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Abstract

Imaging-based Spatial Transcriptomics methods enable the study of gene expression
and regulation in complex tissues at subcellular resolution. However, inaccurate cell
segmentation procedures lead to misassignment of mMRNAs to individual cells which
can introduce errors in downstream analysis. Current methods estimate cell boundaries
using auxiliary DAPI/Poly(A) stains. These stains can be difficult to segment, thus requir-
ing manual tuning of the method, and not all mMRNA molecules may be assigned to the
correct cells. We describe a new method, based on mean shift, that segments the cells
based on the spatial locations and the gene labels of the mRNA spots without requir-
ing any auxiliary images. We evaluate the performance of BOMS across various pub-
licly available datasets and demonstrate that it achieves comparable results to the best
existing method while being simple to implement and significantly faster in execution.
Open-source code is available at https://github.com/sciai-lab/boms.

Introduction

The development of Spatial Transcriptomics (ST) technologies in recent years has led to a
huge increase in the acquisition of spatial data and its subsequent use in the study of tissue
composition and function. ST methods capture genes with their spatial context and can be
used for determining the cell-type composition of tissues, for exploring the spatial sources of
gene expression variation, and for the analysis of cell-cell interactions and communication
between various cell types. These applications are contingent on the availability of a segmenta-
tion mask to group mRNA molecules into cells and assign a transcription profile to each cell.
However, this computational task remains a challenge.

The standard cell segmentation methods rely on a nucleus or membrane staining to iden-
tify cell instances and boundaries respectively. Although deep learning based methods like
Cellpose perform well on the task of nuclei segmentation, the nucleus does not capture the
full extent of the cell body, resulting in a lot of mRNA molecules remaining unassigned.

The membrane would be more indicative of the cell boundary, but segmenting it in densely
packed cells with overlaps remains an error-prone task. The Segmentation-free method SSAM
[1] directly produces a cell-type map of the tissue without producing a cell-by-gene matrix,
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but cannot be used for downstream applications like neighborhood analysis. Some assisted
cell segmentation tools like pciSeq [2], JSTA [3], SCS [4] have also been developed which uti-
lize both the mRNA and staining data to perform segmentation. These methods generally rely
on the DAPI staining to obtain an initial segmentation and then use the mRNA molecules

to propagate the cell boundary. Good performance is dependent on access to a nucleus seg-
mentation of adequate quality, and the methods might struggle in cases where not every cell
has a nucleus visible in a 2D section. There have also been deep-learning methods that utilize
transcript data directly, such as Bering [5], UCS [6], GeneSegNet [7], and BIDCell [8]. These
methods often still require supervision, at least in the form of initial cell labels, which are typi-
cally derived from nuclei segmentation. Adapting these models to new datasets requires com-
putational resources, and when using pre-trained models, fine-tuning is often necessary to
account for batch effects and dataset heterogeneity. In the case of BIDCell, additional scRNA-
seq data and prior biological knowledge, in the form of positive and negative marker genes,
are required. Petukhov et al. have proposed Baysor [9] that uses Bayesian Mixture Modeling
to segment the cells either completely without an auxiliary image or with the inclusion of one
with a user-defined confidence level. Although it has an elegant mathematical foundation,

it is difficult to diagnose the source of error if the method does not work well out of the box
and the long runtimes on large datasets make it challenging to search for optimal parameters.
ClusterMap [10] is an unsupervised framework based on density peak clustering to segment
cells, but the incorporation of spatial distance and gene information into a single distance
metric can result in cells that are physically disconnected.

To tackle these issues, we have developed BOMS—a method that performs cell segmen-
tation in imaging-based spatial transcriptomics datasets without the requirement of an aux-
iliary image. BOMS is based on the classical Mean shift algorithm [11] and uses the modes
of the underlying distribution in the multidimensional domain (space and gene expression)
to cluster small neighborhoods together to obtain cells. BOMS is easy to understand, has few
tunable parameters, and is fast to execute. It can also utilize an auxiliary image when avail-
able to further improve accuracy. We demonstrate that BOMS can be applied to segment
cells in a variety of Spatial Transcriptomics datasets and compares favorably with the current
state-of-the-art methods.

Materials and methods
The BOMS algorithm

BOMS is based on the assumption that a cell body is homogeneous: molecules belonging to
the same cell form small local neighborhoods that are transcriptionally similar to each other.
Such similar molecular neighborhoods that are in close proximity to each other will probably
belong to the same cell instance.

BOMS takes as input the gene identities and their spatial locations (Fig 1). In the first step,
it takes the k nearest neighbors of each molecule as a measure of the local transcriptional
landscape. Each molecule is thus represented by a Neighbourhood Gene Expression (NGE)
vector containing the gene counts in the immediate vicinity. We term the space in which
the spatial coordinates lie as the ‘Spatial domain’ and the NGE vectors comprise the ‘Range
domain’

In the second step, the NGE vectors are used to find the modes in the joint spatial-range
domain. A multivariate kernel window is defined around each molecule such that all the
spots that are close to it in the spatial as well as the range domain are inside the window.

