
RESEARCH ARTICLE

Multi-agent deep reinforcement learning-

based robotic arm assembly research

Guohua CaoID*, Jimeng Bai

School of Mechanical and Electrical Engineering, Changchun University of Science and Technology,

Changchun, China

* mxd20082023@163.com

Abstract

Due to the complexity and variability of application scenarios and the increasing demands

for assembly, single-agent algorithms often face challenges in convergence and exhibit

poor performance in robotic arm assembly processes. To address these issues, this paper

proposes a method that employs a multi-agent reinforcement learning algorithm for the

shaft-hole assembly of robotic arms, with a specific focus on square shaft-hole assemblies.

First, we analyze the stages of hole-seeking, alignment, and insertion in the shaft-hole

assembly process, based on a comprehensive study of the interactions between shafts and

holes. Next, a reward function is designed by integrating the decoupled multi-agent deter-

ministic deep deterministic policy gradient (DMDDPG) algorithm. Finally, a simulation envi-

ronment is created in Gazebo, using circular and square shaft-holes as experimental

subjects to model the robotic arm’s shaft-hole assembly. The simulation results indicate that

the proposed algorithm, which models the first three joints and the last three joints of the

robotic arm as multi-agents, demonstrates not only enhanced adaptability but also faster

and more stable convergence.

1.Introduction

Advances in robotic technology have led to increasingly widespread applications of robots in

the field of industrial automation. Shaft-hole assembly, a critical task in mechanical

manufacturing, demands highly precise and efficient control methods to ensure quality and

productivity. This task is inherently multivariable, requiring simultaneous control of both the

position and orientation of the robotic arm. Traditional control methods for shaft-hole assem-

bly, such as model predictive control [1] or force/position hybrid control [2], rely on the prior

determination of model parameters and control settings. However, due to the nonlinearity

and complexity of robotic arms, these methods often fall short of achieving the desired control

performance in complex assembly processes.

In recent years, deep reinforcement learning (DRL) [3] has garnered significant attention

for its potential in robotic arm control. Unlike conventional control strategies, DRL does not

necessitate explicit model construction or control strategy design. Instead, it adaptively adjusts

control strategies, accommodating various environmental conditions and task requirements,

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0311550 February 18, 2025 1 / 35

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Cao G, Bai J (2025) Multi-agent deep

reinforcement learning-based robotic arm

assembly research. PLoS ONE 20(2): e0311550.

https://doi.org/10.1371/journal.pone.0311550

Editor: Absalom El-Shamir Ezugwu, North-West

University Potchefstroom Campus: North-West

University, SOUTH AFRICA

Received: July 9, 2024

Accepted: September 22, 2024

Published: February 18, 2025

Copyright: © 2025 Cao, Bai. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: All used data can be

found in https://github.com/IKEA/

IKEA3DAssemblyDataset?tab=readme-ov-file#ikea-

3d-assembly-dataset.

Funding: The author(s) received no specific

funding for this work.

Competing interests: The authors have declared

that no competing interests exist.

https://orcid.org/0009-0001-6705-9918
https://doi.org/10.1371/journal.pone.0311550
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0311550&domain=pdf&date_stamp=2025-02-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0311550&domain=pdf&date_stamp=2025-02-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0311550&domain=pdf&date_stamp=2025-02-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0311550&domain=pdf&date_stamp=2025-02-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0311550&domain=pdf&date_stamp=2025-02-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0311550&domain=pdf&date_stamp=2025-02-18
https://doi.org/10.1371/journal.pone.0311550
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://github.com/IKEA/IKEA3DAssemblyDataset?tab=readme-ov-file#ikea-3d-assembly-dataset
https://github.com/IKEA/IKEA3DAssemblyDataset?tab=readme-ov-file#ikea-3d-assembly-dataset
https://github.com/IKEA/IKEA3DAssemblyDataset?tab=readme-ov-file#ikea-3d-assembly-dataset

thereby offering superior adaptability and generalization capabilities. This enables the learning

of more complex control strategies, ultimately leading to more efficient and precise shaft-hole

assembly.

DRL represents an emerging intelligent control approach, fundamentally based on learning

from the current state and predefined goals through trial-and-error interactions with the envi-

ronment. The system autonomously refines decisions and executes optimal actions. DRL has

already found extensive applications in the field of robotic control [4], achieving significant

outcomes in areas such as robotic grasping [5,6], path planning [7], polishing [8], and welding

[9]. In the context of shaft-hole assembly, the complexity and variability of the shaft-hole

shapes and sizes make the motion control of robotic arms a challenging task. Single-agent

DRL algorithms can effectively handle relatively simple assembly tasks, such as the assembly of

fully symmetric circular shaft-holes [10]. However, for more complex shaft-hole assemblies,

higher precision and efficiency are required, necessitating more accurate control of both posi-

tion and orientation.

Multi-agent deep reinforcement learning (MADRL) is a method that enables collaboration

among multiple agents, extending single-agent reinforcement learning by forming a group of

agents to collaboratively complete tasks. Its application in robotic arm control primarily

involves cooperative control and task allocation. Each agent within the group must not only

ensure internal consistency but also consider cooperation with other agents, thereby advanc-

ing the overall system towards its goal while completing individual tasks. The collaboration

among multiple agents simplifies complex tasks, enhancing control precision and efficiency.

However, the increase in the number of agents can lead to challenges such as data dimension-

ality explosion, communication difficulties, and convergence issues [11]. Additionally, the

strong coupling between the joints and links of the robotic arm introduces further complexi-

ties in control.

To address these issues, this paper explores the application of multi-agent deep reinforce-

ment learning algorithms in the motion control of a single robotic arm. Focusing on complex

shaft-hole assembly, a shaft-hole assembly system based on the DMDDPG algorithm is

designed, targeting position and orientation as controlled variables to effectively improve

assembly efficiency and generalization in different assembly environments. A global reward

function is designed for the task objectives and shaft-hole assembly process, and to reduce cou-

pling between agents, a local reward function is independently designed for each agent. Conse-

quently, the proposed algorithm can leverage both global and local rewards to guide the

exploration and optimization of assembly strategies. Comparative simulation experiments

with other reinforcement learning algorithms show that the proposed algorithm excels in effi-

ciency and reliability.

2. Premilaries

2.1 Multi-agent deep reinforcement learning algorithm

A classic multi-agent algorithm is the MDDPG, which extends the DDPG algorithm to multi-

agent environments and introduces the centralized training-decentralized execution frame-

work. Each agent in this framework is a complete DDPG model. During training, each agent’s

Critic network uses the actions and states of all agents, while the Actor network updates its pol-

icy based solely on its observed state. Consequently, each agent’s Critic network fits the global

value function rather than an individual value function, allowing each agent’s policy to be

updated towards the optimal global value function.

In multi-agent deep reinforcement learning, the collaborative exploration process is

described by a Markov game, also known as a stochastic game. This concept encompasses two

PLOS ONE Multi-agent deep reinforcement learning-based robotic arm assembly research

PLOS ONE | https://doi.org/10.1371/journal.pone.0311550 February 18, 2025 2 / 35

https://doi.org/10.1371/journal.pone.0311550

key ideas: first, the multi-agent system follows Markov properties; second, the game describes

the relationships among the agents. The multi-agent Markov game process is defined as a

tuple (N,S,A,T,R,γ), where N represents the number of agents; S = (x,o1,o2,� � �oN) is the set of

joint states; oi is the observed state of agent i, and x is other environmental information; A =

(a1,a2,� � �,aN) is the set of joint actions; ai represents the actions of agent i; T2[0,1] is the state

transition probability of S!A!S0; R = (r1,r2,� � �,rN), ri represents the reward received by agent

i for performing action ai, which leads to outcome o!o0. γ denotes the discount factor for the

cumulative reward.

In a multi-agent system, changes in the environmental state result from the collective

actions of all agents. At time t, each agent combines its observed state oti and executes πi(ai|oi)
joint action At ¼ ðat

i ; a
t
2
; � � � at

NÞ, causing a state transition in the environment and receiving an

expected reward rti for the action taken.

rti ¼ E½rtþ1

i jS
t ¼ oi;A

t
i ¼ ai; pi� ð1Þ

The Critic network of each agent takes the same input parameters: the observed environ-

ment states S of all agents, the actions A of the agents, and the corresponding Critic network

parameters y
Q
i , producing the global value function as output:

QHðS; a1; . . . ; aNÞ ¼ E½Rþ gQHðS0; a0
1
; . . . ; a0NÞ� ð2Þ

where H ¼
Y

i2N

piðaijoiÞ represents the joint policy of all agents.

Each agent’s Actor network parameters y
p

i are updated according to the value function

through gradient descent:

rypi
Jðypi Þ ¼ ES;A�D½rypi

logpiðaijoiÞQ
p

i ðS; a1; � � � aNÞ� ð3Þ

where D represents the experience replay buffer, with each element being a tuple (S,A,R,S0),
containing the updated joint state S0.

LðyQi Þ ¼ ES;A�D½ðQ
H
i ðS; a1; � � � aNÞ � yÞ2� ð4Þ

The Critic network parameters are updated using backpropagation, with the loss function

defined as:

y ¼ ri þ gQ
H0
i ðS

0; a0
1
; � � � a0NÞja

0

i ¼ p
0

iðaijoiÞ ð5Þ

2.2 Current research on robotic arm assembly control technologies

The development of modern control theory has gradually positioned active compliance con-

trol as a primary research focus [12,13]. This approach enables robots to execute correspond-

ing control strategies based on their perception of the environment to accomplish assembly

tasks, without the need for dedicated compliance mechanisms, thereby offering enhanced ver-

satility. Hogan et al. introduced the fundamental principles of impedance control, establishing

a mapping between the robot’s position and contact force [14]. This work laid the groundwork

for subsequent active compliance research, leading to numerous improved control strategies

adapted to various environments. For instance, Wang et al. designed a joint impedance con-

troller using sliding mode control, which effectively enhances the flexibility of the joints, allow-

ing the robot to execute shaft-hole assembly tasks with greater precision [15]. This controller

also addresses model uncertainties and reduces impact forces, thereby improving the robot’s

disturbance rejection capability. Wu et al. proposed a control method for flexible connectors

based on an event-switching strategy, which enables a smooth transition from adaptive control

PLOS ONE Multi-agent deep reinforcement learning-based robotic arm assembly research

PLOS ONE | https://doi.org/10.1371/journal.pone.0311550 February 18, 2025 3 / 35

https://doi.org/10.1371/journal.pone.0311550

to hybrid impedance control [16]. This approach enhances control performance in both con-

strained and unconstrained spaces, ensuring smooth completion of connector assembly tasks.

The application and advancement of computer technology have significantly improved the

computational power of robotic control systems, enabling breakthroughs in robotic arm

assembly methods by integrating artificial intelligence with traditional control algorithms [17].

