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Abstract

This study applied a closed BCMP queueing network to a real-world model, examining the

limitations of the theoretical solution and the possibility of replacing theoretical values with

those from parallel simulation. Parallel computing was applied to mean value analysis

(MVA). We first obtained computational and theoretical values by varying the number of

nodes from 33 to 300 and customers from 250 to 1500 in a system with three customer clas-

ses. The computation time increased proportionally with the number of nodes but exponen-

tially with the number of customers, reaching 146,798.86 seconds for 33 nodes, 3 customer

classes, and 1500 customers. We then considered a system with more customer classes;

due to the greater computational burden, we proposed addressing this problem with simula-

tion. By using a large-scale computing environment (a supercomputer), it was possible to

obtain the theoretical solutions for up to three customer classes and verify the simulation

accuracy. The parallel simulations’ performance-evaluation indices, such as the average

number of people in the system, converged to the theoretical values within an acceptable

error range after 100,000 simulation hours for systems with four or more customer classes.

These results demonstrate that the proposed parallel simulation approach can serve as an

accurate and computationally efficient alternative to theoretical solutions for large-scale

closed BCMP queueing networks.

1 Introduction

Queueing theory has been a fundamental tool for analyzing and optimizing the performance

of various systems, such as communication networks, manufacturing systems, and service

facilities. The Baskett, Chandy, Muntz, and Palacios (BCMP) queueing network, introduced

by Baskett et al. in 1975 [1], is a versatile and widely-used model that extends the earlier works

of Jackson [2] and Gordon/Newell [3]. The BCMP network allows for open, closed, and mixed

network types, four service disciplines, and multiple customer classes, making it applicable to

a wide range of real-world problems [4–7].
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Despite its theoretical elegance, the application of queueing theory to large-scale systems

has been hindered by the computational complexity involved. Papadimitriou and Tsitsiklis [8]

showed that finding the optimal control policy in a multi-class closed queueing network is an

intractable problem with an exponentially large computational time. Consequently, the appli-

cation of queueing theory to large-scale systems has been limited in practice.

Recently, "waiting"—an essential concept of queuing theory—has been revisited because of

its connection to crowding. The global spread of the novel coronavirus has increased aware-

ness of social distance [9]. The importance of managing queues and reducing waiting times

has become more evident in the context of the pandemic, as crowding in public spaces can

increase the risk of disease transmission [10]. Before the pandemic, crowding while "waiting in

line" was accepted as a natural occurrence. However, reduction of crowding is now essential to

prevent the spreading of infection. Effective queue management strategies, informed by queue-

ing theory, can play a crucial role in redesigning public spaces and facilities, such as theme

parks, shopping malls, and schools, to ensure public safety and well-being [11].

Nearly 50 years after the introduction of the BCMP queueing network, advances in com-

puting power and parallel processing have opened up new possibilities for applying queueing

theory to large-scale systems [12, 13]. This study aims to investigate the computational limits

of solving large-scale closed BCMP queueing networks using exact methods, such as mean

value analysis (MVA) [14], in a modern parallel computing environment. Furthermore, we

propose an alternative approach using parallel simulations to approximate performance mea-

sures when the number of customer classes is large, making exact solutions computationally

intractable [15–17]. The calculation time and memory used for parallel computing were evalu-

ated for various numbers of nodes, customer classes, and people in the network, indicating the

required computing resources for different model scales. Calculations involving four or more

customer classes are challenging for existing methods; thus, we proposed using simulations for

performance evaluation. The simulation results showed sufficiently acceptable errors com-

pared to the theoretical values obtained. Additionally, the simulation approach can be applied

when the number of customer classes is four or more, significantly reducing the computational

resources required. This alternative simulation method confirms that theoretical values can be

computed with significantly fewer computational resources.

Previous simulation studies have proposed the maximum and the minimum number of

customers at each node, temporal correlation of the number of customers in the system at

each node, and distribution of the number of people when travel time is considered [18]. Com-

bining these with the proposed simulations is expected to provide insights that cannot be

obtained with theoretical values, thus making it easier to apply the model to real-world

situations.

The rest of this paper is organized as follows. Section 1.1 reviews the related work on

computational methods for closed BCMP queueing networks and their applications, while

Section 1.2 outlines the contributions of this study. Section 2 describes the methodology,

including the definition of a closed BCMP queueing network, the mean value analysis method,

the proposed algorithm for parallel computing using MPI, and the parallel simulation

approach. Section 3 presents the experimental results and discussion, covering the massively

parallel computing environment for MVA, factors affecting the calculation of theoretical solu-

tions, considerations for the number of parallels, and the calculation of performance metrics

using parallel simulation. This section also includes an accuracy verification of parallel simula-

tions and explores the use of parallel simulation as an alternative to theoretical values. Addi-

tionally, it discusses the limitations of calculating theoretical values for closed BCMP and the

effects of parallel simulation. Finally, Section 4 concludes the paper, summarizing the key find-

ings and suggesting potential future research directions.
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1.1 Related work

