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Abstract

Existing emotion-driven music generation models heavily rely on labeled data and lack

interpretability and controllability of emotions. To address these limitations, a semi-super-

vised emotion-driven music generation model based on category-dispersed Gaussian mix-

ture variational autoencoders is proposed. Initially, a controllable music generation model is

introduced, which disentangles and manipulates rhythm and tonal features, enabling con-

trolled music generation. Building on this, a semi-supervised model is developed, leveraging

a category-dispersed Gaussian mixture variational autoencoder to infer emotions from the

latent representations of rhythm and tonal features. Finally, the objective loss function is

optimized to enhance the separation of distinct emotional clusters. Experimental results on

real-world datasets demonstrate that the proposed method effectively separates music with

different emotions in the latent space, thereby strengthening the association between music

and emotions. Additionally, the model successfully disentangles and separates various

musical features, facilitating more accurate emotion-driven music generation and emotion

transitions through feature manipulation.

1. Introduction

Music, as a significant form of artistic expression, reflects a series of human-specific cognitive

patterns. Similar to natural language, music conveys content and emotions through sequential

information. Unlike natural language, however, emotion is a crucial component of the infor-

mation conveyed by music [1]. The emotions evoked by music are not only closely related to

its inherent structure but are also induced by the sequential propagation of musical elements

over time. Therefore, the automatic generation of music must not only adhere to the rules of

music theory but also incorporate emotional elements to inspire creativity [2]. Emotion-driven

music generation has wide applications, including the creation of background music for spe-

cific scenes in films or games, and in music-based psychotherapy [3].
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In recent years, significant advancements have been made in automatic music generation

technology, with numerous generative models capable of effectively learning the structural fea-

tures of music to produce rich musical samples [4]. However, fewer studies have focused on

incorporating emotional elements as a condition for music generation. A typical approach to

emotion-driven music generation involves using sequence-to-sequence (Seq2Seq) models,

such as Recurrent Neural Networks (RNNs) and Transformers, to simultaneously encode both

music sequences and emotion labels [5]. This allows the models to learn the feature representa-

tions of specific emotions, which are then decoded to generate music corresponding to the tar-

geted emotions. Alternatively, emotion classifiers may be used post-generation to guide the

emotional content of the music. Zhao et al. [6] constructed an emotion-driven music genera-

tion model using a biaxial LSTM architecture [7] combined with a Lookback module. Ferreira

et al. [8] encoded music as a series of textual events and utilized multiplicative LSTM networks

to create music with specific emotional attributes. To further enhance the model’s ability to

capture long-term dependencies in the structural context of music, pre-trained Transformer

models were employed in the works of Hung et al. [9] and Sulun et al. [10] to achieve emo-

tion-driven music generation. In these models, emotional information, like the input musical

events, is embedded as tokens within the model. To obtain better semantic representations of

emotions, some studies utilized Variational Autoencoders (VAEs) [11] to learn emotion label

embeddings and model the latent space of the data [12]. This approach maps the data distribu-

tion into a low-dimensional continuous space, from which diverse and continuous samples

can be generated. Grekow et al. [13] proposed using Conditional Variational Autoencoders

(CVAE) to generate music with specific emotions, leveraging Gated Recurrent Units (GRU)

[14] to construct the encoder and decoder. Huang et al. [15] further combined CVAE with

GANs to generate more accurate emotional music. In this model, a discriminator distinguishes

the authenticity of the music generated by the CVAE decoder, while an additional emotion

classifier determines the emotional category of the output music, thus aligning the generated

music more closely with the target emotion. However, the aforementioned methods rely on

fully supervised training and generate emotion-specific music directly based on labels, which

presents two significant challenges. First, fully supervised training excessively depends on

labeled data, yet the music domain lacks abundant standardized emotional datasets. Moreover,

emotion is highly subjective, leading to considerable label noise during data annotation. Sec-

ond, emotion labels alone are insufficient to fully capture the emotional characteristics of

music. Generating music directly from labels overlooks the intricate relationships between

emotions and musical elements, rendering the generated music less interpretable in terms of

its underlying emotional representation.

Recent research, such as Music FaderNets [16], utilized Gaussian Mixture Variational

Autoencoders (GMVAE) [17] in a semi-supervised approach to learn latent space representa-

tions of note and rhythm features along the Arousal dimension of Russell’s two-dimensional

emotion space [18]. These features were then employed to control the Arousal dimension,

enabling the generation of emotion-specific music. GMVAE extends the unimodal Gaussian

distribution in VAE to a mixture of Gaussians with multiple components, allowing the latent

space to be partitioned into distinct clusters. This enables direct inference of data categories

from latent variables without the need for additional neural networks to learn category infor-

mation, demonstrating high performance in semi-supervised generative tasks. Luo et al. [19]

proposed a GMVAE-based audio music generation model that disentangled and learned latent

spaces for different categories of pitch and timbre. When generating music with specific pitch

or timbre, the corresponding latent variables were resampled from the target category’s latent

space and decoded into the output. Tan et al. [20] also employed GMVAE in the Music Fader-

Nets model to achieve controllable generation of MIDI music notes and rhythms. However,
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GMVAE has certain limitations, including the potential for mode collapse [21]. When data is

overly similar, the Gaussian components may not separate well during training, making it difficult

to distinguish between different categories, thus impacting the quality of the learned representa-

tions and generated outputs. Furthermore, most existing VAE-based music generation models

rely on Recurrent Neural Networks (RNNs) as encoders and decoders [22]. Given that music is a

long-sequence data type, RNNs are limited in their ability to model such sequences, often leading

to the loss of contextual dependencies and issues like gradient vanishing or explosion.

To address these challenges, this paper proposes a semi-supervised emotion-driven music

generation model based on Category-Dispersed Gaussian Mixture Variational Autoencoders

(CDGMVAE). This model is designed to learn the influence of different musical features on

emotions, generate music with long-term dependency structures and specific emotions, and

achieve emotion transitions by manipulating musical features. The specific contributions of

this paper are as follows:

➢ A semi-supervised emotion-driven music generation model based on GVAE with variance

penalties and mutual information enhancement is proposed. This model ensures better separa-

tion of different emotional music in the latent space, strengthens the correlation between

music and emotional information, aligns the generated music more closely with the target

emotion, and improves the robustness and generalization ability of the semi-supervised model.