This proximity is defined by the Euclidean distance in the spatial domain and the cosine
distance in the range domain. The width of the kernel window is regulated by two tunable
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Fig 1. Workflow of the BOMS algorithm. A: BOMS takes as input the gene labels and the spot locations. B: Among the k spatial Nearest Neighbors, the
number of occurrences of each gene is calculated to form the Neighborhood Gene Expression (NGE) vectors. These NGE vectors can be visualized in the color
space by taking PCA projection of them in three dimensions. The spatial locations together with the NGE vectors form separate clusters for individual cell
instances in the joint spatial-NGE space. BOMS takes advantage of this structure and tries to find the modes in this joint domain by iteratively moving towards
the maxima of the underlying (estimated) density function. C: Sample trajectories of the Meanshift procedure are shown along with the final mode locations.
D: Cell segmentation labels are estimated by grouping together all the molecules that were mapped to the same mode. E: Final cell outlines are shown with the
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NGE vectors. F: Movement of a spot after incorporating Cellpose flows with different confidence levels, cr. The meanshift direction is marked in red and the
direction of Cellpose flow is marked in blue. The final location of the spot is a convex combination of the two vectors, with & = 1 coinciding with the mean
shift vector, and & = 0 coinciding with the update as per Cellpose flow.

https://doi.org/10.1371/journal.pone.0311458.9001

parameters—spatial bandwidth h; and range bandwidth .. During each iteration of the
BOMS algorithm, the multivariate kernel is iteratively shifted to the centroid of the points
contained inside of it. For the centroid calculation, each point is assigned a weight that
decreases with increasing distance from the center of the kernel. The kernel thus moves in
the direction of maximum increase in the joint density gradient and defines a path lead-

ing to the modes of the estimated joint density. After convergence, the individual cell
instances are delineated by grouping together all those molecules that converged to the same
mode.

BOMS can also utilize available DAPI Stainings to improve its results by using the flows
obtained by applying the Cellpose model [12] to the image to adjust the direction in which the
kernel moves according to a user-defined confidence level.

The naive implementation of the algorithm is costly as in every iteration it needs to find
the neighbors for all points. For computational efficiency, the method has been implemented
in C++ using multidimensional kd-trees.

Implementation details. The output of the FISH-based experiments will consist of
N spots with their spatial locations and gene labels. Let x} denote the 2/3-dimensional
spatial coordinates and g, denote the gene-label for the n” observation. Given the total
number of genes G in the dataset, we convert the gene labels g, to G-dimensional 1-
hot vectors x;, where the element i = g, is 1 and rest are 0. We refer to x}, as the range
vector.

For each molecule, the gene labels of the spatial k-Nearest Neighbours are taken to form
the Neighbourhood Gene Expressions (NGE) vectors

ne 3% 0

JENK(n)

where Ny (n) are the indices of the k spatial nearest points to spot-# in the dataset.

If the number of genes G in the dataset is greater than 50, then we use PCA to reduce the
dimensions of the NGE vectors from G to 50 for speed-up.

We store all the information about the spot-# in the vector

Zno = [f/,] . 2)

Each BOMS iteration consists of the update

N S . T,
Zigss = |:Zis)t+1:| _ Zj:1 Zj,tf(dij, hs)g(d,-j, h,) (3)
. L Zjl\ilf(dfj;hs)g(dlfj; hr)
where
dfj = Hzis,t - zjs,t” (4)
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d.=1- ﬂ (5)
1
A O

with || representing the L2-norm and - representing the dot product.

Various kernels can be used for the spatial and range domain, but we found that the
Epanechnikov kernel for the spatial domain and disk kernel for the range domain works well
in practice on multiple datasets:

2
1-% if|x|<h
xh) = n 6
fxh) {0 otherwise (©)
1 if |x| <h
x;h) = 7
glsh) {0 otherwise @)

After the last iteration of BOMS has completed, all the modes that are closer than h,/4 in
the spatial domain are grouped together using single-linkage clustering. Thus all the points
that converged to the same spatial mode z; are assigned the same cell instance label. Cell
instances with very few number of molecules, less than a threshold thbg, are assigned to the
background.

When the flows fl(p) from Cellpose model are available, then the direction in which the
point moves in each iteration is adjusted as follows—If flow at z; is greater than ¢, fI(z{) > ¢,
then

ZLien = B+ A(Zier — Zp) + (1-a)(z5y)

where a € [0, 1] signifies the weight given to BOMS. In case the flow is small, the update is
done according to Eq 3.

Choice of parameters and troubleshooting. BOMS has mainly three tunable
parameters—the number of neighbours K to calculate the NGE vectors, the spatial band-
width parameter h; and the range bandwidth parameter h,. K in [30,50] has worked well in
our experiments. In general, choosing the value of K much smaller than the expected num-
ber of molecules per cell should work. A, should be chosen to be around the radius of the
cells. For the range bandwidth, a value of 4, in [0.2,0.5] works well in practice. Choosing too
low a value for h; or h, can result in over-segmentation (fragmented cells), whereas choos-
ing too high a value of ks and h, can result in under-segmentation (multiple cells merged
together). If tuning h; and h, does not solve the problem, then K should be increased to solve
oversegmentation and decreased to solve for undersegmentation.

Code availability. The source code for BOMS is available at https://github.com/sciai-lab/
boms. The current version works on both Linux and Windows OS.

Data visualisation

Visualisation of gene expression. In order to analyse the gene expression patterns in the
spatial transcriptomic data visually, we first form the NGE vectors. The number of neighbours
K,is chosen for visualization are greater than the corresponding segmentation parameters
as we want to see more global patterns. This gives us K,;; dimensional gene expression vec-
tors for the N spots. We use PCA to reduce the dimensions to 3 yielding N X 3 dimensional
matrix C. In order to increase the contrast, these reduced dimensions are clipped below at -

1 and above at 1.5. We then perform min-max scaling to scale the values in C between 0 and
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1. These 3-dimensional vectors are then interpreted as RGB colors, with each spot having its
individually mapped color.

