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Abstract

Existing emotion-driven music generation models heavily rely on labeled data and lack
interpretability and controllability of emotions. To address these limitations, a semi-super-
vised emotion-driven music generation model based on category-dispersed Gaussian mix-
ture variational autoencoders is proposed. Initially, a controllable music generation model is
introduced, which disentangles and manipulates rhythm and tonal features, enabling con-
trolled music generation. Building on this, a semi-supervised model is developed, leveraging
a category-dispersed Gaussian mixture variational autoencoder to infer emotions from the
latent representations of rhythm and tonal features. Finally, the objective loss function is
optimized to enhance the separation of distinct emotional clusters. Experimental results on
real-world datasets demonstrate that the proposed method effectively separates music with
different emotions in the latent space, thereby strengthening the association between music
and emotions. Additionally, the model successfully disentangles and separates various
musical features, facilitating more accurate emotion-driven music generation and emotion
transitions through feature manipulation.

1. Introduction

Music, as a significant form of artistic expression, reflects a series of human-specific cognitive
patterns. Similar to natural language, music conveys content and emotions through sequential
information. Unlike natural language, however, emotion is a crucial component of the infor-
mation conveyed by music [1]. The emotions evoked by music are not only closely related to
its inherent structure but are also induced by the sequential propagation of musical elements
over time. Therefore, the automatic generation of music must not only adhere to the rules of
music theory but also incorporate emotional elements to inspire creativity [2]. Emotion-driven
music generation has wide applications, including the creation of background music for spe-
cific scenes in films or games, and in music-based psychotherapy [3].
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In recent years, significant advancements have been made in automatic music generation
technology, with numerous generative models capable of effectively learning the structural fea-
tures of music to produce rich musical samples [4]. However, fewer studies have focused on
incorporating emotional elements as a condition for music generation. A typical approach to
emotion-driven music generation involves using sequence-to-sequence (Seq2Seq) models,
such as Recurrent Neural Networks (RNNs) and Transformers, to simultaneously encode both
music sequences and emotion labels [5]. This allows the models to learn the feature representa-
tions of specific emotions, which are then decoded to generate music corresponding to the tar-
geted emotions. Alternatively, emotion classifiers may be used post-generation to guide the
emotional content of the music. Zhao et al. [6] constructed an emotion-driven music genera-
tion model using a biaxial LSTM architecture [7] combined with a Lookback module. Ferreira
et al. [8] encoded music as a series of textual events and utilized multiplicative LSTM networks
to create music with specific emotional attributes. To further enhance the model’s ability to
capture long-term dependencies in the structural context of music, pre-trained Transformer
models were employed in the works of Hung et al. [9] and Sulun et al. [10] to achieve emo-
tion-driven music generation. In these models, emotional information, like the input musical
events, is embedded as tokens within the model. To obtain better semantic representations of
emotions, some studies utilized Variational Autoencoders (VAEs) [11] to learn emotion label
embeddings and model the latent space of the data [12]. This approach maps the data distribu-
tion into a low-dimensional continuous space, from which diverse and continuous samples
can be generated. Grekow et al. [13] proposed using Conditional Variational Autoencoders
(CVAE) to generate music with specific emotions, leveraging Gated Recurrent Units (GRU)
[14] to construct the encoder and decoder. Huang et al. [15] further combined CVAE with
GANS s to generate more accurate emotional music. In this model, a discriminator distinguishes
the authenticity of the music generated by the CVAE decoder, while an additional emotion
classifier determines the emotional category of the output music, thus aligning the generated
music more closely with the target emotion. However, the aforementioned methods rely on
fully supervised training and generate emotion-specific music directly based on labels, which
presents two significant challenges. First, fully supervised training excessively depends on
labeled data, yet the music domain lacks abundant standardized emotional datasets. Moreover,
emotion is highly subjective, leading to considerable label noise during data annotation. Sec-
ond, emotion labels alone are insufficient to fully capture the emotional characteristics of
music. Generating music directly from labels overlooks the intricate relationships between
emotions and musical elements, rendering the generated music less interpretable in terms of
its underlying emotional representation.

Recent research, such as Music FaderNets [16], utilized Gaussian Mixture Variational
Autoencoders (GMVAE) [17] in a semi-supervised approach to learn latent space representa-
tions of note and rhythm features along the Arousal dimension of Russell’s two-dimensional
emotion space [18]. These features were then employed to control the Arousal dimension,
enabling the generation of emotion-specific music. GMVAE extends the unimodal Gaussian
distribution in VAE to a mixture of Gaussians with multiple components, allowing the latent
space to be partitioned into distinct clusters. This enables direct inference of data categories
from latent variables without the need for additional neural networks to learn category infor-
mation, demonstrating high performance in semi-supervised generative tasks. Luo et al. [19]
proposed a GMVAE-based audio music generation model that disentangled and learned latent
spaces for different categories of pitch and timbre. When generating music with specific pitch
or timbre, the corresponding latent variables were resampled from the target category’s latent
space and decoded into the output. Tan et al. [20] also employed GMVAE in the Music Fader-
Nets model to achieve controllable generation of MIDI music notes and rhythms. However,
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GMVAE has certain limitations, including the potential for mode collapse [21]. When data is
overly similar, the Gaussian components may not separate well during training, making it difficult
to distinguish between different categories, thus impacting the quality of the learned representa-
tions and generated outputs. Furthermore, most existing VAE-based music generation models
rely on Recurrent Neural Networks (RNNs) as encoders and decoders [22]. Given that music is a
long-sequence data type, RNNs are limited in their ability to model such sequences, often leading
to the loss of contextual dependencies and issues like gradient vanishing or explosion.

To address these challenges, this paper proposes a semi-supervised emotion-driven music
generation model based on Category-Dispersed Gaussian Mixture Variational Autoencoders
(CDGMVAE). This model is designed to learn the influence of different musical features on
emotions, generate music with long-term dependency structures and specific emotions, and
achieve emotion transitions by manipulating musical features. The specific contributions of
this paper are as follows:

> A semi-supervised emotion-driven music generation model based on GVAE with variance
penalties and mutual information enhancement is proposed. This model ensures better separa-
tion of different emotional music in the latent space, strengthens the correlation between
music and emotional information, aligns the generated music more closely with the target
emotion, and improves the robustness and generalization ability of the semi-supervised model.