Two primary approaches have emerged: image-based visual perception and force-sensor-

based tactile perception. For example, Song et al. simulated human visual sensitivity to key

information and introduced an information filtering mechanism to improve the accuracy of

feature recognition and classification in components [18]. Cong et al. utilized machine vision

to correct assembly postures, increasing the success rate in assembling irregularly shaped parts

[19]. Luo et al. designed an assembly prediction network by integrating multi-view perception

of missing features with deep reinforcement learning, significantly enhancing assembly effi-

ciency and stability [20]. Ortega-Aranda et al. collected contact state information during

robotic operations and trained a dual-arm robot using a neural network-based fuzzy architec-

ture to achieve human-like performance [21]. Although impedance model-based control strat-

egies perform well in assembly tasks, they are limited by the need for an accurate model of the

shaft-hole contact forces and precise identification of dynamic parameters, which may change

due to wear and fatigue during actual operations, thereby impacting assembly outcomes.

Compared to traditional control strategies, deep reinforcement learning does not require

explicit model construction or control strategy design [22]. It can adaptively adjust control

strategies to suit different environments and task requirements, offering superior adaptability

and generalization capabilities. This enables the learning of more complex control strategies,

leading to more efficient and precise shaft-hole assembly. Inoue et al. demonstrated the diffi-

culty of obtaining accurate models in complex shaft-hole assembly and proposed a reinforce-

ment learning algorithm tailored to shaft-hole tasks [23]. Leyendecker et al. validated the

effectiveness of deep reinforcement learning assembly strategies in uncertain environments

through simulations [24]. Ding et al. divided the shaft-hole assembly process into two stages—

hole searching and insertion—and developed a self-learning assembly algorithm based on

DQN [25]. In shaft-hole assembly, the complex and variable shapes and sizes of shaft-holes

make the motion control of robotic arms particularly challenging. While single-agent deep

reinforcement learning algorithms can handle relatively simple tasks, such as assembling fully

symmetric circular shaft-holes, achieving higher precision and efficiency in complex shaft-

hole assembly requires more accurate control of both position and orientation.

2.3 Current research on multi-agent reinforcement learning

Multi-agent deep reinforcement learning (MADRL) involves collaborative learning among

multiple agents, expanding on single-agent reinforcement learning by forming a collective of

agents to cooperatively accomplish tasks. In the context of robotic arm control, MADRL

focuses on collaborative control and task allocation, where each agent not only ensures the

consistency of its own capabilities but also cooperates with others to achieve the overall sys-

tem’s objectives [26]. Foerster et al. introduced the reinforced inter-agent learning and differ-

entiable inter-agent learning algorithms, which employ neural networks to approximate value

functions, facilitating inter-agent communication and reducing model complexity through

parameter sharing [27]. Sukhbaatar et al. proposed the communication network algorithm,

enabling real-time, rapid information exchange among agents [28]. Lowe et al. developed the

multi-agent deep deterministic policy gradient algorithm, which extends the DDPG frame-

work by incorporating a centralized training with decentralized execution approach, signifi-

cantly reducing learning costs and establishing a paradigm for most cooperative methods [29].

PLOS ONE Multi-agent deep reinforcement learning-based robotic arm assembly research

PLOS ONE | https://doi.org/10.1371/journal.pone.0311550 February 18, 2025 4 / 35

https://doi.org/10.1371/journal.pone.0311550

He et al. proposed an improved DDPG algorithm that treats the joints of a robotic arm as deci-

sion-making agents within a multi-agent system, enabling motion planning for target capture

[30]. This approach demonstrated superior solution speed and robustness compared to tradi-

tional algorithms. While the collaboration among multiple agents simplifies complex tasks and

enhances control precision and efficiency in robotic arms, it also introduces challenges such as

data dimensionality explosion, communication difficulties, and convergence issues. Addition-

ally, the strong coupling between robotic arm joints further complicates control efforts [31].

3. Robotic arm shaft-hole assembly using deep reinforcement

learning algorithm

3.1 Analysis of the shaft-hole assembly task

The shaft-hole assembly process can be divided into three main stages: hole-seeking, align-

ment, and insertion. The hole-seeking stage involves moving the shaft from its initial position

towards the centerline of the hole, reaching the vicinity of the assembly hole. The alignment

stage involves adjusting the position and orientation of the shaft relative to the hole to meet

assembly requirements. The insertion stage involves inserting the shaft to the specified depth

after achieving the required alignment. Among these stages, the alignment stage is the most

critical and complex, as it involves various contact states such as point contact, surface contact,

and line contact when there is a mismatch in position and orientation. This stage is crucial for

the successful completion of the assembly task.

This study investigates the impact of various contact states during the alignment phase in both

circular and square shaft-hole assemblies, with a particular focus on comparing the differences in

pose control between the two. In the circular shaft-hole assembly, a coordinate system OG is estab-

lished with the center of the contact surface as the origin and the hole’s central axis as the z-axis.

Similarly, a coordinate system OM is established with the shaft’s axis as the z-axis. The deviations

in the x, y, and z axes between coordinate systems OG and OM are defined as Δx, Δy, and Δz,
respectively, while Δl represents the distance between the origins of the two coordinate systems.

During the alignment phase, several typical contact states may occur, as illustrated in Fig 1.

In the surface contact state shown in Fig 1A, the orientation of the shaft and hole is fully

aligned, but there is a positional deviation, i.e., (Δx, Δy, Δz) = 0, Δl 6¼ 0. By adjusting the posi-

tion of the shaft to align it directly above the hole, positional matching can be achieved, allow-

ing the assembly process to proceed to the insertion phase. However, in circular shaft-hole

assemblies, point contact, as shown in Fig 1B, is more likely to occur. In this scenario, the posi-

tional deviation Δl is nearly zero, but there remains a significant orientation mismatch. Due to

the perfect symmetry of the circular shape, the x and y axes of the shaft-hole can rotate around

the z-axis to satisfy the right-hand rule in any direction, meaning that alignment can be

achieved by simply aligning the z-axes of the two coordinate systems. If the orientation is not

promptly adjusted to achieve Δz = 0 during the point contact state, continued insertion along

the shaft axis may lead to a multiple point contact state as illustrated in Fig 1C. At this stage,

the shaft’s contact surface origin is already within the hole, and the shaft collides with the hole

wall, making further insertion unsuitable.

In the square shaft-hole assembly, the coordinate system is similarly established with the

center of the contact surface as the origin and the z-axis defined by the hole’s central axis and

the shaft’s axis. However, the x and y axes no longer have arbitrary definitions; for consistency,

the directions perpendicular to the edges are defined as the x and y axes. The definitions of

positional and orientation deviations are the same as in the circular shaft-hole assembly. Sev-

eral contact states that may occur during the alignment phase in square shaft-hole assemblies

are shown in Fig 2.

PLOS ONE Multi-agent deep reinforcement learning-based robotic arm assembly research

PLOS ONE | https://doi.org/10.1371/journal.pone.0311550 February 18, 2025 5 / 35

https://doi.org/10.1371/journal.pone.0311550

In Fig 2A, the surface contact state shows that only the z-axis of the shaft and hole is

matched, but position deviation still exists. As the shaft moves to the centerline of the hole to

eliminate position deviation Δl, the x and y axis deviations cannot be ignored as in circular

shaft-hole assembly, leading to the multiple surface contact state shown in Fig 2B. At this

point, further rotation around the z-axis is required to Δy = 0 proceed with the insertion task.

Fig 2C illustrates the line contact state Δy = 0,Δl!0, where the other two axes are not yet

matched, and if not corrected promptly, will result in multiple line contact shown in Fig 2D,

causing scraping against the hole wall. There are also more complex contact states that cannot

meet the assembly requirements for square shafts and holes.

In summary, for square shaft-hole assembly, the contact surface center of the assembly

shaft must be aligned with the centerline of the hole, denoted as Δl = 0. Regarding orientation,

Fig 1. The contact state in circular shaft-hole assembly. a) Surface contact (b) Point contact (c) Multiple point contact.

https://doi.org/10.1371/journal.pone.0311550.g001

PLOS ONE Multi-agent deep reinforcement learning-based robotic arm assembly research

PLOS ONE | https://doi.org/10.1371/journal.pone.0311550 February 18, 2025 6 / 35

https://doi.org/10.1371/journal.pone.0311550.g001
https://doi.org/10.1371/journal.pone.0311550

for the non-symmetrical square shaft-hole assembly, the next insertion stage can only proceed

when the orientations along all three axes are fully matched, denoted as (Δx,Δy,Δz) = 0.

Square shaft-hole assembly demands significantly higher precision than circular shaft-hole

assembly, necessitating the development of specialized assembly strategies that can also accom-

modate the requirements of circular shaft-hole assemblies. For circular shaft-hole assembly

tasks, various mature intelligent control algorithms, such as DQN and DDPG, are effective in

solving these problems. However, their control strategies are not well-suited to the stringent

orientation matching required for square shaft-hole assemblies.

Based on the previous analysis, the primary distinction between these two types of assembly

tasks lies in the control of orientation. To address this challenge, a strategy that independently

controls position and orientation is proposed to reduce the difficulty of square shaft-hole

assembly tasks. This strategy introduces the MADDPG algorithm to coordinate the control of

both position and orientation. However, this algorithm is typically used for collaborative con-

trol among independent entities. In the case of serial robotic arms, where the joints exhibit a

certain degree of coupling, the collaborative capabilities of MADDPG are somewhat limited,

which hampers its effectiveness in precise assembly tasks. To overcome these limitations, the

DE-MADDPG algorithm is introduced. By incorporating a decoupling module, this algorithm

reduces the coupling between position and orientation control, thereby improving the overall

assembly performance.

3.2 Robotic arm agent configuration analysis

The assembly task focuses on the robotic arm, with the Kawasaki BA006N model selected as

the control object. This industrial robot is composed of interconnected rigid links through six

rotational joints. Studying the arm’s motion states involves examining the relative motion rela-

tionships between each link, necessitating the establishment of coordinate systems for each

joint in the Cartesian coordinate system. The DH model is commonly used to describe

changes between joint coordinate systems, categorized into Standard DH (SDH) and Modified

DH (MDH). The key distinction lies in the position where the reference coordinate is estab-

lished: SDH establishes the i-coordinate system at the end of the i−1 link, while MDH estab-

lishes it at the i joint. For a more intuitive and concise description of the robotic arm

configuration, this study adopts the MDH model for modeling, requiring only four parameters

to represent transformations between adjacent joint coordinate systems.

