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Abstract

Due to the complexity and variability of application scenarios and the increasing demands
for assembly, single-agent algorithms often face challenges in convergence and exhibit
poor performance in robotic arm assembly processes. To address these issues, this paper
proposes a method that employs a multi-agent reinforcement learning algorithm for the
shaft-hole assembly of robotic arms, with a specific focus on square shaft-hole assemblies.
First, we analyze the stages of hole-seeking, alignment, and insertion in the shaft-hole
assembly process, based on a comprehensive study of the interactions between shafts and
holes. Next, a reward function is designed by integrating the decoupled multi-agent deter-
ministic deep deterministic policy gradient (DMDDPG) algorithm. Finally, a simulation envi-
ronment is created in Gazebo, using circular and square shaft-holes as experimental
subjects to model the robotic arm’s shaft-hole assembly. The simulation results indicate that
the proposed algorithm, which models the first three joints and the last three joints of the
robotic arm as multi-agents, demonstrates not only enhanced adaptability but also faster
and more stable convergence.

1.Introduction

Advances in robotic technology have led to increasingly widespread applications of robots in
the field of industrial automation. Shaft-hole assembly, a critical task in mechanical
manufacturing, demands highly precise and efficient control methods to ensure quality and
productivity. This task is inherently multivariable, requiring simultaneous control of both the
position and orientation of the robotic arm. Traditional control methods for shaft-hole assem-
bly, such as model predictive control [1] or force/position hybrid control [2], rely on the prior
determination of model parameters and control settings. However, due to the nonlinearity
and complexity of robotic arms, these methods often fall short of achieving the desired control
performance in complex assembly processes.

In recent years, deep reinforcement learning (DRL) [3] has garnered significant attention
for its potential in robotic arm control. Unlike conventional control strategies, DRL does not
necessitate explicit model construction or control strategy design. Instead, it adaptively adjusts
control strategies, accommodating various environmental conditions and task requirements,
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thereby offering superior adaptability and generalization capabilities. This enables the learning
of more complex control strategies, ultimately leading to more efficient and precise shaft-hole
assembly.

DRL represents an emerging intelligent control approach, fundamentally based on learning
from the current state and predefined goals through trial-and-error interactions with the envi-
ronment. The system autonomously refines decisions and executes optimal actions. DRL has
already found extensive applications in the field of robotic control [4], achieving significant
outcomes in areas such as robotic grasping [5,6], path planning [7], polishing [8], and welding
[9]. In the context of shaft-hole assembly, the complexity and variability of the shaft-hole
shapes and sizes make the motion control of robotic arms a challenging task. Single-agent
DRL algorithms can effectively handle relatively simple assembly tasks, such as the assembly of
fully symmetric circular shaft-holes [10]. However, for more complex shaft-hole assemblies,
higher precision and efficiency are required, necessitating more accurate control of both posi-
tion and orientation.

Multi-agent deep reinforcement learning (MADRL) is a method that enables collaboration
among multiple agents, extending single-agent reinforcement learning by forming a group of
agents to collaboratively complete tasks. Its application in robotic arm control primarily
involves cooperative control and task allocation. Each agent within the group must not only
ensure internal consistency but also consider cooperation with other agents, thereby advanc-
ing the overall system towards its goal while completing individual tasks. The collaboration
among multiple agents simplifies complex tasks, enhancing control precision and efficiency.
However, the increase in the number of agents can lead to challenges such as data dimension-
ality explosion, communication difficulties, and convergence issues [11]. Additionally, the
strong coupling between the joints and links of the robotic arm introduces further complexi-
ties in control.

To address these issues, this paper explores the application of multi-agent deep reinforce-
ment learning algorithms in the motion control of a single robotic arm. Focusing on complex
shaft-hole assembly, a shaft-hole assembly system based on the DMDDPG algorithm is
designed, targeting position and orientation as controlled variables to effectively improve
assembly efficiency and generalization in different assembly environments. A global reward
function is designed for the task objectives and shaft-hole assembly process, and to reduce cou-
pling between agents, a local reward function is independently designed for each agent. Conse-
quently, the proposed algorithm can leverage both global and local rewards to guide the
exploration and optimization of assembly strategies. Comparative simulation experiments
with other reinforcement learning algorithms show that the proposed algorithm excels in effi-
ciency and reliability.

2. Premilaries
2.1 Multi-agent deep reinforcement learning algorithm

A classic multi-agent algorithm is the MDDPG, which extends the DDPG algorithm to multi-
agent environments and introduces the centralized training-decentralized execution frame-
work. Each agent in this framework is a complete DDPG model. During training, each agent’s
Critic network uses the actions and states of all agents, while the Actor network updates its pol-
icy based solely on its observed state. Consequently, each agent’s Critic network fits the global
value function rather than an individual value function, allowing each agent’s policy to be
updated towards the optimal global value function.

In multi-agent deep reinforcement learning, the collaborative exploration process is
described by a Markov game, also known as a stochastic game. This concept encompasses two
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key ideas: first, the multi-agent system follows Markov properties; second, the game describes
the relationships among the agents. The multi-agent Markov game process is defined as a
tuple (N,S,A,T,R,y), where N represents the number of agents; S = (x,01,0,, - -0y) is the set of
joint states; o; is the observed state of agent i, and x is other environmental information; A =
(a1,a,, - -,ay) is the set of joint actions; a; represents the actions of agent i; T€[0,1] is the state
transition probability of S—A—S'; R = (1,15, - -,7n), 1; represents the reward received by agent
i for performing action a;, which leads to outcome 0—0'. y denotes the discount factor for the
cumulative reward.

In a multi-agent system, changes in the environmental state result from the collective
actions of all agents. At time t, each agent combines its observed state o} and executes 7;(a;|0;)
joint action A" = (ai,aj, - - - ay), causing a state transition in the environment and receiving an
expected reward r; for the action taken.

r; - E[rf+1|St = OnA; - aivni} (1)

The Critic network of each agent takes the same input parameters: the observed environ-
ment states S of all agents, the actions A of the agents, and the corresponding Critic network
parameters 07, producing the global value function as output:

Q*(S,ay,...,ay) = ER+7Q"(S, d}, ..., a})] (2)

where H = Hni(ai\oi) represents the joint policy of all agents.
ieN
Each agent’s Actor network parameters 67 are updated according to the value function
through gradient descent:

V(,;J(@;T) = ES,A~D[v();‘logni(ai|oi)Q?(s7 Ay, aN)] (3)

where D represents the experience replay buffer, with each element being a tuple (S,A,R,S'),
containing the updated joint state §'.

L(Q?) = ES.AND[(Q?(S7 ap,- - aN) - y)Z} (4)

The Critic network parameters are updated using backpropagation, with the loss function
defined as:

y=r,+79Q"(S,a, - dy)la; = m(alo) (5)

2.2 Current research on robotic arm assembly control technologies

The development of modern control theory has gradually positioned active compliance con-
trol as a primary research focus [12,13]. This approach enables robots to execute correspond-
ing control strategies based on their perception of the environment to accomplish assembly
tasks, without the need for dedicated compliance mechanisms, thereby offering enhanced ver-
satility. Hogan et al. introduced the fundamental principles of impedance control, establishing
a mapping between the robot’s position and contact force [14]. This work laid the groundwork
for subsequent active compliance research, leading to numerous improved control strategies
adapted to various environments. For instance, Wang et al. designed a joint impedance con-
troller using sliding mode control, which effectively enhances the flexibility of the joints, allow-
ing the robot to execute shaft-hole assembly tasks with greater precision [15]. This controller
also addresses model uncertainties and reduces impact forces, thereby improving the robot’s
disturbance rejection capability. Wu et al. proposed a control method for flexible connectors
based on an event-switching strategy, which enables a smooth transition from adaptive control
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to hybrid impedance control [16]. This approach enhances control performance in both con-
strained and unconstrained spaces, ensuring smooth completion of connector assembly tasks.