> A feature disentanglement mechanism constrained by independent encoder constraints
and generative adversarial loss functions is proposed to separate and learn the latent vari-
able representations of rhythm and tonal features from music sequences. By manipulating
these two feature representations, the generation and transformation of specific emotional
music can be achieved.

> The Transformer-XL network [23] is introduced as the encoder and decoder for GMVAE.
Its segment-level recurrence mechanism and relative positional encoding effectively capture
the longer contextual dependencies in music sequences and enhance the model’s ability to
focus on different features, thereby improving the model’s expressiveness.

2. Disentangled controllable generation with Variational
Autoencoders

Variational Autoencoders (VAEs) combine latent variable models with deep generative mod-
els, offering powerful representation and generation capabilities. By incorporating a disentan-
glement representation mechanism, VAEs can learn representations of multiple features,
imbuing latent variables with more meaningful semantic interpretations. Due to the manipula-
bility of the latent space, VAEs are effective models for achieving controllable music genera-
tion. Building on the principles of the VAE model, this paper proposes a controllable music
generation model that manipulates latent variable representations to alter the structure of
music, referred to as Control-VAE. The model structure is illustrated in Fig 2, comprising an
encoder, a latent space, and a decoder. Given an input sequence x = [Bary,Bar,,- - -,Bary] con-
taining T consecutive bars of music, the encoder g4(z|x) learns the latent variable representa-
tions z of each bar through posterior inference. These representations are then used by the
decoder pg(x|z) to reconstruct the input data, producing a new sample X. The model can be
optimized by maximizing the evidence lower bound (ELBO) of the log-likelihood function p
(x), as shown in Eq (1):

log p(x) > E, ,, [log py(x2)] = Dy [q, (2[x)[Ip(2)] = Lyiso (1)
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Dglobal X

Fig 1. Structure of music feature disentanglement.

https://doi.org/10.1371/journal.pone.0311541.g001

where E[-] denotes the expectation, representing the need to maximize the probability of gen-
erating real data, which can be achieved by minimizing the reconstruction loss between the
input |x and the output X. The term D [-||-] represents the KL divergence that needs to be
minimized between the latent distribution g4(z|x) and the prior Gaussian distribution p(z).

To achieve disentangled and controllable generation of rhythm and tonal features in music,
this paper proposes a feature disentanglement mechanism constrained by independent encod-
ers and adversarial loss functions, as depicted in Fig 1. Considering the rhythm features f, and
tonal features f; of music, two identical encoder networks E, and E; were trained separately to
learn the latent variable representations z, and z; of the rhythm features f, and tonal features f;
from the original music sequence. Two separate local decoders D, and Dy were then used to
predict the rhythm features £, and tonal features f;, with the training objective being to mini-
mize the error between the real features and the predicted features. Additionally, adversarial
training is incorporated into the model based on the concept of GANs. By feeding inputs z,
and z; as the input to D, and Dy, incorrect information is fed back to each decoder to produce
false predictions f, and f,, thereby enabling D, and Dy F to adversarially counteract each other
during training. This ensured that only the correct feature predictions were made based on the
corresponding latent variable inputs, effectively removing irrelevant feature information from
each latent variable. Finally, the two latent variables were merged (i.e., z = Concat|z,,z;]) and
input into the global decoder Do, to generate the complete music sequence, which is opti-
mized using the ELBO. According to the proposed method, the objective loss function of the
Control-VAE model can be defined as:

Lo = ]Eq@)r(z,|x)qc§k (z4]%) log py(x|z,,2,)] — L;(L + Ly (2)

where £}, = Dy, [4,,(z,1%)[|p(z,)], i represent the rhythm or tonal features, and Lp;, represents

the disentanglement loss, defined as follows:
EDis - ]qu7 (z,|x)qd)k (zx|x) [log p(p, (fr|zr)pq)k (fk|zk)]

(3)
By, o, o [108(1 = p,, (£]2))(1 = p,, (£]2,))]

where the first term represents the loss when correctly predicting the features, and the second
term represents the adversarial loss.
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Fig 2. Schematic of the CDGMVAE model structure.
https://doi.org/10.1371/journal.pone.0311541.9002

3. Category-dispersed Gaussian mixture variational autoencoder

The structure of our method CDGMVAE is illustrated in Fig 2 and comprises three main
modules: (1) The encoder module, which receives the music input sequence segmented by
bars and uses a Transformer-XL encoder to learn the mean and variance of the latent distribu-
tion; (2) The decoder module, which reparametrizes the latent variable representations sam-
pled from the latent distribution and uses a Transformer-XL decoder to reconstruct the music
sequence; and (3) The Gaussian mixture module, which employs a Gaussian mixture model
(GMM) [78] to learn the categorical information of latent variables via semi-supervised learn-
ing, thereby clustering the music data by emotion.

3.1 Semi-supervised Gaussian mixture variational autoencoder

GMVAE integrates a VAE with a GMM, enabling the extension of the continuous latent space
of a VAE into a discrete space with multiple Gaussian components. Each Gaussian component
represents a cluster that contains latent variable representations of the same category. The
CDGMVAE model leverages this property to infer the emotional category of the latent variable
representations of music features using a semi-supervised approach, projecting them onto the
corresponding Gaussian components. During the generation phase, latent variables are sam-
pled from the Gaussian component of the target category, and the corresponding emotional
music is generated by decoding these latent variables. The semi-supervised GMVAE can guide
the model to learn the feature representations and boundaries of each category using a small
amount of labeled data as supervision signals, while the unlabeled data provides a broader data
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Fig 3. Probabilistic graphical model of GMVAE.
https://doi.org/10.1371/journal.pone.0311541.9003

distribution. By leveraging the labeled data, similar samples can be grouped into the same cate-
gory without the need to introduce additional neural network classifiers.