➢ A feature disentanglement mechanism constrained by independent encoder constraints

and generative adversarial loss functions is proposed to separate and learn the latent vari-

able representations of rhythm and tonal features from music sequences. By manipulating

these two feature representations, the generation and transformation of specific emotional

music can be achieved.

➢ The Transformer-XL network [23] is introduced as the encoder and decoder for GMVAE.

Its segment-level recurrence mechanism and relative positional encoding effectively capture

the longer contextual dependencies in music sequences and enhance the model’s ability to

focus on different features, thereby improving the model’s expressiveness.

2. Disentangled controllable generation with Variational

Autoencoders

Variational Autoencoders (VAEs) combine latent variable models with deep generative mod-

els, offering powerful representation and generation capabilities. By incorporating a disentan-

glement representation mechanism, VAEs can learn representations of multiple features,

imbuing latent variables with more meaningful semantic interpretations. Due to the manipula-

bility of the latent space, VAEs are effective models for achieving controllable music genera-

tion. Building on the principles of the VAE model, this paper proposes a controllable music

generation model that manipulates latent variable representations to alter the structure of

music, referred to as Control-VAE. The model structure is illustrated in Fig 2, comprising an

encoder, a latent space, and a decoder. Given an input sequence x = [Bar1,Bar2,� � �,BarT] con-

taining T consecutive bars of music, the encoder qϕ(z|x) learns the latent variable representa-

tions z of each bar through posterior inference. These representations are then used by the

decoder pθ(x|z) to reconstruct the input data, producing a new sample ~x. The model can be

optimized by maximizing the evidence lower bound (ELBO) of the log-likelihood function p
(x), as shown in Eq (1):

log pðxÞ � Eq�ðzjxÞ
½log pyðxjzÞ� � DKL½q�ðzjxÞkpðzÞ� ¼ LELBO ð1Þ
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where E½�� denotes the expectation, representing the need to maximize the probability of gen-

erating real data, which can be achieved by minimizing the reconstruction loss between the

input |x and the output ~x. The term DKL[�k�] represents the KL divergence that needs to be

minimized between the latent distribution qϕ(z|x) and the prior Gaussian distribution p(z).

To achieve disentangled and controllable generation of rhythm and tonal features in music,

this paper proposes a feature disentanglement mechanism constrained by independent encod-

ers and adversarial loss functions, as depicted in Fig 1. Considering the rhythm features fr and

tonal features fk of music, two identical encoder networks Er and Ek were trained separately to

learn the latent variable representations zr and zk of the rhythm features fr and tonal features fk

from the original music sequence. Two separate local decoders Dr and Dk were then used to

predict the rhythm features fr and tonal features fk, with the training objective being to mini-

mize the error between the real features and the predicted features. Additionally, adversarial

training is incorporated into the model based on the concept of GANs. By feeding inputs zr

and zk as the input to Dr and Dk, incorrect information is fed back to each decoder to produce

false predictions �f r and �f k, thereby enabling Dr and Dk F to adversarially counteract each other

during training. This ensured that only the correct feature predictions were made based on the

corresponding latent variable inputs, effectively removing irrelevant feature information from

each latent variable. Finally, the two latent variables were merged (i.e., z = Concat[zr,zk]) and

input into the global decoder Dglobal to generate the complete music sequence, which is opti-

mized using the ELBO. According to the proposed method, the objective loss function of the

Control-VAE model can be defined as:

LELBO ¼ Eq�r ðzr jxÞq�k
ðzkjxÞ
½log pyðxjzr; zkÞ� � Li

KL þ LDis ð2Þ

where Li
KL ¼ DKL½q�i

ðzijxÞkpðziÞ�, i represent the rhythm or tonal features, and LDis represents

the disentanglement loss, defined as follows:

LDis ¼ Eq�r ðzr jxÞq�k
ðzkjxÞ
½log pφr

ðf rjzrÞpφk
ðfkjzkÞ�

þ Eq�r ðzr jxÞq�k
ðzk jxÞ
½logð1 � pφr

ðf rjzrÞÞð1 � pφk
ðfkjzkÞÞ�

ð3Þ

where the first term represents the loss when correctly predicting the features, and the second

term represents the adversarial loss.

Fig 1. Structure of music feature disentanglement.

https://doi.org/10.1371/journal.pone.0311541.g001
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3. Category-dispersed Gaussian mixture variational autoencoder

The structure of our method CDGMVAE is illustrated in Fig 2 and comprises three main

modules: (1) The encoder module, which receives the music input sequence segmented by

bars and uses a Transformer-XL encoder to learn the mean and variance of the latent distribu-

tion; (2) The decoder module, which reparametrizes the latent variable representations sam-

pled from the latent distribution and uses a Transformer-XL decoder to reconstruct the music

sequence; and (3) The Gaussian mixture module, which employs a Gaussian mixture model

(GMM) [78] to learn the categorical information of latent variables via semi-supervised learn-

ing, thereby clustering the music data by emotion.

3.1 Semi-supervised Gaussian mixture variational autoencoder

GMVAE integrates a VAE with a GMM, enabling the extension of the continuous latent space

of a VAE into a discrete space with multiple Gaussian components. Each Gaussian component

represents a cluster that contains latent variable representations of the same category. The

CDGMVAE model leverages this property to infer the emotional category of the latent variable

representations of music features using a semi-supervised approach, projecting them onto the

corresponding Gaussian components. During the generation phase, latent variables are sam-

pled from the Gaussian component of the target category, and the corresponding emotional

music is generated by decoding these latent variables. The semi-supervised GMVAE can guide

the model to learn the feature representations and boundaries of each category using a small

amount of labeled data as supervision signals, while the unlabeled data provides a broader data

Fig 2. Schematic of the CDGMVAE model structure.

https://doi.org/10.1371/journal.pone.0311541.g002
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distribution. By leveraging the labeled data, similar samples can be grouped into the same cate-

gory without the need to introduce additional neural network classifiers.