The application and advancement of computer technology have significantly improved the
computational power of robotic control systems, enabling breakthroughs in robotic arm
assembly methods by integrating artificial intelligence with traditional control algorithms [17].
Two primary approaches have emerged: image-based visual perception and force-sensor-
based tactile perception. For example, Song et al. simulated human visual sensitivity to key
information and introduced an information filtering mechanism to improve the accuracy of
feature recognition and classification in components [18]. Cong et al. utilized machine vision
to correct assembly postures, increasing the success rate in assembling irregularly shaped parts
[19]. Luo et al. designed an assembly prediction network by integrating multi-view perception
of missing features with deep reinforcement learning, significantly enhancing assembly effi-
ciency and stability [20]. Ortega-Aranda et al. collected contact state information during
robotic operations and trained a dual-arm robot using a neural network-based fuzzy architec-
ture to achieve human-like performance [21]. Although impedance model-based control strat-
egies perform well in assembly tasks, they are limited by the need for an accurate model of the
shaft-hole contact forces and precise identification of dynamic parameters, which may change
due to wear and fatigue during actual operations, thereby impacting assembly outcomes.

Compared to traditional control strategies, deep reinforcement learning does not require
explicit model construction or control strategy design [22]. It can adaptively adjust control
strategies to suit different environments and task requirements, offering superior adaptability
and generalization capabilities. This enables the learning of more complex control strategies,
leading to more efficient and precise shaft-hole assembly. Inoue et al. demonstrated the diffi-
culty of obtaining accurate models in complex shaft-hole assembly and proposed a reinforce-
ment learning algorithm tailored to shaft-hole tasks [23]. Leyendecker et al. validated the
effectiveness of deep reinforcement learning assembly strategies in uncertain environments
through simulations [24]. Ding et al. divided the shaft-hole assembly process into two stages—
hole searching and insertion—and developed a self-learning assembly algorithm based on
DQN [25]. In shaft-hole assembly, the complex and variable shapes and sizes of shaft-holes
make the motion control of robotic arms particularly challenging. While single-agent deep
reinforcement learning algorithms can handle relatively simple tasks, such as assembling fully
symmetric circular shaft-holes, achieving higher precision and efficiency in complex shaft-
hole assembly requires more accurate control of both position and orientation.

2.3 Current research on multi-agent reinforcement learning

Multi-agent deep reinforcement learning (MADRL) involves collaborative learning among
multiple agents, expanding on single-agent reinforcement learning by forming a collective of
agents to cooperatively accomplish tasks. In the context of robotic arm control, MADRL
focuses on collaborative control and task allocation, where each agent not only ensures the
consistency of its own capabilities but also cooperates with others to achieve the overall sys-
tem’s objectives [26]. Foerster et al. introduced the reinforced inter-agent learning and differ-
entiable inter-agent learning algorithms, which employ neural networks to approximate value
functions, facilitating inter-agent communication and reducing model complexity through
parameter sharing [27]. Sukhbaatar et al. proposed the communication network algorithm,
enabling real-time, rapid information exchange among agents [28]. Lowe et al. developed the
multi-agent deep deterministic policy gradient algorithm, which extends the DDPG frame-
work by incorporating a centralized training with decentralized execution approach, signifi-
cantly reducing learning costs and establishing a paradigm for most cooperative methods [29].
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He et al. proposed an improved DDPG algorithm that treats the joints of a robotic arm as deci-
sion-making agents within a multi-agent system, enabling motion planning for target capture
[30]. This approach demonstrated superior solution speed and robustness compared to tradi-
tional algorithms. While the collaboration among multiple agents simplifies complex tasks and
enhances control precision and efficiency in robotic arms, it also introduces challenges such as
data dimensionality explosion, communication difficulties, and convergence issues. Addition-
ally, the strong coupling between robotic arm joints further complicates control efforts [31].

3. Robotic arm shaft-hole assembly using deep reinforcement
learning algorithm

3.1 Analysis of the shaft-hole assembly task

The shaft-hole assembly process can be divided into three main stages: hole-seeking, align-
ment, and insertion. The hole-seeking stage involves moving the shaft from its initial position
towards the centerline of the hole, reaching the vicinity of the assembly hole. The alignment
stage involves adjusting the position and orientation of the shaft relative to the hole to meet
assembly requirements. The insertion stage involves inserting the shaft to the specified depth
after achieving the required alignment. Among these stages, the alignment stage is the most
critical and complex, as it involves various contact states such as point contact, surface contact,
and line contact when there is a mismatch in position and orientation. This stage is crucial for
the successful completion of the assembly task.

This study investigates the impact of various contact states during the alignment phase in both
circular and square shaft-hole assemblies, with a particular focus on comparing the differences in
pose control between the two. In the circular shaft-hole assembly, a coordinate system Og is estab-
lished with the center of the contact surface as the origin and the hole’s central axis as the z-axis.
Similarly, a coordinate system O, is established with the shaft’s axis as the z-axis. The deviations
in the x, y, and z axes between coordinate systems Og and O, are defined as Ax, Ay, and Az,
respectively, while Al represents the distance between the origins of the two coordinate systems.
During the alignment phase, several typical contact states may occur, as illustrated in Fig 1.

In the surface contact state shown in Fig 1A, the orientation of the shaft and hole is fully
aligned, but there is a positional deviation, i.e., (Ax, Ay, Az) = 0, Al # 0. By adjusting the posi-
tion of the shaft to align it directly above the hole, positional matching can be achieved, allow-
ing the assembly process to proceed to the insertion phase. However, in circular shaft-hole
assemblies, point contact, as shown in Fig 1B, is more likely to occur. In this scenario, the posi-
tional deviation Al is nearly zero, but there remains a significant orientation mismatch. Due to
the perfect symmetry of the circular shape, the x and y axes of the shaft-hole can rotate around
the z-axis to satisfy the right-hand rule in any direction, meaning that alignment can be
achieved by simply aligning the z-axes of the two coordinate systems. If the orientation is not
promptly adjusted to achieve Az = 0 during the point contact state, continued insertion along
the shaft axis may lead to a multiple point contact state as illustrated in Fig 1C. At this stage,
the shaft’s contact surface origin is already within the hole, and the shaft collides with the hole
wall, making further insertion unsuitable.

In the square shaft-hole assembly, the coordinate system is similarly established with the
center of the contact surface as the origin and the z-axis defined by the hole’s central axis and
the shaft’s axis. However, the x and y axes no longer have arbitrary definitions; for consistency,
the directions perpendicular to the edges are defined as the x and y axes. The definitions of
positional and orientation deviations are the same as in the circular shaft-hole assembly. Sev-
eral contact states that may occur during the alignment phase in square shaft-hole assemblies
are shown in Fig 2.
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Fig 1. The contact state in circular shaft-hole assembly. a) Surface contact (b) Point contact (c) Multiple point contact.

https://doi.org/10.1371/journal.pone.0311550.9001

In Fig 2A, the surface contact state shows that only the z-axis of the shaft and hole is
matched, but position deviation still exists. As the shaft moves to the centerline of the hole to
eliminate position deviation Al, the x and y axis deviations cannot be ignored as in circular
shaft-hole assembly, leading to the multiple surface contact state shown in Fig 2B. At this
point, further rotation around the z-axis is required to Ay = 0 proceed with the insertion task.
Fig 2C illustrates the line contact state Ay = 0,AI—0, where the other two axes are not yet
matched, and if not corrected promptly, will result in multiple line contact shown in Fig 2D,
causing scraping against the hole wall. There are also more complex contact states that cannot
meet the assembly requirements for square shafts and holes.

In summary, for square shaft-hole assembly, the contact surface center of the assembly
shaft must be aligned with the centerline of the hole, denoted as Al = 0. Regarding orientation,

PLOS ONE | https://doi.org/10.1371/journal.pone.0311550  February 18, 2025 6/35


https://doi.org/10.1371/journal.pone.0311550.g001
https://doi.org/10.1371/journal.pone.0311550

PLOS ONE Multi-agent deep reinforcement learning-based robotic arm assembly research

Fig 2. Contact states in square shaft-hole assembly. (a) Surface contact (b) Multiple surface contact (c) Line contact (d) Multiple line
contact.

https://doi.org/10.1371/journal.pone.0311550.9002

for the non-symmetrical square shaft-hole assembly, the next insertion stage can only proceed
when the orientations along all three axes are fully matched, denoted as (Ax,Ay,Az) = 0.