In implementation, the GMVAE can be divided into an inference network and a generative
network, with its probabilistic graphical model illustrated in Fig 3. For the inference network,
given the music input sequence x, the encoder learns the latent variable representations z of
any feature and introduces a classification variable y to infer the emotional category z. For the
generative network, latent variables z are sampled from the Gaussian component of the target
category based on the classification variable y, and the decoder reconstructs the input data x
based on these latent variables. The generative process can be defined by the joint probability
distribution as shown in Eq (4):

Po(x,2,y) = py(x|2)p(2ly)p(y) (4)

where p(y) = Cat(y|1/K) represents the categorical distribution with K categories. p(z|y) =
N(z|p,, 0;) denotes the latent distribution of a specific Gaussian component within a category,
characterized by a learnable mean y, and variance 7. q(x|2) is a neural network parameter-

ized by 0, which is responsible for decoding and generating sample data. For the inference pro-
cess, GMVAE approximates the true posterior distribution p(z,y|x) through variational
inference gy4(y|x), similar to VAE. According to the mean-field approximation theory [24],
g4(y|x) can be further factorized as shown in Eq (5):

q,(2,71%) = q,(2[x)q, (y]x) (5)

where q,(z|x) = N(z|u,, 62) represents the latent distribution learned by the encoder network
parameterized by ¢, which gradually approximates the Gaussian distribution p(z|y) under the
corresponding category during training. Similarly, g4(y|x) is used to learn the categorical

PLOS ONE | https://doi.org/10.1371/journal.pone.0311541 December 30, 2024 6/23


https://doi.org/10.1371/journal.pone.0311541.g003
https://doi.org/10.1371/journal.pone.0311541

PLOS ONE

Semi-supervised emotion-driven music generation model based on gaussian mixture variational autoencoders

information from the input x, but this requires an additional neural network for fitting,
thereby introducing more parameters to the model and increasing dependency on labeled
data. To mitigate this, p(y|z) can be approximated as g4(y|x) following the derivation process
in VaDE [25], as shown in Eq (6):

L~ plely)ply)
W) =E b0l ~* <) = (6)
q o(en P12 NZ yzlp(z\y)P(y)

This method leverages the properties of GMM and uses Bayesian inference to determine
which Gaussian component’s latent distribution generates the data, thus identifying its cate-
gory without introducing additional neural networks. Finally, Eq (6) is approximated through
Monte Carlo estimation of the expectation g,(y|x), where N represents the number of samples
used for Monte Carlo estimation. In practice, the mean y, and variance ¢} of each Gaussian

component can be initialized using data with known categories. These parameters are then
refined during the training process until they accurately reflect the categorical information.
Unlabeled data are also utilized to update the parameters of the Gaussian components, further
enhancing the model’s ability to learn categories.

Similar to VAE, GMVAE optimizes model parameters by maximizing the ELBO. Based on
the aforementioned generative and inference processes, the log-likelihood function log p(x)
can be defined as shown in Eq (7):

pH(X,Z,}/)] _ (7)

1 >E =
Og p(x) = qv (z,y|x) ELBO

45 (2]%) [

Under the semi-supervised approach, which uses both labeled and unlabeled data, Lg; 30
can be further expanded as shown in Eq (8):

L7, unsupervised
Liipo = ]qu(z\x) [logpe(xlz)] - { )

Ly, supervised
L™ = By, 0 [KLg, (20l (z[y)]] + KL[g, (y[x)[[p ()]

L = KL[q,(zlx) [p(z]y)]

whereE, ) [log p,(x|2)] represents the probability of generating real data, which can be

unsup

achieved by minimizing the cross-entropy reconstruction loss. £,;"* represents the KL diver-
gence loss under unsupervised learning, which requires minimizing the KL divergence
between the latent distribution learned by the encoder and the latent distribution under the
true category, as well as between the inferred posterior distribution of the category and the
assumed uniform categorical distribution. £} represents the KL divergence loss under super-
vised learning, where only the former KL divergence needs to be minimized.

3.2 Variance penalization and mutual information enhancement

When applying the GMVAE model to perform clustering inference on data, high data similar-
ity and an insufficient number of Gaussian mixture components can hinder the learning of
more complex distributions. In the latent space, each Gaussian component may struggle to
separate during training, often resulting in components with closely aligned means and vari-
ances, and in extreme cases, multiple Gaussians may collapse into a single Gaussian. This phe-
nomenon, known as mode collapse, is a significant challenge for GMVAE in distinguishing
between different categories of data.

PLOS ONE | https://doi.org/10.1371/journal.pone.0311541 December 30, 2024 7/23


https://doi.org/10.1371/journal.pone.0311541

PLOS ONE

Semi-supervised emotion-driven music generation model based on gaussian mixture variational autoencoders

To alleviate the mode collapse issue in GMVAE, we further analyze the ELBO from Section
3.1 and identify the KL divergence regularization term as a primary contributor to this prob-

lem. Therefore, the KL divergence loss term KL, = E, ., [KL[g,(2|x)[|p(z]y)]] in the latent

distribution £ is re-expressed based on Eq (8) as:

KL=) qo@|x)]E%(le)1og% 9)
Qo@|x) |

log—————————
(%) NN
I (el

K A . ~
where E, .\ = Zy:1 q,(y|x) = 1 denotes the Gaussian component under category , char-

acterized by mean g, and variance o7. Assuming the variances of all Gaussian components are

equal, the Gaussian distribution’s probability density function p(z|y) can be expressed as:

plely) = — exp(—”;‘:”) (10)
1/27w§ g,

Let H;: Pz 5)%U™ represent f(x, 7, z), and combining with Eq (10), it can be represented

as:

() a0l - 1))

\/2mo;, y 521

f(xvjjvz) =

- expl— - (2 —E, (oit,)]
2n0_§ 20—5 95 (%) Py
1 2 2
- exp|— 20?2 (B oty = Eg iyl (11)
¥

The first factor of the product can be regarded as the average Gaussian component across
all categories p(z|y), while the second factor represents the variance of the means of all Gauss-
ian components, which measures the dispersion of these components. Combining Eqs (9) and
(11), KL, can be transformed, as shown in Eq (12):