In implementation, the GMVAE can be divided into an inference network and a generative

network, with its probabilistic graphical model illustrated in Fig 3. For the inference network,

given the music input sequence x, the encoder learns the latent variable representations z of

any feature and introduces a classification variable y to infer the emotional category z. For the

generative network, latent variables z are sampled from the Gaussian component of the target

category based on the classification variable y, and the decoder reconstructs the input data x
based on these latent variables. The generative process can be defined by the joint probability

distribution as shown in Eq (4):

pyðx; z; yÞ ¼ pyðxjzÞpðzjyÞpðyÞ ð4Þ

where pðyÞ ¼ Catðyj1=KÞ represents the categorical distribution with K categories. pðzjyÞ ¼
Nðzjmy; s

2
yÞ denotes the latent distribution of a specific Gaussian component within a category,

characterized by a learnable mean μy and variance s2
y . qθ(x|z) is a neural network parameter-

ized by θ, which is responsible for decoding and generating sample data. For the inference pro-

cess, GMVAE approximates the true posterior distribution p(z,y|x) through variational

inference qϕ(y|x), similar to VAE. According to the mean-field approximation theory [24],

qϕ(y|x) can be further factorized as shown in Eq (5):

q�ðz; yjxÞ ¼ q�ðzjxÞq�ðyjxÞ ð5Þ

where q�ðzjxÞ ¼ Nðzjmx; s
2
xÞ represents the latent distribution learned by the encoder network

parameterized by ϕ, which gradually approximates the Gaussian distribution p(z|y) under the

corresponding category during training. Similarly, qϕ(y|x) is used to learn the categorical

Fig 3. Probabilistic graphical model of GMVAE.

https://doi.org/10.1371/journal.pone.0311541.g003
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information from the input x, but this requires an additional neural network for fitting,

thereby introducing more parameters to the model and increasing dependency on labeled

data. To mitigate this, p(y|z) can be approximated as qϕ(y|x) following the derivation process

in VaDE [25], as shown in Eq (6):

q�ðyjxÞ ¼ Eq�ðzjxÞ
½pðyjzÞ� �

1

N

XN

n¼1

pðzjyÞpðyÞ
XK

ŷ¼1
pðzjŷÞpðŷÞ

ð6Þ

This method leverages the properties of GMM and uses Bayesian inference to determine

which Gaussian component’s latent distribution generates the data, thus identifying its cate-

gory without introducing additional neural networks. Finally, Eq (6) is approximated through

Monte Carlo estimation of the expectation qϕ(y|x), where N represents the number of samples

used for Monte Carlo estimation. In practice, the mean μy and variance s2
y of each Gaussian

component can be initialized using data with known categories. These parameters are then

refined during the training process until they accurately reflect the categorical information.

Unlabeled data are also utilized to update the parameters of the Gaussian components, further

enhancing the model’s ability to learn categories.

Similar to VAE, GMVAE optimizes model parameters by maximizing the ELBO. Based on

the aforementioned generative and inference processes, the log-likelihood function log p(x)

can be defined as shown in Eq (7):

log pðxÞ � Eq�ðzjxÞ
½log

pyðx; z; yÞ
q�ðz; yjxÞ

� ¼ LELBO ð7Þ

Under the semi-supervised approach, which uses both labeled and unlabeled data, LELBO

can be further expanded as shown in Eq (8):

LELBO ¼ Eq�ðzjxÞ
½logpyðxjzÞ� �

(Lunsup
KL ; unsupervised

Lsup
KL ; supervised

Lunsup
KL ¼ Eq�ðyjxÞ

½KL½q�ðzjxÞkpðzjyÞ�� þ KL½q�ðyjxÞkpðyÞ�

Lsup
KL ¼ KL½q�ðzjxÞkpðzjyÞ�

ð8Þ

where Eq�ðzjxÞ
½log pyðxjzÞ� represents the probability of generating real data, which can be

achieved by minimizing the cross-entropy reconstruction loss. Lunsup
KL represents the KL diver-

gence loss under unsupervised learning, which requires minimizing the KL divergence

between the latent distribution learned by the encoder and the latent distribution under the

true category, as well as between the inferred posterior distribution of the category and the

assumed uniform categorical distribution. Lsup
KL represents the KL divergence loss under super-

vised learning, where only the former KL divergence needs to be minimized.

3.2 Variance penalization and mutual information enhancement

When applying the GMVAE model to perform clustering inference on data, high data similar-

ity and an insufficient number of Gaussian mixture components can hinder the learning of

more complex distributions. In the latent space, each Gaussian component may struggle to

separate during training, often resulting in components with closely aligned means and vari-

ances, and in extreme cases, multiple Gaussians may collapse into a single Gaussian. This phe-

nomenon, known as mode collapse, is a significant challenge for GMVAE in distinguishing

between different categories of data.
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To alleviate the mode collapse issue in GMVAE, we further analyze the ELBO from Section

3.1 and identify the KL divergence regularization term as a primary contributor to this prob-

lem. Therefore, the KL divergence loss term KLz ¼ Eq�ðyjxÞ
½KL½q�ðzjxÞkpðzjyÞ�� in the latent

distribution Lunsup
KL is re-expressed based on Eq (8) as:

KLz ¼
XK

ŷ¼1
q�ðŷjxÞEq�ðzjxÞ

log
q�ðŷjxÞ
pðzjŷÞ

¼ Eq�ðzjxÞ
log

q�ðŷjxÞ

PK
ŷ¼1

pðzjŷÞq�ðŷ jxÞ

ð9Þ

where Eq�ðyjxÞ
¼
XK

ŷ¼1
q�ðŷjxÞ ¼ 1 denotes the Gaussian component under category ŷ, char-

acterized by mean μy and variance s2
y . Assuming the variances of all Gaussian components are

equal, the Gaussian distribution’s probability density function pðzjŷÞ can be expressed as:

pðzjŷÞ ¼
1
ffiffiffiffiffiffiffiffiffiffi
2ps2

y

q exp �
ðz � mŷÞ

2

2s2
y

 !