Square shaft-hole assembly demands significantly higher precision than circular shaft-hole
assembly, necessitating the development of specialized assembly strategies that can also accom-
modate the requirements of circular shaft-hole assemblies. For circular shaft-hole assembly
tasks, various mature intelligent control algorithms, such as DQN and DDPG, are effective in
solving these problems. However, their control strategies are not well-suited to the stringent
orientation matching required for square shaft-hole assemblies.

Based on the previous analysis, the primary distinction between these two types of assembly
tasks lies in the control of orientation. To address this challenge, a strategy that independently
controls position and orientation is proposed to reduce the difficulty of square shaft-hole
assembly tasks. This strategy introduces the MADDPG algorithm to coordinate the control of
both position and orientation. However, this algorithm is typically used for collaborative con-
trol among independent entities. In the case of serial robotic arms, where the joints exhibit a
certain degree of coupling, the collaborative capabilities of MADDPG are somewhat limited,
which hampers its effectiveness in precise assembly tasks. To overcome these limitations, the
DE-MADDPG algorithm is introduced. By incorporating a decoupling module, this algorithm
reduces the coupling between position and orientation control, thereby improving the overall
assembly performance.

3.2 Robotic arm agent configuration analysis

The assembly task focuses on the robotic arm, with the Kawasaki BAOO6N model selected as
the control object. This industrial robot is composed of interconnected rigid links through six
rotational joints. Studying the arm’s motion states involves examining the relative motion rela-
tionships between each link, necessitating the establishment of coordinate systems for each
joint in the Cartesian coordinate system. The DH model is commonly used to describe
changes between joint coordinate systems, categorized into Standard DH (SDH) and Modified
DH (MDH). The key distinction lies in the position where the reference coordinate is estab-
lished: SDH establishes the i-coordinate system at the end of the i—1 link, while MDH estab-
lishes it at the i joint. For a more intuitive and concise description of the robotic arm
configuration, this study adopts the MDH model for modeling, requiring only four parameters
to represent transformations between adjacent joint coordinate systems.
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In this model: The link length (a) is the length of the common perpendicular line between
adjacent joint axes. The link twist angle () is the angle formed between adjacent joints, with the
positive direction determined by the right-hand rule. The link offset (d) is the distance between
the projections of the common perpendicular lines of the previous and current joint axes onto the
current axis. The joint angle (6) is the rotation angle of two links about their common axis.

The i joint’s coordinate system can be transformed from the i—1 joint’s coordinate system
by rotating around the x-axis by angle ¢;_;, translating along the x-axis by distance a;_;, rotat-
ing around the z-axis by angle 6, and finally translating along the z-axis by distance d;. This
transformation between adjacent coordinate systems is expressed as:

Ti , = Rot(o, ,)Trans(a,_,)Rot(8,) Trans(d,)

c0, —s0, 0 a,_,
- sOco,  clico, | —so,  —dso, (6)
a sOsa, , cOs0, , co, dico,
| 0 0 0 L]

where s denotes sine, ¢ denotes cosine, T} , is the homogeneous transformation matrix of the
coordinate system, and (a,a,0,d) represents the DH parameters of the transformation matrix.
Based on the relationships between joints and various data, joint coordinate systems are estab-
lished using MDH, with DH parameters for each joint as shown in Table 1, forming the initial
configuration of the robotic arm.

Multiplying all joint transformation matrices yields the homogeneous transformation
matrix between the base coordinate system and the end-effector coordinate system. Since only
the joint angle is involved in the coordinate transformation parameters, reflecting the mapping
relationship between the end-effector’s pose in Cartesian space and the robotic arm joint rota-
tion angles, it is defined as the kinematic equation of the robotic arm F(6):

R P
FO) =TT 1= | 7)

where P represents the position matrix of the end effector in the base coordinate system of
the robotic arm, denoted as P = [p..p,.p.] T, R represents the orientation rotation matrix of the
end effector in 3x3 Cartesian space, represented by a matrix composed of a unit vector along
the principal axis direction (x,y,z), denoted as [n 0 a].

nX OX a)(
R=[noa=|n o a, (8)
nZ OZ al
Table 1. DH parameters of BAOO6N robotic arm.
Link Numbering o a 0 d
1 0 0 0,+7/2 0.43
2 —71/2 0.165 0,—m/2 0
3 0 0.55 0 0
4 —/2 0.21 0, 0.865
5 /2 0 05 0
6 —/2 0 O 0.115

https://doi.org/10.1371/journal.pone.0311550.t001
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In addition to rotation matrices, other methods for describing orientation include Euler
angles and quaternions. Euler angles require only three angles to describe the rotation between
axes, but they impose strict requirements on rotation order and may encounter gimbal lock
issues in continuous poses. Quaternions define orientation rotation as rotating by a specified
angle around a specific rotation axis, effectively avoiding gimbal lock. They require only a
four-dimensional vector composed of one scalar and a three-dimensional vector to represent,
reducing data storage compared to rotation matrix operations, improving computational effi-
ciency, and enabling smooth description of orientation changes in continuous poses. The
expression for quaternions is:

q=w+ai+bj+ ck 9)

where w represents the scalar real part, while i, j, and k constitute the imaginary three-dimen-
sional vector, satisfying i’ = j* = k* = i-j-k = —1, where w, a, b, and c are all real numbers. The
formula for computing the quaternion norm is:

lgl = Vo? + a2+ b+ ¢ (10)

When the quaternion norm equals 1, it is a unit quaternion. Unless otherwise specified, all
quaternions described in this paper are unit quaternions. To explicitly describe the rotational
relationship of the orientation, they are denoted as follows:

0 . [0\ 9.0..9‘.9]( (11)
= | cos| = in(- |7 | =|cos(=] sin{= in( - sinf —
1= 1°%\2) "z *\2 2)t "\z) Pz
where 6 denotes the angle of rotation, 7~ represents the rotation axis,and [i j k] represents
the direction vector of the rotation axis.
Rotation matrices and quaternions are used to describe orientation in different ways and

can be mutually converted. The rotation matrix R obtained from the robotic arm kinematics is
transformed into a quaternion g to describe the orientation, with the transformation formula

given by:
1
w:§,/l+nx+oy+az (12)

7 = |signta, —n)yT=, ¥ 0, —a, (13)
sign(n, —o0,)\/T—n,—o, +a,

With the forward kinematics as shown in Eq (7), the position and orientation of the assem-
bly axis end can be obtained, and based on the approach of separating position and orientation
control proposed in the previous section, a design of intelligent agents is conducted for the
Kawasaki BAOO6N robotic arm. The BAOO6N robotic arm adheres to the standard Pieper crite-
ria, where three adjacent joint axes are either intersecting at one point or parallel along three
axes. For this type of robotic arm configuration, the last three joints constitute the wrist of the
arm, primarily controlling the end effector orientation R, while the first three joints mainly
control the wrist position, thereby affecting the variation of the end position P.

In the context of a multi-agent system that separates position and orientation control, the
first three joints of the robotic arm are defined as agent 1, and the last three joints are defined
as agent 2. The schematic diagram of multi-agent axis assembly is illustrated in Fig 3.
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Assembly shaft

Assembly hole

3.3 Decoupled multi-agent deterministic deep deterministic policy gradient
algorithm

The MDDPG algorithm has been successfully applied in areas such as drones and multi-robot
collaboration. However, in the context of multi-agent control of the serial robotic arms shown
in Fig 3, strong coupling between these two agents leads to significant mutual influence during
action execution, exacerbating competitive relationships among agents in cooperative tasks
and hindering stable learning of appropriate joint strategies.

To address this issue, DMDDPG is proposed to reduce coupling between agents.
DMDDPG is an enhanced version of MDDPG, utilizing a centralized training and distributed
execution framework. In contrast to MDDPG, it incorporates not only a global Critic network
for centralized training but also a local Critic network designed for each agent to evaluate only
its own local states and actions. This design allows each agent to focus more on its own behav-
ior, thereby enhancing the algorithm’s efficiency and stability. Each agent’s policy update con-
siders not only the global optimal value function but also whether its own local value function
is updating in the optimal direction. This decoupling approach prevents suboptimal and
unstable solutions, as well as the dominance of global optimal rewards in the strategy among
the group, ensuring each agent rapidly and effectively learns the optimal policy.