1
KL, = KL[gq,(z|x)[|p(z]y)] + 292 (qu(ﬂx):u}?/ - Ejo(ﬂx):uy) (12)
y

When maximizing GMVAE’s ELBO during training, the variance term factor in KL, also
gets minimized, causing the variance of the means of Gaussian components to shrink, leading
to tighter connections between Gaussian components in the latent space and impairing the
model’s ability to correctly distinguish between categories, thereby causing mode collapse. To
reduce this contraction trend, we introduce a penalization hyperparameter o, a€[0, 1] before
the variance term in KL_:

In addition to improving the separability of Gaussian components to enhance clustering
accuracy, establishing a strong connection between the input data and category information is
essential. However, research has shown that VAE’s ELBO has an information suppression
term that weakens the relationship between input data and latent variables [26]. This bottle-
neck also exists between the input data and category information in GMVAE. During model

PLOS ONE | https://doi.org/10.1371/journal.pone.0311541 December 30, 2024 8/23


https://doi.org/10.1371/journal.pone.0311541

PLOS ONE

Semi-supervised emotion-driven music generation model based on gaussian mixture variational autoencoders

training, the average ELBO of a batch of data is typically computed for gradient updates.
Therefore, combined with Eq (12), Lg; o can be expanded as shown in Eq (13):

Liipo = E[Eqy, 1 [log py(x|2)]] = KL, — KL[q, (y|x)[p(y)] (13)

According to the definition of mutual information concerning KL divergence [27], the
mutual information MI(y,x) between input data x and category information y can be expressed
as shown in Eq (14):

Ml(y,x) = E,[KL[g,(y|x)[lp(»)]] — KL[g, (y|x)[lp(»)] (14)
Therefore, Lg; po can be rewritten as shown in Eq (15):

Lyipo = EL[Ey 1 [log py(x]2)] — KL.] — MI(y, x) — KL[g,(»)[[p(y)] (15)

This shows that during training, the mutual information between input data and category
information is minimized, reducing the dependence between these two random variables and
diminishing clustering accuracy. Therefore, we propose a joint optimization of ELBO and
mutual information, defined as:

Lypo + My, x) = E,[E, ., [log p,(x|2)] — KL.] — KLq, (ylx)[[p(»)] (16)

This method still allows for optimizing the learning of the categorical distribution through
KL[g,(y|x)|[p(y)], where q,(y) = E,[q,(y|x)] represents the discrete marginal probability dis-
tribution of g4(y|x), which can be averaged over data points within a batch, reducing the differ-
ence between the categorical distribution across all data points and the prior distribution.

Finally, combining variance penalization and mutual information optimization yields the
unsupervised KL divergence loss for GMVAE, as shown in Eq (17):

unsuyj o p
L& = KLq, (210 llp(2ly)] + 55 (B gty = k) + KL, 012)|p(7)] (17)
y

These two enhancement methods ensure that data from different categories are better sepa-
rated in the latent space, while data from the same category are more compactly grouped.

3.3 CDGMVAE objective function

In supervised learning, the loss function should include not only the corresponding KL diver-
gence loss but also a classification cross-entropy loss function to guide the learning of catego-
ries. The classification loss is defined as shown in Eq (18):

K
‘Elabel = _Zyc logqﬁb(yc|x) (18)
c=1

where K is the total number of categories, y. represents the true label indicating whether the
sample belongs to the cy, category, and g4(y |x) is the predicted probability for the ¢y, category.
Additionally, by integrating the disentanglement loss Lp;, discussed in Section 2, we can
derive the final objective loss function for the CDGMVAE model. Given the latent variable z;
of the music feature fand the category variable y;, the objective loss function can be described

PLOS ONE | https://doi.org/10.1371/journal.pone.0311541 December 30, 2024 9/23


https://doi.org/10.1371/journal.pone.0311541

PLOS ONE

Semi-supervised emotion-driven music generation model based on gaussian mixture variational autoencoders

by Eq (19):
Lepomvar = E 4oy (150, (10 [log p,(x|z,,2,)] + L,
L™, unsupervised
_Z . . (19)
i | LF = L4, supervised
3.4 Encoder and decoder

Traditional VAE models and their variants often use RNNs to construct the encoder and
decoder. However, due to RNN§’ limited modeling capabilities for long sequence data, the
Transformer architecture [28] has also been considered in conjunction with VAE models for
music generation, as seen in models like Transformer-VAE [29] and MuseMorphose [30].
However, the Transformer’s input sequence length is still constrained by memory, requiring
self-attention calculations over the entire sequence each time. To address this issue, the
CDGMVAE model adopts the Transformer-XL network structure, as shown in Fig 4. Trans-
former-XL leverages segment-level recurrence and relative positional encoding to learn the
contextual structure across more extended musical bars.

In this model, the music sequence is divided into multiple segments of equal length,
denoted as x = [Bary,Bar,,- - -,Bary], where T represents the number of bars in each segment.
Leth' | € R be the hidden state of the (7-1), bar in the n-1 layer of self-attention, where L
is the sequence length of each bar, and d is the dimension of the hidden state. When calculating
the hidden state k" of the 7y, bar in the ny, layer, the model considers reusing the hidden state
from the previous bar. The calculation process is shown in Eq (20):

h'=' = Concat[SG(h'~}) o ']
KV = W R WE R W (20)
h* = Transformer — layer(Q*, K", V")

where SG(-) indicates that the gradient of 4"~} will not be updated when calculating the next
bar, Concat(-) represents the concatenation of the two hidden state matrices along the bar
length, and W, x v are the learnable model parameters. Unlike the Transformer, during the
attention score calculation, the key-value matrices K” and V" depend on the hidden state h"~!
of the previous bar in the n-1 layer (as shown by the blue lines in Fig 4) and the hidden state
h'~" of the current bar in the same layer (as shown by the gray lines in Fig 4). This method
allows the model to cache only the hidden state of the previous bar in memory, establishing a
recurrent connection between segments and extending contextual information across all bars.

Transformer models utilize positional encoding to learn the order and positional relation-
ships within an input sequence. However, this positional encoding is absolute, meaning that
the encoding information for the same position across different bars is identical, potentially
causing the model to misinterpret the sequence. To address this issue, Transformer-XL intro-
duces a relative positional encoding mechanism, incorporating a parameter-free sinusoidal
encoding matrix RER™“, Each row of this matrix represents the relative distance encoding
between two positions. When computing hidden states, this relative distance can be dynami-
cally injected into the attention scores, allowing the model to better distinguish between differ-
ent positions.

