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Abstract

Crop price forecasting is difficult in that supply is not as elastic as demand, therefore, supply
and demand should be stabilized through long-term forecasting and pre-response to the
price. In this study, we propose a Parametric Seasonal-Trend Autoregressive Neural Net-
work (PaSTANet), which is a hybrid model that includes both a multi-kernel residual convo-
lution neural network model and a Gaussian seasonality-trend model. To compare the
performance of the PaSTANet, we used daily data from the Garak market for four crops:
onion, radish, Chinese cabbage, and green onion, and performed long-term price forecasts
for one year in 2023. The PaSTANet shows good performance on all four crops compared
to other conventional statistical and deep learning-based models. In particular, for onion, the
(mean absolute error (MAE) for the long-term forecast of 2023 is 107, outperforming the
second-best Prophet (152) by 29.6%. Chinese cabbage, radish, and green onion all outper-
form the existing models with MAE of 2008, 3703, and 557, respectively. Moreover, using
the confidence interval, the predicted price was categorized into three intervals: probability,
caution, and warning. Comparing the percentage of classified intervals about the true prices
in our test set, we found that they accurately detect the large price volatility.

1. Introduction

Forecasting crop prices remains a challenging task as it is influenced by a variety of external
features, including weather conditions, growing conditions, yields, and fluctuations in demand
[1,2]. These uncertainties can also pose economic risks to both producers and consumers
[3,4]. Therefore, long-term forecasting of crop prices is required not only to regulate supply
and demand through agricultural production planning and sales planning but also to increase
the stability of the agricultural economy and improve the efficiency of agricultural markets [5].
The Korea Rural Economic Institute uses the Korean Agriculture Simulation Model
(KASMO) to forecast the supply and demand of 45 agricultural products [6]. KASMO is a
regression-based model that considers various variables such as production area, production
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location, and compost use. However, models with multiple variables have limitations because
temporal information is not reflected in the model, and thus not applicable to daily prices.
Therefore, a time-series-based price prediction model using daily prices is required.

Crop price, which is time-series data, has three characteristics [7]. First, it contains time-
lagged information, implying the data are correlated. Therefore, recent prices contribute more
to future predictions than previous prices. Second, the time series displays a constant trend
and regular and irregular seasonality. Finally, the real-world time-series data are subject to
missing and extreme data. Consequently, various approaches utilize models that reflect these
characteristics of time-series data to perform forecasting.

The autoregressive integrated moving average (ARIMA) model, which uses previous prices,
is a statistical forecasting model commonly used in time-series analysis. It combines three
time-series models: the autoregressive (AR) model, which explains the current value of a vari-
able based on its past values; the moving average model, which explains the current value of a
variable based on past forecast errors; and the integrated model, which differentiates the time-
series data to remove non-stationarity. Most previous research forecasted prices using ARIMA
models [8-11].

Seasonal-trend decomposition using locally estimated scatterplot smoothing (LOESS),
namely STL, models data as a time function. STL is a robust non-parametric method for
decomposing time-series data into trend, seasonal, and residual components. In contrast to
traditional decomposition methods that rely on parametric assumptions, STL utilizes the flexi-
ble LOESS smoother to locally estimate the trend and seasonal components [12,13].

In the time-series forecasting process, AR models that use previous prices and STL models
that use time functions have advantages and disadvantages because they utilize different fea-
tures of the time-series data (Table 1). AR has the advantage of providing intuitive interpreta-
tion as it relates past prices to future prices, incorporates recent information, and can be
combined with various data. However, the appropriate sequence length for historical prices is
difficult to determine and is sensitive to extreme and missing values. The STL model has the
advantage of being able to make long-term forecasts because of its strong functional assump-
tions, ability to analyze the components of the time series, and robustness to extraneous and
missing values. However, long-term forecasting is trend-dependent, does not reflect recent
information, and has difficulty considering exogenous variables.