Cell boundary visualization. We use Python’s library SciPy to draw convex hulls around
the molecules belonging to the same cell. As some molecules can sometimes lie a bit further
from the main molecule cloud, we can end up with big oddly shaped hulls. In order to achieve
a nicer visualisation we do some filtering beforehand as follows. For all cells

« For all the molecules belonging to a single cell we calculate the spatial density for the i"
molecule den; with the epanechnikov kernel which has a bandwidth equal to h;

s 2

a.
den; = 1- ”) (d;” <h?) (8)

j:label(j)=label(i) ( hg

where label(i) is the cell instance label for i molecule and I is the indicator function.
o We calculate the mean density of molecules den; belonging to the same cell.

denj

den, = j:label(j)=label(i) 1 )

j:label(j)=label(i)

o Ifden; < det“" , then we filter out the i molecule.

We use t = 1.5 for all datasets except osmFISH for which we use ¢ = 2. Note that this filter-
ing is only for visualizing the polygons. In the figures where we have colored different cells
with different colors, these filtered molecules will be plotted with the color of the cell that they
belong to, even though they might lie outside the polygon boundary.

Datasets and preprocessing

We use four publicly available datasets to evaluate BOMS against existing methods.

1. Allen smFISH VISp Dataset—The data has 22 genes and 1074778 spots. The data is
available at https://github.com/spacetx-spacejam/data. There is also a JSON file con-
taining the results of DAPI segmentation, which we call the Silver Standard. The raw
image data for DAPI is available via the Amazon S3 bucket https://s3.amazonaws.com/
starfish.data.spacetx/smFISH/mouse/formatted_with_DAPI/experiment.json. These

images were processed using the Starfish package https://spacetx-starfish.readthedocs.
io/en/latest/ and manually stitched together. The resulting image was downsampled for
easy handling. The 17" slice was used in all the visualizations. To bring the spot data to
the same scale for processing with BOMS, the x and y values were translated by 3000
and 2500 respectively, and both were then multiplied by 2.5.

2. MERFISH Dataset [13]—The data has 135 genes and 3728169 spots. The readings cor-
responding to the blank controls were removed. The cell boundaries detected by the
authors of the original publication are also available which serve as our Silver Standard.
The raw DAPI/Poly(A) image for this dataset is not available. This data is available at
https://zenodo.org/records/3478502.

3. osmFISH Dataset [14]—The data has 33 genes and 1802589 spots. The spots corre-
sponding to genes considered as low-quality by [14] were removed from the data. The
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segmentation mask of Poly(A) signal, which serves as our Silver Standard, is also avail-
able. The low-resolution versions of DAPI and Poly(A) images are available at https://
zenodo.org/records/3478502. The x values for the spots are translated by -25 and y val-
ues are translated by 10 and subsequently converted to ‘pixel” units using the ‘Cell area
in number of pixels’ parameter provided by the Linnarsson Lab to register the spots
with the DAPI and Poly(A) images. The data is available under https://linnarssonlab.
org/osmFISH/availability/.

4. STARmap Dataset [15]—The data has 1020 genes and 949505 spots. The dataset has a
lot of noisy spots in the background region. They were filtered using the steps described
in the previous section using a bandwidth value of 60 and a ¢ value of 85. The data
is available at http://starmapresources.org/data. The DAPI images are available at
https://github.com/wanglab-broad/ClusterMap/tree/main/datasets/STARmap_V1_1020

5. Xenium Dataset—This dataset includes 40,204,978 spots and 480 genes, obtained using
the 10x Genomics Xenium In Situ platform for FFPE human lung cancer profiling with
the human immuno-oncology panel and a custom add-on. The spatially resolved gene
expression data is accompanied by imaging data, including DAPI. The DAPI image
was resampled to match the spatial resolution of the spots. Based on details from the
dataset’s documentation, the Silver Standard segmentation appears to be derived by
expanding nuclear boundaries, as no membrane-specific stains were provided. This
dataset provides a high-resolution view of gene expression across the tissue. The dataset
is available at https://www.10xgenomics.com/datasets/ffpe-human-lung-cancer-data-
with-human-immuno-oncology-profiling-panel-and-custom-add-on-1-standard.

We used the Cellpose algorithm [12] with default parameters on the DAPI/Poly(A) images
to segment them.

Segmentation parameters

The segmentation parameters used for the various datasets are summarized in Table 1.

Segmentation parameters for Xenium dataset. For the Xenium dataset, we used K = 50,
hs =5, h, = 0.4 and a = 0.6. Due to the large size of the dataset, BOMS was run in 18 spatially
defined patches, ensuring efficient processing without loss of data continuity.

Performance metrics

Mutual information. We use the normalized mutual information for comparing the seg-
mentations A and B obtained from two different methods respectively. The normalization is
done using the joint entropy of A and B.

Correlation metric [9]. The Correlation metric was proposed by Petukhov et al. [9]. This
metric takes two Segmentations — A and B and performs the following steps :

Table 1. Segmentation parameters for the different datasets.

Dataset K hs h, thbg K,;
Allen smFISH 30 17.5 0.4 30 80
MERFISH 30 7 0.5 30 80
osmFISH 30 6.5 0.2 30 50
STARmap 300 80 0.5 30 300

https://doi.org/10.1371/journal.pone.0311458.t1001

PLOS One | https://doi.org/10.1371/journal.pone.0311458 June 12, 2025 7/ 24



https://zenodo.org/records/3478502
https://zenodo.org/records/3478502
https://linnarssonlab.org/osmFISH/availability/
https://linnarssonlab.org/osmFISH/availability/
http://starmapresources.org/data
https://github.com/wanglab-broad/ClusterMap/tree/main/datasets/STARmap_V1_1020
https://www.10xgenomics.com/datasets/ffpe-human-lung-cancer-data-with-human-immuno-oncology-profiling-panel-and-custom-add-on-1-standard
https://www.10xgenomics.com/datasets/ffpe-human-lung-cancer-data-with-human-immuno-oncology-profiling-panel-and-custom-add-on-1-standard
https://doi.org/10.1371/journal.pone.0311458.t001
https://doi.org/10.1371/journal.pone.0311458

PLOS One

Cell segmentation in spatial transcriptomics with BOMS

1. Take A as the source segmentation and B as the Target segmentation.

2. All the cells with the number of molecules below a threshold b; are taken out of consid-
eration.

3. For each source cell s;, we find all the overlapping target cells ;.

4. Among the overlapping target cells, select the one with the largest number molecules in
the overlapping region.

5. Calculate the overlapping fraction f; as the number of molecules in the overlapping
region divided by the number of molecules in the source cell.