When integrating Transformer-XL with the GMVAE model, the goal is to learn the latent
variable representations of the data from the hidden states output by the encoder. According
to GMVAE’s definition of latent distribution q(z|x), the model first learns the mean and
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Fig 4. Structure of the CDGMVAE model based on Transformer-XL.
https://doi.org/10.1371/journal.pone.0311541.9004

variance of this distribution, then samples the latent variables. This process can be described
by Eq (21):

hioot = Avgpool([hf17 hY,, - ,hfL})
u = h"'w,, logs® = h*'W, (21)
z=pu+eO®ae~ N(0,I)

where h*" € R represents the overall hidden state of the Ty, bar, obtained by average pooling
across all positions’ hidden states. y,0€ R™’ denotes the mean and standard deviation vectors
of the latent distribution learned from the hidden states, with I representing the set dimension
of the latent variable, and WH,WJGR‘M is the parameter matrix. z€R"*'is the sampled latent
variable from the learned distribution using the reparameterization trick. During the decoding
and generation phase, the latent variables are transformed through a linear layer to match the
unified model dimension. They are then added to the hidden states output from the previous
layer before being input into the subsequent self-attention layer. This method ensures that the
latent variable information is effectively utilized to generate the final music sequence.

4. Experimental results and analysis
4.1 MIDI music dataset

In this study, the publicly available Lakh Pianoroll dataset (LPD) [31] is utilized, comprising
174,154 multi-track MIDI music sequences in piano roll format. We selected the LPD-5-full
version, excluding sequences with duplicate content, those lacking piano tracks, and those
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with a total duration of less than one minute. This process resulted in a dataset of 91,969
sequences, which is split into training, validation, and test sets in an 8:1:1 ratio. Additionally,
the dataset is matched with the Million Song Dataset (MSD) [32], enabling the retrieval of
emotional metadata for 23,967 music sequences using the metadata provided by MSD and the
API services from the Spotify music community (developer.spotify.com). These sequences
were annotated in the Russell emotional space with Arousal and Valence values, which were
then quantified into two emotional dimensions (high or low) and labeled as A0, A1, V0, and
V1, where 0 represents low and 1 represents high. By combining these labels, four correspond-
ing emotional categories were defined: happiness, tension, sadness, and calmness.

4.2 Music data representation

To model MIDI music using the CDGMVAE framework, an appropriate data representation
is required. Python libraries such as Pretty_midi and music21 were employed to parse the
structural information of MIDI music, and the REMI [33] format is used to encode the music
into a sequence of tokenized events. Each event type represents a temporal change in the musi-
cal sequence, such as a Bar event indicating the beginning of a measure or a Beat event mark-
ing the start of a beat, with corresponding Tempo, Pitch, Velocity, and Duration tokens.

Table 1 outlines the specific meaning of each event type. For the LPD dataset, each music
piece can contain up to five tracks. Pitch, Velocity, and Duration are track-specific events, thus
denoted as Pitch-[Track], Velocity-[Track], and Duration-[Track] to represent note events on
a particular track. An EOS token is appended to the end of each sequence to signify its conclu-
sion, and a PAD token is used for sequence padding, resulting in a total of 923 tokens. During
data loading, we randomly selected continuous measures, setting the number of measures T to
20 and the maximum sequence length per measure L to 128.

For disentangled feature learning, rhythm and key features were selected as the musical
attributes linked to emotions. The rhythm feature is represented as a 16xT dimensional vector,
defined by the number of simultaneous notes played in each beat. Higher note frequencies
within a time span indicate more intense rhythm, reflecting a higher arousal level, whereas
lower frequencies correspond to a more moderate and calm rhythm. The key feature is repre-
sented as a T-dimensional vector, defined by the possible key signatures within each measure.
The keys are categorized into 12 major (e.g., C major) and 12 minor scales (e.g., ¢ minor), with
major keys typically conveying positive emotions and minor keys conveying negative emo-
tions, thus corresponding to the valence dimension of emotions. By leveraging these two fea-
tures within the CDGMVAE model, control over the emotional content of the generated
music can be achieved.

Table 1. MIDI music event information.

Event Event description Token count
name
Bar Start of a measure 1
Beat Start of a sub-beat within a measure, with each measure divided into 16 beats 16
Tempo Tempo of the music at a given time, ranging from 32 to 224 bpm with a step size of 3 64
bpm
Pitch Pitch of a note, ranging from 21 to 108 88x5
Velocity Intensity of a note, ranging from 1 to 127 with a step size of 2 64x5
Duration Duration of a note, quantized as the length in beats, 1<n<16 16x5
EOS End of sequence 1
PAD Padding token 1

https://doi.org/10.1371/journal.pone.0311541.t001

PLOS ONE | https://doi.org/10.1371/journal.pone.0311541 December 30, 2024 12/23


http://developer.spotify.com
https://doi.org/10.1371/journal.pone.0311541.t001
https://doi.org/10.1371/journal.pone.0311541

PLOS ONE

Semi-supervised emotion-driven music generation model based on gaussian mixture variational autoencoders

4.3 Experimental setup and parameter settings

The CDGMVAE model is developed using the PyTorch deep learning framework and trained
on a server equipped with four NVIDIA Tesla P40 GPUs. For the CDGMVAE network struc-
ture, the number of layers in both the Transformer-XL encoder and decoder is set to 12. Each
self-attention mechanism layer used 8 heads, with hidden layers and latent variable dimen-
sions set to 512 and 128, respectively. To train the Gaussian Mixture Model (GMM) on the
Arousal and Valence emotional dimensions, the number of Gaussian components for each
dimension is set to 2, representing high and low dimensions. The Xavier initialization method
[34] is employed to initialize each Gaussian component’s mean vector, with initial standard
deviation vectors set to a constant value of e 2. During training, a batch size of 16 is used, and
the Adam optimizer is employed for parameter updates, with dynamic learning rate adjust-
ments to facilitate model convergence. For the first 10,000 iterations, a linear warm-up is
applied to increase the learning rate from 0 to 1xe™*. Subsequently, in the next 220,000 itera-
tions, a cosine annealing strategy is used to gradually decrease the learning rate to 5xe°. The
model achieved convergence after 50 training epochs.