Fig 2. Contact states in square shaft-hole assembly. (a) Surface contact (b) Multiple surface contact (c) Line contact (d) Multiple line

contact.

https://doi.org/10.1371/journal.pone.0311550.g002

PLOS ONE Multi-agent deep reinforcement learning-based robotic arm assembly research

PLOS ONE | https://doi.org/10.1371/journal.pone.0311550 February 18, 2025 7 / 35

https://doi.org/10.1371/journal.pone.0311550.g002
https://doi.org/10.1371/journal.pone.0311550

In this model: The link length (a) is the length of the common perpendicular line between

adjacent joint axes. The link twist angle (α) is the angle formed between adjacent joints, with the

positive direction determined by the right-hand rule. The link offset (d) is the distance between

the projections of the common perpendicular lines of the previous and current joint axes onto the

current axis. The joint angle (θ) is the rotation angle of two links about their common axis.

The i joint’s coordinate system can be transformed from the i−1 joint’s coordinate system

by rotating around the x-axis by angle αi−1, translating along the x-axis by distance αi−1, rotat-

ing around the z-axis by angle θi, and finally translating along the z-axis by distance di. This

transformation between adjacent coordinate systems is expressed as:

Ti
i� 1
¼ Rotðai� 1ÞTransðai� 1ÞRotðyiÞTransðdiÞ

¼

cyi � syi 0 ai� 1

syicai� 1 cyicai� 1 � sai� 1 � disai� 1

syisai� 1 cyisai� 1 cai� 1 dicai� 1

0 0 0 1

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

ð6Þ

where s denotes sine, c denotes cosine, Ti
i� 1

is the homogeneous transformation matrix of the

coordinate system, and (α,a,θ,d) represents the DH parameters of the transformation matrix.

Based on the relationships between joints and various data, joint coordinate systems are estab-

lished using MDH, with DH parameters for each joint as shown in Table 1, forming the initial

configuration of the robotic arm.

Multiplying all joint transformation matrices yields the homogeneous transformation

matrix between the base coordinate system and the end-effector coordinate system. Since only

the joint angle is involved in the coordinate transformation parameters, reflecting the mapping

relationship between the end-effector’s pose in Cartesian space and the robotic arm joint rota-

tion angles, it is defined as the kinematic equation of the robotic arm F(θ):

FðyÞ ¼ T1

0
T2

1
� � �T6

5
¼

R P

0 1

" #

ð7Þ

where P represents the position matrix of the end effector in the base coordinate system of

the robotic arm, denoted as P = [px,py,pz]T, R represents the orientation rotation matrix of the

end effector in 3×3 Cartesian space, represented by a matrix composed of a unit vector along

the principal axis direction (x,y,z), denoted as [n o a].

R ¼ ½n o a� ¼

nx ox ax

ny oy ay

nz oz az

2

6
6
4

3

7
7
5 ð8Þ

Table 1. DH parameters of BA006N robotic arm.

Link Numbering α a θ d

1 0 0 θ1+π/2 0.43

2 −π/2 0.165 θ2−π/2 0

3 0 0.55 θ3 0

4 −π/2 0.21 θ4 0.865

5 π/2 0 θ5 0

6 −π/2 0 θ6 0.115

https://doi.org/10.1371/journal.pone.0311550.t001

PLOS ONE Multi-agent deep reinforcement learning-based robotic arm assembly research

PLOS ONE | https://doi.org/10.1371/journal.pone.0311550 February 18, 2025 8 / 35

https://doi.org/10.1371/journal.pone.0311550.t001
https://doi.org/10.1371/journal.pone.0311550

In addition to rotation matrices, other methods for describing orientation include Euler

angles and quaternions. Euler angles require only three angles to describe the rotation between

axes, but they impose strict requirements on rotation order and may encounter gimbal lock

issues in continuous poses. Quaternions define orientation rotation as rotating by a specified

angle around a specific rotation axis, effectively avoiding gimbal lock. They require only a

four-dimensional vector composed of one scalar and a three-dimensional vector to represent,

reducing data storage compared to rotation matrix operations, improving computational effi-

ciency, and enabling smooth description of orientation changes in continuous poses. The

expression for quaternions is:

q ¼ oþ aiþ bjþ ck ð9Þ

where ω represents the scalar real part, while i, j, and k constitute the imaginary three-dimen-

sional vector, satisfying i2 = j2 = k2 = i�j�k = −1, where ω, a, b, and c are all real numbers. The

formula for computing the quaternion norm is:

jqj ¼
ffi
o2 þ a2 þ b2 þ c2
p

ð10Þ

When the quaternion norm equals 1, it is a unit quaternion. Unless otherwise specified, all

quaternions described in this paper are unit quaternions. To explicitly describe the rotational

relationship of the orientation, they are denoted as follows:

q ¼ cos
y

2

� �

sin
y

2

� �

r!
� �

¼ cos
y

2

� �

sin
y

2

� �

i sin
y

2

� �

j sin
y

2

� �

k
� �

ð11Þ

where θ denotes the angle of rotation, r! represents the rotation axis, and ½ i j k � represents

the direction vector of the rotation axis.

Rotation matrices and quaternions are used to describe orientation in different ways and

can be mutually converted. The rotation matrix R obtained from the robotic arm kinematics is

transformed into a quaternion q to describe the orientation, with the transformation formula

given by:

o ¼
1

2

ffi
1þ nx þ oy þ az

q
ð12Þ

r!¼
1

2

signðoz � ayÞ
ffi
1þ nx � oy � az

p

signðax � nzÞ
ffi
1 � nx þ oy � az

p

signðny � oxÞ
ffi
1 � nx � oy þ az

p

2

6
6
4

3

7
7
5 ð13Þ

With the forward kinematics as shown in Eq (7), the position and orientation of the assem-

bly axis end can be obtained, and based on the approach of separating position and orientation

control proposed in the previous section, a design of intelligent agents is conducted for the

Kawasaki BA006N robotic arm. The BA006N robotic arm adheres to the standard Pieper crite-

ria, where three adjacent joint axes are either intersecting at one point or parallel along three

axes. For this type of robotic arm configuration, the last three joints constitute the wrist of the

arm, primarily controlling the end effector orientation R, while the first three joints mainly

control the wrist position, thereby affecting the variation of the end position P.

In the context of a multi-agent system that separates position and orientation control, the

first three joints of the robotic arm are defined as agent 1, and the last three joints are defined

as agent 2. The schematic diagram of multi-agent axis assembly is illustrated in Fig 3.

PLOS ONE Multi-agent deep reinforcement learning-based robotic arm assembly research

PLOS ONE | https://doi.org/10.1371/journal.pone.0311550 February 18, 2025 9 / 35

https://doi.org/10.1371/journal.pone.0311550

3.3 Decoupled multi-agent deterministic deep deterministic policy gradient

algorithm

The MDDPG algorithm has been successfully applied in areas such as drones and multi-robot

collaboration. However, in the context of multi-agent control of the serial robotic arms shown

in Fig 3, strong coupling between these two agents leads to significant mutual influence during

action execution, exacerbating competitive relationships among agents in cooperative tasks

and hindering stable learning of appropriate joint strategies.

To address this issue, DMDDPG is proposed to reduce coupling between agents.

DMDDPG is an enhanced version of MDDPG, utilizing a centralized training and distributed

execution framework. In contrast to MDDPG, it incorporates not only a global Critic network

for centralized training but also a local Critic network designed for each agent to evaluate only

its own local states and actions. This design allows each agent to focus more on its own behav-

ior, thereby enhancing the algorithm’s efficiency and stability. Each agent’s policy update con-

siders not only the global optimal value function but also whether its own local value function

is updating in the optimal direction. This decoupling approach prevents suboptimal and

unstable solutions, as well as the dominance of global optimal rewards in the strategy among

the group, ensuring each agent rapidly and effectively learns the optimal policy.

The training of the local Critic network only requires the current agent’s observations and

states to evaluate its actions, obtaining a local Q value with the loss function:

LðφiÞ ¼ Eoi;ai�D
½ðQp

i ðoi; aiÞ � yφÞ
2
� ð14Þ

Fig 3. Schematic diagram of multi-agent axis assembly.

https://doi.org/10.1371/journal.pone.0311550.g003

PLOS ONE Multi-agent deep reinforcement learning-based robotic arm assembly research

PLOS ONE | https://doi.org/10.1371/journal.pone.0311550 February 18, 2025 10 / 35

https://doi.org/10.1371/journal.pone.0311550.g003
https://doi.org/10.1371/journal.pone.0311550

yφ ¼ ri þ gQ
p0

i ðo
0

i; a
0

iÞja
0

i ¼ p
0

iðaijoiÞ ð15Þ

where φi represents the parameters of the local Critic network for the ith agent.

After introducing the local Critic network, updates to each agent’s Actor policy network

require participation from both the global Critic network and the local Critic network to

simultaneously explore global optimal solutions while exploring local optimal solutions. The

policy gradient computation for the ith agent then becomes:

ryi
JðyiÞ ¼ ES;A�D½ryi

logpiðaijoiÞQ
H
i ðS; a1; � � � aNÞ�

|ffl{zffl}
Global value function

þ
Eoi;ai�D

½ryi
yiðaijoiÞrai

Qp

i ðoi; aiÞ�
|ffl{zffl}

Local value function

ð16Þ

The pseudo-code for the DMDDPG algorithm is shown in Table 2.

Table 2. Pseudo-code of DMDDPG algorithm.

Pseudo-code of DMDDPG Algorithm

1 Initialize parameters of the global Critic main network QH
y

.

2 Initialize parameters of the global Critic target network QH
y0

and copy parameters QH
y

.

3 Initialize Actor main network parameters Qp
yi

and Critic main network parameters Qp
φi

for each agent.

4 Initialize Actor target network parameters QH
y0i

and Critic target network parameters Qp
φ0i

for each agent, copy Qp
yi

and Qp
φi

parameters.

5 For episode = 1 to MaxEpisode do

6 Initialize random process N , initialize environment state S.

7 For t = 1 to do

8 For each agent i, select action at
i ¼ pðoti jy

p

i Þ þN .

9 Execute action At ¼ ½at
1
; at

2
�.

10 Obtain global reward Rt
g , local reward rti , and next state St+1

11 Store sample ðSt;At;Rt
g ; rti ; Stþ1Þ into experience pool.

12 End for

13 Update global Critic network

14 Randomly sample M samples ðSt;At ;Rt
g ; S

tþ1Þ from experience pool to form batch samples.

15 Calculate y from yi ¼ ri þ gQpðstþ1; atþ1Þ.

16 Compute loss 1

M

X

i

ðy � QH
y
ðSt;AtÞÞ

2
and update EvalCritic network QH

y
parameters.

17 Update target Critic network parameters QH
y0

in a soft update manner.

18 Update robotic arm agent Actor network and local Critic network.

19 For agent = 1 to N do

20 Randomly sample K samples ðot; at
i ; rti ; otþ1Þ from experience pool to form batch samples.

21 Obtain yφ from Eq (15).

22 Compute loss 1

K

X

i

ðyφ � QH
y
ðoti ; a

t
iÞÞ

2

and update EvalCritic network Qp
φ parameters.