Although there are both open and closed types of queueing networks, performance metrics,

such as the mean number of people in the system, can be obtained by finding the normaliza-

tion constant based on the results of the product-form solution [4–6]. For open-type queuing

networks, the normalization constant can be easily obtained numerically, and it is possible to

make the network large. By contrast, when obtaining the normalization constant for closed-

type queuing networks, all combinations that depend on the number of nodes, customer clas-

ses, and people in the network must be calculated, which requires massive computational

resources [7]. This makes it difficult to upscale the queueing network in a closed system.

Recent studies have focused on developing efficient computational methods for analyzing

large-scale closed queueing networks and their applications in various domains. Patel and Bhatha-

wala [19] proposed a performance analysis method for closed queueing networks with multiple

customer classes and non-exponential service times, extending the applicability of the BCMP

model. Li and Fang [20] developed a parallel simulation approach for large-scale closed queueing

networks with multi-class customers, demonstrating the scalability of simulation-based methods.

The integration of machine learning techniques with queueing theory has also gained atten-

tion in recent years. Osakwe et al. [21] proposed a deep reinforcement learning approach for

performance optimization of queueing systems, showcasing the potential of data-driven meth-

ods in queueing network control. Sato and Yokota [22] applied closed queueing network mod-

els to analyze the performance of smart factories, highlighting the relevance of queueing

theory in modern manufacturing systems.

Approximation methods have been developed to tackle the computational complexity of

closed BCMP queueing networks. Chen and Yuan [23] proposed an approximate analysis

method for closed queueing networks with load-dependent service times, providing a compu-

tationally efficient alternative to exact solutions.

Previous studies of computational methods for closed queueing networks, shown in

Table 1, have presented numerical calculations on small networks. Moreover, the type of

computational environment required was not clearly indicated. In the real world, closed

queueing networks tend to be large. Therefore, estimating the computing resources required

in the current computing environment is essential.

Typical algorithms for computing closed BCMP are convolution [30] and mean value anal-

ysis [31–33]. The convolution method directly calculates performance evaluation indices, such

as the stationary distribution and the mean number of people in the system, by finding the

normalization constant. However, recursive calculations are often used because of the formula

structure for obtaining normalization constants. Although recursive calculations are effective

in programming techniques such as memorization [34], they are not effective in parallelizing a

large-scale computing environment. The calculation method depends on CPU performance,

making it difficult to increase the scale of the model. This is exacerbated by several factorial

and power calculations in the formulas and the fact that there is a dropout of orders of

magnitude.

By contrast, although the mean value analysis method uses an enormous amount of mem-

ory, its calculation structure is suitable for parallel computation, suggesting great potential for

large-scale applications. Many approximation algorithms have also been proposed [24–27],

some of them using Brownian models [35, 36] or adding complex service conditions [37].

However, in today’s large-scale computing environment, sufficient memory and large-scale

calculations can be expected without using approximations.

Simulations of closed BCMP have been studied for a long time, largely because of the diffi-

culty of obtaining theoretical values for closed queueing networks, which have been used as an
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alternative method [33, 38, 39]. Simulations provide dynamic information that cannot be

obtained under static conditions [40, 41], which is crucial when dealing with real-world mod-

els. Parallelization has been proposed to speed up simulation [42, 43]; however, the scale of the

queueing network has remained small, and in terms of computational resources, the number

of parallels has remained limited. Therefore, simulations have not reached a level appropriate

for real-world applications.

Several studies have proposed real-world applications of queuing [44], e.g. to urban trans-

portation networks [45] and theme parks [46]. For instance, Mizuno et al. [18, 46] computed a

closed queueing network for mobile vehicles in a theme park and performed optimal node

placement of mobile vehicles. Nevertheless, only one type of mobile vehicle was used because

of computational complexity. The application of machine learning to social systems is also

progressing and being increasingly linked with queueing theory. Links with supervised learn-

ing (e.g., neural networks [47, 48]) and with the game theory that incorporates customers’

experiential behavior [49] have been proposed, but a computational environment for large-

scale implementation is essential for social implementation.

The growing use of automation, seen in self-driving cars and in robots performing picking

tasks in factories, makes it important to evaluate large, closed queueing networks. If the perfor-

mance evaluation values for closed BCMP queues can be rapidly calculated, evaluation and

optimization of the performance of realistic queueing networks would become feasible.

1.2 Contributions of this study

This study makes the following contributions:

i. For closed BCMP, we used MVA, an exact method for obtaining theoretical solutions, to

show the limits computable in a modern computing environment. The performance-evalua-

tion index of the closed BCMP could be obtained adequately for large-scale networks,

Table 1. Network size and computational environment of previous studies in closed queueing networks.