The training of the local Critic network only requires the current agent’s observations and
states to evaluate its actions, obtaining a local Q value with the loss function:

L(9;) = E, o [(Q(0,,0,) = 3,)’] (14)

Agent 2

Joint6 Joint 5 Joint 4

Shaft contact

surface
coordinate system Joint 3
Hole contact YoisEn
surface Agent 1
coordinate

Base coordinate
system

Fig 3. Schematic diagram of multi-agent axis assembly.

https://doi.org/10.1371/journal.pone.0311550.g003
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Yo =1t VQ?I(O;a a;)|a; = m(a;o,) (15)

where ¢; represents the parameters of the local Critic network for the iy, agent.

After introducing the local Critic network, updates to each agent’s Actor policy network
require participation from both the global Critic network and the local Critic network to
simultaneously explore global optimal solutions while exploring local optimal solutions. The
policy gradient computation for the iy, agent then becomes:

V@,](Hi) = Es,A~D[V0,-10g7ti(ai|0i)QiH(Sa ay, - ay)] n Eai,uiwD[veioi(ai|0i)vaiQ?(oi7 a;)] (16)

Global value function Local value function

The pseudo-code for the DMDDPG algorithm is shown in Table 2.

Table 2. Pseudo-code of DMDDPG algorithm.

Pseudo-code of DMDDPG Algorithm

1 | Initialize parameters of the global Critic main network Q.

Initialize parameters of the global Critic target network Qff and copy parameters Q.

2
3 | Initialize Actor main network parameters Q; and Critic main network parameters Q; for each agent.
4

Initialize Actor target network parameters Qj and Critic target network parameters Qf, for each agent, copy Qj

and Q} parameters.

5 | For episode = 1 to MaxEpisode do

6 Initialize random process A/, initialize environment state S.

7 Fort=1todo

8 For each agent i, select action a! = 7(0!|607) + N.

9 Execute action A' = [a}, a].

10 Obtain global reward R(, local reward r{, and next state Nl

11 Store sample (§', A", R}, r{, §*") into experience pool.

12 End for

13 Update global Critic network

14 Randomly sample M samples (§', A", R}, $"*!) from experience pool to form batch samples.
15 Calculate y from y;, = r, + yQ"(s,,,4,,,)-

16 Compute loss Z (y — QI(S', A"))” and update EvalCritic network Q! parameters.

17 Update target Critic network parameters Qf in a soft update manner.

18 Update robotic arm agent Actor network and local Critic network.

19 For agent = 1 to N do

20 Randomly sample K samples (o', a;, 1!, 0'*!) from experience pool to form batch samples.
21 Obtain y,, from Eq (15).

22 Compute loss %Z(ylf’ — QY (o, a?))2 and update EvalCritic network Qj parameters.
23 Update EvalActor network Qj , network parameters 6; as follows:

0,=0, +%Z(V{)”ﬂ:i(ailoi)QxH(S7 ay, - ay) + V{)”ni(ailoi)Q:[(oiv ai))
j

24 End for

25 Update target Actor network parameters Qj, and target Critic network parameters QJ, in a soft update

manner.
26 End for
27 | End for

https://doi.org/10.1371/journal.pone.0311550.t002
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3.4 Multi-agent action-state space definition

The design of the state space is crucial in deep reinforcement learning algorithms, as it defines
the environment states that agents need to observe, enabling the value function to objectively
evaluate the quality of actions. In the analysis of the shaft-hole assembly task in Section 1, the
assembly completion is primarily judged by comparing the pose states between the shaft and
hole contact surfaces. The assembly hole is fixed on the work platform, and its accurate pose
state in the world coordinate system is known. The center point pose of the hole contact sur-

p
face is defined as F; = [ OG IG] , and the pose information of the shaft’s contact surface is

RM
0

the assembly goal, it is also necessary to ensure that the shaft is inserted to a specified depth h.
In the designed multi-agent algorithm, the joint state space S is defined as:

p
obtained from the forward kinematics of the robotic arm: F,,(0) = [ lM 1 . To achieve

S = (0,,0,) = (Fg, F\(0), h) (17)

(18)

{01 = (Pg, Py, h)
0, = (Rg, Ry)

where o0, represents the state space of Agent 1 controlling the end position state, where this
agent also controls the depth of shaft-hole insertion. 0, represents the state space of Agent 2
controlling the end orientation state, focusing solely on posture matching during the assembly
process.

Through the DMDDPG algorithm, the robotic arm autonomously learns to output the
motion angles of each joint when faced with different state spaces, enabling the assembly shaft
to smoothly achieve the assembly goal. Thus, the action spaces of the two agents are defined
respectively as the rotation angles of joints 1-3 and joints 4-6. The joint action space A is
defined as:

A=(a,a,) (19)

(20)

{al = (0,,0,,0,)
a, = (047 057 96)

3.5 Multi-agent reward function design

The shaft-hole assembly controlled by the robotic arm is a complex operation task in a contin-
uous action space. The reward obtained to achieve the task goal is referred to as the main line
reward. However, relying solely on the main line reward in high-difficulty exploration tasks
can make it difficult for the algorithm to converge or result in slow convergence, a situation
known as sparse reward problem. To overcome such issues, additional reward components
need to be introduced, making the reward function dense. This helps guide the agents to
explore the environment more efficiently, thereby accelerating the convergence speed and
enhancing the performance of deep reinforcement learning algorithms. These types of reward
functions are known as auxiliary rewards. Based on the different characteristics of the three
stages—hole searching, alignment, and insertion—during the shaft-hole assembly process, dif-
ferent stage-specific reward functions are designed, mainly divided into sub-goal reward func-
tions and shaping reward functions.
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Fig 4. Assembly task flow.
https://doi.org/10.1371/journal.pone.0311550.9004

3.5.1 Main line reward function. The main line reward is designed to set task objectives
for reinforcement learning. In the execution of the shaft-hole assembly task, the reward is
obtained only when (1) the shaft-hole posture matches completely, (2) the axis of the assembly
shaft is aligned with the centerline of the hole, and (3) the shaft insertion depth reaches the
specified depth, thus meeting the requirements for successful assembly.

At time ¢, each agent performs joint action A’ = [a’, a!], calculates the distance S"*' between
the shaft contact surface and the hole centerline, and the posture deviation Al of the shaft-hole
assembly in state AB. If the specified assembly accuracy requirements are not met, the next iter-
ation loop is carried out until the insertion requirements are fulfilled. During the shaft-hole
insertion stage, the distance Al and posture deviation A must remain within the error range
(L,P). The task completion reward r,, is obtained when the insertion depth ki reaches the speci-
fied depth h, indicating successful assembly. The assembly task flowchart is shown in Fig 4.

The main line task reward can be defined as:

¢ 0 otherwise

B { r(Al<LAB<B,h=h) o

where R, reflects the reward feedback only after successful assembly, serving as the signal to
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end each training round. If R, is 0, the agent continues with the next action based on the error
magnitude r,, = 100 during training.

3.5.2 Sub-goal reward functions. Setting sub-goal rewards and other auxiliary rewards is
primarily aimed at guiding the exploration process, narrowing down the ineffective explora-
tion range of agents in the environment, and improving efficiency. In the exploration and
completion of the main task, this process is further broken down into sub-goals, allowing the
agents to first learn to accomplish these sub-goals. This approach increases the probability of
subsequently exploring the main task, and finally, under the guidance of both main-line
rewards and auxiliary rewards, completes the assembly task. To enhance assembly efficiency,
penalty functions are introduced to ensure swift and safe achievement of each objective. Three
sub-goal reward functions are primarily designed as follows:

1. Collision penalty function: Precision is crucial in the robotic assembly of shafts and holes,
where collisions are strictly prohibited in industrial production and should be avoided dur-
ing training. To enforce this principle, sensors measuring force/torque are installed
between the robotic arm and the assembly shaft to detect real-time contact forces F. During
assembly, forces or torques slowly change due to state modifications, but collisions cause
sudden spikes. By setting a threshold Fy;y, for these spikes, collisions are detected when con-
tact forces exceed this threshold, terminating the current exploration round and applying
penalties. The penalty function RF is defined as shown in Eq (22), where feedback values ry
= —100 are set during training.