23 Update EvalActor network Qp
yi

, network parameters θi as follows:

yi ¼ yi þ
1

K

X

j

ðryppiðaijoiÞQ
H
i ðS; a1; � � � aNÞ þ ryppiðaijoiÞQ

p

i ðoi; aiÞÞ

24 End for

25 Update target Actor network parameters Qp
y0i

and target Critic network parameters Qp
φ0i

in a soft update

manner.

26 End for

27 End for

https://doi.org/10.1371/journal.pone.0311550.t002

PLOS ONE Multi-agent deep reinforcement learning-based robotic arm assembly research

PLOS ONE | https://doi.org/10.1371/journal.pone.0311550 February 18, 2025 11 / 35

https://doi.org/10.1371/journal.pone.0311550.t002
https://doi.org/10.1371/journal.pone.0311550

3.4 Multi-agent action-state space definition

The design of the state space is crucial in deep reinforcement learning algorithms, as it defines

the environment states that agents need to observe, enabling the value function to objectively

evaluate the quality of actions. In the analysis of the shaft-hole assembly task in Section 1, the

assembly completion is primarily judged by comparing the pose states between the shaft and

hole contact surfaces. The assembly hole is fixed on the work platform, and its accurate pose

state in the world coordinate system is known. The center point pose of the hole contact sur-

face is defined as FG ¼
RG PG

0 1

" #

, and the pose information of the shaft’s contact surface is

obtained from the forward kinematics of the robotic arm: FMðyÞ ¼
RM PM

0 1

" #

. To achieve

the assembly goal, it is also necessary to ensure that the shaft is inserted to a specified depth h.

In the designed multi-agent algorithm, the joint state space S is defined as:

S ¼ ðo1; o2Þ ¼ ðFG; FMðyÞ; hÞ ð17Þ

o1 ¼ ðPG; PM; hÞ

o2 ¼ ðRG;RMÞ

(

ð18Þ

where o1 represents the state space of Agent 1 controlling the end position state, where this

agent also controls the depth of shaft-hole insertion. o2 represents the state space of Agent 2

controlling the end orientation state, focusing solely on posture matching during the assembly

process.

Through the DMDDPG algorithm, the robotic arm autonomously learns to output the

motion angles of each joint when faced with different state spaces, enabling the assembly shaft

to smoothly achieve the assembly goal. Thus, the action spaces of the two agents are defined

respectively as the rotation angles of joints 1–3 and joints 4–6. The joint action space A is

defined as:

A ¼ ða1; a2Þ ð19Þ

a1 ¼ ðy1; y2; y3Þ

a2 ¼ ðy4; y5; y6Þ

(

ð20Þ

3.5 Multi-agent reward function design

The shaft-hole assembly controlled by the robotic arm is a complex operation task in a contin-

uous action space. The reward obtained to achieve the task goal is referred to as the main line

reward. However, relying solely on the main line reward in high-difficulty exploration tasks

can make it difficult for the algorithm to converge or result in slow convergence, a situation

known as sparse reward problem. To overcome such issues, additional reward components

need to be introduced, making the reward function dense. This helps guide the agents to

explore the environment more efficiently, thereby accelerating the convergence speed and

enhancing the performance of deep reinforcement learning algorithms. These types of reward

functions are known as auxiliary rewards. Based on the different characteristics of the three

stages—hole searching, alignment, and insertion—during the shaft-hole assembly process, dif-

ferent stage-specific reward functions are designed, mainly divided into sub-goal reward func-

tions and shaping reward functions.

PLOS ONE Multi-agent deep reinforcement learning-based robotic arm assembly research

PLOS ONE | https://doi.org/10.1371/journal.pone.0311550 February 18, 2025 12 / 35

https://doi.org/10.1371/journal.pone.0311550

3.5.1 Main line reward function. The main line reward is designed to set task objectives

for reinforcement learning. In the execution of the shaft-hole assembly task, the reward is

obtained only when (1) the shaft-hole posture matches completely, (2) the axis of the assembly

shaft is aligned with the centerline of the hole, and (3) the shaft insertion depth reaches the

specified depth, thus meeting the requirements for successful assembly.

At time t, each agent performs joint action At ¼ ½at
1
; at

2
�, calculates the distance St+1 between

the shaft contact surface and the hole centerline, and the posture deviation Δl of the shaft-hole

assembly in state Δβ. If the specified assembly accuracy requirements are not met, the next iter-

ation loop is carried out until the insertion requirements are fulfilled. During the shaft-hole

insertion stage, the distance Δl and posture deviation Δβ must remain within the error range

(l,β). The task completion reward rvc is obtained when the insertion depth hs reaches the speci-

fied depth h, indicating successful assembly. The assembly task flowchart is shown in Fig 4.

The main line task reward can be defined as:

Rg ¼
rvcðDl � l;Db � b; h ¼ hsÞ

0 otherwise

(

ð21Þ

where Rg reflects the reward feedback only after successful assembly, serving as the signal to

Fig 4. Assembly task flow.

https://doi.org/10.1371/journal.pone.0311550.g004

PLOS ONE Multi-agent deep reinforcement learning-based robotic arm assembly research

PLOS ONE | https://doi.org/10.1371/journal.pone.0311550 February 18, 2025 13 / 35

https://doi.org/10.1371/journal.pone.0311550.g004
https://doi.org/10.1371/journal.pone.0311550

end each training round. If Rg is 0, the agent continues with the next action based on the error

magnitude rvc = 100 during training.

3.5.2 Sub-goal reward functions. Setting sub-goal rewards and other auxiliary rewards is

primarily aimed at guiding the exploration process, narrowing down the ineffective explora-

tion range of agents in the environment, and improving efficiency. In the exploration and

completion of the main task, this process is further broken down into sub-goals, allowing the

agents to first learn to accomplish these sub-goals. This approach increases the probability of

subsequently exploring the main task, and finally, under the guidance of both main-line

rewards and auxiliary rewards, completes the assembly task. To enhance assembly efficiency,

penalty functions are introduced to ensure swift and safe achievement of each objective. Three

sub-goal reward functions are primarily designed as follows:

1. Collision penalty function: Precision is crucial in the robotic assembly of shafts and holes,

where collisions are strictly prohibited in industrial production and should be avoided dur-

ing training. To enforce this principle, sensors measuring force/torque are installed

between the robotic arm and the assembly shaft to detect real-time contact forces F. During

assembly, forces or torques slowly change due to state modifications, but collisions cause

sudden spikes. By setting a threshold Flim for these spikes, collisions are detected when con-

tact forces exceed this threshold, terminating the current exploration round and applying

penalties. The penalty function RF is defined as shown in Eq (22), where feedback values rfl
= −100 are set during training.

RF ¼
rfl ðF � FlimÞ

0 otherwise

(

ð22Þ

2. Angle penalty function: Continuous reward-penalty effects integrated into the exploration

process typically outperform one-time rewards. Long-term accumulated rewards easily sur-

pass sparse rewards, providing stronger guidance for algorithms. This approach offers

immediate feedback directly correlated with current action status, benefiting neural net-

works in better feature extraction during the intermediate learning process. To improve

exploration efficiency and prevent local oscillations that hinder convergence, the angle pen-

alty function penalizes the rotational angles of each joint as quantitative targets. The angle

penalty function is defined as Rθ:

Ry ¼ lnð
X6

i¼0

jyij þ 1Þ ð23Þ

where each joint’s rotational angle θi within one step is measured in radians. To avoid initial

high penalties that hinder convergence, the logarithm of the sum of these six rotational

angles within each step is used as the penalty value. Considering joint movement con-

straints and safety stability, the maximum allowable joint rotation angle is 3˚, correspond-

ing to θi2[0,0.052] and Rθ2[0,0.273].

3. Agent assembly virtual space:

The task space for assembly is a relatively small region within the robotic arm’s larger oper-

ational workspace. Allowing the robotic arm to explore the entire workspace would be inef-

ficient and result in a substantial amount of meaningless learning. Additionally,

incorporating collision and angular penalties can lead the robotic arm into incorrect learn-

ing states. To better guide the completion of assembly tasks and enhance initial exploration

PLOS ONE Multi-agent deep reinforcement learning-based robotic arm assembly research

PLOS ONE | https://doi.org/10.1371/journal.pone.0311550 February 18, 2025 14 / 35

https://doi.org/10.1371/journal.pone.0311550

efficiency, a spherical virtual space is defined with the center of the assembly hole’s contact

surface as the origin, as illustrated in Fig 5. In the next section, reward functions for each

agent will be defined based on their movement characteristics. This involves a continuous

accumulation of rewards, encouraging agents to move closer to the task objectives to

achieve higher rewards. To facilitate faster convergence to the assembly task area, rewards

are accumulated only when the axis is within the defined virtual space. Outside this space,

no rewards are given. Within the virtual space, positional and orientation deviations are

compared, and positive rewards are provided to guide the agents more effectively towards

successful assembly.

The virtual space is defined with a radius VSϕ, determined by the basic dimensions of the

assembly hole, and VSϕ = σ�ϕ. ϕ represents the diameter of the assembly hole, and σ is a scaling

coefficient adjusted based on the dimensions of the shaft assembly and the robotic arm’s

assembly environment. Through simulation experiments, it is found that when the coefficient

is too large, initial rewards are high, but learning progress is slow, leading to lower final

Fig 5. Shaft hole assembly virtual space.

https://doi.org/10.1371/journal.pone.0311550.g005

PLOS ONE Multi-agent deep reinforcement learning-based robotic arm assembly research

PLOS ONE | https://doi.org/10.1371/journal.pone.0311550 February 18, 2025 15 / 35

https://doi.org/10.1371/journal.pone.0311550.g005
https://doi.org/10.1371/journal.pone.0311550

convergence rewards, which are suboptimal. Conversely, if the coefficient is too small, initial

exploration times for objectives are extended, and timely adjustments to position and posture

are hindered upon entry, making final convergence difficult. Through testing, a stable range

for the virtual space radius coefficient is found to be σ2(1.5,3). Within this range, the robotic

arm can swiftly locate the target area and has ample time to adjust its position and posture.

3.5.3 Shaping reward functions. Shaping functions are also auxiliary functions, different

from sub-goal reward functions. Their main role is to add a type of potential energy function

based on the agent’s state. They measure the gap between the agent’s state in the new environ-

ment after performing an action and the target state. The smaller the gap, the higher the corre-

sponding reward, and vice versa. Reward functions need to be designed based on the tasks

performed by each agent and the objectives they need to achieve. In shaft-hole assembly, local-

ized reward functions are designed separately for agents controlling position and posture,

termed as local reward functions.

(1) Position-based reward function:

In the assembly of square and circular shaft-holes, their requirements for position matching

are the same. For ease of observation, let’s take the example of a circular shaft-hole to design

a position-based reward function. For agents controlling only position, it is crucial to

ensure that the center of the shaft contact surface is directly above the centerline of the hole.