ð10Þ

Let PK
ŷ¼1

pðzjŷÞq�ðŷ jxÞ represent f ðx; ŷ; zÞ, and combining with Eq (10), it can be represented

as:

f ðx; ŷ; zÞ ¼
1
ffiffiffiffiffiffiffiffiffiffi
2ps2

y

q expð�
1

2s2
y

XK

ŷ¼1

q�ðyjxÞðz � mŷÞ
2

Þ

¼
1
ffiffiffiffiffiffiffiffiffiffi
2ps2

y

q exp½�
1

2s2
y

ðz � Eq�ðyjxÞ
myÞ

2
�

� exp½�
1

2s2
y

ðEq�ðyjxÞ
m2

y � E
2

q�ðyjxÞ
myÞ� ð11Þ

The first factor of the product can be regarded as the average Gaussian component across

all categories p(z|y), while the second factor represents the variance of the means of all Gauss-

ian components, which measures the dispersion of these components. Combining Eqs (9) and

(11), KLz can be transformed, as shown in Eq (12):

KLz ¼ KL½q�ðzjxÞkpðzjyÞ� þ
1

2s2
y

ðEq�ðyjxÞ
m2

y � E
2

q�ðyjxÞ
myÞ ð12Þ

When maximizing GMVAE’s ELBO during training, the variance term factor in KLz also

gets minimized, causing the variance of the means of Gaussian components to shrink, leading

to tighter connections between Gaussian components in the latent space and impairing the

model’s ability to correctly distinguish between categories, thereby causing mode collapse. To

reduce this contraction trend, we introduce a penalization hyperparameter α, α2[0, 1] before

the variance term in KLz:

In addition to improving the separability of Gaussian components to enhance clustering

accuracy, establishing a strong connection between the input data and category information is

essential. However, research has shown that VAE’s ELBO has an information suppression

term that weakens the relationship between input data and latent variables [26]. This bottle-

neck also exists between the input data and category information in GMVAE. During model
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training, the average ELBO of a batch of data is typically computed for gradient updates.

Therefore, combined with Eq (12), LELBO can be expanded as shown in Eq (13):

LELBO ¼ Ex½Eq�ðzjxÞ
½log pyðxjzÞ�� � KLz � KL½q�ðyjxÞkpðyÞ� ð13Þ

According to the definition of mutual information concerning KL divergence [27], the

mutual information MI(y,x) between input data x and category information y can be expressed

as shown in Eq (14):

MIðy; xÞ ¼ Ex½KL½q�ðyjxÞkpðyÞ�� � KL½q�ðyjxÞkpðyÞ� ð14Þ

Therefore, LELBO can be rewritten as shown in Eq (15):

LELBO ¼ Ex½Eq�ðzjxÞ
½log pyðxjzÞ� � KLz� � MIðy; xÞ � KL½q�ðyÞkpðyÞ� ð15Þ

This shows that during training, the mutual information between input data and category

information is minimized, reducing the dependence between these two random variables and

diminishing clustering accuracy. Therefore, we propose a joint optimization of ELBO and

mutual information, defined as:

LELBO þMIðy; xÞ ¼ Ex½Eq�ðzjxÞ
½log pyðxjzÞ� � KLz� � KL½q�ðyjxÞkpðyÞ� ð16Þ

This method still allows for optimizing the learning of the categorical distribution through

KL½q�ðyjxÞkpðyÞ�, where q�ðyÞ ¼ Ex½q�ðyjxÞ� represents the discrete marginal probability dis-

tribution of qϕ(y|x), which can be averaged over data points within a batch, reducing the differ-

ence between the categorical distribution across all data points and the prior distribution.

Finally, combining variance penalization and mutual information optimization yields the

unsupervised KL divergence loss for GMVAE, as shown in Eq (17):

Lunsup
KL ¼ KL½q�ðzjxÞkpðzjyÞ� þ

a

2s2
y

ðEq�ðyjxÞ
m2

y � E
2

q�ðyjxÞ
myÞ þ KL½q�ðyjxÞkpðyÞ� ð17Þ

These two enhancement methods ensure that data from different categories are better sepa-

rated in the latent space, while data from the same category are more compactly grouped.

3.3 CDGMVAE objective function

In supervised learning, the loss function should include not only the corresponding KL diver-

gence loss but also a classification cross-entropy loss function to guide the learning of catego-

ries. The classification loss is defined as shown in Eq (18):

Llabel ¼ �
XK

c¼1

yc logq�ðycjxÞ ð18Þ

where K is the total number of categories, yc represents the true label indicating whether the

sample belongs to the cth category, and qϕ(yc|x) is the predicted probability for the cth category.

Additionally, by integrating the disentanglement loss LDis discussed in Section 2, we can

derive the final objective loss function for the CDGMVAE model. Given the latent variable zi

of the music feature f and the category variable yi, the objective loss function can be described
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by Eq (19):

LCDGMVAE ¼ Eq�r ðzr jxÞq�k
ðzkjxÞ
½log pyðxjzr; zkÞ� þ LDis

�
X

i

Lunsup;i
KL ; unsupervised

Lsup;i
KL � Li

label; supervised
ð19Þ

�
�
�
�
�
�

3.4 Encoder and decoder

Traditional VAE models and their variants often use RNNs to construct the encoder and

decoder. However, due to RNNs’ limited modeling capabilities for long sequence data, the

Transformer architecture [28] has also been considered in conjunction with VAE models for

music generation, as seen in models like Transformer-VAE [29] and MuseMorphose [30].

However, the Transformer’s input sequence length is still constrained by memory, requiring

self-attention calculations over the entire sequence each time. To address this issue, the

CDGMVAE model adopts the Transformer-XL network structure, as shown in Fig 4. Trans-

former-XL leverages segment-level recurrence and relative positional encoding to learn the

contextual structure across more extended musical bars.

In this model, the music sequence is divided into multiple segments of equal length,

denoted as x = [Bar1,Bar2,� � �,BarT], where T represents the number of bars in each segment.

Let hn� 1
t� 1
2 Rl�d be the hidden state of the (τ-1)th bar in the n-1 layer of self-attention, where L

is the sequence length of each bar, and d is the dimension of the hidden state. When calculating

the hidden state hn
t

of the τth bar in the nth layer, the model considers reusing the hidden state

from the previous bar. The calculation process is shown in Eq (20):

~hn� 1
t
¼ Concat½SGðhn� 1

t� 1
Þ � hn� 1

t
�

Qn
t
;Kn

t
;Vn

t
¼ hn� 1

t
WT

Q;
~hn� 1
t

WT
K ;

~hn� 1
t

WT
V

hn
t
¼ Transformer � layerðQn

t
;Kn

t
;Vn

t
Þ

ð20Þ

where SG(�) indicates that the gradient of hn� 1
t� 1

will not be updated when calculating the next

bar, Concat(�) represents the concatenation of the two hidden state matrices along the bar

length, and WQ,K,V are the learnable model parameters. Unlike the Transformer, during the

attention score calculation, the key-value matrices Kn
t

and Vn
t

depend on the hidden state hn� 1
t� 1

of the previous bar in the n-1 layer (as shown by the blue lines in Fig 4) and the hidden state

hn� 1
t

of the current bar in the same layer (as shown by the gray lines in Fig 4). This method

allows the model to cache only the hidden state of the previous bar in memory, establishing a

recurrent connection between segments and extending contextual information across all bars.