0 otherwise

2. Angle penalty function: Continuous reward-penalty effects integrated into the exploration
process typically outperform one-time rewards. Long-term accumulated rewards easily sur-
pass sparse rewards, providing stronger guidance for algorithms. This approach offers
immediate feedback directly correlated with current action status, benefiting neural net-
works in better feature extraction during the intermediate learning process. To improve
exploration efficiency and prevent local oscillations that hinder convergence, the angle pen-
alty function penalizes the rotational angles of each joint as quantitative targets. The angle
penalty function is defined as Ry

R, = ln(zﬁj 0]+ 1) (23)

where each joint’s rotational angle 0; within one step is measured in radians. To avoid initial
high penalties that hinder convergence, the logarithm of the sum of these six rotational
angles within each step is used as the penalty value. Considering joint movement con-
straints and safety stability, the maximum allowable joint rotation angle is 3°, correspond-
ing to 6;€[0,0.052] and Re<[0,0.273].

3. Agent assembly virtual space:
The task space for assembly is a relatively small region within the robotic arm’s larger oper-
ational workspace. Allowing the robotic arm to explore the entire workspace would be inef-
ficient and result in a substantial amount of meaningless learning. Additionally,
incorporating collision and angular penalties can lead the robotic arm into incorrect learn-
ing states. To better guide the completion of assembly tasks and enhance initial exploration
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Fig 5. Shaft hole assembly virtual space.
https://doi.org/10.1371/journal.pone.0311550.g005

efficiency, a spherical virtual space is defined with the center of the assembly hole’s contact
surface as the origin, as illustrated in Fig 5. In the next section, reward functions for each
agent will be defined based on their movement characteristics. This involves a continuous
accumulation of rewards, encouraging agents to move closer to the task objectives to
achieve higher rewards. To facilitate faster convergence to the assembly task area, rewards
are accumulated only when the axis is within the defined virtual space. Outside this space,
no rewards are given. Within the virtual space, positional and orientation deviations are
compared, and positive rewards are provided to guide the agents more effectively towards

successful assembly.

The virtual space is defined with a radius VS,, determined by the basic dimensions of the
assembly hole, and VS, = o-¢. ¢ represents the diameter of the assembly hole, and o is a scaling
coefficient adjusted based on the dimensions of the shaft assembly and the robotic arm’s
assembly environment. Through simulation experiments, it is found that when the coefficient
is too large, initial rewards are high, but learning progress is slow, leading to lower final
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convergence rewards, which are suboptimal. Conversely, if the coefficient is too small, initial
exploration times for objectives are extended, and timely adjustments to position and posture
are hindered upon entry, making final convergence difficult. Through testing, a stable range
for the virtual space radius coefficient is found to be 0€(1.5,3). Within this range, the robotic
arm can swiftly locate the target area and has ample time to adjust its position and posture.

3.5.3 Shaping reward functions. Shaping functions are also auxiliary functions, different
from sub-goal reward functions. Their main role is to add a type of potential energy function
based on the agent’s state. They measure the gap between the agent’s state in the new environ-
ment after performing an action and the target state. The smaller the gap, the higher the corre-
sponding reward, and vice versa. Reward functions need to be designed based on the tasks
performed by each agent and the objectives they need to achieve. In shaft-hole assembly, local-
ized reward functions are designed separately for agents controlling position and posture,
termed as local reward functions.

(1) Position-based reward function:
In the assembly of square and circular shaft-holes, their requirements for position matching
are the same. For ease of observation, let’s take the example of a circular shaft-hole to design
a position-based reward function. For agents controlling only position, it is crucial to
ensure that the center of the shaft contact surface is directly above the centerline of the hole.
Therefore, the center point Py, of the shaft contact surface is projected onto the X-Y plane
of the hole contact surface, and a reward function based on the distance L, between the
shaft and hole is designed, as illustrated in Fig 6. This distance is normalized based on the

X-Y plane

D,

Assembly
axis
Assembly
hole

Virtual spatial
boundary

Fig 6. The projection distance between the center points of the shaft hole contact surface.

https://doi.org/10.1371/journal.pone.0311550.9006
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virtual space radius to ensure it does not change due to the size of the assembly hole and vir-
tual space. The reward function r; for horizontal distance is defined as:

R L e R )

24
Vs, Vs, 24

where a smaller value of L, indicating closer distance, results in a higher reward, and
rE€ (0, 1 ) .

Similarly, a reward function for vertical distance in the Z-axis direction is defined using the
same method to prevent collisions between shaft-holes until posture matching is achieved by
adding a weighting coefficient. The main calculation is the vertical distance L, between the
center points of the shaft-hole contact surfaces, as illustrated in Fig 7. The reward function for
position matching phase is defined as

L Py — Pél
=ll1-=—=|=11-L_—C 25
& ( VSO> ( Vs, ) (25)

where 2€(0,1) is the weighting coefficient, and r,€(0,4). When A is smaller, the reward value
obtained when approaching in the Z-axis direction is smaller, and the guidance for the agent

Virtual spatial i
boundary )
/.

AsSembly

/ axis

X-Y plane pgsemply -
hole

Fig 7. The vertical distance between the center points of the shaft hole contact surface.

https://doi.org/10.1371/journal.pone.0311550.g007
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Fig 8. Shaft hole insertion.
https://doi.org/10.1371/journal.pone.0311550.g008

relative to movement in the X-Y plane is weaker, allowing the agent to prioritize horizontal
position closer, providing more sufficient time for posture adjustment.

After meeting the requirements for both position and posture, the insertion phase begins.
During this process, the posture remains unchanged, and there is no movement in the X-Y
axis direction. It is only necessary to observe whether the insertion depth h; meets the assembly
requirements, The insertion process is illustrated in Fig 8.

Insertion phase reward function is defined as:

= 105y l/h) (26)
where |p%, — pi| = h,, ri,€(Le).

These three reward functions together constitute the position-based reward function.
According to the shaft-hole assembly process, it can be divided into two stages: before and
after insertion. The position reward function R, is:

{n+ .. ((Py — P5) = 0)
R, = (27)
1o+ 1 (P —p5) <0)

where r; and r, will accumulate reward values in the virtual space after each step; r;,, will accu-
mulate rewards starting from the position and posture reaching requirements to execute the
insertion phase, and r, will no longer calculate reward values in this state. The range of values
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for R, in these two stages is:

{(0,1 + Dif (03, — p5) > 0)}
R, €

. (28)
(1,e + 1)if ((p5, — p5) < 0)

(2) Pose-based reward function:

The assembly of square holes requires three directional deviation quantities to meet task
requirements. Using a rotation matrix to represent the deviation between poses and the cor-
rection quantity will significantly increase the algorithm calculation volume. Therefore, qua-
ternions are used to describe poses. Through Eq (11), quaternions can be converted into
rotation matrices. Quaternions use only four elements to represent any pose vector in space,
and the maximum angle between two vectors in opposite directions is R,. Thus, the pose
reward function 7 is defined by the angle between quaternions:

Ry=mn— C0571(|CIM ’ CIGD (29)

where gp; = (WD psCm) is the pose of the shaft contact surface, g = = (wgagbgc,) is the
pose of the hole contact surface; R,€(0,7), accumulating reward values begin after entering the
virtual space until assembly completion.

In summary, the position reward function for agents controlling position is R;, and the
pose reward function for agents controlling posture is R,. Their respective reward values range
from different weight sizes. Posture adjustment is the most critical part, requiring agents to
quickly and accurately adjust insertion posture and maintain it to achieve higher rewards.
During the insertion along the hole centerline, posture adjustment and position closeness are
encouraged with lower reward weight, allowing sufficient space and time. After contact, posi-
tion reward weight is increased, encouraging agents to complete assembly tasks faster and bet-
ter. Combined with main task rewards R,, collision penalty function Ry, and angle penalty
function Ry, the overall reward function for shaft-hole assembly based on deep reinforcement
learning is:

T T
Return' = R, +R; — ZRIO + Z“/(Rtl +R)) (30)
t=0 t=0

where Return' represents the total reward value obtained by the agent, and 7 is the accumu-
lated reward decay coefficient.