Therefore, the center point PM of the shaft contact surface is projected onto the X-Y plane

of the hole contact surface, and a reward function based on the distance Ls between the

shaft and hole is designed, as illustrated in Fig 6. This distance is normalized based on the

Fig 6. The projection distance between the center points of the shaft hole contact surface.

https://doi.org/10.1371/journal.pone.0311550.g006

PLOS ONE Multi-agent deep reinforcement learning-based robotic arm assembly research

PLOS ONE | https://doi.org/10.1371/journal.pone.0311550 February 18, 2025 16 / 35

https://doi.org/10.1371/journal.pone.0311550.g006
https://doi.org/10.1371/journal.pone.0311550

virtual space radius to ensure it does not change due to the size of the assembly hole and vir-

tual space. The reward function rL for horizontal distance is defined as:

rL ¼ 1 �
Ls

VS�
¼ 1 �

ffi

ðpxM � px
GÞ

2
þ ðpy

M � py
GÞ

2

q

VS�
ð24Þ

where a smaller value of Ls, indicating closer distance, results in a higher reward, and

rL2(0,1).

Similarly, a reward function for vertical distance in the Z-axis direction is defined using the

same method to prevent collisions between shaft-holes until posture matching is achieved by

adding a weighting coefficient. The main calculation is the vertical distance Lz between the

center points of the shaft-hole contact surfaces, as illustrated in Fig 7. The reward function for

position matching phase is defined as rz:

rz ¼ l 1 �
Lz

VS�

 !

¼ l 1 �
jpz

M � Pz
Gj

VS�

 !

ð25Þ

where λ2(0,1) is the weighting coefficient, and rz2(0,λ). When λ is smaller, the reward value

obtained when approaching in the Z-axis direction is smaller, and the guidance for the agent

Fig 7. The vertical distance between the center points of the shaft hole contact surface.

https://doi.org/10.1371/journal.pone.0311550.g007

PLOS ONE Multi-agent deep reinforcement learning-based robotic arm assembly research

PLOS ONE | https://doi.org/10.1371/journal.pone.0311550 February 18, 2025 17 / 35

https://doi.org/10.1371/journal.pone.0311550.g007
https://doi.org/10.1371/journal.pone.0311550

relative to movement in the X-Y plane is weaker, allowing the agent to prioritize horizontal

position closer, providing more sufficient time for posture adjustment.

After meeting the requirements for both position and posture, the insertion phase begins.

During this process, the posture remains unchanged, and there is no movement in the X-Y
axis direction. It is only necessary to observe whether the insertion depth hs meets the assembly

requirements, The insertion process is illustrated in Fig 8.

Insertion phase reward function is defined as:

rin ¼ eð1� jpzM � pzM j=hÞ ð26Þ

where jpz
M � pzGj ¼ hs, rin2(l,e).

These three reward functions together constitute the position-based reward function.

According to the shaft-hole assembly process, it can be divided into two stages: before and

after insertion. The position reward function R1 is:

R1 ¼
rs þ rz; ððpz

M � pz
GÞ � 0Þ

rs þ rin; ððpzM � pz
GÞ < 0Þ

(

ð27Þ

where rs and rz will accumulate reward values in the virtual space after each step; rin will accu-

mulate rewards starting from the position and posture reaching requirements to execute the

insertion phase, and rz will no longer calculate reward values in this state. The range of values

Fig 8. Shaft hole insertion.

https://doi.org/10.1371/journal.pone.0311550.g008

PLOS ONE Multi-agent deep reinforcement learning-based robotic arm assembly research

PLOS ONE | https://doi.org/10.1371/journal.pone.0311550 February 18, 2025 18 / 35

https://doi.org/10.1371/journal.pone.0311550.g008
https://doi.org/10.1371/journal.pone.0311550

for R1 in these two stages is:

R1 2
ð0; 1þ lÞif ððpz

M � pz
GÞ � 0Þ

ð1; eþ 1Þif ððpzM � pz
GÞ < 0Þ

()

ð28Þ

(2) Pose-based reward function:

The assembly of square holes requires three directional deviation quantities to meet task

requirements. Using a rotation matrix to represent the deviation between poses and the cor-

rection quantity will significantly increase the algorithm calculation volume. Therefore, qua-

ternions are used to describe poses. Through Eq (11), quaternions can be converted into

rotation matrices. Quaternions use only four elements to represent any pose vector in space,

and the maximum angle between two vectors in opposite directions is R2. Thus, the pose

reward function π is defined by the angle between quaternions:

R2 ¼ p � cos� 1ðjqM � qGjÞ ð29Þ

where qM = (ωm,am,bm,cm) is the pose of the shaft contact surface, qG = = (ωg,ag,bg,cg) is the

pose of the hole contact surface; R22(0,π), accumulating reward values begin after entering the

virtual space until assembly completion.

In summary, the position reward function for agents controlling position is R1, and the

pose reward function for agents controlling posture is R2. Their respective reward values range

from different weight sizes. Posture adjustment is the most critical part, requiring agents to

quickly and accurately adjust insertion posture and maintain it to achieve higher rewards.

During the insertion along the hole centerline, posture adjustment and position closeness are

encouraged with lower reward weight, allowing sufficient space and time. After contact, posi-

tion reward weight is increased, encouraging agents to complete assembly tasks faster and bet-

ter. Combined with main task rewards Rg, collision penalty function RF, and angle penalty

function Rθ, the overall reward function for shaft-hole assembly based on deep reinforcement

learning is:

Returnt ¼ Rg þ RF �
XT

t¼0

Rt
y
þ
XT

t¼0

gtðRt
1
þ Rt

2
Þ ð30Þ

where Returnt represents the total reward value obtained by the agent, and γ is the accumu-

lated reward decay coefficient.

4. Axle hole assembly simulation experiment

4.1 Building the robotic arm simulation environment

4.1.1 ROS system introduction. Robot Operating System (ROS) is an open-source system

used for developing and controlling robots. It provides a structured way to build complex

robot systems, where each functional module runs independently as nodes. These nodes are

managed by a node manager (Master) that establishes connections between them using TCP/

IP communication, enabling distributed network control. Nodes communicate by publishing

(Talker) and subscribing (Listener) to messages, utilizing communication models such as top-

ics and services to facilitate information exchange under different paradigms within ROS.

4.1.2 Gazebo physics simulation platform. Gazebo is a 3D physics simulation platform

that rapidly builds robot models. To enhance the realism of simulated robots, it interfaces with

various 2D and 3D design software like CAD and SolidWorks. Detailed designs of robotic arm

PLOS ONE Multi-agent deep reinforcement learning-based robotic arm assembly research

PLOS ONE | https://doi.org/10.1371/journal.pone.0311550 February 18, 2025 19 / 35

https://doi.org/10.1371/journal.pone.0311550

models in SolidWorks use the sw_urdf_exporter plugin to convert 3D models into URDF files,

suitable for realistic modeling in simulation environments. Gazebo allows the addition of

physical parameters such as mass, friction coefficients, inertia matrices, and collision proper-

ties to models, making the simulation environment more akin to real-world physics. Further-

more, Gazebo supports robot kinematics simulation, validating algorithms within constructed

robots. To further match physical states realistically, Gazebo includes a comprehensive sensor

model database featuring cameras, gyroscopes, scanners, and other commonly used sensors

that can be directly added and invoked, supporting the creation of new sensors based on task

requirements.

4.1.3 Move It! motion planner. Move It! is an open-source software framework based on

ROS for motion planning and control of robots. It offers a range of tools and libraries includ-

ing motion planners, collision detectors, and motion controllers, facilitating rapid develop-

ment of robot applications. The core node of the Move It! package is moving group, which,

while not feature-rich on its own, integrates with other independent functional components to

provide ROS action commands and services.

To achieve motion control of the robotic arm in an environment with known initial and

target poses, the motion planner calculates appropriate motion trajectories guiding the arm to

the target pose. Upon satisfying environmental constraints such as position, orientation, and

velocity, the planner computes intermediate states.

4.1.4 Building the robotic arm simulation model. To build the robotic arm model in the

Gazebo simulation environment, URDF files generated by 3D software are typically used for

construction. These URDF files, written in XML, primarily describe the links and joints of the

robotic arm. For simulation in Gazebo, it is necessary to add physical properties such as weight

and inertia parameters (inertial tags) to each link, and collision detection 3D models (collision

tags) to detect collisions. The robotic arm axle hole assembly model is displayed in the 3D visu-

alization tool Rviz, as shown in Fig 9.

4.2 Assembly simulation training

4.2.1 Network training parameters. In the DMDDPG algorithm, each agent has an

Actor network and two Critic networks. The Actor network inputs the current observed state

and outputs the value of each possible action in the current state, typically using the Tanh acti-

vation function in the output layer to scale the output values within the range of [−1,1]. The

Critic network inputs the current state and action, and outputs the expected return of the

agent, i.e., the Q value, given the state and action. To avoid training difficulties and overfitting,

each network is designed as a three-layer fully connected neural network.

The training parameters of the DMDDPG algorithm for the axle hole assembly task are

shown in Table 3.

4.2.2 Assembly experiment object. Section 3.1 analyzed the assembly processes for circu-

lar and square shaft-holes and explored the higher difficulty associated with square shaft-hole

assemblies. A DE-MADDPG-based assembly method is proposed, which is also applicable to

the simpler circular shaft-hole assembly. To validate the feasibility of the DE-MADDPG algo-

rithm in a single robotic arm and its stability in handling tasks of varying difficulty, experi-

ments are conducted using both circular and square shaft-holes as test objects.

The specific structural parameters for the shaft-holes are as follows: For the square shaft-

hole assembly, a square shaft-hole with a 25 mm edge length, an assembly clearance of 0.8

mm, and an insertion depth of 100 mm is used, as shown in Fig 10A. For the circular shaft-

hole assembly, a base diameter of 40 mm, an assembly clearance of 0.8 mm, and an insertion

depth of 100 mm are selected, as depicted in Fig 10B.

PLOS ONE Multi-agent deep reinforcement learning-based robotic arm assembly research

PLOS ONE | https://doi.org/10.1371/journal.pone.0311550 February 18, 2025 20 / 35

https://doi.org/10.1371/journal.pone.0311550

4.2.3 Experimental results and analysis of DE-MADDPG shaft-hole assembly. In the

simulation control system established for the robotic arm assembly tasks, the DE-MADDPG

algorithm is employed for the simulation training of both circular and square shaft-hole

assemblies. After 15,000 iterations of learning, the cumulative average total rewards for the

two assembly environments are shown in Fig 11.