Transformer models utilize positional encoding to learn the order and positional relation-

ships within an input sequence. However, this positional encoding is absolute, meaning that

the encoding information for the same position across different bars is identical, potentially

causing the model to misinterpret the sequence. To address this issue, Transformer-XL intro-

duces a relative positional encoding mechanism, incorporating a parameter-free sinusoidal

encoding matrix R2RL×d. Each row of this matrix represents the relative distance encoding

between two positions. When computing hidden states, this relative distance can be dynami-

cally injected into the attention scores, allowing the model to better distinguish between differ-

ent positions.

When integrating Transformer-XL with the GMVAE model, the goal is to learn the latent

variable representations of the data from the hidden states output by the encoder. According

to GMVAE’s definition of latent distribution q(z|x), the model first learns the mean and
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variance of this distribution, then samples the latent variables. This process can be described

by Eq (21):

hpool
t
¼ Avgpoolð½hN

t;1
; hN

t;2
; � � � ; hN

t;L�Þ

m ¼ hpoolWm; logs2 ¼ hpoolWs

z ¼ mþ ε� sε � Nð0; IÞ

ð21Þ

where hpool
t
2 Rd

represents the overall hidden state of the τth bar, obtained by average pooling

across all positions’ hidden states. μ,σ2RT×l denotes the mean and standard deviation vectors

of the latent distribution learned from the hidden states, with l representing the set dimension

of the latent variable, and Wμ,Wσ2Rd×l is the parameter matrix. z2RT×l is the sampled latent

variable from the learned distribution using the reparameterization trick. During the decoding

and generation phase, the latent variables are transformed through a linear layer to match the

unified model dimension. They are then added to the hidden states output from the previous

layer before being input into the subsequent self-attention layer. This method ensures that the

latent variable information is effectively utilized to generate the final music sequence.

4. Experimental results and analysis

4.1 MIDI music dataset

In this study, the publicly available Lakh Pianoroll dataset (LPD) [31] is utilized, comprising

174,154 multi-track MIDI music sequences in piano roll format. We selected the LPD-5-full

version, excluding sequences with duplicate content, those lacking piano tracks, and those

Fig 4. Structure of the CDGMVAE model based on Transformer-XL.

https://doi.org/10.1371/journal.pone.0311541.g004
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with a total duration of less than one minute. This process resulted in a dataset of 91,969

sequences, which is split into training, validation, and test sets in an 8:1:1 ratio. Additionally,

the dataset is matched with the Million Song Dataset (MSD) [32], enabling the retrieval of

emotional metadata for 23,967 music sequences using the metadata provided by MSD and the

API services from the Spotify music community (developer.spotify.com). These sequences

were annotated in the Russell emotional space with Arousal and Valence values, which were

then quantified into two emotional dimensions (high or low) and labeled as A0, A1, V0, and

V1, where 0 represents low and 1 represents high. By combining these labels, four correspond-

ing emotional categories were defined: happiness, tension, sadness, and calmness.

4.2 Music data representation

To model MIDI music using the CDGMVAE framework, an appropriate data representation

is required. Python libraries such as Pretty_midi and music21 were employed to parse the

structural information of MIDI music, and the REMI [33] format is used to encode the music

into a sequence of tokenized events. Each event type represents a temporal change in the musi-

cal sequence, such as a Bar event indicating the beginning of a measure or a Beat event mark-

ing the start of a beat, with corresponding Tempo, Pitch, Velocity, and Duration tokens.

Table 1 outlines the specific meaning of each event type. For the LPD dataset, each music

piece can contain up to five tracks. Pitch, Velocity, and Duration are track-specific events, thus

denoted as Pitch-[Track], Velocity-[Track], and Duration-[Track] to represent note events on

a particular track. An EOS token is appended to the end of each sequence to signify its conclu-

sion, and a PAD token is used for sequence padding, resulting in a total of 923 tokens. During

data loading, we randomly selected continuous measures, setting the number of measures T to

20 and the maximum sequence length per measure L to 128.

For disentangled feature learning, rhythm and key features were selected as the musical

attributes linked to emotions. The rhythm feature is represented as a 16×T dimensional vector,

defined by the number of simultaneous notes played in each beat. Higher note frequencies

within a time span indicate more intense rhythm, reflecting a higher arousal level, whereas

lower frequencies correspond to a more moderate and calm rhythm. The key feature is repre-

sented as a T-dimensional vector, defined by the possible key signatures within each measure.

The keys are categorized into 12 major (e.g., C major) and 12 minor scales (e.g., c minor), with

major keys typically conveying positive emotions and minor keys conveying negative emo-

tions, thus corresponding to the valence dimension of emotions. By leveraging these two fea-

tures within the CDGMVAE model, control over the emotional content of the generated

music can be achieved.

Table 1. MIDI music event information.