4. Axle hole assembly simulation experiment
4.1 Building the robotic arm simulation environment

4.1.1 ROS system introduction. Robot Operating System (ROS) is an open-source system
used for developing and controlling robots. It provides a structured way to build complex
robot systems, where each functional module runs independently as nodes. These nodes are
managed by a node manager (Master) that establishes connections between them using TCP/
IP communication, enabling distributed network control. Nodes communicate by publishing
(Talker) and subscribing (Listener) to messages, utilizing communication models such as top-
ics and services to facilitate information exchange under different paradigms within ROS.

4.1.2 Gazebo physics simulation platform. Gazebo is a 3D physics simulation platform
that rapidly builds robot models. To enhance the realism of simulated robots, it interfaces with
various 2D and 3D design software like CAD and SolidWorks. Detailed designs of robotic arm
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models in SolidWorks use the sw_urdf_exporter plugin to convert 3D models into URDF files,
suitable for realistic modeling in simulation environments. Gazebo allows the addition of
physical parameters such as mass, friction coefficients, inertia matrices, and collision proper-
ties to models, making the simulation environment more akin to real-world physics. Further-
more, Gazebo supports robot kinematics simulation, validating algorithms within constructed
robots. To further match physical states realistically, Gazebo includes a comprehensive sensor
model database featuring cameras, gyroscopes, scanners, and other commonly used sensors
that can be directly added and invoked, supporting the creation of new sensors based on task
requirements.

4.1.3 Move It! motion planner. Move It! is an open-source software framework based on
ROS for motion planning and control of robots. It offers a range of tools and libraries includ-
ing motion planners, collision detectors, and motion controllers, facilitating rapid develop-
ment of robot applications. The core node of the Move It! package is moving group, which,
while not feature-rich on its own, integrates with other independent functional components to
provide ROS action commands and services.

To achieve motion control of the robotic arm in an environment with known initial and
target poses, the motion planner calculates appropriate motion trajectories guiding the arm to
the target pose. Upon satisfying environmental constraints such as position, orientation, and
velocity, the planner computes intermediate states.

4.1.4 Building the robotic arm simulation model. To build the robotic arm model in the
Gazebo simulation environment, URDF files generated by 3D software are typically used for
construction. These URDF files, written in XML, primarily describe the links and joints of the
robotic arm. For simulation in Gazebo, it is necessary to add physical properties such as weight
and inertia parameters (inertial tags) to each link, and collision detection 3D models (collision
tags) to detect collisions. The robotic arm axle hole assembly model is displayed in the 3D visu-
alization tool Rviz, as shown in Fig 9.

4.2 Assembly simulation training

4.2.1 Network training parameters. In the DMDDPG algorithm, each agent has an
Actor network and two Critic networks. The Actor network inputs the current observed state
and outputs the value of each possible action in the current state, typically using the Tanh acti-
vation function in the output layer to scale the output values within the range of [-1,1]. The
Critic network inputs the current state and action, and outputs the expected return of the
agent, i.e., the Q value, given the state and action. To avoid training difficulties and overfitting,
each network is designed as a three-layer fully connected neural network.

The training parameters of the DMDDPG algorithm for the axle hole assembly task are
shown in Table 3.

4.2.2 Assembly experiment object. Section 3.1 analyzed the assembly processes for circu-
lar and square shaft-holes and explored the higher difficulty associated with square shaft-hole
assemblies. A DE-MADDPG-based assembly method is proposed, which is also applicable to
the simpler circular shaft-hole assembly. To validate the feasibility of the DE-MADDPG algo-
rithm in a single robotic arm and its stability in handling tasks of varying difficulty, experi-
ments are conducted using both circular and square shaft-holes as test objects.

The specific structural parameters for the shaft-holes are as follows: For the square shaft-
hole assembly, a square shaft-hole with a 25 mm edge length, an assembly clearance of 0.8
mm, and an insertion depth of 100 mm is used, as shown in Fig 10A. For the circular shaft-
hole assembly, a base diameter of 40 mm, an assembly clearance of 0.8 mm, and an insertion
depth of 100 mm are selected, as depicted in Fig 10B.
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Fig 9. Robotic arm axle hole assembly model.

https://doi.org/10.1371/journal.pone.0311550.9009

4.2.3 Experimental results and analysis of DE-MADDPG shaft-hole assembly. In the
simulation control system established for the robotic arm assembly tasks, the DE-MADDPG
algorithm is employed for the simulation training of both circular and square shaft-hole
assemblies. After 15,000 iterations of learning, the cumulative average total rewards for the
two assembly environments are shown in Fig 11.

The reward values for the algorithm converged to a stable state in both assembly environ-
ments, demonstrating the feasibility of decomposing a single robotic arm into two agents—
one controlling the end-effector position and the other managing orientation—and coordinat-
ing their control using the DE-MADDPG algorithm.

As observed in the figure, during the initial exploration phase of approximately 3,000 epi-
sodes, the reward value curves for both assembly tasks are similar. During this phase, the

Table 3. Network training hyperparameters.

Training parameters Numerical value
Cumulative reward discount factor y 0.99
Actor network learning rate o 0.0001
Critic network learning rate a? 0.001
Target network soft update rate 7 0.01
Simulation time step AT 0.1
Batchsize 64
Number of Episodes (MaxEpisode) 15000
Virtual space ratio o 2

https://doi.org/10.1371/journal.pone.0311550.t003
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(b) Round shaft hole assembly

(a) Square shaft hole assembly (b) Round shaft hole assembly
Fig 10. Assembling the subject. (a) Square shaft-hole assembly; (b) Circular shaft-hole assembly.
https://doi.org/10.1371/journal.pone.0311550.g010

agents primarily learned to quickly locate the hole through spatial exploration from the initial
configuration. In the subsequent alignment and insertion phases, the circular shaft-hole
assembly task, which requires less stringent orientation control, saw its reward values increase
rapidly and stabilize around episode 4,500, with a final stable average reward of 202.52. In
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Fig 11. Reward curve of DE-MADDPG algorithm in circular shaft-hole and square shaft-hole assembly.
https://doi.org/10.1371/journal.pone.0311550.9011

contrast, the square shaft-hole assembly task required multiple rounds of learning to achieve
the desired pose matching after correctly locating the hole. Consequently, the reward values
began to stabilize around episode 6,000, with a final average reward slightly lower than that for
the circular shaft-hole assembly, at 199.46.

4.3 Comparative experiment analysis

4.3.1 Comparative assembly experiment of DMDDPG and DDPG. DDPG, as a single-
agent algorithm, is widely and maturely applied in axle hole assembly tasks, but most assembly
objects primarily involve circular axle holes. The circular axle hole and square axle hole assem-
bly tasks are executed using the same parameters as the DMDDPG algorithm to comparatively
analyze the performance differences between the multi-agent algorithm and the single-agent
algorithm in controlling the assembly task of a single robotic arm.

DDPG, as a single-agent algorithm, evaluates action A using the overall environment S and
feeds back the total reward value R to the agent to update the action policy. The algorithm pro-
cess can be simplified as shown in Fig 12.
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Fig 12. Simplified DDPG process.
https://doi.org/10.1371/journal.pone.0311550.9012

To intuitively compare the differences with the DMDDPG algorithm, according to the
DMDDPG algorithm shown in Table 2, it is simplified into the algorithm flowchart shown in
Fig 13.

The total reward value R includes the local rewards r; and r, of the agents, i.e., local rewards.
During training, multi-agents use not only the overall environment S and total reward value R
but also the agent’s own observation environment and state o;, as well as local reward values to
jointly guide the agent’s policy update. This is the biggest difference between the DMDDPG
algorithm and the DDPG algorithm.

For consistency in evaluation standards, DDPG also learns and trains using the total reward
function defined in Eq (30), with state space S = (Fg,F(0),h) and action space A = (6,,0,,05,0,,
05,06).

The DDPG algorithm, designed with the network parameters outlined in Table 3, is applied
to the training of both circular and square shaft-hole assemblies. The cumulative average total
rewards achieved with the DDPG algorithm are compared to those obtained with the
DE-MADDPG algorithm, as illustrated in Fig 14.