6. Only consider those pairs for which 0.3 < f; < 0.7. This is because if the f; < 0.3, then
there are not enough molecules in the overlapping region to compare with the rest
of the source cell. Similarly, if f; > 0.7, there are not enough molecules in the non-
overlapping part of source cell to compare with the overlapping part.

7. Eliminate the pairs for which the number of molecules in overlapping part or the num-
ber of molecules in the non-overlapping part is less than b,.

8. Form gene expression vectors for the molecules in overlapping and non-overlapping
regions.

9. Calculate the correlation value between the two gene expression vectors. If the two parts
indeed belong to the same molecular celltype, then this correlation value will be high.

10. Take B as the source segmentation and A as the Target segmentation and repeat steps

2-9. The segmentation containing more homogenous transcriptional signatures per cell
will have higher scores.

To compare BOMS with other methods, we use b; = b, = 30 for all datasets except osm-
FISH for which we use b; = b, = 15. For demonstrating the failure cases of this metric we have
used bl =30, bz =0.

Runtime performance. All the experiments were performed on a Dell XPS laptop with
Intel(R) Core(TM) i7 Processor and 32 GB of RAM.

Compared methods

We compared the performance of BOMS with Baysor [9], pciSeq [2] and the original pub-
lished Segmentations, which we term ‘Silver Standard’

Baysor. The datasets were segmented using Baysor (v0.6.2) Command Line Interface with
the parameter values taken from the supplementary table provided by Petukhov et al. [9]. To
run Baysor with prior, we used the segmentation mask obtained from Cellpose.

pciSeq. We used the python package pciSeq (v0.0.59). As inputs, we used the spot matrix
and the segmentation masks from Cellpose. As the MERFISH dataset didn’t have any pub-
lished stains, it was excluded from the comparison of pciSeq with BOMS.

Downstream analysis

The clustering and DEG (Differentially Expressed Genes) analysis were performed using the
ScanPy package (version 1.10.3). Cells segmented by each method were filtered to exclude
those with fewer than 10 or more than 900 transcripts. The dataset was normalized to a tar-
get sum of 10°, log-transformed, and the top-200 highly variable genes (HVGs) were selected.
After this step, default parameter settings of ScanPy were used for all subsequent analyses.
Dimensionality reduction was performed using PCA, followed by construction of a k-nearest
neighbor (kNN) graph and Leiden clustering. The clustering resolution was fixed across
datasets and segmentation methods to ensure comparability.
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Differential expression analysis was conducted using the Wilcoxon rank-sum test. To eval-
uate the similarity of DEGs across methods, the top-5 DEGs for each cluster were identified
for the Silver Standard and the other segmentation methods. The Jaccard similarity of the top-
5 DEGs was then computed between clusters in the Silver Standard and the corresponding
clusters in BOMS, Baysor, and pciSeq.

The ScanPy function ‘ingest’ with PCA embeddings was employed to transfer cell type
labels from the Silver Standard to cells segmented using BOMS and other methods. The
joint UMAP embeddings were generated using the widely used umap-learn Python package
(https://github.com/Imcinnes/umap), with parameters set to min_dist = 0.1, spread = 2, and
n_epochs = 1000.

Results and discussion

Fig 2 illustrates the results of applying the BOMS method on the various publicly available
datasets. The results for Allen smFISH data (Fig 2A) indicate that methods like BOMS and
Baysor, which work independently of DAPI data, can potentially detect some cells that would
be challenging to identify solely from the DAPI staining due to illumination artifacts aris-

ing during data acquisition (these cells are highlighted with red circles in the Silver Standard
panel to indicate missed detections, and green circles in the BOMS and Baysor panels to indi-
cate successful detections). The figure also underscores the variability in success between
these methods, revealing instances where one method might succeed while the other fails
(e.g., locations highlighted with red circles in BOMS and green in Baysor, and vice versa).
Additionally, both BOMS and Baysor can fail to distinguish between adjacent cells evident in
the DAPI staining, leading to undersegmentation where two distinct cells may be merged into
a single instance. This is particularly likely when the adjacent cells share a similar molecular
profile. Examples of such instances are highlighted with red circles in Fig 2A, including cases
where both methods fail (green circles in Silver Standard, red in both BOMS and Baysor) or
where one method performs better (e.g., green circles in Silver Standard and BOMS, red in
Baysor, and vice versa).

Fig 3 demonstrates the effect of incorporating auxiliary information in the form of Cell-
pose flows into the BOMS segmentation process for the Allen smFISH and osmFISH datasets.
The results indicate that incorporating Cellpose flows as auxiliary information allows for
better alignment with the boundaries identified by Cellpose, particularly in cases with sub-
stantial intracellular transcriptional variation. As the influence of Cellpose flows increases,
the boundaries of BOMS-segmented cells become more consistent with the Cellpose results,
highlighting the utility of auxiliary stains in improving segmentation accuracy.