The recurrent neural network (RNN), temporal convolution network (TCN), and Trans-
former models are represented AR models that perform well in time forecasting. First, RNN
[14,15] processes sequential data using a hidden state to capture information from previous
inputs, and TCN [16] uses causal convolutions and dilation for parallel sequence processing.
Lastly, the Transformer uses a self-attention module for connecting between sequence posi-
tions and achieving good performance [17]. However, these models are AR-based models,
which have the limitation that RNNs have difficulty reflecting long sequences [18], and TCNs

Table 1. Advantages and disadvantages of conventional forecasting methods.

Method Advantages Disadvantages
AR 1) Intuitive interpretation is possible 1) Difficulty in determining the appropriate lag
2) Reasonable predictions based on recent information | 2) Sensitive to missing values
3) Applicable to various data 3) Sensitive to extreme values
STL 1) Enable long-term forecasting 1) Dependence on trend predictions
2) Decomposing the characteristics of time series data | 2) Limiting the use of exogenous variables
3) Robustness to missing values 3) Difficulty incorporating recent information

AR = autoregressive, STL = Seasonal and Trend decomposition using Loess.

https://doi.org/10.1371/journal.pone.0311199.t001
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may not reflect seasonality at different scales because of the need to determine the appropriate
kernel size [19,20]. In addition, Transformer requires high computational resources and has
the limitations of hyper-parameterization and complexity.

Therefore, we propose a hybrid approach for forecasting crop prices using both AR and
STL modules (Fig 1). The proposed parametric seasonal-trend autoregressive neural network
(PaSTANet) model uses the AR method to incorporate the previous price and the time func-
tion of the STL method to predict the crop price. Subsequently, the distribution of the pre-
dicted price is estimated, and abnormal prices are detected by comparing the estimation with
the current price. The contributions of PaSTANet are as follows:

1. Hybrid deep learning models using both STL and AR outperform previous models.

2. The model outputs are the parameters of a Gaussian distribution, allowing point estimation
and measurement of uncertainty.

3. Appropriate thresholds are suggested for the crop price, allowing the development of an
appropriate response strategy.

2. Materials and methods
2.1 Data

Daily data on crop prices were obtained from the Garak market of the Seoul Korea Agriculture
Fisheries & Food Trade Corporation (aT) (Table 2). In this study, except for radish, data from
2010 to 2022 were used, with the 2023 data as the test dataset. There are two reasons for the dif-
ficulty in forecasting crop prices. The first is the requirement for using daily data. With weekly
or monthly data, the effect of extreme values is reduced because the period is averaged. How-
ever, in the case of daily data, extreme values are inevitable, increasing the sensitivity to human

Table 2. Description of crop price (won/kg) in this study.

Crop Time lag
Onion [2010, 2023]
Green onion [2010, 2023]
Chinese cabbage [2010, 2023]
Radish [2012, 2023]

https://doi.org/10.1371/journal.pone.0311199.t002

Sample size Range Median meanzstd
4,280 (300, 2833) 906 9574375
4,586 (342, 5825) 1,507 1651+£740
3,961 (1536, 30337) 6,846 7462+4098.58
3,616 (3773, 38448) 11,271 1294945553
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error or specific transactions. Second, missing values do not exist at regular intervals. For
example, Saturdays and Sundays occur at regular intervals, so they occur in a five-day cycle.
However, excluding the weekends, there are irregular missing values corresponding to holi-
days with no transactions, and each crop is a seasonal vegetable grown in the open field. To
reduce the effects of missing values that cause poor data quality, imputation methods can be
used; however, they also have limitations because they are not real data [21,22]. The data can
be accessed from the following repository: https://doi.org/10.34740/KAGGLE/DS/5401197.