The DDPG algorithm’s final training results show convergence to a stable state. However,
during the initial exploration phase, it lacked accurate control over position and orientation,
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Fig 13. Simplified DMDDPG process flowchart.
https://doi.org/10.1371/journal.pone.0311550.g013
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leading to blind operation in the space. Consequently, each iteration reward value is approxi-
mately 40 points lower than that of the DE-MADDPG algorithm and increased slowly during
later stages of exploration.

In the circular shaft-hole assembly (Fig 14A), the DDPG algorithm began to stabilize
around 12,000 episodes, requiring three times as many training cycles compared to
DE-MADDPG. The final reward value converged to 198.43, showing minimal difference from
DE-MADDPG, which indicates that both algorithms learned similar optimal assembly strate-
gies. For the square shaft-hole assembly (Fig 14B), the DDPG algorithm’s reward values also
show a convergence trend around 12,000 episodes, but continued to increase slightly until the
end of the training period and had not fully stabilized. The final reward value is approximately
165, about 35 points lower than that of DE-MADDPG.

The comparative experiments highlight that the DE-MADDPG algorithm has a clear advan-
tage in training efficiency. It maintains stable performance across tasks of varying complexity,
demonstrating its superior effectiveness in assembly tasks compared to the DDPG algorithm.

4.3.2 Comparative assembly experiment of DMDDPG and MDDPG. The DMDDPG
algorithm is based on the MDDPG algorithm, designed to address the coupling between multi-
ple agents by incorporating local evaluation functions for decoupling. By applying the
MDDPG algorithm to the same assembly task, we can compare the performance changes
brought by the addition of local evaluation functions. The training process of the MDDPG
algorithm is simplified as shown in Fig 15.
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Fig 15. Simplified MDDPG process.
https://doi.org/10.1371/journal.pone.0311550.g015

Compared to the simplified DMDDPG process shown in Fig 15, the only difference is the
absence of the local reward function evaluation. The action state space (A,S) and the reward (R)
definitions are consistent with the DMDDPG algorithm. Using the same network parameters,
the MDDPG algorithm is employed for the assembly training of circular shaft-hole and square
shaft-hole. The comparison of the cumulative average total reward values is shown in Fig 16.

As shown in Fig 16, the final convergence states of the DE-MADDPG and MADDPG algo-
rithms are nearly identical, which demonstrates the superiority of the multi-agent approach.
However, MADDPG exhibited lower initial exploration rewards compared to DE-MADDPG,
and reward value increases are not particularly significant before 3,000 episodes. This is due to
the system’s inability to effectively allocate tasks to individual agents under the guidance of
only global rewards, coupled with strong competitive interactions between agents. Conse-
quently, the MADDPG algorithm required approximately 3,000 additional training episodes
to reach a convergence state compared to DE-MADDPG. In the square shaft-hole assembly
(Fig 16B), the presence of coupling led to considerable fluctuations in reward values once con-
vergence is achieved, indicating system instability. The introduction of the decoupling module
in the DE-MADDPG algorithm allows it to better handle environments with strong coupling
between agents, enhancing training efficiency and improving system stability.

4.4 Assembly experiment validation

Three algorithms are used for the assembly training of the square axle hole, all of which
achieved stable convergence. To verify the effectiveness of the algorithm strategies, 500 assem-
bly tests for circular and square axle holes are conducted in the simulation environment using
the DDPG, MDDPG, and DMDDPG algorithms. The test results are shown in Table 4.

The standard deviation in Table 4 reflects the variability in execution time for assembly
tasks, with a smaller value indicating greater stability in the algorithm’s performance across
different environments. In the circular shaft-hole assembly, both multi-agent algorithms
(DE-MADDPG and MADDPG) demonstrates improvements in total assembly time com-
pared to the DDPG algorithm, with enhancements of 8.7% and 6.6%, respectively. Addition-
ally, the standard deviation of the average single-assembly time is significantly reduced for the
multi-agent algorithms, indicating greater stability in the assembly process. For the square
shaft-hole assembly, the DE-MADDPG algorithm shows a notable improvement over the
DDPG algorithm, reducing the single-assembly time by 8.28 seconds and increasing assembly
efficiency by 13.2%. Although the standard deviation of the single-assembly time increased
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slightly compared to the circular shaft-hole assembly, it remained within acceptable limits. In
both assembly environments, multi-agent algorithms consistently achieved assembly success
rates above 80%. Notably, the DE-MADDPG algorithm achieves a success rate of 92.4% in the
circular shaft-hole assembly.

5. Assembly test rig experiment
5.1 Setup of the test rig

5.1.1 Components of the test rig. For this experiment, a Kawasaki BAOO6N robotic arm
equipped with a motion controller is selected as the primary control object. The origin of the

Table 4. Comparison of assembly results of three algorithms.

Assembly algorithm Circular shaft-hole assembly Square shaft-hole assembly

Time per assembly(s) Standard deviation Success rat% Time per assembly(s) Standard deviation Success rat%
DDPG 56.45 6.27 83.8 62.86 7.85 76.2
MADDPG 52.71 4.38 89.2 57.02 5.43 84.6
DE-MADDPG 51.55 3.86 92.4 54.58 4.12 87.8

https://doi.org/10.1371/journal.pone.0311550.t004
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world coordinate system was set at the base of the robotic arm. An assembly platform is con-
structed, with the platform’s center point’s coordinate parameters determined within the
world coordinate system. The assembly object is a square shaft-hole with a side length of 25
mm, an assembly depth of 100 mm, and an assembly clearance of 0.8 mm, positioned at the
center of the assembly platform. The test rig setup is shown in Fig 17.

The Kawasaki BAOO6N robotic arm has a repeatability precision of £0.06 mm and a maxi-
mum payload of 6 kg, making it suitable for the assembly tasks. A force/torque sensor is
installed between the assembly shaft and the robotic arm to detect collisions, with the collision
threshold Fy;,,, determined through contact experiments discussed in the next section. During
each training session, the joint angles of the robotic arm’s initial posture are fixed at
6 =1[0°,0°,0°,0°,0° 0°], with the initial configuration shown in Fig 17. A coordinate system
M is established at the contact surface of the assembly shaft’s endpoint as depicted in Fig 17.
The position and orientation information F,,(0) of the contact point center in the world

Table 5. Force/Torque sensor parameters.

Force/torque Range Precision
Fyo(N) 2000 1
M, (N-m) 60 0.01

https://doi.org/10.1371/journal.pone.0311550.t005
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coordinate system at the initial state is determined.

0 -1 0 0
R, Py 0 0 -1 13
F\(0) = = 31
ul0) lo 1] 1 0 0 119 Gy
00 0 1

The test rig is installed in a fixed location, and the position of the testing platform’s center
point within the world coordinate system is determined through the calibration of the robotic
arm, establishing the rig’s coordinate system B. The assembly hole is mounted at the center
point, and a coordinate system G is established at the contact point center of the assembly hole
based on the structural dimensions. The position and orientation information Fg of the con-
tact point center of the assembly hole in the world coordinate system are then determined.

1 0 0 0
R, P, 01 0 12
G = = (32)
0 1 0 0 1 0.85
0 0 O 1

According to the analysis of orientation in Section 3.2, for ease of calculation, expressions
Ryrand Rg are converted into quaternion form, resulting in the orientations g,s and g or the
shaft and the hole, respectively.

{ gy = (0.5 —0.50.5 — 0.5)

G=0 0 0 0 3)

5.1.2 Sensor collision threshold design. A force/torque sensor, installed between the
assembly shaft and the robotic arm, is employed to detect collisions between the shaft and the
surrounding environment. The sensor’s maximum range and precision are detailed in
Table 5.

Before the experiment, the sensor is calibrated in a no-load state. Once the assembly shaft is
attached, it introduces a certain load force and torque. During the movement of the robotic
arm, changes in the endpoint shaft’s state will lead to variations in the force and torque. The
motion control algorithm imposes restrictions on the allowable rotational angle within each
step to minimize the influence of acceleration on force and torque during small-angle continu-
ous rotations. Thus, the force and torque changes observed by the sensor are related solely to
the shaft’s current state. During normal movement, the rate of change in force and torque over
a unit of time should remain within a certain range. Exceeding this threshold indicates a sud-
den change in the shaft’s state, signaling a collision.