The difficulty of establishing a groundtruth in spatial transcriptomic imaging data makes
evaluating the performance of different methods challenging. The most common auxiliary
stain acquired in the spatial experiments are the DAPI nuclei images, which are then seg-
mented to get cell boundaries. However, this approach leaves a lot of transcripts outside
the boundary. These so-called ‘dangling’ transcripts are difficult to assign to an individual
cell [16]. Moreover, multinucleate cells would be difficult to identify, and cells without a
nucleus would not be detected at all. Hence, even a perfectly segmented DAPI cannot serve
as a groundtruth. Cell membrane staining would be better for segmentation, but membrane
markers often generate low signals, lack specificity for the cytoplasmic membrane, or are not
applicable to all cell types [17]. Consequently, we resort to a number of imperfect evalua-
tion strategies which in tandem can provide a means to compare different methods for cell
segmentation.

We evaluated BOMS against a set of related methods [9] [2] for cell segmentation and spot
assignment on a collection of published datasets [13] [14] [15]. A summary of the results is
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Allen smFISH

Silver Standard (Original
Published Segmentation)

:

Fig 2. Examples of BOMS results on the published datasets. A: BOMS segmentation results on the Allen smFISH dataset. All molecules are colored by taking a
PCA projection of the NGE vectors. Cell boundaries are shown by black contours. The right column shows a zoomed-in version of BOMS, Baysor, and the original
published segmentation overlaid on the DAPI image. Green colored circles indicate that the method has correctly detected cell boundaries whereas red colored circles
indicate incorrect segmentation. B: BOMS result on the STARmap dataset [15] overlaid on the DAPI image, C: BOMS result on the osmFISH dataset [14] overlaid on
the poly(A) image and D: BOMS result on the MERFISH [13] dataset.

https://doi.org/10.1371/journal.pone.0311458.g002
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Cellpose BOMS

Fig 3. Effect of Cellpose flows on BOMS segmentation. The figure demonstrates the impact of incorporating Cellpose flows into BOMS segmentation for the Allen
smFISH (A) and osmFISH (B) datasets. For the Allen smFISH dataset, Cellpose was applied to the DAPI image, while for the osmFISH dataset, it was applied to the
poly(A) image. Cyan boundaries represent Cellpose segmentations, while black outlines depict the resulting BOMS segmentations. All molecules are colored based on
a PCA projection of their NGE vectors, where spots with similar colors have a similar molecular neighborhood. Transcriptional variation within cells is reflected by
differences in the coloring of spots. As the influence of Cellpose flows increases, BOMS segmentation aligns more closely with Cellpose boundaries. Lower & values
are particularly necessary in cases with substantial intracellular transcriptional variation to ensure faithful alignment with Cellpose results.

https://doi.org/10.1371/journal.pone.0311458.9g003

presented in Table 2, with visual comparisons provided in Fig 4. BOMS identifies a higher
number of molecules as part of a cell compared to the other methods (Baysor and pciSeq)
and with reference to the original published segmentations (‘Silver Standard’) (Fig 4E). The
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Table 2. Summary of benchmarking results across datasets and methods. The table compares BOMS with other
segmentation methods, including Baysor, pciSeq, and the Silver Standard, based on key metrics: runtime,
mutual information, correlation score, number of detected cells, and fraction of molecules assigned. ‘S’ and ‘T’
refer to Source and Target segmentations, respectively. See Fig 4 for visual representations of these comparisons.

Method |STARmap | Allen smFISH |osmFISH |MERFISH
Median correlation score

BOMS (S) — SS (T) 0.75 0.9 0.88 0.75
SS (S) — BOMS (T) 0.67 0.86 0.78 0.39
BOMS (S) — Baysor (T) |0.45 0.77 0.45 0.45
Baysor (S) -~ BOMS (T) 0.9 0.92 0.95 0.73
BOMS (S) — pciSeq (T) |05 0.89 0.9 —
pciSeq (S) - BOMS (T) (0.75 0.85 0.68 —
Normalized MI

BOMS 0.7017 0.5976 0.4104 0.4577
BOMS (w/ DAPI) 0.7146 0.6065 0.3738 —
Baysor 0.3554 0.6084 0.4276 0.5098
Baysor (w/ DAPI) 0.4029 0.6101 0.4302 —
pciSeq (w/ DAPI) 0.4318 0.6189 0.4399 —
Number of cells

BOMS 1033 5360 14055 17009
BOMS (w/ DAPI) 1009 5320 16139 —
Baysor 867 5652 14398 9085
Baysor (w/ DAPI) 785 4007 13822 —
pciSeq (w/ DAPI) 789 4831 4940 —
Silver Standard 975 3450 5834 6406
Fraction of molecules assigned

BOMS 0.6196 0.9423 0.9360 0.9862
BOMS (w/ DAPI) 0.6197 0.9470 0.8884 —
Baysor 0.2796 0.9188 0.7487 0.5063
Baysor (w/ DAPI) 0.3145 0.7897 0.7513 —
pciSeq (w/ DAPI) 0.3275 0.8098 0.7160 —
Silver Standard 0.6326 0.6184 0.4449 0.4977
Execution time (min)

BOMS 1.42 0.58 1.17 4.42
Baysor 7.50 11.00 38.00 30.00

https://doi.org/10.1371/journal.pone.0311458.t1002

number of cells detected by BOMS is similar to that of Baysor and pciSeq (Fig 4D). MERFISH
and osmFISH datasets show the largest change compared to the Silver Standard, since a lot of
transcripts were unassigned in them.