2.2 Model

Fig 2 illustrates the PaSTANet method proposed in this study. PaSTANet consists of a multi-
kernel residual convolution neural network (MRCNN) module, a Gaussian seasonality-trend
(GaST) module, and a parametric process. The MR-CNN module is a CNN-based AR model
that uses different kernels to reflect weekly and monthly effects. The GaST module consists of
a piecewise-based linear model for trend prediction and Fourier terms to reflect seasonality.
Finally, the parametric process estimates the parameters of the Gaussian distribution of the
individual models, with joint fusion applied to perform training.

2.2.1 Multi-kernel residual convolution neural network module. The MRCNN module
applies the AR method to historical price information. The crop price shows a certain volatility
depending on how they are consumed during the growing, harvesting, and storage seasons.
Therefore, we considered a multi-kernel CNN to reflect weekly and monthly effects [23,24]. A

Onion daily price
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Fig 2. Illustration of the proposed model.
https://doi.org/10.1371/journal.pone.0311199.9002
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multi-kernel system consists of a kernel to reflect the weekly effect of five days, excluding
weekends, and a kernel to reflect the monthly effect, concatenating the outputs.

The concatenated feature map combines features using three depth-wise CNNs
(DWCNNSs). Unlike conventional CNNs, the DWCNN is a method of convolving channels by
groups and has shown good performance in previous studies [25,26]. The three DWCNNS are
stacked using residual connections. As a result, the output of MRCNN is a Gaussian distribu-

tion with mean 11, and standard deviation o 2.

2.2.2 Gaussian seasonality-trend (GaST) module. The GaST module applies the STL
method to learn and combine the trend and seasonality models. It applies piecewise regression
and uses the Fourier series of the conventional prophet and neural prophet models [27]. Sea-
sonality considers three types of volatility: monthly, weekly, and daily, further adding a multi-
layer perceptron (MLP) for and a,”. As a result, the output of GaST is a Gaussian distribution
with mean /i, and standard deviation 2.

2.2.3 Parametric process. Note that the outputs of MRCNN and GaST are Gaussian dis-
tribution parameters. The maximum likelihood estimation (MLE) method was used to learn
the respective distribution parameters. MLE is used to determine the parameter that provides
the largest likelihood for a sample, which is usually estimated using the log-likelihood. This
parametric process is applied to estimate y and o” respectively.

The likelihood function (L(y, 0?)) is used to estimate the parameters of a distribution. A
likelihood function measures the likelihood that a set of observed data can occur given a set of
parameters. The likelihood function was used to calculate the maximum likelihood estimates
of the parameters, which is the set of parameter values that maximize the likelihood of the
observed data. Because we considered the exponential family distribution, the log-likelihood
was more convenient. Therefore, we set the loss function (Loss) to minimize the negative log-
likelihood.

L) = [ fltin0?) (1)

log(L(p,0%) =Y log(f(t; p,0%)) (2)

Loss = argmin —log(L(u, %)) (3)
1,0
The log likelihood (log(L(1, 0?))) for a Gaussian distribution is calculated as follows:

2
Loss — Z; “log(L(u, 6%)) = Z:’Zl (—0.5 x log(2mo”) — (t,-2—0;“) )
2

= —0.5 x nlog(2ns*) — ZL] % (4)

As the individual models with losses were considered independently, we adopted the joint
fusion method of multimodal fusion [28]. The resulting estimated Gaussian distributions were
combined to forecast crop price. The main difference between our method and existing meth-
ods is the assumption of a Gaussian distribution for the predicted value, which allows deriving
a confidence interval (CI). To apply the forecast results, three intervals were distinguished
according to the point estimation of the crop price and CI to help control the supply and
demand of the current price.
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2.3 Evaluation metrics

Four metrics were considered in comparing the performances of the models: mean absolute
error (MAE), mean absolute percentage error (MAPE), standard deviation error (SDE), and
median absolute error (MedAE). Because the root mean squared error, which is commonly
used for prediction error, uses the square root of the square of the error, it can be overesti-
mated for large units. Therefore, we adopted MAE, which uses absolute values for the base-
lines. A brief explanation of the four metrics is provided below.