The reward values for the algorithm converged to a stable state in both assembly environ-

ments, demonstrating the feasibility of decomposing a single robotic arm into two agents—

one controlling the end-effector position and the other managing orientation—and coordinat-

ing their control using the DE-MADDPG algorithm.

As observed in the figure, during the initial exploration phase of approximately 3,000 epi-

sodes, the reward value curves for both assembly tasks are similar. During this phase, the

Table 3. Network training hyperparameters.

Training parameters Numerical value

Cumulative reward discount factor γ 0.99

Actor network learning rate απ 0.0001

Critic network learning rate αQ 0.001

Target network soft update rate τ 0.01

Simulation time step ΔT 0.1

Batchsize 64

Number of Episodes (MaxEpisode) 15000

Virtual space ratio σ 2

https://doi.org/10.1371/journal.pone.0311550.t003

Fig 9. Robotic arm axle hole assembly model.

https://doi.org/10.1371/journal.pone.0311550.g009

PLOS ONE Multi-agent deep reinforcement learning-based robotic arm assembly research

PLOS ONE | https://doi.org/10.1371/journal.pone.0311550 February 18, 2025 21 / 35

https://doi.org/10.1371/journal.pone.0311550.t003
https://doi.org/10.1371/journal.pone.0311550.g009
https://doi.org/10.1371/journal.pone.0311550

agents primarily learned to quickly locate the hole through spatial exploration from the initial

configuration. In the subsequent alignment and insertion phases, the circular shaft-hole

assembly task, which requires less stringent orientation control, saw its reward values increase

rapidly and stabilize around episode 4,500, with a final stable average reward of 202.52. In

Fig 10. Assembling the subject. (a) Square shaft-hole assembly; (b) Circular shaft-hole assembly.

https://doi.org/10.1371/journal.pone.0311550.g010

PLOS ONE Multi-agent deep reinforcement learning-based robotic arm assembly research

PLOS ONE | https://doi.org/10.1371/journal.pone.0311550 February 18, 2025 22 / 35

https://doi.org/10.1371/journal.pone.0311550.g010
https://doi.org/10.1371/journal.pone.0311550

contrast, the square shaft-hole assembly task required multiple rounds of learning to achieve

the desired pose matching after correctly locating the hole. Consequently, the reward values

began to stabilize around episode 6,000, with a final average reward slightly lower than that for

the circular shaft-hole assembly, at 199.46.

4.3 Comparative experiment analysis

4.3.1 Comparative assembly experiment of DMDDPG and DDPG. DDPG, as a single-

agent algorithm, is widely and maturely applied in axle hole assembly tasks, but most assembly

objects primarily involve circular axle holes. The circular axle hole and square axle hole assem-

bly tasks are executed using the same parameters as the DMDDPG algorithm to comparatively

analyze the performance differences between the multi-agent algorithm and the single-agent

algorithm in controlling the assembly task of a single robotic arm.

DDPG, as a single-agent algorithm, evaluates action A using the overall environment S and

feeds back the total reward value R to the agent to update the action policy. The algorithm pro-

cess can be simplified as shown in Fig 12.

Fig 11. Reward curve of DE-MADDPG algorithm in circular shaft-hole and square shaft-hole assembly.

https://doi.org/10.1371/journal.pone.0311550.g011

PLOS ONE Multi-agent deep reinforcement learning-based robotic arm assembly research

PLOS ONE | https://doi.org/10.1371/journal.pone.0311550 February 18, 2025 23 / 35

https://doi.org/10.1371/journal.pone.0311550.g011
https://doi.org/10.1371/journal.pone.0311550

To intuitively compare the differences with the DMDDPG algorithm, according to the

DMDDPG algorithm shown in Table 2, it is simplified into the algorithm flowchart shown in

Fig 13.

The total reward value R includes the local rewards r1 and r2 of the agents, i.e., local rewards.

During training, multi-agents use not only the overall environment S and total reward value R
but also the agent’s own observation environment and state oi, as well as local reward values to

jointly guide the agent’s policy update. This is the biggest difference between the DMDDPG

algorithm and the DDPG algorithm.

For consistency in evaluation standards, DDPG also learns and trains using the total reward

function defined in Eq (30), with state space S = (FG,FM(θ),h) and action space A = (θ1,θ2,θ3,θ4,

θ5,θ6).

The DDPG algorithm, designed with the network parameters outlined in Table 3, is applied

to the training of both circular and square shaft-hole assemblies. The cumulative average total

rewards achieved with the DDPG algorithm are compared to those obtained with the

DE-MADDPG algorithm, as illustrated in Fig 14.

The DDPG algorithm’s final training results show convergence to a stable state. However,

during the initial exploration phase, it lacked accurate control over position and orientation,

Fig 12. Simplified DDPG process.

https://doi.org/10.1371/journal.pone.0311550.g012

Fig 13. Simplified DMDDPG process flowchart.

https://doi.org/10.1371/journal.pone.0311550.g013

PLOS ONE Multi-agent deep reinforcement learning-based robotic arm assembly research

PLOS ONE | https://doi.org/10.1371/journal.pone.0311550 February 18, 2025 24 / 35

https://doi.org/10.1371/journal.pone.0311550.g012
https://doi.org/10.1371/journal.pone.0311550.g013
https://doi.org/10.1371/journal.pone.0311550

leading to blind operation in the space. Consequently, each iteration reward value is approxi-

mately 40 points lower than that of the DE-MADDPG algorithm and increased slowly during

later stages of exploration.

In the circular shaft-hole assembly (Fig 14A), the DDPG algorithm began to stabilize

around 12,000 episodes, requiring three times as many training cycles compared to

DE-MADDPG. The final reward value converged to 198.43, showing minimal difference from

DE-MADDPG, which indicates that both algorithms learned similar optimal assembly strate-

gies. For the square shaft-hole assembly (Fig 14B), the DDPG algorithm’s reward values also

show a convergence trend around 12,000 episodes, but continued to increase slightly until the

end of the training period and had not fully stabilized. The final reward value is approximately

165, about 35 points lower than that of DE-MADDPG.

The comparative experiments highlight that the DE-MADDPG algorithm has a clear advan-

tage in training efficiency. It maintains stable performance across tasks of varying complexity,

demonstrating its superior effectiveness in assembly tasks compared to the DDPG algorithm.

4.3.2 Comparative assembly experiment of DMDDPG and MDDPG. The DMDDPG

algorithm is based on the MDDPG algorithm, designed to address the coupling between multi-

ple agents by incorporating local evaluation functions for decoupling. By applying the

MDDPG algorithm to the same assembly task, we can compare the performance changes

brought by the addition of local evaluation functions. The training process of the MDDPG

algorithm is simplified as shown in Fig 15.

Fig 14. Cumulative average total reward value of DMDDPG and DDPG.

https://doi.org/10.1371/journal.pone.0311550.g014

PLOS ONE Multi-agent deep reinforcement learning-based robotic arm assembly research

PLOS ONE | https://doi.org/10.1371/journal.pone.0311550 February 18, 2025 25 / 35

https://doi.org/10.1371/journal.pone.0311550.g014
https://doi.org/10.1371/journal.pone.0311550

Compared to the simplified DMDDPG process shown in Fig 15, the only difference is the

absence of the local reward function evaluation. The action state space (A,S) and the reward (R)

definitions are consistent with the DMDDPG algorithm. Using the same network parameters,

the MDDPG algorithm is employed for the assembly training of circular shaft-hole and square

shaft-hole. The comparison of the cumulative average total reward values is shown in Fig 16.

As shown in Fig 16, the final convergence states of the DE-MADDPG and MADDPG algo-

rithms are nearly identical, which demonstrates the superiority of the multi-agent approach.

However, MADDPG exhibited lower initial exploration rewards compared to DE-MADDPG,

and reward value increases are not particularly significant before 3,000 episodes. This is due to

the system’s inability to effectively allocate tasks to individual agents under the guidance of

only global rewards, coupled with strong competitive interactions between agents. Conse-

quently, the MADDPG algorithm required approximately 3,000 additional training episodes

to reach a convergence state compared to DE-MADDPG. In the square shaft-hole assembly

(Fig 16B), the presence of coupling led to considerable fluctuations in reward values once con-

vergence is achieved, indicating system instability. The introduction of the decoupling module

in the DE-MADDPG algorithm allows it to better handle environments with strong coupling

between agents, enhancing training efficiency and improving system stability.

4.4 Assembly experiment validation

Three algorithms are used for the assembly training of the square axle hole, all of which

achieved stable convergence. To verify the effectiveness of the algorithm strategies, 500 assem-

bly tests for circular and square axle holes are conducted in the simulation environment using

the DDPG, MDDPG, and DMDDPG algorithms. The test results are shown in Table 4.

The standard deviation in Table 4 reflects the variability in execution time for assembly

tasks, with a smaller value indicating greater stability in the algorithm’s performance across

different environments. In the circular shaft-hole assembly, both multi-agent algorithms

(DE-MADDPG and MADDPG) demonstrates improvements in total assembly time com-

pared to the DDPG algorithm, with enhancements of 8.7% and 6.6%, respectively. Addition-

ally, the standard deviation of the average single-assembly time is significantly reduced for the

multi-agent algorithms, indicating greater stability in the assembly process. For the square

shaft-hole assembly, the DE-MADDPG algorithm shows a notable improvement over the

DDPG algorithm, reducing the single-assembly time by 8.28 seconds and increasing assembly

efficiency by 13.2%. Although the standard deviation of the single-assembly time increased

Fig 15. Simplified MDDPG process.

https://doi.org/10.1371/journal.pone.0311550.g015

PLOS ONE Multi-agent deep reinforcement learning-based robotic arm assembly research

PLOS ONE | https://doi.org/10.1371/journal.pone.0311550 February 18, 2025 26 / 35

https://doi.org/10.1371/journal.pone.0311550.g015
https://doi.org/10.1371/journal.pone.0311550

slightly compared to the circular shaft-hole assembly, it remained within acceptable limits. In

both assembly environments, multi-agent algorithms consistently achieved assembly success

rates above 80%. Notably, the DE-MADDPG algorithm achieves a success rate of 92.4% in the

circular shaft-hole assembly.

5. Assembly test rig experiment

5.1 Setup of the test rig

5.1.1 Components of the test rig. For this experiment, a Kawasaki BA006N robotic arm

equipped with a motion controller is selected as the primary control object. The origin of the

Fig 16. Cumulative average total reward value of DMDDPG and MDDPG.

https://doi.org/10.1371/journal.pone.0311550.g016

Table 4. Comparison of assembly results of three algorithms.