Reference

number

Publication

year

Number of

nodes

Number of

customer classes

Number of

people in

network

Algorithm Computation time Computing

environment

[5] 1990 3 3 20 Exact and Approximate Closed

Multiclass MVA

Exact: 25.93(s)

Approximate: 2.03(s)

IBM compatible PC with

a 33 MHz Intel 80386

[24] 2000 50 2 200 Improved Approximate Mean

Value Analysis Library

(IAMVAL)

NA NA

[7] 2003 2 2 4 Convolution NA NA

[4] 2006 6 3 7 Convolution, MVA, FES, some

approximation methods

NA NA

[25] 2007 3 4 10 Schweitzer-Bard (S-B)

approximation for MVA

NA NA

[26] 2008 30 4 120 General Form Linearizer (GFL)

algorithms

Presenting some

cases

Sun Sparc 20 running

SunOS 5.5.1

[27] 2008 10 4 100 Conditional Mean Value

Analysis (CMVA) algorithm

NA NA

[6] 2009 5 1 10 Mean Value Analysis and

Convolution Algorithm

NA NA

[28] 2016 4 2 3 Mean Value Analysis and

Convolution Algorithm

NA NA

[29] 2019 4 (3, 5) (15, 6) One or Two-Phase Class

Aggregation

NA NA

https://doi.org/10.1371/journal.pone.0311533.t001

PLOS ONE Limitations of calculating theoretical solutions for closed BCMP queueing networks and utilizing simulation

PLOS ONE | https://doi.org/10.1371/journal.pone.0311533 December 17, 2024 4 / 19

https://doi.org/10.1371/journal.pone.0311533.t001
https://doi.org/10.1371/journal.pone.0311533


especially when the number of customer classes was three or less. The scale of the systems

considered in this study, in terms of the number of nodes, customer classes, and people in

the network, is significantly larger than those in previous studies, as shown in Table 1. This

demonstrates the novelty and importance of our work in tackling the challenges of large-

scale system analysis.

ii. When the number of customer classes is four or more, the number of combinations in

MVA becomes enormous, making it difficult to obtain a theoretical solution. Therefore,

simulations were conducted and their results were compared with the theoretical solution.

iii. Using simulations with verified accuracy, we calculated performance metrics for closed

BCMP with four or more customer classes. This simulation-based approach serves as an

efficient alternative to exact methods for analyzing large-scale closed BCMP queueing net-

works that were previously intractable.

iv. The degree of simulation convergence was verified using the set simulation error-index to

confirm the convergence of the simulation.

v. Using the results of this study, it is possible to choose parameter settings such as the number

of nodes, computational resources, and computation time for the construction of a closed

BCMP optimization model.

2. Materials and methods

This section defines the proposed closed BCMP queueing network and presents a parallel

computation algorithm for this large-scale network. We also propose using simulations as an

alternative method for calculating the theoretical values.

2.1 Definition of a closed BCMP queueing network

The basic model of the closed BCMP queueing network proposed in this study is defined as

follows [1]:

i. There are C types of customer classes served in a network, and a customer belongs to one of

the classes. There shall be no change of customer class during the process.

ii. There are N nodes in the network.

iii. When the total number of customers in the network is K, the number of customers of class

c (1�c�C) in node n (1�n�N) is knc�0, and K ¼
PC

c¼1

PN
n¼1

knc. Moreover,

kn ¼
PC

c¼1
knc; kc ¼

PN
n¼1
knc.

iv. There shall be no arrival of guests from outside the network, as it is of closed type.

v. Each node consists of a single server performing a first-come-first-service (FCFS).

vi. At location n, the service time follows an exponential distribution with service rate μn
(1�n�N), independent of the customer class.

vii. The total arrival rate of class c customers arriving from within the network at node n is αnc.

viii. A customer of class v served at node imoves to node j in class w according to a Markov

chain R = (riv,jw) that satisfies

1 � i � N; 1 � v � C; riv;jw � 0;
XN

j¼1

XC

w¼1
riv;jw ¼ 1: ð1Þ
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As the class transition of customers is not considered this time, it is assumed that riv,jw = 0

(v6¼w).

ix. The arrival rate αiv satisfies the following traffic equation for this closed network:

aiv ¼
XC

c¼1

XN

n¼1

ancrnc;iv

 !

; ð1 � i � N; 1 � v � CÞ: ð2Þ

The state of node n is represented by sn ¼ ðsn1; sn2; � � � ; snknÞ. Let snj denote the class of the

jth customer in line in order of arrival at node n. Let s = (s1,s2,� � �,sN) denote the state in the

network and k = (k1,k2,� � �,kc) denote the number of people by customer class.