4.4 Experimental analysis

4.4.1 Semi-supervised generation performance. This section evaluates the semi-super-
vised generation performance of the CDGMVAE model by comparing it with three fully
supervised emotional music generation models and three semi-supervised models. The super-
vised models include the Transformer-based EMOPIA [35], the GRU-based EmotionBox [36],
which links music features with emotions, and the Conditional Variational Autoencoder
(CVAE) model [37] that conditions on emotional labels. The semi-supervised models assessed
are SSVAE [38], CCVAE [39], and FaderNets [40]. To ensure a fair comparison, all semi-
supervised models utilized Transformer-XL for the core network structure, with the exception
of SSVAE, which incorporated feature disentanglement mechanisms. Additionally, a music
emotion classification model provided by EMOPIA is trained on labeled data from LPD, using
8-bar music sequences as input. After 50 training epochs, the classification performance
achieved accuracy comparable to that reported in the original paper. Furthermore, a trained
classifier is used to predict the emotional dimensions of Arousal and Valence for all generated
music samples. The trained classifier adopts three-layer fully connected layer with parameters
of 128-50-10-1. Performance is evaluated using accuracy (Acc), precision (Pre), recall (Recall),
and F1 score (F1).

The generation performance of various models under both fully supervised and semi-
supervised methods is first compared. Results are shown in Tables 2 and 3, corresponding to
the Arousal and Valence emotional dimensions, respectively. Tables 2 and 3 indicate that,

Table 2. Performance comparison of supervised and semi-supervised methods in Arousal dimension.

Models Supervised
Acc/%
EMOPIA 61.55
EmotionBox 60.06
CVAE 58.63
SSVAE 61.28
CCVAE 63.74
FaderNets 68.37
CDGMVAE 70.52

Pre/%
58.69
57.35
55.99
58.84
61.49
65.21
66.92

https://doi.org/10.1371/journal.pone.0311541.t1002

Semi-Supervised

Rec/% F1/% Acc/% Pre/% Rec/% F1/%
61.52 60.07 -

58.71 58.02

56.11 56.05

58.73 58.78 73.66 71.94 72.11 72.02
61.21 61.35 76.24 75.58 73.07 74.30
70.17 67.60 78.65 76.54 78.73 77.62
73.77 70.18 82.54 79.56 84.60 82.00
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Table 3. Performance comparison of supervised and semi-supervised methods in Valence dimension.

Models Supervised
Acc/%
EMOPIA 57.84
EmotionBox 57.18
CVAE 55.27
SSVAE 58.12
CCVAE 60.03
FaderNets 63.45
CDGMVAE 66.63

Pre/%
59.81
59.06
59.96
59.96
61.67
64.94
68.93

https://doi.org/10.1371/journal.pone.0311541.t003

Semi-Supervised

Rec/% F1/% Acc/% Pre/% Rec/% F1/%
57.82 58.80 -

57.66 58.35 -

57.34 57.15

59.70 59.32 67.15 68.00 69.61 68.80
63.43 62.28 69.30 72.88 65.28 68.87
64.64 64.79 71.63 72.44 73.38 7291
65.28 67.05 75.87 77.37 75.78 76.57

despite all models being trained in a supervised manner, EMOPIA, EmotionBox, and CVAE
generally perform worse than other generation models. This can be attributed to the limited
contextual learning capabilities of GRU and Transformer compared to Transformer-XL, and
the fact that some models use emotional labels directly, lacking representational power com-
pared to feature disentanglement methods. The results also reveal that models trained with
semi-supervised methods, incorporating additional unlabeled data, significantly outperform
those trained fully supervised across all classification metrics. This demonstrates that VAE-
based generation models and their variants effectively utilize unlabeled data to learn broader
distribution information, with labeled data providing constraints on categorical information.
Overall, CDGMVAE and FaderNets exhibit better generation performance compared to the
other two semi-supervised models. This is because the GMVAE model incorporates label
information and uses Gaussian mixture distributions to separate the latent space into multiple
discrete regions, effectively learning diverse data distributions. In contrast, other semi-super-
vised VAE models rely on additional neural networks to learn categorical information, which
may overly depend on labeled data, limiting the classifier’s ability to fully model data distribu-
tions. Moreover, the CDGMVAE’s enhanced variance and mutual information terms lead to
higher classification accuracy compared to FaderNets. This indicates that CDGMVAE better
learns latent variable representations for each Gaussian component and accurately distin-
guishes between different emotional categories, a point further explored in subsequent
sections.

To further illustrate the effectiveness of semi-supervised learning, we tested the accuracy of
generated music across different amounts of labeled data. Results are presented in Figs 5 and
6, depicting accuracy in the Arousal and Valence emotional dimensions under various super-
vision rates. Here, p = M/(M+N), where M denotes the number of labeled data samples and N
represents the total amount of unlabeled data, with 0<0.<0.26. Figs 5 and 6 show that
CDGMVAE and FaderNets achieve higher accuracy even with a supervision rate of 0.05. This
suggests that GMVAE can learn extensive data distribution across emotional categories with
only a small amount of labeled data. Additionally, due to the optimization of variance and
mutual information in CDGMVAE, it consistently outperforms FaderNets in accuracy under
all supervision conditions. This confirms that the absence of diversity among Gaussian compo-
nents and insufficient linkage between data and emotional categories can lead to errors in cate-
gory inference, thereby reducing the emotional quality of generated music. For SSVAE and
CCVAE, results indicate that their accuracy is significantly lower than that of GMVAE-based
models across all supervision rates, due to their limited ability to learn meaningful latent repre-
sentations for specific emotions from the classifier. Although SSVAE and CCVAE show a
slightly greater increase in accuracy compared to GMVAE models and have considerable
potential for improvement, this also highlights their over-reliance on labeled data for
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SSVAE “~CCVAE +FaderNets =-CDGMVAE

Fig 5. Accuracy of generated music in the Arousal dimension.

https://doi.org/10.1371/journal.pone.0311541.g005

supervision signals. Among them, CCVAE exhibits better performance than SSVAE, likely
due to its feature disentanglement approach, allowing the classifier to learn emotional catego-
ries from rhythm and key features, thereby incorporating the necessary emotional information
into latent variables. In contrast, SSVAE directly learns emotional category information from
the raw input, which can be less effective in capturing subtle emotional details during the
decoding process.