1. MAE is the average of the absolute values of the errors without changing units.
2. MAPE is the mean of the error divided by the actual value and is expressed as a percentage.

3. SDE is related to the distribution of errors, allowing the stability of the predicted value to be
evaluated.

4. MedAE is the median of the errors and is characterized by robustness to outliers.

1

MAE:;Zizl ly: =¥l (5)
1 n y —}A/

MAPE = — E - 6
n i:1| yi | ( )

1 A .
SDE = \/;Zi_l(|yiyi| 7;21‘:1 b’i*yi|)2 (7)

MedAE = Median(|y, — 31,1y, = Dols -5 [y0 = 71) (8)

Here, y; is i™ ground truth value; 7, is i™ predicted value.

2.4 Experimental setting

For the daily crop price from 2010 to 2023, the data from 2023 were used as the test set. The
data from 2010 to 2022 (in the case of radish, 2012 to 2022) were randomly split, with 80% as
the training set and 20% as the validation set. A batch size and learning rate of 64 and 5e-4
were used, respectively, to determine through experiments the number of change points and
Fourier series for the GaST module and the number of stacks of the residual block. The best
performance was achieved with five change points, four Fourier series on GaST, and two stacks
of residual blocks on MRCNN.

3. Results

This section shows the results of forecasting four crop prices. In particular, we show the overall
results for onions because it is the main seasoning vegetable consumed in Korea. The results of
the remaining crop prices show the prediction results of the model that performed well in fore-
casting onion prices.

3.1 Comparison of model performance

The performances of conventional and deep-learning-based models were compared. For the
conventional method, AR-based ARIMA [29] and STL-based Prophet [30] were compared.
The statistical models ARIMA and Prophet model need to determine the hyper-parameters
including the order of the model. For all crops, ARIMA used the "auto_arima" function of the
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"pmdarima v2.0.3" package to determine the hyper-parameters, and for the Prophet model, we
let the model determine them automatically, using 25 changepoints, linear growth, additive
seasonality mode, 10 yearly Fourier orders, and 3 weekly Fourier orders for the initial values.

For all benchmark deep-learning models, we used “NeuralForecast” packages, which pro-
vide a diverse collection of neural network forecasting models focusing on performance,
usability, and robustness, and the “NerualProphet” package for the NeuralProphet model. The
input size was 2x365, and the output size was 365. The maximum number of steps for training
is set as 500. First, LSTM [31] and DilatedRNN [32], consisting of cell type as LSTM, set the
hidden size to 200 and the context size to 10. Second, NBEATS [33] set the number of har-
monic terms for the seasonality stack to 2, the polynomial degree for the trend stack to 2, and
the number of hidden layers to 3x(512,512) for each of the three blocks. Third, TCN set kernel
size to 2, hidden size to 200, context size to 10, and dilations, that control the time interval
between kernel points, to (1, 2, 4, 8, 16). Next, TFT [34] set the hidden size to 64 and the win-
dow batch size to 64. Last, PatchTST [35] set the patch length to 4, stride to 4, and window
batch size to 512. NeuralProphet [27], STL-based deep learning consisting of additive seasonal-
ity, a linear trend, and AR-net was considered. Finally, PaSTANet was separated into AR and
STL modules.

For all metrics, PaSTANet exhibited the best performance with 107, 8.63, 96.21, and 81 for
MAE, MAPE, SDE, and MedAE, respectively. The Prophet model performed second best with
12.05 and 104.61 for MAPE and SDE, respectively. In MAE, Prophet was the second-best with
152, and in MedAE, PatchTST was the second-best with 112. As a result, the performance eval-
uation showed that the proposed model has the best performance for all indices (Table 3).

Table 3. Comparison of the performances of the proposed and existing models in onion price. The best values are highlighted in bold, and the second-best values are

underlined.