From this, the stationary distribution π(s) in the closed BCMP model is given by

p sð Þ ¼
1

GðkÞ

YN

n¼1

fnðsnÞ; ð3Þ

where G(k) is the normalization constant

GðkÞ ¼
X
PN

n¼1
sn¼k

YN

n¼1
fnðsnÞ: ð4Þ

Additionally, fn(sn) obeys

fn snð Þ ¼
Ykn

j¼1

ansnj

mn
: ð5Þ

Eqs (1)–(5) describe the fundamental properties of the closed BCMP queueing network

model, as defined in the original paper by Baskett et al. [1].

2.2 Calculation of BCMP performance-evaluation index using mean value

analysis

The mean number of people in the system for customer class c at node n using the mean value

analysis method is calculated using the following updated formulas [4]: The mean intra-system

time Tn,c(k) (1�n� N,1�c�C) is

Tn;c kð Þ ¼
1

mn
ð1þ

XC

v¼1

Ln;vðk � 1vÞÞ: ð6Þ

The throughput λc(k) is

lc kð Þ ¼
kc

PN
i¼1
aicTi;cðkÞ

: ð7Þ

The mean number of people in the system Ln,c(k) is

Ln;cðkÞ ¼ lcðkÞTn;cðkÞanc: ð8Þ

Eqs (6)–(8) represent the basic steps of the mean value analysis (MVA) method for closed

BCMP queueing networks, as described in Bolch et al. [4].
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2.3 Proposed algorithm for using parallel computing (MPI) in MVA

The mean value analysis method can calculate performance evaluation indicators, such as the

mean number of people in the system, through a simple calculation process. However, as the

number of sites, classes, and people in the system increases and the scale of the model grows,

the computation time becomes longer. Therefore, parallel computation is used to reduce com-

putation time. The following algorithm describes the parallel computation flow when Message

Passing Interface (MPI) [50] is applied to MVA:

A. Registration of the configuration information

a. Specify the number of nodes N; the number of classes C; the number of customers by

class kc (1�c�C); the node service rate μn (1�n�N); and the number of parallelsMP.

The process number ismp (0�mp�MP−1), wheremp = 0 is called the root process and

is represented bymp0.

b. mp0: Set transition probability R, find arrival rate αnc, and broadcast to other processes.

B. MVA calculation for j in 1,� � �, K

a. For each iteration,mp0 obtains a set satisfying

index ¼ j; ð1 � j � KÞ; kc � j; ð1 � c � CÞ. For this, we define the set

Kc ¼ f0; 1; 2; � � � ; kcg; ð1 � c � CÞ. Using this, the direct product set K(j) of the number

of classes C of Kc follows

KðjÞ ¼ fðkðjÞ1 ; k
ðjÞ
2 ; � � � ; k

ðjÞ
C ÞjKðjÞ 2 K1 � � � � � KC; k

ðjÞ
c 2 Kc;

XC

c¼1
kðjÞc ¼ j; 1 � c � Cg; ð9Þ

when the number of people in the system is j. Thus, kðjÞm 2 K
ðjÞ; 1 � m � jKðjÞj, is

obtained.

b. mp0 divides K(j) into K ðjÞi ; ð0 � i � MP � 1Þ, and passes it to each process. kðjÞi ðmÞ ¼
fðkðjÞ1 ðmÞ; k

ðjÞ
2 ðmÞ; � � � ; k

ðjÞ
C ðmÞÞjk

ðjÞ
i ðmÞ 2 K

ðjÞ
i ; 1 � m � jK

ðjÞ
i jg;

where kðjÞi ðmÞ is eachm-th class people vector passed to process i when the total number

of customers is j.

c. Using kðjÞi ðmÞ passed in each process, find Ln;cðk
ðjÞ
i ðmÞÞ; ðn ¼ 1 � n � N; 1 � c � CÞ

from Eqs (6)–(8).

d. mp0 aggregates the Ln;cðk
ðjÞ
i ðmÞÞ obtained by each process and broadcasts Ln,c(�) to each

process.

e. If index = K is exceeded, the iteration is terminated, and performance evaluation indica-

tors, such as the average number of people in the system, are stored.