Event

name

Event description Token count

Bar Start of a measure 1

Beat Start of a sub-beat within a measure, with each measure divided into 16 beats 16

Tempo Tempo of the music at a given time, ranging from 32 to 224 bpm with a step size of 3

bpm

64

Pitch Pitch of a note, ranging from 21 to 108 88×5

Velocity Intensity of a note, ranging from 1 to 127 with a step size of 2 64×5

Duration Duration of a note, quantized as the length in beats, 1�n�16 16×5

EOS End of sequence 1

PAD Padding token 1

https://doi.org/10.1371/journal.pone.0311541.t001
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4.3 Experimental setup and parameter settings

The CDGMVAE model is developed using the PyTorch deep learning framework and trained

on a server equipped with four NVIDIA Tesla P40 GPUs. For the CDGMVAE network struc-

ture, the number of layers in both the Transformer-XL encoder and decoder is set to 12. Each

self-attention mechanism layer used 8 heads, with hidden layers and latent variable dimen-

sions set to 512 and 128, respectively. To train the Gaussian Mixture Model (GMM) on the

Arousal and Valence emotional dimensions, the number of Gaussian components for each

dimension is set to 2, representing high and low dimensions. The Xavier initialization method

[34] is employed to initialize each Gaussian component’s mean vector, with initial standard

deviation vectors set to a constant value of e-2. During training, a batch size of 16 is used, and

the Adam optimizer is employed for parameter updates, with dynamic learning rate adjust-

ments to facilitate model convergence. For the first 10,000 iterations, a linear warm-up is

applied to increase the learning rate from 0 to 1×e−4. Subsequently, in the next 220,000 itera-

tions, a cosine annealing strategy is used to gradually decrease the learning rate to 5×e−6. The

model achieved convergence after 50 training epochs.

4.4 Experimental analysis

4.4.1 Semi-supervised generation performance. This section evaluates the semi-super-

vised generation performance of the CDGMVAE model by comparing it with three fully

supervised emotional music generation models and three semi-supervised models. The super-

vised models include the Transformer-based EMOPIA [35], the GRU-based EmotionBox [36],

which links music features with emotions, and the Conditional Variational Autoencoder

(CVAE) model [37] that conditions on emotional labels. The semi-supervised models assessed

are SSVAE [38], CCVAE [39], and FaderNets [40]. To ensure a fair comparison, all semi-

supervised models utilized Transformer-XL for the core network structure, with the exception

of SSVAE, which incorporated feature disentanglement mechanisms. Additionally, a music

emotion classification model provided by EMOPIA is trained on labeled data from LPD, using

8-bar music sequences as input. After 50 training epochs, the classification performance

achieved accuracy comparable to that reported in the original paper. Furthermore, a trained

classifier is used to predict the emotional dimensions of Arousal and Valence for all generated

music samples. The trained classifier adopts three-layer fully connected layer with parameters

of 128-50-10-1. Performance is evaluated using accuracy (Acc), precision (Pre), recall (Recall),

and F1 score (F1).

The generation performance of various models under both fully supervised and semi-

supervised methods is first compared. Results are shown in Tables 2 and 3, corresponding to

the Arousal and Valence emotional dimensions, respectively. Tables 2 and 3 indicate that,

Table 2. Performance comparison of supervised and semi-supervised methods in Arousal dimension.

Models Supervised Semi-Supervised

Acc/% Pre/% Rec/% F1/% Acc/% Pre/% Rec/% F1/%

EMOPIA 61.55 58.69 61.52 60.07 -

EmotionBox 60.06 57.35 58.71 58.02 -

CVAE 58.63 55.99 56.11 56.05 -

SSVAE 61.28 58.84 58.73 58.78 73.66 71.94 72.11 72.02

CCVAE 63.74 61.49 61.21 61.35 76.24 75.58 73.07 74.30

FaderNets 68.37 65.21 70.17 67.60 78.65 76.54 78.73 77.62

CDGMVAE 70.52 66.92 73.77 70.18 82.54 79.56 84.60 82.00

https://doi.org/10.1371/journal.pone.0311541.t002
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despite all models being trained in a supervised manner, EMOPIA, EmotionBox, and CVAE

generally perform worse than other generation models. This can be attributed to the limited

contextual learning capabilities of GRU and Transformer compared to Transformer-XL, and

the fact that some models use emotional labels directly, lacking representational power com-

pared to feature disentanglement methods. The results also reveal that models trained with

semi-supervised methods, incorporating additional unlabeled data, significantly outperform

those trained fully supervised across all classification metrics. This demonstrates that VAE-

based generation models and their variants effectively utilize unlabeled data to learn broader

distribution information, with labeled data providing constraints on categorical information.

Overall, CDGMVAE and FaderNets exhibit better generation performance compared to the

other two semi-supervised models. This is because the GMVAE model incorporates label

information and uses Gaussian mixture distributions to separate the latent space into multiple

discrete regions, effectively learning diverse data distributions. In contrast, other semi-super-

vised VAE models rely on additional neural networks to learn categorical information, which

may overly depend on labeled data, limiting the classifier’s ability to fully model data distribu-

tions. Moreover, the CDGMVAE’s enhanced variance and mutual information terms lead to

higher classification accuracy compared to FaderNets. This indicates that CDGMVAE better

learns latent variable representations for each Gaussian component and accurately distin-

guishes between different emotional categories, a point further explored in subsequent

sections.

To further illustrate the effectiveness of semi-supervised learning, we tested the accuracy of

generated music across different amounts of labeled data. Results are presented in Figs 5 and

6, depicting accuracy in the Arousal and Valence emotional dimensions under various super-

vision rates. Here, ρ = M/(M+N), where M denotes the number of labeled data samples and N
represents the total amount of unlabeled data, with 0<α�0.26. Figs 5 and 6 show that

CDGMVAE and FaderNets achieve higher accuracy even with a supervision rate of 0.05. This

suggests that GMVAE can learn extensive data distribution across emotional categories with

only a small amount of labeled data. Additionally, due to the optimization of variance and

mutual information in CDGMVAE, it consistently outperforms FaderNets in accuracy under

all supervision conditions. This confirms that the absence of diversity among Gaussian compo-

nents and insufficient linkage between data and emotional categories can lead to errors in cate-

gory inference, thereby reducing the emotional quality of generated music. For SSVAE and

CCVAE, results indicate that their accuracy is significantly lower than that of GMVAE-based

models across all supervision rates, due to their limited ability to learn meaningful latent repre-

sentations for specific emotions from the classifier. Although SSVAE and CCVAE show a

slightly greater increase in accuracy compared to GMVAE models and have considerable

potential for improvement, this also highlights their over-reliance on labeled data for

Table 3. Performance comparison of supervised and semi-supervised methods in Valence dimension.