Next, we use the Correlation metric proposed by Petukhov et al. [9] to evaluate BOMS
against other methods. The Correlation metric compares the performance of one method rel-
ative to another without requiring a groundtruth. Like the underlying methods, the metric
assumes a homogeneous cell body. The method that better explains the areas of mismatch
between two candidates gets a higher score. The correlation metric is computed briefly as
follows—for each cell in a ‘Source’ Segmentation, we find all the overlapping cells in the “Tar-
get’ Segmentation (Fig 4C). The target cell with the largest such overlap is then selected, and
we compute the correlation between the Gene Expression of the overlapping region and the
Gene Expression of the remaining region of the source cell. If the source segmentation is
reasonably correct, then this correlation value will be high as two partitions of the same cell
should be transcriptionally similar as per our assumption. If on the other hand the correlation
value is low, then it implies that the target segmentation did a better job by assigning differ-
ent instance labels to these two molecular regions. The same calculation is done after switch-
ing the source and target. The method demonstrating superior performance will have higher
correlation values when it is the source.
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Fig 4. Comparison of BOMS with related methods. A: The runtime performance of BOMS vs. Baysor—BOMS produces results of similar quality to Baysor while
being 10 times faster. B: Mutual Information Scores with respect to the Silver Standard (original published segmentations). The scores are similar to those of Baysor
and pciSeq, except on the STARmap dataset. C: Schematic showing the calculation of correlation score for comparing a source and target Segmentation. For each
cell in the source segmentation, the target cell with the maximum overlap is computed. Correlation score between the molecules in the overlapping region and the
remaining molecules in the source cell is then estimated. If the source segmentation is correct, the corresponding correlation scores should be high. D: The number
of detected cells reported by different methods, showing BOMS is able to recover more cells than the other methods. E: The fraction of molecules assigned to cells by
different methods, showing least number of unassigned transcripts by BOMS. F: a. Correlation score for BOMS vs. Baysor, b. BOMS vs. pciSeq, c. BOMS vs. Silver
Standard showing a higher performance of BOMS with respect to pciSeq and the original published segmentation.

https://doi.org/10.1371/journal.pone.0311458.g004
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BOMS gets a higher average Correlation score when compared with pciSeq (except on
STARmap dataset) and the original published segmentations (Fig 4F). Baysor shows a higher
correlation score compared to BOMS across all protocols. However, it is essential to interpret
these results cautiously. The correlation metric tends to reward under-segmentation across the
same celltype—if the source segmentation merges two cells of similar transcriptional signa-
ture but the target does not, then the corresponding correlation score for the source will be
high. The metric also penalizes the target when the source is over-segmented—if the source
cells split a single cell and the two parts have slightly different gene expression profiles, then
the target gets a low correlation score. Baysor gets a higher score because of these reasons. It
shows a tendency towards over-segmenting single cells, potentially capturing some subcellular
localization of mMRNA molecules, leading to higher correlation scores for Baysor even when
results from BOMS method better adhere to the DAPI image.

This shortcoming of the correlation metric is demonstrated in Fig 5. When BOMS is run
with the parameters that we consider optimal for the Allen smFISH data, BOMS gets a lower
correlation score compared to Baysor (segmentation shown in Fig 5B). When we increase the
spatial bandwidth parameter in BOMS so that it will merge cells leading to undersegmen-
tation, the correlation metric indicates that BOMS is performing better than Baysor despite
visual inspection contradicting this (Fig 5C). Similarly, when we decrease the range band-
width parameter making BOMS over-segment individual cells, the correlation score would
lead one to conclude that these results are qualitatively similar to Baysor when, in fact, they
are much worse (Fig 5F). Interestingly, when under-segmentation is achieved with the help of
range bandwidth parameter (Fig 5D) instead of the spatial bandwidth parameter or if over-
segmentation is done with the spatial bandwidth parameter (Fig 5E), then the correlation
metric does the intuitively right thing by assigning low scores to BOMS.

We also analyze the Mutual information of the different methods with respect to the Silver
Standard (published segmentations) (Fig 4B). Except for the STARmap dataset, the perfor-
mance of BOMS is similar to Baysor and pciSeq. We also observe an increase in performance
when the Cellpose flows are taken into consideration to improve the segmentation results.

Lastly, we compare the computation time of the different methods (Fig 4A). BOMS out-
performs Baysor significantly, demonstrating 5-10x increase in speed while also being more
memory efficient.

Comparison of BOMS and cellpose. Fig 6 demonstrates the results obtained from BOMS
and Cellpose for adjacent cells in the Allen smFISH and osmFISH datasets. For the Allen
smFISH dataset (Fig 6A), Cellpose was applied to the DAPI image, while BOMS relied solely
on transcriptomic information. BOMS not only matches the results of Cellpose but also
identifies larger cell boundaries by incorporating transcripts outside the nuclei. This abil-
ity is particularly advantageous when only DAPI, the most commonly available stain, is
used, as it allows BOMS to assign spots outside the nuclear region, which Cellpose cannot
assign with DAPI alone. For the osmFISH dataset (Fig 6B), where Cellpose was applied to
the poly(A) image, BOMS provides results comparable to Cellpose without auxiliary image
information.

Fig 7 highlights instances from the osmFISH dataset where Cellpose, applied to the
poly(A) image, failed to detect cells due to imaging artifacts or lack of signal. In contrast,
BOMS successfully identified these cells based on transcriptomic data. This demonstrates the
robustness of BOMS in cases where auxiliary images fail, providing an important advantage in
cell segmentation.