Fig 1 illustrates the detailed steps of the parallel computation algorithm for MVA using

MPI, providing a visual representation of the process described in this section. Eq (9) is an

original set definition introduced in this study to calculate the overlap combination for each

iteration j in the proposed parallel computation algorithm for MVA. In the above algorithm,

Eq (9) in step B.a calculates the overlap combination for each iteration j such that the number

of customers in each class does not exceed j, and the total number of customers in all classes is

j. In B.b, the overlap combination obtained in B.a is distributed to parallel process i. In B.c, the

calculation of Eqs (6)–(8) is performed in each parallel process. Finally, in B.d, the iterative cal-

culation is performed using the root processmp0 to aggregate.
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2.4 Calculation of performance metrics using parallel simulation

When the network becomes large, e.g., when there is an increase in the number of customer

classes, the computing resources required become enormous, making computation challeng-

ing. Therefore, as an alternative to the theoretical calculation method of MVA, we propose

using the mean number of people in the system in parallel simulations when calculating per-

formance evaluation indices. The process is as follows:

A. Registration of the configuration information

a. Specify the number of nodes N; the number of classes C; the number of customers by

class kc (1�c�C); the node service rate μn (1�n�N); the number of simulations S; and

the simulation end condition ε. The process number ismp (0�mp�MP−1), where

mp = 0 is called the root process and is represented bymp0.

b. mp0: Set transition probability R, find arrival rate αnc, and broadcast to other processes.

B. Perform event-driven parallel simulation

a. Initial event setup: In each process, randomly assign customers in the network to nodes

and give the first customer at each node a randomly distributed service time.

b. Event processing: In each process, the minimum-service-time customer is served from

the entire node; after the service is completed, the customer is moved to another node

and the simulation time is updated.

i. Calculate performance indicators such as the mean number of people in the system for each

process.

ii. Inmp0; L
ðsÞ
ir is used to calculate the mean �Ln;cðn ¼ 1; � � � ;N; c ¼ 1; � � � ;CÞ, where LðsÞir is the

mean number of people in the system for node n and class c of simulation number s.

Fig 1. Flowchart of the parallel computation algorithm for Mean Value Analysis (MVA) using Message Passing Interface (MPI).

https://doi.org/10.1371/journal.pone.0311533.g001
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iii. The allowable error in the number of people is given by

1

N � C � S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

n¼1

XC

c¼1

XS

s¼1
ðLðsÞn;c � �Ln;cÞ

2

q

< ε: ð10Þ

Repeat until Eq (10) is satisfied.

Eq (10) is an original formula for evaluating the error precision of the parallel simulation

approach proposed in this study. As shown in Fig 2, the algorithm consists of two main parts:

(A) Registration of the configuration information, and (B) Performing the event-driven paral-

lel simulation. The flowchart clearly depicts the iterative nature of the simulation process and

the error checking mechanism, which ensures the accuracy of the results. This visual represen-

tation enhances the understanding of our proposed parallel simulation approach for BCMP

queueing networks.

3. Results and discussion

In this chapter, we present and discuss the results of our study on the limitations of calculating

theoretical values for closed BCMP queueing networks and the effectiveness of parallel simula-

tion as an alternative method. We begin by describing the massively parallel computing

Fig 2. Flowchart of the event-driven parallel simulation algorithm for BCMP queueing networks.

https://doi.org/10.1371/journal.pone.0311533.g002
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environment used for the mean value analysis (MVA) in Section 3.1. In Section 3.2, we exam-

ine the factors affecting the calculation of the theoretical solution for a closed BCMP queueing

network, followed by a consideration of the number of parallels for MVA parallel computation

in Section 3.3.

Next, we propose the use of parallel simulation to calculate performance metrics for closed

BCMP when the number of customer classes is large, making MVA computationally challeng-

ing. We verify the accuracy of parallel simulations in Section 3.4.1 and present the results of

using parallel simulation as an alternative to theoretical values in Section 3.4.2.

Finally, in Section 3.5, we discuss the limitations of calculating theoretical values for closed

BCMP and the effects of parallel simulation, highlighting the contributions and implications

of our study.

3.1 Massively parallel computing environment for MVA

In this study, the large-scale parallel computing environment for MVA was OCTOPUS [51], a

large-scale computing system at the Cybermedia Center of Osaka University. The specifica-

tions of the computing environment are listed in Table 2.

3.2 Factors affecting the calculation of the theoretical solution for a closed

BCMP queueing network

Here, we present the results of applying MPI to MVA to compute closed BCMP theoretical

solutions. Table 3 summarizes the computation time, memory used, and number of combina-

tions when N, C, and K are varied for 128 parallels. For example, consider the case N = 33,

C = 3,K = 500, andMP = 128; the number of people per customer class was assumed to be

equally K/C for every class. In this case, the computation time in MVA was 4166.07 seconds

(approximately 70 minutes), and the maximum memory used was 114.44 GB.

Fig 3 shows the change in computation time as N and K increased. Note that the computa-

tion time grew proportionally to the increase in N (Fig 4). The computational complexity

Oð2CðN � 1Þ
QC

c¼1
ðkc þ 1ÞÞ [4] also increased linearly as ON = D1N,(D1 is constant). However,

Fig 5 shows that the computation time increased exponentially with K. In this case, the compu-

tational complexity was OK = D2(D3+K)C,(D2 and D3 are constants). The calculated amount of

memory used was OðN �
QC

c¼1
ðkc þ 1ÞÞ [4]. Thus, the calculation results show that the increase

in calculation time is proportional to N but grows exponentially when K is increased.