SSVAE - CCVAE “#FaderNets =-CDGMVAE

Fig 6. Accuracy of generated music in the valence dimension.

https://doi.org/10.1371/journal.pone.0311541.9g006
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In summary, the music generated by all models is more easily distinguishable in the Arousal
dimension compared to the Valence dimension. This is attributed to the more universal and
direct nature of rhythm features, which can effectively capture latent representations from raw
input data. In contrast, key features require complex music theory inference, which the models
may not adequately possess. The experiments also demonstrate that rhythm features are more
closely related to the Arousal dimension and are better at influencing the activity level of the
music. The Valence dimension involves emotional polarity, which cannot be fully represented
by key features alone. This finding aligns with conclusions drawn from the
EmotionBox model.

4.4.2 Variance penalty and mutual information enhancement performance analysis.
This subsection discusses how the variance and mutual information penalty terms in the
GMVAE evidence lower bound affect the latent space and demonstrates that appropriate cor-
rection of these biases enables the model to perform reasonable emotional category inference
and generation for music data. Initially, we compared the trends in variance of Gaussian com-
ponents and their impact on emotional accuracy of generated music under varying penalty
weights (i.e., @ values). The experimental results are illustrated by the blue lines in Figs 7 and 8.
To provide a clearer view of the variations among Gaussian components, we used the T-SNE
dimensionality reduction algorithm to project high-dimensional latent variables into a two-
dimensional space for visualization. The results are shown in Fig 9.

As analyzed in Section 3.2, lower values of o reduce the influence of the variance term on
the overall objective function, resulting in higher variance and classification accuracy. Corre-
spondingly, the distances between Gaussian components in the latent space visualization
increase. This enhances the model’s ability to generate target emotions in the music effectively.
However, when a<0.2, while the distances between Gaussian components reach their maxi-
mum, the accuracy of emotional classification decreases. The latent space visualization reveals
that unnecessary cluster centers form between the two Gaussian components, leading to more
frequent misclassifications, with data from one class being assigned to another cluster. This
issue arises because excessive penalty strength can cause overfitting, preventing the model
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Fig 7. Impact of variance penalty and mutual information enhancement on Arousal dimension.

https://doi.org/10.1371/journal.pone.0311541.9007
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Fig 8. Impact of variance penalty and mutual information enhancement on Valence dimension.

https://doi.org/10.1371/journal.pone.0311541.9008

from capturing the overall data distribution and resulting in information loss. Therefore,
based on experimental results, a & value of 0.2 is chosen to optimize model performance. Fur-
thermore, the red lines in Figs 7 and 8 demonstrate the performance changes after enhancing
mutual information on top of the variance penalty. With the same weight control, optimizing
mutual information results in higher variance and accuracy, and at lower a values, mutual
information enhancement compensates for insufficient variance penalty. Fig 9 shows that

-75 =50 25 0 25 50 —100-75-50-25 0 25 50 75 100 =75 =50 25 0 25 50 75
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Fig 9. Visualization of latent space under the influence of variance penalty and mutual information enhancement.

https://doi.org/10.1371/journal.pone.0311541.g009
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after enhancing mutual information, the distances between different clusters become more
pronounced, and within-cluster distances become more compact.

4.4.3 Performance analysis of feature disentanglement. For emotion-based music gen-
eration, we incorporated a disentanglement mechanism into the CDGMVAE model, learning
the emotional representations of rhythm and key features in the Arousal and Valence dimen-
sions, respectively. This section evaluates the impact of changing feature representations on
the generated music. Ideally, the two learned feature representations should be independent.
For instance, altering the rhythm feature representation should change the rhythm pattern of
the generated music, while the key feature remains unchanged. To validate the effectiveness of
disentanglement learning, several comparison models were constructed and evaluated under
the same experimental settings:

1. EC-VAE [41]: This model uses a bidirectional GRU-based VAE to disentangle pitch and
rhythm representations from a single encoder’s overall latent variable, and then recon-
structs rhythm features and the original input using rhythm and global decoders,
respectively.

2. GAN-CVAE [42]: This model defines a latent space where the latent representation is inde-
pendent of feature values. It learns a generalized latent variable representation devoid of
any feature information through adversarial mechanisms, with each controllable feature
divided into different categories. These categories are used as conditions to generate music
with specific features, and the model is also built using GRU.

3. MuseMorphose [43]: Similar to GAN-CVAE, this model uses Transformer for the main
network, focusing more on overall dependency information. It also explores different ways
to inject latent variables and feature information into the decoder, effectively utilizing
known conditional information.

4. Vanilla CDGMVAE: A simplified version of our model, inspired by the design in [44],
which includes only the GMVAE evidence lower bound without additional loss function
constraints.

5. CDLSTM-GMVAE: A variant of our model using bidirectional long short-term memory
(BiLSTM) networks to construct the GMVAE model.

For feature controllability evaluation, we performed experiments where pairs of samples
from the test set were input into the model’s encoder. Each pair of samples, denoted as A and
B, had their latent variable representations for one feature swapped while keeping the other
feature unchanged. The generated music is then compared with the original samples in terms
of feature similarity. The similarity is assessed by calculating the cosine similarity between the
generated samples and A, B after feature swapping, as defined in Eq (22).

sim(a, b) = (a, b)/|all||b]| (22)

where a and b denote the feature vectors of generated and original samples, respectively, while
(-, -) represents the dot product, and ||-|| signifies the norm of the feature vector.