Table 3 summarizes the comparisons between BOMS and other segmentation methods,
including Baysor, pciSeq, and Auxiliary Stain Segmentation. This table provides a qualitative
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Fig 5. Breakdown of the correlation metric proposed by [9]. The figure illustrates the behavior of the Correlation metric when comparing Baysor with
BOMS at varying settings, inducing under-segmentation or over-segmentation, on the Allen smFISH dataset. The Silver Standard segmentation is depicted
with red contours in A-F. A: Baysor segmentation. B: BOMS with optimal parameters (hs = 17.5, hr = 0.4). C: BOMS with a high spatial bandwidth to induce
under-segmentation (/s = 30, h, = 0.4). D: BOMS with a high range bandwidth to induce under-segmentation (hs = 17.5, h, = 0.9). E: BOMS with low spatial
bandwidth to cause over-segmentation (h; = 10, h, = 0.4). F: BOMS with low range bandwidth to cause over-segmentation (hs = 17.5, h, = 0.08). G: Correlation
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scores depicting higher values implying good performance when BOMS under-segments because of high spatial bandwidth or when BOMS over-segments
because of low range bandwidth in contrast to bad visual results. H: Normalized Mutual information values with respect to the Silver Standard make it evident
that the results are actually worse despite good correlation scores.

https://doi.org/10.1371/journal.pone.0311458.9g005

Cellpose BOMS

Fig 6. Comparison of cells obtained from BOMS and Cellpose. The figure shows results from Cellpose and BOMS on adjacent cells in the (A) Allen smFISH dataset,
where Cellpose was applied to the DAPI image, and (B) osmFISH dataset, where Cellpose was applied to the poly(A) image. For the Allen smFISH dataset, BOMS
identifies larger cell boundaries compared to Cellpose as it also includes transcripts outside the nuclei, which Cellpose cannot detect when only DAPI staining is
available. For osmFISH, the results from BOMS align closely with Cellpose boundaries.

https://doi.org/10.1371/journal.pone.0311458.9006

DAPI PolyA

DAPI PolyA a=1

DAPI PolyA DAPI PolyA a=

BOMS

Cellpose

Fig 7. Detection of cells missed by Cellpose but identified by BOMS. This figure presents examples from the osmFISH dataset where Cellpose, applied to the poly(A)
image, failed to detect cells, while BOMS successfully segmented them using transcriptomic data. For each instance, the DAPI image, poly(A) image, and transcrip-
tomic data are shown with Cellpose boundaries (cyan) and BOMS boundaries (black) overlaid. These examples highlight BOMS’s ability to segment cells in cases
where auxiliary images are insufficient due to imaging artifacts or lack of signal.

https://doi.org/10.1371/journal.pone.0311458.9g007
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Table 3. Comparison of the advantages and disadvantages of different cell segmentation methods. The table
summarizes the strengths and limitations of BOMS and other methods (Baysor, pciSeq, and Auxiliary Stain
Segmentation), providing qualitative insights into their performance characteristics.

Method
BOMS

Baysor

pciSeq

Auxiliary Stain Segmentation (No
Gene Data)

Advantages

o Fast runtime.

o Simple to understand with only
three tunable parameters.

o Supports auxiliary stains for
improved performance.

e High correlation scores.

o Can incorporate compartment-
specific gene information to handle
intracellular variation.

o Supports auxiliary stains for
improved performance.

o Simple implementation with good
runtime.

o Effective for regions with homoge-
nous transcription or dense gene
presence.

https://doi.org/10.1371/journal.pone.0311458.t003

Disadvantages

o Slightly lower correlation scores on
some datasets.

o Can produce suboptimal segmen-
tation in regions with homogeneous
transcription or subcellular variation
without auxiliary stains.

o Slower runtime.

o Can lead to over-segmentation.

o Complex methodology, mak-

ing it difficult to tune if results are
unsatisfactory.

o Can produce suboptimal segmen-
tation in regions with homogeneous
transcription or subcellular variation
without auxiliary stains.

® Requires a cell mask, making it
reliant on auxiliary stains. Cannot
segment based on transcriptional data
alone.

o Lacks a mechanism to assign confi-
dence levels to segmentation quality of
the cell mask.

o Limited by tissue type and imaging
quality.

o DAPI-based segmentation results in
loss of signal from molecules outside
boundaries.

o Misses cells not present in the
imaging plane.

overview, highlighting the unique strengths and limitations of each method to complement
the quantitative comparisons presented earlier.
Application of BOMS to high-resolution Xenium dataset. The Xenium dataset poses
challenges due to high transcript density, with many spots located outside nuclear boundaries.
Visual inspection (Fig 8) shows differences in transcriptional signatures within and beyond
nuclei, reflected in the coloring of NGE vectors.
The Silver Standard segmentation relies heavily on nuclear boundaries, which may not
accurately capture cell morphology, especially in regions beyond the nuclei. While the nor-
malized mutual information (NMI) between BOMS and the Silver Standard is 0.786, tran-
scriptional assignments outside nuclei differ significantly, leading to visual discrepancies.
BOMS achieves higher average correlation score, suggesting better capture of transcriptomic
relationships (Fig 8D). However, this metric has limitations, and it remains unclear which
method more accurately reflects the biology.
Incorporating auxiliary information from Cellpose flows was crucial for BOMS perfor-
mance, highlighting the importance of combining transcriptomic and morphological data in
challenging datasets like Xenium.
Impact of segmentation on clustering and differential expression analysis. The down-
stream effects of segmentation on clustering and DEG (Differentially Expressed Gene) anal-
ysis were evaluated using the Allen smFISH and MERFISH datasets (Figs 9 and 10). For
the Allen smFISH dataset, the analysis revealed that the number of clusters identified was
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Fig 8. Application of BOMS to the Xenium dataset. A: Segmented cells using BOMS. B: Segmented cells using the Silver
Standard. In (A) and (B), the spots are colored by taking a PCA projection of the NGE vectors. C: Cellpose boundaries
overlaid on the DAPI image, where Cellpose was applied to define nuclear boundaries. D: Correlation score of BOMS with
respect to the Silver Standard.

https://doi.org/10.1371/journal.pone.0311458.g008

consistent across the Silver Standard, BOMS, Baysor, and pciSeq segmentations, as shown
in Fig 9 (A-D). The number of clusters for each segmentation method is indicated in the
title of the respective UMAP plot. However, the overlap of the top-5 DEGs for clusters from
the Silver Standard and those from other methods was limited, as illustrated by the Jaccard
similarity heatmaps in Fig 9 (E-G).