Table 2. Massively parallel computing environment for MVA.

Item Description

Programming language Python 3.6.13

Library used mpi4py 3.1.3

Computing environment OCTOPUS (Osaka University)

Nodes with large-capacity main memory

2 nodes (16.38 TFLOPS)

Processor information Intel Xeon Platinum 8153

(Skylake / 2.0 GHz 16 Core) 8 units

Memory 6 TB/Node

Number of nodes used 2 (max)

Number of cores used 1. parallels per node

https://doi.org/10.1371/journal.pone.0311533.t002
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Table 3 shows the results up to C = 3. (The calculation could not be performed for C�4 in

this calculation environment.) With N = 33 and K = 500, the total number of combinations

when calculating with MVA was 501 for C = 1, 63,001 for C = 2, 4,713,408 for C = 3, and

252,047,375 for C = 4, requiring several combination calculations. The number of combina-

tions and the memory that can be held by C�4 must be allocated, which is a significant burden

for a computing environment.

Table 3. Results with 128 parallels and various values ofN, C, and K.

N C K Computation time (s) Maximum memory used (GB) Number of combinations (max, total)

33 1 500 514.28 48.95 1, 501

33 2 500 546.18 49.57 251, 63001

33 3 500 4166.07 114.44 21084、4713408

66 3 500 7413.16 193.29 21084、4713408

100 3 500 10292.22 266.64 21084、4713408

133 3 500 13354.99 313.77 21084、4713408

166 3 500 16041.46 363.84 21084、4713408

200 3 500 19144.92 456.63 21084、4713408

233 3 500 22191.55 505.93 21084、4713408

266 3 500 25071.72 553.32 21084、4713408

300 3 500 28388.36 603.48 21084、4713408

33 3 250 667.99 84.74 5334、599759

33 3 750 15182.38 205.88 47251、15813250

33 3 1000 37857.74 313.45 83834、37371259

33 3 1250 79495.01 470.02 130834、72859907

33 3 1500 146798.86 604.51 188251、125751500

https://doi.org/10.1371/journal.pone.0311533.t003

Fig 3. Change in computation time for an increase in number of nodesN and number of people in system K
(C = 3).

https://doi.org/10.1371/journal.pone.0311533.g003
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3.3 Consideration of the number of parallels for MVA parallel

computation for closed BCMP

The effect on computational time of the number of parallels in the parallelization of MVA for

the closed BCMP is illustrated in Table 4. In particular, the table summarizes the computation

time for the cases N = 33,C = 3, and K = 500, varying the number of parallels from 1 to 256.

Because the maximum number of parallels on a single compute server is 128, two compute

servers were used when the number of parallels was larger than this. Increasing the number of

parallels reduces the amount of computation time required. However, the amount of memory

used increases, and consequently, so does the utilization cost. Considering the rate of decrease

in computation time, memory usage, and computer usage fees, 96~128 parallels were consid-

ered appropriate for using one compute server.

3.4 Calculation of performance metrics for closed BCMP using parallel

simulation

In the closed BCMP, the calculation of performance evaluation indices using parallel computa-

tion in MVA has become a major burden due to the increase in computation volume as the

number of customer classes increases. Herein, instead of calculating the performance evalua-

tion index strictly using MVA, we consider calculating it using parallel simulation. First, the

simulation accuracy is confirmed using the obtained MVA calculation results. Next, perfor-

mance evaluation indexes are calculated for patterns with a large number of customer classes

that could not be obtained using MVA. The simulation can be performed even without the

Fig 4. Variation of computation time with respect to N (K = 500,C = 3).

https://doi.org/10.1371/journal.pone.0311533.g004
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large-scale computing environment used in the parallel computation of MVA, although the

accuracy must be carefully verified. The following simulation results were calculated on a Mac

Pro (model: Late 2013, processor: 3GHz 8-core Intel Xeon E5, memory: 32GB 1866MHz

DDR3), with eight parallel calculations.

3.4.1 Accuracy verification of parallel simulations. First, simulations with N = 33,C = 3,

and K = 500 were performed to calculate the error relative to the theoretical values calculated

by MVA. With a total number of people K in the network, the error tolerance Ep at each node

and each class is

Ep ¼
K

N � C
� p: ð11Þ

If it is assumed that p = 0.3, an error of 30.0% is assigned to each node and class on average.

Subsequently, for K = 500, Eq (11) for each node and class yields 4.54 for C = 1; 2.27 for C = 2;

and 1.51 for C = 3. The root mean squared error between the simulation and theoretical values

Fig 5. Variation of computation time with respect to K (N = 33,C = 3).

https://doi.org/10.1371/journal.pone.0311533.g005

Table 4. Computation time with different number of parallels (N = 33,C =3,K = 500).