The collision threshold is crucial for the success of the shaft-hole assembly. If the threshold
is set too low, even slight contact with the environment would trigger a collision penalty and
terminate the training. This could prevent the agent from learning effective optimization strat-
egies, making it difficult for the algorithm to converge. Conversely, if the threshold is set too
high, the system might continue exploring even after contact, leading to irreversible damage to
the assembly shaft-hole if feedback adjustments are not timely.

In practical scenarios, it is necessary to set an appropriate collision threshold through pre-
liminary experiments. During the approach phase of the assembly process, the shaft might
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collide with the working environment, which is common in early exploration stages. After suf-
ficient learning, these collisions can be effectively avoided. During the search and insertion
phases, contact primarily occurs between the shaft and the hole, which persists until the algo-
rithm stabilizes. Additionally, the complex conditions during the square shaft-hole assembly
process need particular attention.

To assess different force conditions, the square shaft-hole is tested in various contact states.
The hole is placed in a fixed position without being secured, and significant tipping is consid-
ered as a collision state. Three experiments are conducted: (a) External wall contact: This sim-
ulates collisions between the shaft and the environment during the search phase. (b) Contact
with the hole surface: This corresponds to the pose alignment phase. (c) Line contact with the
hole edge: This occurs during the insertion phase, where collisions with the hole wall are likely.
The corresponding force and torque variations for these contact states are shown in Fig 18.

In the outer contact state, both force and moment undergo significant changes, with the
maximum variations being AF, = 10N and AM,, = 1N-m. During surface contact, positional
and angular deviations occur, with the y-axis force showing the largest variation at AF, = 11N,
and the moments along the x and z axes changing significantly, denoted as AM, = AM, =
0.11N-m. In the insertion phase, where line contact is observed, the main issue is angular devi-
ation, with minimal force variation and a maximum moment change of AM,, = 0.23N-m.
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Based on the above analysis, it is crucial to ensure that both force and moment remain
within safe limits during the assembly process. To prevent system misjudgments due to
changes in force and moment induced by the robotic arm’s motion, the collision condition
Fiim is set as the maximum rate of change of contact force and moment per unit time step,
resulting in conditions F,,, = 50N/s and M, = 0.5N-m/s. When the rates of change in force
and moment in all three directions are within acceptable ranges, the action within the current
time step is deemed safe and feasible.

5.2 Experimental results analysis

Moveit! and the control cabinet of the Kawasaki BAOO6N robotic arm communicate via TCP/
IP protocol. The network parameters of the DE-MADDPG algorithm are shown in Table 3.
Based on simulation experiments, convergence typically occurs around 7000 episodes in both
assembly tasks. To save time and costs, the maximum number of episodes is set to 10,000. The
DE-MADDPG algorithm is used to conduct 10,000 training assemblies of the square shaft-
hole task under safe conditions, with results compared to those in the simulation environment,
as shown in Fig 19.

Although there are some discrepancies between the experimental environment and the ide-
alized simulation environment, convergence to stability is still achieved in actual training. The
improvement is slow during the initial exploration phase, as the algorithm learns to adapt to
the robotic arm’s action environment. Around 3000 episodes, there is a rapid increase in
rewards. However, there are considerable fluctuations in stability during the later convergence
phase, caused by system errors and instabilities during mechanical movement. Nonetheless,
reward values stabilize around 8000 episodes, with the final average reward slightly lower than
the simulation result, ending at 182.35.
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Fig 19. Average reward curves of experimental and simulated training.

https://doi.org/10.1371/journal.pone.0311550.g019
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(a) Assembly without tilt

Fig 20. Assembly experiment object of square shaft hole.
https://doi.org/10.1371/journal.pone.0311550.9020

5.3 Generalization experiment

To verify the feasibility and generalization of the training results, assembly tests of the square
shaft-hole are conducted by altering the positional coordinates of the assembly hole within the
workspace. The assembly training is guided by the matching of position and orientation in the
algorithm’s reward function. To assess the performance of the trained model under different
task conditions, four experiments are set up: (1) Experiment 1: assembly at a fixed position, (2)
Experiment 2: assembly with varied positions within the working plane, (3) Experiment 3:
assembly with a fixed position but with the assembly hole’s tilt angle at 45° relative to the work-
ing plane, and (4) Experiment 4: assembly with both a 45° tilt and varied position. The fixed
position assembly and 45° tilt assembly are shown in Fig 20. Each group underwent 100
assembly trials, with the central coordinates of the contact surface after position and orienta-
tion changes calculated based on spatial relationships. The test results are summarized in
Table 6.

Comparing experiments 1 and 2, the change in position leads to an altered motion trajec-
tory, which results in a longer average assembly time, increasing from 61.32 seconds to 72.89
seconds, though the success rate remains above 80%. Between experiments 1 and 3, where
only the assembly hole’s orientation is altered, the average time increased by only 5.42 seconds,
but the success rate dropped from 84% to 73%. Comparing experiment 4 with experiments 2
and 3, it is evident that positional changes primarily increase assembly time, while orientation
changes mainly affect the success rate. This experiment demonstrates the feasibility of using
the DE-MADDPG algorithm to divide a single robotic arm into two intelligent agents

Table 6. Comparative experiments on square shaft-hole assembly.

Experiment DDPG MADDPG DE-MADDPG

Time per assembly(s) Success rat% Time per assembly(s) Success rat% Time per assembly(s) Success rat%
Experiment 1 70.37 75 63.86 81 61.32 84
Experiment 2 83.14 71 75.07 76 72.89 81
Experiment 3 75.55 61 69.11 68 66.74 73
Experiment 4 92.66 52 83.69 60 79.24 66

https://doi.org/10.1371/journal.pone.0311550.t006
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controlling position and orientation for assembly tasks. Additionally, by varying the assembly
hole’s position and orientation, the generalization capability of the algorithm in complex envi-
ronments is validated. Across the four experiments, DE-MADDPG shows a 3%, 5%, 5%, and
6% higher success rate compared to MADDPG, and a 9%, 10%, 12%, and 14% higher success
rate compared to DDPG. The results indicate that as the assembly difficulty increases, the
accuracy advantage of the proposed DE-MADDPG method becomes more significant. Addi-
tionally, the average assembly time for DE-MADDPG across all four experiments is lower than
that of the other two methods.

6. Conclusion

This paper addresses the complex assembly problem of shaft-hole structures, focusing on
square shaft-hole assemblies with the Kawasaki BAOO6N robotic arm as the primary control
entity. The research encompasses an analysis of the assembly task, the kinematics of the
robotic arm, the design of a multi-agent deep reinforcement learning framework, and the for-
mulation of multi-agent reward functions. Both simulation and real-world experiments are
conducted for validation and testing. The main findings of the study are as follows: (1) The
reward function for the DE-MADDPG algorithm is tailored to the assembly task process and
consists of a global reward function and a local reward function. The global reward function
includes a main reward function, a collision penalty function, and a process penalty function.
The local rewards are divided into a position reward function, represented by Euclidean dis-
tance, and an orientation reward function, represented by quaternions. (2) A joint simulation
assembly platform integrating Gazebo and Moveit! is developed within ROS. This platform is
used to simulate the assembly of circular and square shaft-holes using the DE-MADDPG algo-
rithm. The simulation results demonstrated that dividing the first three joints and the last
three joints of the robotic arm into multiple agents enhances adaptability. (3) Based on the
simulation results, the Kawasaki BAOO6N robotic arm is equipped with force/torque sensors to
detect collisions, and a square shaft-hole experimental training rig is constructed. The training
results show convergence consistent with the DE-MADDPG simulation outcomes.

Despite the progress made in developing a shaft-hole assembly strategy based on the
DE-MADDPG algorithm, several limitations and areas for improvement remain, which can
be further explored in future research: (1) The training of robotic arms in real-world environ-
ments is costly. Future research could explore the use of transfer learning or meta-learning to
leverage simulation-trained models, thereby improving training efficiency. (2) The current
study primarily focused on the assembly of square shaft-holes. Future experiments could vali-
date and compare the assembly of shaft-holes with different shapes and sizes. Additionally, the
testing phase only included validation at a fixed angle. Conducting assembly experiments at
various angles could help assess the model’s generalization capabilities. (3) Further optimiza-
tion of the reward functions and assembly tasks could enhance the system’s adaptability across
different assembly environments and improve assembly success rates.
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