For the MERFISH dataset, segmentation methods yielded different numbers of clusters
(Fig 10 (A-D)). Baysor identified the highest number of clusters and achieved the greatest
separation in UMAP, while BOMS and pciSeq produced UMAP embeddings that appeared
more similar to one another. Interestingly, preprocessing by removing molecules identified as
background by Baysor before applying BOMS increased the number of clusters identified by
BOMS.
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Fig 9. Results of clustering and DEG analysis on the Allen smFISH dataset. A-D: UMAP embeddings of cells segmented by (A) Silver Standard, (B) BOMS, (C)
Baysor, and (D) pciSeq, with clusters represented by distinct colors. The number of clusters is indicated in the title of each subplot. E-G: Heatmaps showing the
Jaccard similarity of the top-5 DEGs identified for clusters in the Silver Standard and clusters from (E) BOMS, (F) Baysor, and (G) pciSeq.

https://doi.org/10.1371/journal.pone.0311458.g009
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Fig 10. Results of clustering and DEG analysis on the MERFISH dataset. A—-D: UMAP embeddings of cells segmented by (A) Silver Standard, (B) BOMS, (C)
Baysor, and (D) pciSeq, with clusters represented by distinct colors. The number of clusters is indicated in the title of each subplot. E-G: Heatmaps showing the
Jaccard similarity of the top-5 DEGs identified for clusters in the Silver Standard and clusters from (E) BOMS, (F) Baysor, and (G) pciSeq.

https://doi.org/10.1371/journal.pone.0311458.9g010
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These results highlight the sensitivity of downstream analyses to both the segmentation
algorithm and intermediate preprocessing steps. Each choice or substep in the upstream seg-
mentation workflow—such as background removal—can significantly affect downstream
clustering and DEG analysis. Accurate and consistent segmentation is therefore critical to
ensure reliable downstream analyses, as differences in segmentation propagate through to key
biological insights.

Cell type label transfer from silver standard. To further assess the impact of BOMS on
biologically meaningful downstream analysis, we performed a cell type label transfer from the
Silver Standard to cells segmented using BOMS. This analysis was conducted on the osmFISH
and MERFISH datasets, where the largest discrepancies between methods were reported by
Petukhov et al. [9].

Both BOMS and Baysor recover a greater number of cells across various cell types com-
pared to the Silver Standard (Fig 11A). Notably, BOMS identifies additional astrocytes that
were missed by the Silver Standard due to the absence of detectable poly(A) signal (Fig 11C).
This highlights the ability of BOMS to capture cell types that may otherwise remain unanno-
tated when relying on auxiliary staining alone.

Results for the MERFISH dataset are provided in the S1 Appendix. These findings demon-
strate that segmentation approaches leveraging transcriptomic data, such as BOMS, can
enhance the completeness of cell-type maps, offering valuable biological insights.

Conclusion

Accurate cell segmentation can increase the number of detected cells and decrease the num-
ber of unassigned transcripts in in-situ transcriptomics data. It can help in identifying cor-
rect celltype signatures, complete cell-type maps and missing rare cell types. We describe

a methodology to perform the essential preprocessing step of cell segmentation in in-situ
transcriptomics data. BOMS is based on the classical Meanshift method and is very sim-

ple to interpret. It contains only three tunable parameters that have an intuitive effect on the
output—the number of nearest neighbors K to form NGE vectors, the spatial bandwidth
parameter h; and the range bandwidth /,. We have included a guideline to choose these
parameters in the Methods section. BOMS exhibits a fast runtime, enabling researchers to
test different parameters for their specific research goals. We showed that BOMS is applicable
to a variety of spatial datasets including MERFISH, osmFISH, STARmap and shows a good
performance on them.

There are some cell segmentation cases that can be challenging for BOMS. The first
step in BOMS is to compute the NGE vectors by taking the k nearest neighbors for each
spot. This can smooth the signal at the cell boundary excessively making the subsequent
steps unable to resolve the distinct cells accurately. Performing segmentation in transcrip-
tionally homogeneous areas in dense tissues is also difficult, which might be improved
by the inclusion of DAPI/Poly(A) information. BOMS can make use of Cellpose flows
to improve its segmentation in such a case. Segmenting cells in datasets with a high spa-
tial resolution showing subcellular molecular localization also remains an outstanding
challenge as the underlying assumption of the method that a cell body is homogeneous is
invalid.

A critical challenge for the field is the lack of a reasonable metric to judge the different
segmentation methods. DAPI/Poly(A) cannot be considered as the groundtruth due to their
limitations. The Correlation metric proposed by [9] does not paint an accurate picture and
can give high scores to a method with worse performance. Therefore there is a need for the
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Fig 11. Cell type label transfer for the osmFISH dataset. A: Bar plot showing the number of cells assigned to each cell type by the Silver Standard, BOMS,
Baysor, and pciSeq. B: Example of an astrocyte cell identified both in the Silver Standard and by BOMS. C: Example of an astrocyte detected by BOMS but
not present in the Silver Standard due to lack of poly(A) signal. The grayscale background shows poly(A) staining. D-E Joint UMAP embedding of cells from
BOMS and the Silver Standard colored by (D) cell type and (E) dataset, illustrating overlap and unique contributions.
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development of a principled metric. This can encourage the discovery of new scientific meth-
ods and the adoption of already existing methods in automated pipelines for the analysis of
spatial transcriptomic data.

Overall, the key strengths of the method are its good segmentation accuracy, concep-
tual simplicity and concomitant interpretability as well as computational efficiency. BOMS is
available as a plugin in python and the code is available at https://github.com/sciai-lab/boms.
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(PDF)
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