Category

Conventional method

RNN

FCN
CNN

Transformer

MLP

Proposed

Model MAE (]) MAPE (|) SDE () MedAE (])
Model Name Method
ARIMA AR 239 18.59 127.74 233
[29]
Prophet STL 152 12.05 104.61 131
(30]
LSTM TSE 307 24.71 152.86 338
(31]
DilatedRNN TSF 268 21.78 148.09 295
(32]
NBEATS TSF 465 39.02 535.00 264
(33]
TCN TSE 290 24.34 181.62 330
[16]
TFT TSF 392 31.49 220.51 370
(34]
PatchTST TSF 195 17.48 195.42 112
(35]
NeuralProphet STL 311 24.26 170.36 359
(27]
MRCNN AR 323 26.37 193.71 307
GaST STL 278 21.48 150.62 284
PaSTANet AR+STL 107 8.53 96.21 81

MAE = mean absolute error, MAPE = mean absolute percentage error, SDE = standard deviation error, MedAE = median absolute error, AR = autoregressive,

STL = Seasonal and Trend decomposition using Loess, TSF = Time series forecasting, FC = fully connected network, MRCNN = multikernel residual convolution

neural network, GaST = Gaussian seasonality trend, PaSTANet = parametric seasonal trend autoregressive neural network.

https://doi.org/10.1371/journal.pone.0311199.t003
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Fig 3. Comparison of model prediction for onion in the test set (2023). (A) The blue line is the actual onion price, and the yellow line
is the price predicted by the previous model. (B) The blue line is the actual onion price, and the yellow line is the price predicted by the
AR module, STL module, and Parametric Seasonal-Trend Autoregressive Neural network (PaSTANet), respectively. (C) Comparison
with actual onion price in the blue line, PaSTANet in the black line and Prophet in the yellow line, and the cumulative mean absolute
error (MAE) over time.

https://doi.org/10.1371/journal.pone.0311199.9003

The forecasting value and ground truth of the individual models in the test set are displayed
in Fig 3. The STL-based models, Prophet and NeuralProphet, provide good fits for the trend
and yearly seasonality in forecasting; however, they do not reflect daily volatility. On the other
hand, the transformer-based time series forecasting (T'SF) models of PatchTST and MRCNN
do reflect volatility. Consequently, PaSTANet, which considers both AR and STL, reflects both
the trend and volatility in the test set well.

We compared the prediction performance of other crop prices with the proposed model
using the Prophet model and PatchTST model, which performed well in predicting onion

PLOS ONE | https://doi.org/10.1371/journal.pone.0311199  September 26, 2024 8/16


https://doi.org/10.1371/journal.pone.0311199.g003
https://doi.org/10.1371/journal.pone.0311199

PLOS ONE

Forecasting long-term crop price using deep-learning

Price (won/kg) Price (won/kg)

Price (won/kg)

20000

17500

15000

12500

10000

7500

5000

2500

— price
Prophet

20000

17500

15000

12500

10000

7500

5000

2500

— price
PatchTST

200001 — price

—— Proposed
17500
15000
12500
10000
7500

5000

20230 50239% ,230% 30T 300 L3t a0t

4500
4000
3500
3000
2500
2000

1500

20230 50239% ,230% 30T 300 L3t a0t

Date

(a) Forecasting on Chinese cabbage

2500

20239 ,0239% ;2305 30

20230 023 a0

1000

— price
Prophet

4500
4000
3500
3000
2500
2000
1500
1000

— price
PatchTST

— price

45009 proposed

4000
3500
3000
2500
2000

1500

1000

1023.01 107_3.03 207_3.95 107-3‘07 101}09 101331 101“‘0\‘

207_3.01 2023.03 107_3.05 1013_07 10’13‘09 1013‘“ 102“‘01

Date

(b) Forecasting on green onion

20230% 52303 ) (230% 307

1013.09 1023.\,1 207}.“1

25000

20000 4

15000 4

10000 4

5000 1

—— price
Prophet

40000

30000

20000

10000

— price
PatchTST

25000 — Price

~—— Proposed

20000

15000

10000

5000

20230 5239% ,230° [ 30T 30 3t a0t 3O L3 0% 3 0% L30T L300 3 a0t 30t L0303 300 L30T 30 At a0t