Assembly algorithm Circular shaft-hole assembly Square shaft-hole assembly

Time per assembly(s) Standard deviation Success rat% Time per assembly(s) Standard deviation Success rat%

DDPG 56.45 6.27 83.8 62.86 7.85 76.2

MADDPG 52.71 4.38 89.2 57.02 5.43 84.6

DE-MADDPG 51.55 3.86 92.4 54.58 4.12 87.8

https://doi.org/10.1371/journal.pone.0311550.t004

PLOS ONE Multi-agent deep reinforcement learning-based robotic arm assembly research

PLOS ONE | https://doi.org/10.1371/journal.pone.0311550 February 18, 2025 27 / 35

https://doi.org/10.1371/journal.pone.0311550.g016
https://doi.org/10.1371/journal.pone.0311550.t004
https://doi.org/10.1371/journal.pone.0311550

world coordinate system was set at the base of the robotic arm. An assembly platform is con-

structed, with the platform’s center point’s coordinate parameters determined within the

world coordinate system. The assembly object is a square shaft-hole with a side length of 25

mm, an assembly depth of 100 mm, and an assembly clearance of 0.8 mm, positioned at the

center of the assembly platform. The test rig setup is shown in Fig 17.

The Kawasaki BA006N robotic arm has a repeatability precision of ±0.06 mm and a maxi-

mum payload of 6 kg, making it suitable for the assembly tasks. A force/torque sensor is

installed between the assembly shaft and the robotic arm to detect collisions, with the collision

threshold Flim determined through contact experiments discussed in the next section. During

each training session, the joint angles of the robotic arm’s initial posture are fixed at

y ¼ ½0�; 0�; 0�; 0�; 0�; 0��, with the initial configuration shown in Fig 17. A coordinate system

M is established at the contact surface of the assembly shaft’s endpoint as depicted in Fig 17.

The position and orientation information FM(θ) of the contact point center in the world

Fig 17. Test rig for square shaft-hole assembly.

https://doi.org/10.1371/journal.pone.0311550.g017

Table 5. Force/Torque sensor parameters.

Force/torque Range Precision

Fxyz(N) 2000 1

Mxyz(N�m) 60 0.01

https://doi.org/10.1371/journal.pone.0311550.t005

PLOS ONE Multi-agent deep reinforcement learning-based robotic arm assembly research

PLOS ONE | https://doi.org/10.1371/journal.pone.0311550 February 18, 2025 28 / 35

https://doi.org/10.1371/journal.pone.0311550.g017
https://doi.org/10.1371/journal.pone.0311550.t005
https://doi.org/10.1371/journal.pone.0311550

coordinate system at the initial state is determined.

FMðyÞ ¼
RM PM

0 1

" #

¼

0 � 1 0 0

0 0 � 1 1:3

1 0 0 1:19

0 0 0 1

2

6
6
6
6
6
4

3

7
7
7
7
7
5

ð31Þ

The test rig is installed in a fixed location, and the position of the testing platform’s center

point within the world coordinate system is determined through the calibration of the robotic

arm, establishing the rig’s coordinate system B. The assembly hole is mounted at the center

point, and a coordinate system G is established at the contact point center of the assembly hole

based on the structural dimensions. The position and orientation information FG of the con-

tact point center of the assembly hole in the world coordinate system are then determined.

FG ¼
RG PG

0 1

" #

¼

1 0 0 0

0 1 0 1:2

0 0 1 0:85

0 0 0 1

2

6
6
6
6
6
4

3

7
7
7
7
7
5

ð32Þ

According to the analysis of orientation in Section 3.2, for ease of calculation, expressions

RM and RG are converted into quaternion form, resulting in the orientations qM and qG or the

shaft and the hole, respectively.

qM ¼ ð0:5 � 0:50:5 � 0:5Þ

qG ¼ ð1 0 0 0Þ

(

ð33Þ

5.1.2 Sensor collision threshold design. A force/torque sensor, installed between the

assembly shaft and the robotic arm, is employed to detect collisions between the shaft and the

surrounding environment. The sensor’s maximum range and precision are detailed in

Table 5.

Before the experiment, the sensor is calibrated in a no-load state. Once the assembly shaft is

attached, it introduces a certain load force and torque. During the movement of the robotic

arm, changes in the endpoint shaft’s state will lead to variations in the force and torque. The

motion control algorithm imposes restrictions on the allowable rotational angle within each

step to minimize the influence of acceleration on force and torque during small-angle continu-

ous rotations. Thus, the force and torque changes observed by the sensor are related solely to

the shaft’s current state. During normal movement, the rate of change in force and torque over

a unit of time should remain within a certain range. Exceeding this threshold indicates a sud-

den change in the shaft’s state, signaling a collision.

The collision threshold is crucial for the success of the shaft-hole assembly. If the threshold

is set too low, even slight contact with the environment would trigger a collision penalty and

terminate the training. This could prevent the agent from learning effective optimization strat-

egies, making it difficult for the algorithm to converge. Conversely, if the threshold is set too

high, the system might continue exploring even after contact, leading to irreversible damage to

the assembly shaft-hole if feedback adjustments are not timely.

In practical scenarios, it is necessary to set an appropriate collision threshold through pre-

liminary experiments. During the approach phase of the assembly process, the shaft might

PLOS ONE Multi-agent deep reinforcement learning-based robotic arm assembly research

PLOS ONE | https://doi.org/10.1371/journal.pone.0311550 February 18, 2025 29 / 35

https://doi.org/10.1371/journal.pone.0311550

collide with the working environment, which is common in early exploration stages. After suf-

ficient learning, these collisions can be effectively avoided. During the search and insertion

phases, contact primarily occurs between the shaft and the hole, which persists until the algo-

rithm stabilizes. Additionally, the complex conditions during the square shaft-hole assembly

process need particular attention.

To assess different force conditions, the square shaft-hole is tested in various contact states.

The hole is placed in a fixed position without being secured, and significant tipping is consid-

ered as a collision state. Three experiments are conducted: (a) External wall contact: This sim-

ulates collisions between the shaft and the environment during the search phase. (b) Contact

with the hole surface: This corresponds to the pose alignment phase. (c) Line contact with the

hole edge: This occurs during the insertion phase, where collisions with the hole wall are likely.

The corresponding force and torque variations for these contact states are shown in Fig 18.

In the outer contact state, both force and moment undergo significant changes, with the

maximum variations being ΔFz = 10N and ΔMx = 1N�m. During surface contact, positional

and angular deviations occur, with the y-axis force showing the largest variation at ΔFy = 11N,

and the moments along the x and z axes changing significantly, denoted as ΔMx = ΔMz =

0.11N�m. In the insertion phase, where line contact is observed, the main issue is angular devi-

ation, with minimal force variation and a maximum moment change of ΔMy = 0.23N�m.

Fig 18. Force variations under different contact states.

https://doi.org/10.1371/journal.pone.0311550.g018

PLOS ONE Multi-agent deep reinforcement learning-based robotic arm assembly research

PLOS ONE | https://doi.org/10.1371/journal.pone.0311550 February 18, 2025 30 / 35

https://doi.org/10.1371/journal.pone.0311550.g018
https://doi.org/10.1371/journal.pone.0311550

Based on the above analysis, it is crucial to ensure that both force and moment remain

within safe limits during the assembly process. To prevent system misjudgments due to

changes in force and moment induced by the robotic arm’s motion, the collision condition

Flim is set as the maximum rate of change of contact force and moment per unit time step,

resulting in conditions Fmax = 50N/s and Mmax = 0.5N�m/s. When the rates of change in force

and moment in all three directions are within acceptable ranges, the action within the current

time step is deemed safe and feasible.

5.2 Experimental results analysis

Moveit! and the control cabinet of the Kawasaki BA006N robotic arm communicate via TCP/

IP protocol. The network parameters of the DE-MADDPG algorithm are shown in Table 3.

Based on simulation experiments, convergence typically occurs around 7000 episodes in both

assembly tasks. To save time and costs, the maximum number of episodes is set to 10,000. The

DE-MADDPG algorithm is used to conduct 10,000 training assemblies of the square shaft-

hole task under safe conditions, with results compared to those in the simulation environment,

as shown in Fig 19.

Although there are some discrepancies between the experimental environment and the ide-

alized simulation environment, convergence to stability is still achieved in actual training. The

improvement is slow during the initial exploration phase, as the algorithm learns to adapt to

the robotic arm’s action environment. Around 3000 episodes, there is a rapid increase in

rewards. However, there are considerable fluctuations in stability during the later convergence

phase, caused by system errors and instabilities during mechanical movement. Nonetheless,

reward values stabilize around 8000 episodes, with the final average reward slightly lower than

the simulation result, ending at 182.35.

Fig 19. Average reward curves of experimental and simulated training.

https://doi.org/10.1371/journal.pone.0311550.g019

PLOS ONE Multi-agent deep reinforcement learning-based robotic arm assembly research

PLOS ONE | https://doi.org/10.1371/journal.pone.0311550 February 18, 2025 31 / 35

https://doi.org/10.1371/journal.pone.0311550.g019
https://doi.org/10.1371/journal.pone.0311550

5.3 Generalization experiment

To verify the feasibility and generalization of the training results, assembly tests of the square

shaft-hole are conducted by altering the positional coordinates of the assembly hole within the

workspace. The assembly training is guided by the matching of position and orientation in the

algorithm’s reward function. To assess the performance of the trained model under different

task conditions, four experiments are set up: (1) Experiment 1: assembly at a fixed position, (2)

Experiment 2: assembly with varied positions within the working plane, (3) Experiment 3:

assembly with a fixed position but with the assembly hole’s tilt angle at 45˚ relative to the work-

ing plane, and (4) Experiment 4: assembly with both a 45˚ tilt and varied position. The fixed

position assembly and 45˚ tilt assembly are shown in Fig 20. Each group underwent 100

assembly trials, with the central coordinates of the contact surface after position and orienta-

tion changes calculated based on spatial relationships. The test results are summarized in

Table 6.

Comparing experiments 1 and 2, the change in position leads to an altered motion trajec-

tory, which results in a longer average assembly time, increasing from 61.32 seconds to 72.89

seconds, though the success rate remains above 80%. Between experiments 1 and 3, where

only the assembly hole’s orientation is altered, the average time increased by only 5.42 seconds,

but the success rate dropped from 84% to 73%. Comparing experiment 4 with experiments 2

and 3, it is evident that positional changes primarily increase assembly time, while orientation

changes mainly affect the success rate. This experiment demonstrates the feasibility of using

the DE-MADDPG algorithm to divide a single robotic arm into two intelligent agents

Fig 20. Assembly experiment object of square shaft hole.

https://doi.org/10.1371/journal.pone.0311550.g020

Table 6. Comparative experiments on square shaft-hole assembly.