Models Supervised Semi-Supervised

Acc/% Pre/% Rec/% F1/% Acc/% Pre/% Rec/% F1/%

EMOPIA 57.84 59.81 57.82 58.80 -

EmotionBox 57.18 59.06 57.66 58.35 -

CVAE 55.27 59.96 57.34 57.15 -

SSVAE 58.12 59.96 59.70 59.32 67.15 68.00 69.61 68.80

CCVAE 60.03 61.67 63.43 62.28 69.30 72.88 65.28 68.87

FaderNets 63.45 64.94 64.64 64.79 71.63 72.44 73.38 72.91

CDGMVAE 66.63 68.93 65.28 67.05 75.87 77.37 75.78 76.57

https://doi.org/10.1371/journal.pone.0311541.t003
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supervision signals. Among them, CCVAE exhibits better performance than SSVAE, likely

due to its feature disentanglement approach, allowing the classifier to learn emotional catego-

ries from rhythm and key features, thereby incorporating the necessary emotional information

into latent variables. In contrast, SSVAE directly learns emotional category information from

the raw input, which can be less effective in capturing subtle emotional details during the

decoding process.

Fig 5. Accuracy of generated music in the Arousal dimension.

https://doi.org/10.1371/journal.pone.0311541.g005

Fig 6. Accuracy of generated music in the valence dimension.

https://doi.org/10.1371/journal.pone.0311541.g006
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In summary, the music generated by all models is more easily distinguishable in the Arousal

dimension compared to the Valence dimension. This is attributed to the more universal and

direct nature of rhythm features, which can effectively capture latent representations from raw

input data. In contrast, key features require complex music theory inference, which the models

may not adequately possess. The experiments also demonstrate that rhythm features are more

closely related to the Arousal dimension and are better at influencing the activity level of the

music. The Valence dimension involves emotional polarity, which cannot be fully represented

by key features alone. This finding aligns with conclusions drawn from the

EmotionBox model.

4.4.2 Variance penalty and mutual information enhancement performance analysis.

This subsection discusses how the variance and mutual information penalty terms in the

GMVAE evidence lower bound affect the latent space and demonstrates that appropriate cor-

rection of these biases enables the model to perform reasonable emotional category inference

and generation for music data. Initially, we compared the trends in variance of Gaussian com-

ponents and their impact on emotional accuracy of generated music under varying penalty

weights (i.e., α values). The experimental results are illustrated by the blue lines in Figs 7 and 8.

To provide a clearer view of the variations among Gaussian components, we used the T-SNE

dimensionality reduction algorithm to project high-dimensional latent variables into a two-

dimensional space for visualization. The results are shown in Fig 9.

As analyzed in Section 3.2, lower values of α reduce the influence of the variance term on

the overall objective function, resulting in higher variance and classification accuracy. Corre-

spondingly, the distances between Gaussian components in the latent space visualization

increase. This enhances the model’s ability to generate target emotions in the music effectively.

However, when α�0.2, while the distances between Gaussian components reach their maxi-

mum, the accuracy of emotional classification decreases. The latent space visualization reveals

that unnecessary cluster centers form between the two Gaussian components, leading to more

frequent misclassifications, with data from one class being assigned to another cluster. This

issue arises because excessive penalty strength can cause overfitting, preventing the model

Fig 7. Impact of variance penalty and mutual information enhancement on Arousal dimension.

https://doi.org/10.1371/journal.pone.0311541.g007
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from capturing the overall data distribution and resulting in information loss. Therefore,

based on experimental results, a α value of 0.2 is chosen to optimize model performance. Fur-

thermore, the red lines in Figs 7 and 8 demonstrate the performance changes after enhancing

mutual information on top of the variance penalty. With the same weight control, optimizing

mutual information results in higher variance and accuracy, and at lower α values, mutual

information enhancement compensates for insufficient variance penalty. Fig 9 shows that

Fig 8. Impact of variance penalty and mutual information enhancement on Valence dimension.

https://doi.org/10.1371/journal.pone.0311541.g008

Fig 9. Visualization of latent space under the influence of variance penalty and mutual information enhancement.

https://doi.org/10.1371/journal.pone.0311541.g009
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after enhancing mutual information, the distances between different clusters become more

pronounced, and within-cluster distances become more compact.

4.4.3 Performance analysis of feature disentanglement. For emotion-based music gen-

eration, we incorporated a disentanglement mechanism into the CDGMVAE model, learning

the emotional representations of rhythm and key features in the Arousal and Valence dimen-

sions, respectively. This section evaluates the impact of changing feature representations on

the generated music. Ideally, the two learned feature representations should be independent.

For instance, altering the rhythm feature representation should change the rhythm pattern of

the generated music, while the key feature remains unchanged. To validate the effectiveness of

disentanglement learning, several comparison models were constructed and evaluated under

the same experimental settings:

1. EC-VAE [41]: This model uses a bidirectional GRU-based VAE to disentangle pitch and

rhythm representations from a single encoder’s overall latent variable, and then recon-

structs rhythm features and the original input using rhythm and global decoders,

respectively.

2. GAN-CVAE [42]: This model defines a latent space where the latent representation is inde-

pendent of feature values. It learns a generalized latent variable representation devoid of

any feature information through adversarial mechanisms, with each controllable feature

divided into different categories. These categories are used as conditions to generate music

with specific features, and the model is also built using GRU.

3. MuseMorphose [43]: Similar to GAN-CVAE, this model uses Transformer for the main

network, focusing more on overall dependency information. It also explores different ways

to inject latent variables and feature information into the decoder, effectively utilizing

known conditional information.

4. Vanilla CDGMVAE: A simplified version of our model, inspired by the design in [44],

which includes only the GMVAE evidence lower bound without additional loss function

constraints.

5. CDLSTM-GMVAE: A variant of our model using bidirectional long short-term memory

(BiLSTM) networks to construct the GMVAE model.

For feature controllability evaluation, we performed experiments where pairs of samples

from the test set were input into the model’s encoder. Each pair of samples, denoted as A and

B, had their latent variable representations for one feature swapped while keeping the other

feature unchanged. The generated music is then compared with the original samples in terms

of feature similarity. The similarity is assessed by calculating the cosine similarity between the

generated samples and A, B after feature swapping, as defined in Eq (22).

simða; bÞ ¼ ha; bi=kakkbk ð22Þ

where a and b denote the feature vectors of generated and original samples, respectively, while

h�, �i represents the dot product, and k�k signifies the norm of the feature vector.