Date

(c) Forecasting on radish

Fig 4. Comparison of model prediction for other crops in the test set. Data from 2023 used for the test set were not used for training
and validation. The blue line is the actual price of crops; the orange line is the prediction of previous models; and the red line is the

proposed model’s prediction.

https://doi.org/10.1371/journal.pone.0311199.9004

prices (Fig 4). The Prophet model outperformed the SDE for Chinese cabbage and radish and
the MedAE for green onion, but the proposed method outperformed all other metrics

(Table 4).

3.2 Abnormal price detection system

In the long-term forecast of onion prices, recent prices, trends, and seasonality were consid-
ered. To propose an appropriate basis for the future pricing of onion, the Gaussian distribution
used was divided into three sections according to the confidence interval: predictability, cau-
tion, and warning (Fig 5). The criteria that the abnormal price detection system (APDS) uses
for each are shown in Fig 5. APDS sets the bands based on the existing agricultural supply and
demand control manual, thereby modifying the appropriate bands based on the distribution
of forecast values [36]. In the end, we chose to split the bands at 0.5x¢” and 1.0x¢?, as deemed
appropriate when comparing producers and consumers given the time of the year that onions

are grown.
Table 5 presents the results of applying APDS to the actual prices in the test set of 2023.

First, most onion prices are in the predictability zone; however, in January, March, April, and
May, the percentage of prices in the caution zone is higher than for other months. In March
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Table 4. Comparison of performance with existing models and proposed models for cabbage, radish, and green onion. The best values are highlighted in bold.

Crop Model name MAE (]) MAPE (]) SDE () MedAE (|)
Chinese cabbage Prophet 2,677 38.97 1462.10 2,767
PatchTST 2,938 40.97 1983.99 2,771
PaSTANET 2,008 22.82 1766.92 1,505
Radish Prophet 3,971 38.40 2863.55 3133
PatchTST 13,055 126.15 10625.59 10538
PaSTANET 3,703 26.14 3095.34 3018
Green onion Prophet 570 24.22 558.63 381
PatchTST 783 38.46 551.21 686
PaSTANet 557 24.19 548.56 382

MAE = mean absolute error, MAPE = mean absolute percentage error, SDE = standard deviation error, MedAE = median absolute error, PaSTANet = Parametric
Seasonal-Trend based Autoregressive model.

https://doi.org/10.1371/journal.pone.0311199.1004

and May, prices fall into the warning zone. Ultimately, 91.5% of all prices in 2023 are catego-
rized as predictability prices, 8.2% as caution prices, and 0.3% as warning prices.

The APDS was applied to the predicted price, using the estimated variance and mean for bin-
ning, which was compared to Bollinger bands (Fig 6). In economy, the Bollinger band is used to
separate abnormal prices, using moving average and variance [37-39]. The length of the Bollin-
ger bands’ abnormal price intervals increases during periods of high volatility from March to
June and decreases from September onward as fluctuations decrease. APDS considers trends,
seasonality as well as recent prices; therefore, the length of the confidence interval is constant.

4. Discussion

This study differs from probabilistic sampling models, such as variation autoencoder, in that it
directly estimates the mean and variance derived from AR and STL models. This is related to

Response strategy

- Scaling up contract farming shipments
Warning - Discounted stockpile supply

Increasing - Consideration of private import promotion measures
1+ 10X o R 5 (B) [oomiTs mmems mimisis = s = s i = Simis = S = i =

- Strengthened monitoring of domestic and international supply and demand

- Preliminary review of response policies

- Create response policies that enable market forces to adjust supply and

demand by eliminating government intervention

- Strengthened monitoring of domestic and international supply and demand

- Preliminary review of response policies

O - Controlling the release of contract farming
Warning - Consumption of stockpiles

- Suppression of low-grade product shipments

Fig 5. Abnormal price detection system for onions and scenario-based response strategy.

https://doi.org/10.1371/journal.pone.0311199.9005
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Table 5. The proportion of monthly abnormal price detection for onions in the test set (2023).

