period and the status is relatively sta-

ble. The overall decoupling status between agricultural carbon emission efficiency and its eco-

nomic growth in Northeast and East China has high variability. For example, Northeast China

had a decoupling index of -2.963 (I) in 2015, 1.105 (D) in 2016, and -0.677 (S) in 2017. This

indicates that maintaining the expansion of the negative decoupling status in Northeast China

is more challenging. Thus, more efforts are needed from multiple actors, including govern-

ments, businesses, and farmers, to promote the decoupling of agricultural carbon efficiency

from the agricultural economy.

In summary, the average decoupling index between agricultural carbon emission efficiency

and the agricultural economy in China increased from 0.785 (W) to 2.065 (E). While signifi-

cant progress has been made in developing low-carbon agriculture, further efforts are needed

to strengthen carbon reduction in agriculture, especially to address regional disparities. In

North China, South China, Southwest China, and Northwest China, the average decoupling

indexes of agricultural carbon emission efficiency and the agricultural economy are positive,

indicating better decoupling effects. However, in Northeast China and East China, the average

decoupling indexes appear strong decoupling states, with indexes of -0.677 (S) in 2017 and

-0.074 (S) in 2016, respectively. Future agricultural carbon emission reduction policies should

establish a horizontal carbon compensation mechanism, taking into full consideration inter-

regional differences and spatial correlation characteristics, aiming to break the constraints of

administrative boundaries.

5 Research conclusions and discussion

5.1 Conclusions

This study employs the Super-SBM model to measure the agricultural carbon emission effi-

ciency of 30 provinces in China from 2012 to 2021. Additionally, the Tapio decoupling model

is applied to analyze the decoupling relationship between agricultural carbon emission
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efficiency and the agricultural economy. The study finds: Firstly, the average agricultural car-

bon emission efficiency of the 30 provinces in China significantly increased, with the average

value rising from 0.349 in 2012 to 0.807 in 2021. Secondly, there are evident disparities in agri-

cultural carbon emission efficiency among different regions. The highest efficiency is observed

in South China, followed by Northwest China, Southwest China, East China, North China,

Central China and Northeast China. Thirdly, from 2012 to 2021, the decoupling status

between China’s agricultural carbon emission efficiency and the agricultural economy shifted

from mainly weak decoupling to predominantly expanding negative decoupling. In 2019, 18

provinces achieved the ideal state of expanding negative decoupling. However, the decoupling

status remains unstable, indicating that there is still room for improvement in decoupling agri-

cultural carbon emission efficiency from agricultural economy.

Based on the research findings, several recommendations are proposed for promoting the

development of low-carbon agriculture.

Firstly, attention should be paid to the regional disparities in agricultural carbon emission

efficiency, and a coordinated development mechanism for different agricultural regions should

be established. The research indicates significant regional disparities in China’s agricultural

carbon emission efficiency. The government could implement coordinated emission reduction

actions with neighboring provinces and organize activities such as technical assistance, coun-

terpart support, and experience exchanges. Secondly, differentiated emission reduction and

carbon sequestration strategies should be formulated based on the distinct characteristics of

various agricultural regions. Each region should propose carbon emissions reduction plans

that align with their specific natural resources, climatic conditions, and other factors. For

example, the Northeast region should focus on protecting black soil and promoting conserva-

tion tillage techniques. The Central China region should aim to improve resource utilization

efficiency, standardize and rectify energy-intensive agricultural practices, and prioritize the

promotion of ecological circular agriculture. The North China, East China, and Southwest

China regions should leverage their regional advantages, guiding agricultural market entities

to adopt foreign low-carbon technologies and attract capital investment. The Northwest region

should capitalize on its unique geography and climate to cultivate special agricultural products

and increase agricultural economic output. Thirdly, each region should rationally plan agricul-

tural production input factors and optimize agricultural resource allocation. China’s agricul-

tural carbon emission efficiency remains in a state of fluctuation, necessitating innovation in

the planning and allocation of agricultural production factors. It is essential to develop vigor-

ously new agricultural technologies, optimize the agricultural planting structure, and cultivate

superior crop varieties with characteristics such as drought resistance, water-saving and pest

resistance.

5.2 Discussion

Agriculture is crucial to human survival. However, greenhouse gas caused by agriculture is

one of the major sources of global greenhouse gas emissions. Therefore, it is necessary to pro-

mote increased agricultural production and income while reducing agricultural carbon emis-

sions. Currently, most scholars focus on studying agricultural carbon emission efficiency and

its influencing factors, but they do not analyze the decoupling relationship between agricul-

tural carbon emission efficiency and the agricultural economy. The contribution of this paper

is to analyze this relationship using the Tapio decoupling model. The study’s findings can pro-

vide insights for the development of low-carbon agriculture, however, it still has some limita-

tions. Firstly, the panel data collected only cover 30 provinces in China, future studies should

refine the analysis to include Chinese prefecture-level cities and counties. Secondly, this
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research focuses solely on China, future studies should explore the agricultural carbon emis-

sion efficiency of other countries and conduct comparative studies with China’s agricultural

carbon emission efficiency.
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