Number of parallels 1 32 64 96 128 160 192 224 256

Number of compute servers used 1 1 1 1 1 2 2 2 2

Number of parallels / server 1 32 64 96 128 80 96 112 128

Maximum memory used (GB) 43.44 64.81 87.08 109.52 114.44 132.96 133.55 134.24 134.64

Computation time (s) 49483.31 5290.10 4428.09 4129.25 4166.07 4119.36 4032.26 3986.72 3967.71

https://doi.org/10.1371/journal.pone.0311533.t004
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for each node and class is

1

N � C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

n¼1

XC

c¼1
ð�Ln;c � LTn;cÞ

2

q

; ð12Þ

where LTn;c represents the theoretical value for node n and class c. Each simulation was per-

formed eight times, and the mean �Ln;c over the six simulations, excluding the best and worst

cases, was used. Table 5 lists the result obtained using Eq (12). The bolded area is the value of

Eq (12) below Ep. Approximately 7,000 simulation hours were required to reach the error tol-

erance. Similarly, the simulation accuracy was verified when N and K increased. Table 6 sum-

marizes the change in the value of Eq (12) when N and K were varied for C = 3. In all cases, the

simulations were found to be sufficiently accurate.

3.4.2 Alternative theoretical value using parallel simulation. Because the simulation

accuracy was confirmed in the previous section, simulations were performed for C�4, a chal-

lenging scenario to compute. As a performance-evaluation index, the mean number of people

in the network was calculated. The simulation considered eight simultaneous independent

simulations, and the average �Ln;cð1 � n � N; 1 � c � CÞ was obtained from the mean number

of people in the system obtained for each simulation value. The squared error with that average

was obtained, and the remaining six simulation values, excluding those with the largest and

smallest squared errors, were used to calculate the error of the simulation values at each time

from Eq (10). Table 7 summarizes the change in Eq (10) when the number of classes increased

under N = 33 and K = 500. In Eq (10), even when ε = 0.01, the value converged after 100,000

simulation hours, and an approximation to the theoretical value was obtained.

Consider the simulation results for C = 4, shown in Fig 6. The horizontal axis of the figure

is the standard deviation of the average number of customers in the system obtained in the

simulation for each process, averaged over all processes. The vertical axis is the value of Eq

(12). From this, we can see that larger values along the horizontal axis correspond to smaller

root-mean-square errors. The correlation coefficient between the two axes was –0.8920. The

transition probability matrix of this simulation was generated for each program. It is easier for

a simulation to converge when the queueing network is characterized by locations where the

number of customers in the system is concentrated. Thus, this simulation is more likely to

Table 5. Simulation accuracy for varying C whenN = 33,K = 500.

Simulation time 1000 5000 10000 20000 30000 40000 50000 100000 Ep achievement time

(12) C = 1 Ep = 4.54 45.446 36.344 25.460 13.883 8.934 7.202 5.354 3.346 69200

C = 2 Ep = 2.27 27.460 18.532 11.457 5.895 4.124 2.875 2.215 1.043 48700

C = 3 Ep = 1.51 13.333 9.359 5.866 2.970 2.018 1.737 1.452 0.640 48350

https://doi.org/10.1371/journal.pone.0311533.t005

Table 6. Simulation accuracy for varyingN and K when C = 3 (Eq(12)).

Simulation time 1000 5000 10000 20000 30000 40000 50000 100000 Ep achievement time

K = 500 N = 66 Ep = 0.75 9.099 6.274 3.787 1.845 1.212 0.962 0.874 0.476 58600

N = 100 Ep = 0.50 6.063 2.372 1.425 0.683 0.538 0.476 0.353 0.131 38150

N = 133 Ep = 0.37 0.979 1.043 0.731 0.495 0.301 0.296 0.255 0.158 25700

N = 33 K = 750 Ep = 2.27 27.286 20.441 17.511 11.918 9.170 7.730 6.110 2.667 119950

K = 1000 Ep = 3.03 35.602 32.126 28.541 22.842 17.583 13.540 10.788 4.039 119250

K = 1250 Ep = 3.78 56.628 43.676 31.999 17.764 11.791 8.854 7.054 3.453 91650

https://doi.org/10.1371/journal.pone.0311533.t006
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obtain good values in environments with localized crowding, thus increasing the accuracy of

congestion assessment.

The real-time rate is the ratio of the real time taken in the simulation to the simulation

time. When C = 3,K = 500, and simulation time was 100000, the real time rate was 0.8200 for

N = 33; 12.1941 for N = 100; and 26.7621 for N = 133. The impact of N was larger than that of

C because N> C and the transition probability, which goes as o((N�C)2), must be used when a

customer moves to the next node after service is completed.