Date PaSTANet
Range (min, max) Predictability (%) Caution (%) Warning (%)
Storge of 2022 Jan (1018, 1254) 69.6 30.4 0.0
Feb (1147, 1587) 95.8 4.2 0.0
Mar (1316, 1688) 88.9 11.1 0.0
Apr (914, 1519) 72.0 28.0 0.0
May (853, 1023) 74.1 22.2 3.7
Jun (919, 1125) 100.0 0.0 0.0
Jul (1054, 1203) 96.2 3.8 0.0
Production of 2023 Aug (1061, 1422) 100.0 0.0 0.0
Sep (1108, 1343) 100.0 0.0 0.0
Oct (1077, 1326) 100.0 0.0 0.0
Nov (1013, 1253) 100.0 0.0 0.0
Dec (1016, 1207) 100.0 0.0 0.0
Total (853, 1688) 91.5 8.2 0.3

PaSTANet = parametric seasonal-trend autoregressive neural network.

https://doi.org/10.1371/journal.pone.0311199.t005

studies that directly estimate the parameters of a distribution, such as regression, which is a
conventional model, or mixture density networks [40] using deep learning. While they are not
stochastically different from each other in terms of estimating the parameters of the distribu-
tion, they can contain uncertainty in that they estimate the variance, which proposed APDS
using CI. The study of estimating the parameters of such distributions has been considered in
various fields [41-43].

To respond to the impact of onion prices and agricultural crops on the national economy,
the price should be forecast daily. Existing studies find it difficult to respond to immediate
price volatility because they predict monthly [8,44]. Furthermore, the average price does not
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(b) Abnormal price detection system

Fig 6. Comparison between Bollinger band and abnormal price detection system.

https://doi.org/10.1371/journal.pone.0311199.g006
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fully reflect price volatility. In this study, a forecasting model is proposed using daily onion
prices to suggest response strategies.

The AR-based model, commonly used in TSF, has the advantage of being intuitively under-
standable because it uses recent price information to predict future prices; however, they are
sensitive to missing values and outliers, performing poorly in long-term predictions. The crop
price data, in particular, has gaps in data during holidays and when no transactions occur, and
outliers are inherent for a variety of reasons, including weather. Therefore, the statistical
model, the RNN-based and the Transformer-based models, which have shown good perfor-
mance among TSF models, may not be suitable for this data because the sequence information
may be applied irregularly. For example, the autoregressive integrated moving average
(ARIMA) model has been used for various time-series data; however, it exhibited poor model
performance in this study possibly because the lag of AR is difficult to determine because daily
data contain missing values due to holidays and absence of transactions, and the rolling fore-
casting method is used, degrading long-term forecasting performance. The MRCNN module
in PaSTANet uses different CNN kernel sizes for the lag to extract weekly and monthly fea-
tures, subsequently combining them. As a result, the performance was better than those of
existing AR models.

The STL models have the advantage of being able to make long-term predictions because
they utilize the target feature as a time variable in making predictions; they also have the
advantage of being able to bring individual interpretations because they combine trends and
seasonality in an additive method. There is a limitation in that long-term predictions are
highly affected by trends, making it difficult to reflect recent price information. In addition,
the STL model reflects the trend and seasonality of the test set with lower volatility. The GaST
module in PaSTANet was converted from a piecewise regression model to a deep-learning-
based model. This is an advantage of the deep learning model in that the modules can freely be
combined with other models and expanded. Finally, PaST ANet, combines the characteristics
of AR and STL, exhibiting superior performance compared to the other models.