Experiment DDPG MADDPG DE-MADDPG

Time per assembly(s) Success rat% Time per assembly(s) Success rat% Time per assembly(s) Success rat%

Experiment 1 70.37 75 63.86 81 61.32 84

Experiment 2 83.14 71 75.07 76 72.89 81

Experiment 3 75.55 61 69.11 68 66.74 73

Experiment 4 92.66 52 83.69 60 79.24 66

https://doi.org/10.1371/journal.pone.0311550.t006

PLOS ONE Multi-agent deep reinforcement learning-based robotic arm assembly research

PLOS ONE | https://doi.org/10.1371/journal.pone.0311550 February 18, 2025 32 / 35

https://doi.org/10.1371/journal.pone.0311550.g020
https://doi.org/10.1371/journal.pone.0311550.t006
https://doi.org/10.1371/journal.pone.0311550

controlling position and orientation for assembly tasks. Additionally, by varying the assembly

hole’s position and orientation, the generalization capability of the algorithm in complex envi-

ronments is validated. Across the four experiments, DE-MADDPG shows a 3%, 5%, 5%, and

6% higher success rate compared to MADDPG, and a 9%, 10%, 12%, and 14% higher success

rate compared to DDPG. The results indicate that as the assembly difficulty increases, the

accuracy advantage of the proposed DE-MADDPG method becomes more significant. Addi-

tionally, the average assembly time for DE-MADDPG across all four experiments is lower than

that of the other two methods.

6. Conclusion

This paper addresses the complex assembly problem of shaft-hole structures, focusing on

square shaft-hole assemblies with the Kawasaki BA006N robotic arm as the primary control

entity. The research encompasses an analysis of the assembly task, the kinematics of the

robotic arm, the design of a multi-agent deep reinforcement learning framework, and the for-

mulation of multi-agent reward functions. Both simulation and real-world experiments are

conducted for validation and testing. The main findings of the study are as follows: (1) The

reward function for the DE-MADDPG algorithm is tailored to the assembly task process and

consists of a global reward function and a local reward function. The global reward function

includes a main reward function, a collision penalty function, and a process penalty function.

The local rewards are divided into a position reward function, represented by Euclidean dis-

tance, and an orientation reward function, represented by quaternions. (2) A joint simulation

assembly platform integrating Gazebo and Moveit! is developed within ROS. This platform is

used to simulate the assembly of circular and square shaft-holes using the DE-MADDPG algo-

rithm. The simulation results demonstrated that dividing the first three joints and the last

three joints of the robotic arm into multiple agents enhances adaptability. (3) Based on the

simulation results, the Kawasaki BA006N robotic arm is equipped with force/torque sensors to

detect collisions, and a square shaft-hole experimental training rig is constructed. The training

results show convergence consistent with the DE-MADDPG simulation outcomes.

Despite the progress made in developing a shaft-hole assembly strategy based on the

DE-MADDPG algorithm, several limitations and areas for improvement remain, which can

be further explored in future research: (1) The training of robotic arms in real-world environ-

ments is costly. Future research could explore the use of transfer learning or meta-learning to

leverage simulation-trained models, thereby improving training efficiency. (2) The current

study primarily focused on the assembly of square shaft-holes. Future experiments could vali-

date and compare the assembly of shaft-holes with different shapes and sizes. Additionally, the

testing phase only included validation at a fixed angle. Conducting assembly experiments at

various angles could help assess the model’s generalization capabilities. (3) Further optimiza-

tion of the reward functions and assembly tasks could enhance the system’s adaptability across

different assembly environments and improve assembly success rates.

Author Contributions

Conceptualization: Guohua Cao.

Data curation: Jimeng Bai.

Software: Jimeng Bai.

Visualization: Jimeng Bai.

Writing – original draft: Guohua Cao.

PLOS ONE Multi-agent deep reinforcement learning-based robotic arm assembly research

PLOS ONE | https://doi.org/10.1371/journal.pone.0311550 February 18, 2025 33 / 35

https://doi.org/10.1371/journal.pone.0311550

Writing – review & editing: Jimeng Bai.

References

1. Peng D, Yang L, Shao Y. A Method for Predicting the Boring Topography Error of Shaft Hole on a Thin-

Walled Box Based on a Proposed Dynamic Model[J]. IEEE Access, 2023, 11: 3129–3143.

2. Xu D, Mo H, Yi J, et al. Hybrid compliant control with variable-stiffness wrist for assembly and grinding

application[J]. Robotics and Autonomous Systems, 2024, 180: 104756.

3. Huang H H, Cheng C K, Chen Y H, et al. The Robotic Arm Velocity Planning Based on Reinforcement

Learning[J]. International Journal of Precision Engineering and Manufacturing, 2023, 24(9): 1707–

1721.

4. Abouheaf M, Boase D, Gueaieb W, et al. Real-time measurement-driven reinforcement learning control

approach for uncertain nonlinear systems[J]. Engineering Applications of Artificial Intelligence, 2023,

122: 106029.

5. Sekkat H, Moutik O, Ourabah L, et al. Review of reinforcement learning for robotic grasping: Analysis

and recommendations[J]. Statistics, Optimization & Information Computing, 2024, 12(2): 571–601.

6. Wang X, Jiang H, Mu M, Dong Y. A trackable multi-domain collaborative generative adversarial network

for rotating machinery fault diagnosis [J]. Mechanical Systems and Signal Processing, 2025, 224:

111950.

7. Chen X, Liu S, Zhao J, et al. Autonomous port management based AGV path planning and optimization

via an ensemble reinforcement learning framework[J]. Ocean & Coastal Management, 2024, 251:

107087.

8. Ding Y, Zhao J C, Min X. Impedance control and parameter optimization of surface polishing robot

based on reinforcement learning[J]. Proceedings of the Institution of Mechanical Engineers, Part B:

Journal of Engineering Manufacture, 2023, 237(1–2): 216–228.

9. Tian W, Hu P, Zhang C. Optimization framework of laser oscillation welding based on a deep predictive

reward reinforcement learning net[J]. Journal of Intelligent Manufacturing, 2024: 1–20.

10. Yao Z, Xu J, Shen Z, et al. DFA-based algorithm for optimizing the accuracy and cost of shaft and hole

assembly[J]. Journal of Engineering Mechanics and Machinery, 2023, 8(4): 25–32.

11. Orr J, Dutta A. Multi-agent deep reinforcement learning for multi-robot applications: A survey[J]. Sen-

sors, 2023, 23(7): 3625.

12. Jiang J, Huang Z, Bi Z, et al. State-of-the-Art control strategies for robotic PiH assembly[J]. Robotics

and Computer-Integrated Manufacturing, 2020, 65: 101894.

13. Xu K, Wang Z. The design of a neural network-based adaptive control method for robotic arm trajectory

tracking[J]. Neural Computing and Applications, 2023, 35(12): 8785–8795.

14. Hogan N. Impedance control: An approach to manipulation: Part II—Implementation[J]. 1985.

15. Wang K J. Fuzzy sliding mode joint impedance control for a tendon-driven robot hand performing peg-

in-hole assembly[C]//2016 IEEE International Conference on Robotics and Biomimetics (ROBIO).

IEEE, 2016: 2087–2092.

16. Wu J, Ni F, Zhang Y, et al. Smooth transition adaptive hybrid impedance control for connector assembly

[J]. Industrial Robot: An International Journal, 2018, 45(2): 287–299.

17. Stan L, Nicolescu A F, PupăzăC. Reinforcement learning for assembly robots: A review[J]. Proceed-

ings in Manufacturing Systems, 2020, 15(3): 135–146.

18. Song R, Li F, Quan W, et al. Skill learning for robotic assembly based on visual perspectives and force

sensing[J]. Robotics and Autonomous Systems, 2021, 135: 103651.

19. Cong V D, Duy D A. Design and Development of Robot Arm System for Classification and Sorting

Using Machine Vision[J]. FME Transactions, 2022, 50(1). https://doi.org/10.5937/fme2201181C

20. Wang X, Jiang H, Wu Z, Yang Q. Adaptive variational autoencoding generative adversarial networks for

rolling bearing fault diagnosis[J]. Advanced Engineering Informatics, 2023, 56: 102027. https://doi.org/

10.1016/j.aei.2023.102027

21. Ortega-Aranda D, Lopez-Juarez I, Nath-Saha B, et al. Towards learning contact states during peg-in-

hole assembly with a dual-arm robot[C]//2017 CHILEAN Conference on Electrical, Electronics Engi-

neering, Information and Communication Technologies (CHILECON). IEEE, 2017: 1–6.

22. Ahn K H, Na M, Song J B. Robotic assembly strategy via reinforcement learning based on force and

visual information[J]. Robotics and Autonomous Systems, 2023, 164: 104399.

PLOS ONE Multi-agent deep reinforcement learning-based robotic arm assembly research

PLOS ONE | https://doi.org/10.1371/journal.pone.0311550 February 18, 2025 34 / 35

https://doi.org/10.5937/fme2201181C
https://doi.org/10.1016/j.aei.2023.102027
https://doi.org/10.1016/j.aei.2023.102027
https://doi.org/10.1371/journal.pone.0311550

23. Inoue T, De Magistris G, Munawar A, et al. Deep reinforcement learning for high precision assembly

tasks[C]//2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE,

2017: 819–825.

24. Leyendecker L, Schmitz M, Zhou H A, et al. Deep Reinforcement Learning for Robotic Control in High-

Dexterity Assembly Tasks—A Reward Curriculum Approach[J]. International Journal of Semantic Com-

puting, 2022, 16(03): 381–402.

25. Ding Z, Tang H, Wan H, et al. A Modular Robotic Arm Configuration Design Method Based on Double

DQN with Prioritized Experience Replay[J]. Symmetry, 2024, 16(6): 714.

26. Li Y, Li X, Gao L, et al. Multi-agent deep reinforcement learning for dynamic reconfigurable shop sched-

uling considering batch processing and worker cooperation[J]. Robotics and Computer-Integrated

Manufacturing, 2025, 91: 102834.

27. Foerster J, Assael I A, De Freitas N, et al. Learning to communicate with deep multi-agent reinforce-

ment learning[J]. Advances in neural information processing systems, 2016, 29.

28. Sukhbaatar S, Fergus R. Learning multiagent communication with backpropagation[J]. Advances in

neural information processing systems, 2016, 29.

29. Lowe R, Wu Y I, Tamar A, et al. Multi-agent actor-critic for mixed cooperative-competitive environments

[J]. Advances in neural information processing systems, 2017, 30.

30. He F, Wang X, Liu K. Research on Axle-Hole Assembly Method Based on Improved DDPG Algorithm

[C]//2021 5th International Conference on Robotics and Automation Sciences (ICRAS). IEEE, 2021:

182–186.

31. Hernandez-Leal P, Kartal B, Taylor M E. A survey and critique of multiagent deep reinforcement learn-

ing[J]. Autonomous Agents and Multi-Agent Systems, 2019, 33(6): 750–797.

PLOS ONE Multi-agent deep reinforcement learning-based robotic arm assembly research

PLOS ONE | https://doi.org/10.1371/journal.pone.0311550 February 18, 2025 35 / 35

https://doi.org/10.1371/journal.pone.0311550