3.5 Limitations of calculating theoretical values for closed BCMP and

effects of parallel simulation

The computational environment to calculate the theoretical values for the closed BCMP was

described in Section 3.1, and the results obtained in that environment were verified in Section

3.2. We also showed the appropriate computational environment for the closed BCMP in Sec-

tion 3.3. In the presented computational environment, C = 3 is the limit for N = 33 and

K = 500. In Section 3.4, we confirmed the accuracy of the simulation using the values obtained

in Section 3.2. Moreover, we obtained simulation times for which the simulated values could

Table 7. The change in the value of Eq (10) for the number of classes C� 4 (N = 33, K = 500, ε = 0.01).

Class\ Simulation time 1000 5000 10000 20000 30000 40000 50000 100000

C = 4 0.0937 0.0993 0.0912 0.0729 0.0791 0.0360 0.0122 0.00231

C = 5 0.0614 0.0713 0.0734 0.0751 0.0515 0.0460 0.0390 0.00371

C = 6 0.0487 0.0423 0.0379 0.0348 0.0233 0.0195 0.0153 0.00239

C = 7 0.0331 0.0418 0.0366 0.0185 0.0275 0.0181 0.0096 0.00467

C = 8 0.0284 0.0282 0.0197 0.0197 0.0196 0.0112 0.0132 0.00589

https://doi.org/10.1371/journal.pone.0311533.t007

Fig 6. Root-mean-square error of simulation relative to theoretical value, plotted against the mean of the standard deviation of

the number of customers in the mean system for each simulation.

https://doi.org/10.1371/journal.pone.0311533.g006
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replace the theoretical values. The results in these sections show the limit of the theoretical

value calculation for the closed BCMP using the computational environment. Moreover, we

showed that simulation can replace the theoretical value when C�4 or more for N = 33 and

K = 500. Furthermore, we have shown that, to obtain the theoretical value of the closed BCMP,

an exact method, such as MVA, can be used, rather than an approximate method—even for a

larger closed BCMP model than in previous studies. Furthermore, the computational environ-

ment and method are explicit and implemented in parallel simulation. This environment can

be used as an alternative for models where calculations are challenging or impossible.

In a closed BCMP, simulation requires fewer computational resources and provides

dynamic information, but requires longer actual computation time. The closed BCMP model

can be utilized in many situations using the method of calculating performance evaluation

indices for parallel computation of MVA. This study showcases the limitations of such parallel

computation; moreover, the simulation accuracy is verified in this study according to the

parameters of the closed BCMP.

4. Conclusion

This study performed the parallelization and simulation of MVA to BCMP, the traditionally

used and a representative model of a closed queueing network, to scale up the closed BCMP

successfully in a large-scale computing environment. We could accommodate changes in

parameters, such as the number of nodes and people in the network, up to realistic values. The

computation time and memory used for parameter changes were also found, indicating the

necessary preparation for the computation environment. However, in this case, the number of

customer classes was limited to three because MVA consumes a large amount of memory for

larger numbers than this. Therefore, to obtain the mean number of people in a system with

more than four customer classes, we performed simulations with the theoretical values of the

obtained range and confirmed that the simulation values converged within the acceptable

range. This indicates that the simulation method proposed in this study can be used as an alter-

native to calculating theoretical values of performance-evaluation indicators in a closed

BCMP. This has important practical implications: although the number of customer classes is

expected to increase as modern society becomes more diverse, performance evaluation indices,

such as the mean number of people in the system, can still be obtained using highly accurate

simulations.

This paper contributes to the literature in that it reports on the possibility of scaling queue-

ing theory to real-world applications. Queueing theory is mathematically compelling but hard

to apply in the real world because of the flexibility of its definition and its large scale. As shown

in this paper, simulation allows flexible BCMP to be constructed on a large scale.

Queueing theory is also applicable to optimization, because it can calculate performance

evaluation indices such as the mean number of people in the system. The application of queue-

ing theory to optimization has nevertheless been limited, primarily because of its computa-

tional complexity. During optimization, the objective function is iteratively calculated several

times. If the performance evaluation value of the closed BCMP is used for the objective func-

tion and only the computation time of one MVA is considered, the computation time to obtain

the optimal solution is substantially larger. Here, we considered a large-scale closed BCMP

model; its computation time was reduced by parallel computation. Therefore, this study has

shown a computational environment that increases the possibility of applying queuing theory

to optimization.

In the present study, the number of servers for each node was limited to one. Increasing the

number of servers might provide more realistic values. Using service types other than FCFS
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and allowing for customer class transition should be considered for handling realistic models.

The use of MVA also makes it difficult to calculate higher-order moments. Higher-order

moments in conjunction with the normalization constants used in the convolution method

could be calculated to evaluate realistic models. In the computational environment, memory

space savings in recursive calculations in MVA and the use of GPUs are required for more

generalized, large-scale closed BCMP calculations.
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