Figs 10 and 11 display bar charts illustrating the variation in feature similarity between the

generated samples and original samples A and B after exchanging rhythmic and melodic fea-

tures, respectively. It is evident from the figures that the CDLSTM-GMVAE and CDGMVAE

models effectively disentangle and separate features. Consequently, altering the latent variables

of one feature does not significantly impact another feature. When substituting the latent vari-

ables of sample A with those of sample B, the generated music closely mimics the rhythmic

and melodic patterns of sample B, resulting in higher feature similarity values. Conversely,
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when proper feature constraints are absent, such as in the Vanilla CDGMVAE and EC-VAE

models, although the similarity between features of modified sample A and sample B is high,

changes in one feature affect the other, leading to a reduced similarity with the original sample

A. This indicates that the rhythmic and melodic feature representations have not been effec-

tively disentangled.

Additionally, for the GAN-CVAE and MuseMorphose models, the effect of feature control

is less pronounced compared to other models. The feature similarity with original sample A

remains high, while similarity with substituted sample B is lower. This suggests that defining

Fig 10. Feature similarity between generated samples and original samples after exchanging rhythmic feature

representations.

https://doi.org/10.1371/journal.pone.0311541.g010

Fig 11. Feature similarity between generated samples and original samples after exchanging melodic feature representations.

https://doi.org/10.1371/journal.pone.0311541.g011
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unrelated latent spaces for features and segmenting musical features into categorical intervals,

while using generalized latent variables and categorical feature labels for music generation con-

trol, does not yield satisfactory results. The models tend to learn general data distributions and

may overlook subtle feature information. In contrast, the latent space in CDGMVAE directly

reflects semantic information related to features. Using latent variables representing specific

features provides more detailed information, allowing the generation model to control the out-

put more precisely. Thus, for emotion-driven music generation models controlled by features,

it is crucial not only to have effective feature representations but also to ensure that these rep-

resentations are independent and do not interfere with one another.

Through the above experimental analysis, the proposed emotion-driven music generation

model, CDGMVAE, successfully disentangles rhythmic and melodic feature representations

related to emotions from the original music sequences. It effectively manipulates these feature

representations to achieve desired emotional variations in the Arousal and Valence dimen-

sions. (More experiment details can be seen in the supplementary material [S1 Text])

4.4.4 Interpolative emotion transformation. In the previous sections, the disentangled

control of rhythmic and melodic features for music emotion transformation is assessed by

exchanging features between two pieces of music. To fully leverage the discrete latent space of

CDGMVAE, we employed a feature disentanglement mechanism combined with interpolation

methods to enable mutual transformation of musical emotions by mapping the latent variables

of the current music to the latent space of the target emotion. When transforming between

high and low dimensions of a specific emotional dimension, the difference between the Gauss-

ian component means μi,target in the target emotion space and the Gaussian component means

μi,source in the current emotion space is first computed. This difference is then added to the

latent variable zi,source of the current emotion to obtain the latent variable zi,target corresponding

to the target emotion. Finally, this latent variable is input into the CDGMVAE decoder to gen-

erate a new sample. The entire process is described by Eq (23):

zi;target ¼ zi;source þ l � ðmi;target � mi;sourceÞ ð23Þ

where i denotes the emotion dimension to be transformed, and the parameter λ2[0,1] controls

the degree of closeness between the current and target emotions. For clearer visualization of

emotion changes in this experiment, λ is set to 1.

Using the aforementioned method, we conducted experiments on the test set to assess

music emotion conversion. Based on high and low-dimensional emotion spaces composed of

Arousal and Valence, we performed conversions among four emotions: happy, tense, sad, and

calm. The final results were evaluated for accuracy using the music emotion classification

model EMPOIA, as shown in the confusion matrix in Table 4.

Overall, transforming latent variables to target emotion clusters using interpolation

achieves a certain degree of emotion conversion. This indicates that the Gaussian components

for each emotion are well-separated and that each emotion is accurately represented through

latent variable information. However, the overall prediction accuracy is not very high,

Table 4. Evaluation of the accuracy of music emotion transfer.

T-Happiness T-Tension T-Sadness T-Calmness

S-Happiness - 60.84% 59.70% 71.56%

S-Tension 63.45% - 67.81% 57.63%

S-Sadness 58.29% 65.48% - 64.80%

S-Calmness 70.26% 56.21% 62.35% -

https://doi.org/10.1371/journal.pone.0311541.t004
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influenced by the EMPOIA classification model, which operates on four emotion categories

rather than predicting high and low dimensions of individual emotion dimensions. The exper-

imental results also show that the accuracy of emotion conversion in the Arousal dimension is

higher compared to the Valence dimension, with the lowest accuracy observed for conversions

across both dimensions. This is consistent with the conclusions in Section 4.4.1, indicating

that music is more easily distinguished in the Arousal dimension than in the Valence dimen-

sion, and conversions across both dimensions are more challenging. Among the four emo-

tions, the conversion accuracy between happy and calm is the highest, suggesting a high

similarity between these two emotions, which allows for effective conversion through changes

in rhythmic patterns alone.

5. Conclusion

This paper presents the Emotion-Driven Music Generation Model, CDGMVAE, which uti-

lizes GMVAE for semi-supervised clustering inference during training. Compared to fully

supervised generative models, CDGMVAE can learn richer data distributions from a small

amount of labeled data, effectively mitigating the issue of insufficient emotional music data

and enhancing the model’s ability to infer and generate different emotional music categories.

To address the mode collapse problem inherent in GMVAE, we analyzed the evidence lower

bound and identified the variance regularization term and mutual information suppression

term as key contributors. Therefore, we introduced penalties and enhancements for these fac-

tors. Experimental results demonstrate that this approach ensures better separation of different

emotions in the latent space, strengthens the correlation between music and emotional infor-

mation, and improves the robustness and generalization of the semi-supervised model. Given

that existing music emotion generation models lack interpretability of emotions, we propose

establishing connections between emotions and musical rhythmic and melodic features. By

introducing a feature disentanglement mechanism to learn emotional representations of these

features and incorporating adversarial loss to enhance feature disentanglement, we achieve

controlled manipulation of music emotion transformations. Additionally, we employed Trans-

former-XL as the encoder and decoder for GMVAE, which effectively learns longer contextual

dependencies in music sequences, further enhancing the realism of the generated music.
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