Figs 10 and 11 display bar charts illustrating the variation in feature similarity between the
generated samples and original samples A and B after exchanging rhythmic and melodic fea-
tures, respectively. It is evident from the figures that the CDLSTM-GMVAE and COGMVAE
models effectively disentangle and separate features. Consequently, altering the latent variables
of one feature does not significantly impact another feature. When substituting the latent vari-
ables of sample A with those of sample B, the generated music closely mimics the rhythmic
and melodic patterns of sample B, resulting in higher feature similarity values. Conversely,
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Fig 10. Feature similarity between generated samples and original samples after exchanging rhythmic feature
representations.

https://doi.org/10.1371/journal.pone.0311541.9010

when proper feature constraints are absent, such as in the Vanilla CDGMVAE and EC-VAE
models, although the similarity between features of modified sample A and sample B is high,
changes in one feature affect the other, leading to a reduced similarity with the original sample
A. This indicates that the rhythmic and melodic feature representations have not been effec-
tively disentangled.

Additionally, for the GAN-CVAE and MuseMorphose models, the effect of feature control
is less pronounced compared to other models. The feature similarity with original sample A
remains high, while similarity with substituted sample B is lower. This suggests that defining

10 " MEC-VAEEGAN-CVAE EMuseMorphose [l Vanilla CDGMVAE BICDLSTM-GMVAE [[ICDGMVAE|

it

rhythm-A rhythm-B key-A key-B

0.8

0.6

Sim

0.4

0.2

0.0

Fig 11. Feature similarity between generated samples and original samples after exchanging melodic feature representations.

https://doi.org/10.1371/journal.pone.0311541.g011
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unrelated latent spaces for features and segmenting musical features into categorical intervals,
while using generalized latent variables and categorical feature labels for music generation con-
trol, does not yield satisfactory results. The models tend to learn general data distributions and
may overlook subtle feature information. In contrast, the latent space in CDOGMVAE directly
reflects semantic information related to features. Using latent variables representing specific
features provides more detailed information, allowing the generation model to control the out-
put more precisely. Thus, for emotion-driven music generation models controlled by features,
it is crucial not only to have effective feature representations but also to ensure that these rep-
resentations are independent and do not interfere with one another.

Through the above experimental analysis, the proposed emotion-driven music generation
model, CDGMVAE, successfully disentangles rhythmic and melodic feature representations
related to emotions from the original music sequences. It effectively manipulates these feature
representations to achieve desired emotional variations in the Arousal and Valence dimen-
sions. (More experiment details can be seen in the supplementary material [S1 Text])

4.4.4 Interpolative emotion transformation. In the previous sections, the disentangled
control of rhythmic and melodic features for music emotion transformation is assessed by
exchanging features between two pieces of music. To fully leverage the discrete latent space of
CDGMVAE, we employed a feature disentanglement mechanism combined with interpolation
methods to enable mutual transformation of musical emotions by mapping the latent variables
of the current music to the latent space of the target emotion. When transforming between
high and low dimensions of a specific emotional dimension, the difference between the Gauss-
ian component means f4; sorget in the target emotion space and the Gaussian component means
Uisource i the current emotion space is first computed. This difference is then added to the
latent variable z; sourc Of the current emotion to obtain the latent variable z; rqe¢ corresponding
to the target emotion. Finally, this latent variable is input into the CDGMVAE decoder to gen-
erate a new sample. The entire process is described by Eq (23):

Zi.target = Zi,source + 4 (/’Li,target - :utl,source) (23)

where i denotes the emotion dimension to be transformed, and the parameter A€[0,1] controls
the degree of closeness between the current and target emotions. For clearer visualization of
emotion changes in this experiment, A is set to 1.

Using the aforementioned method, we conducted experiments on the test set to assess
music emotion conversion. Based on high and low-dimensional emotion spaces composed of
Arousal and Valence, we performed conversions among four emotions: happy, tense, sad, and
calm. The final results were evaluated for accuracy using the music emotion classification
model EMPOIA, as shown in the confusion matrix in Table 4.

Overall, transforming latent variables to target emotion clusters using interpolation
achieves a certain degree of emotion conversion. This indicates that the Gaussian components
for each emotion are well-separated and that each emotion is accurately represented through
latent variable information. However, the overall prediction accuracy is not very high,

Table 4. Evaluation of the accuracy of music emotion transfer.

T-Happiness T-Tension T-Sadness T-Calmness
S-Happiness - 60.84% 59.70% 71.56%
S-Tension 63.45% - 67.81% 57.63%
S-Sadness 58.29% 65.48% 64.80%
S-Calmness 70.26% 56.21% 62.35% -

https://doi.org/10.1371/journal.pone.0311541.t1004
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influenced by the EMPOIA classification model, which operates on four emotion categories
rather than predicting high and low dimensions of individual emotion dimensions. The exper-
imental results also show that the accuracy of emotion conversion in the Arousal dimension is
higher compared to the Valence dimension, with the lowest accuracy observed for conversions
across both dimensions. This is consistent with the conclusions in Section 4.4.1, indicating
that music is more easily distinguished in the Arousal dimension than in the Valence dimen-
sion, and conversions across both dimensions are more challenging. Among the four emo-
tions, the conversion accuracy between happy and calm is the highest, suggesting a high
similarity between these two emotions, which allows for effective conversion through changes
in rhythmic patterns alone.

5. Conclusion

This paper presents the Emotion-Driven Music Generation Model, CDOGMV AE, which uti-
lizes GMVAE for semi-supervised clustering inference during training. Compared to fully
supervised generative models, CDGMVAE can learn richer data distributions from a small
amount of labeled data, effectively mitigating the issue of insufficient emotional music data
and enhancing the model’s ability to infer and generate different emotional music categories.
To address the mode collapse problem inherent in GMVAE, we analyzed the evidence lower
bound and identified the variance regularization term and mutual information suppression
term as key contributors. Therefore, we introduced penalties and enhancements for these fac-
tors. Experimental results demonstrate that this approach ensures better separation of different
emotions in the latent space, strengthens the correlation between music and emotional infor-
mation, and improves the robustness and generalization of the semi-supervised model. Given
that existing music emotion generation models lack interpretability of emotions, we propose
establishing connections between emotions and musical rhythmic and melodic features. By
introducing a feature disentanglement mechanism to learn emotional representations of these
features and incorporating adversarial loss to enhance feature disentanglement, we achieve
controlled manipulation of music emotion transformations. Additionally, we employed Trans-
former-XL as the encoder and decoder for GMVAE, which effectively learns longer contextual
dependencies in music sequences, further enhancing the realism of the generated music.
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