The PaSTANet has two main contributions. The first contribution is superior forecasting
performance. We compared it to RNN, TCN, and Transformers, which have performed well
in various previous time series forecasting studies. However, RNN-based and Transformer
models have difficulty determining the baseline of sequence length for crop price data. TCN
also suffers from the need to determine the appropriate kernel size for seasonal crop prices.
Otherwise, MRCNN can compensate for these problems by enabling parallel sequence pro-
cessing with multiple kernel sizes that capture patterns at different temporal scales [45]. Fur-
thermore, STL complements this by effectively managing non-stationary data [30]. Therefore,
by integrating an MRCNN with STL, we can decompose a time series into its components and
leverage STL’s decomposition and CNN’s pattern recognition to efficiently capture complex
temporal patterns, model long-term dependencies, and adapt to different temporal scales.

The second contribution of PaSTANet is that it enables the classification of intervals by esti-
mating the Gaussian distribution. The classified predictability, caution, and warning intervals
are determined based on the length of the confidence interval, and the risk level is classified
based on the interval containing the actual price in the set interval. The price falls into the
predictability zone; however, for January, April, March, and Mayj, it falls into the caution zone.
The climate of Korea makes January highly volatile because it is the time when onions are pro-
duced before they are consumed; March, April, and May are the main production periods for
onions. Therefore, the APDS of our model accurately reflects onion production and consump-
tion in Korea.

The PaSTANet output is a Gaussian distribution of prices predicted using recent prices,
trends, and seasonality. Therefore, if the actual price deviates from this distribution by a
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certain amount, it is considered an anomaly. APDS categorizes based on confidence intervals,
dividing CI into three stages, and proposing a response strategy for each stage. This means that
the existing agricultural supply and demand control manual [36] can overcome the limitation
of only reflecting recent prices as the use of daily prices enables detailed weekly, monthly, and
quarterly responses.

The ADPS was also compared to Bollinger bands, which have three disadvantages. First, in
Bollinger bands, the range of abnormal changes depends on the appropriate window size [46].
Second, the detection of abnormal price performance is degraded in windows that contain
high- and low-volatility bins. Finally, Bollinger bands can only be applied to observed values,
making it difficult to set long-term bands. In comparison, APDS has the advantage of being
able to set bands in advance with a long-term forecast of one year, not requiring a window and
considering in addition to recent prices, both trend and seasonality.

The study estimates the distribution of crop prices based on both time and previous prices,
to provide a one-year forecast. In future studies, to improve performance, we will consider
incorporating information on exogenous variables that can be identified in advance and crops
that are substitutes or complements. In addition, the proposed model should be extended to
crops.

5. Conclusion

Forecasting crop prices are difficult to predict due to the seasonal nature of crops grown in
open fields, and fluctuations in prices have a significant impact on the national economy. The
PaSTANet proposed in this study estimates the distribution of daily prices using a model that
combines MRCNN and GaST. In comparison with various conventional and deep-learning-
based models, PaSTANet showed the best performance. In more detail, PaSTANet improved
the performance of onion by 29.6%, Chinese cabbage by 25.0%, radishsms by 6.7%, and green
onion by 2.2% compared to the Prophet model, which was the second-best performer by
MAE. Moreover, we proposed APDS which utilizes a Gaussian distribution.

The proposed model is limited by its inability to incorporate exogenous variables. Because
crop prices are also affected by environmental variables and policies, further research on mod-
els that include exogenous variables is required. Furthermore, the predicted price is assumed
to be normally distributed, but there may be differences in the variance at a particular time,
therefore it should be needed to consider a generalized distribution. Finally, information on
other crops should be included in the model as there may be complementary or substitutive
relationships between crop prices. In future research, a multivariate model will be developed
to reflect the complex influences among crops, including also exogenous variables such as
weather.
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