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Abstract

Crop price forecasting is difficult in that supply is not as elastic as demand, therefore, supply

and demand should be stabilized through long-term forecasting and pre-response to the

price. In this study, we propose a Parametric Seasonal-Trend Autoregressive Neural Net-

work (PaSTANet), which is a hybrid model that includes both a multi-kernel residual convo-

lution neural network model and a Gaussian seasonality-trend model. To compare the

performance of the PaSTANet, we used daily data from the Garak market for four crops:

onion, radish, Chinese cabbage, and green onion, and performed long-term price forecasts

for one year in 2023. The PaSTANet shows good performance on all four crops compared

to other conventional statistical and deep learning-based models. In particular, for onion, the

(mean absolute error (MAE) for the long-term forecast of 2023 is 107, outperforming the

second-best Prophet (152) by 29.6%. Chinese cabbage, radish, and green onion all outper-

form the existing models with MAE of 2008, 3703, and 557, respectively. Moreover, using

the confidence interval, the predicted price was categorized into three intervals: probability,

caution, and warning. Comparing the percentage of classified intervals about the true prices

in our test set, we found that they accurately detect the large price volatility.

1. Introduction

Forecasting crop prices remains a challenging task as it is influenced by a variety of external

features, including weather conditions, growing conditions, yields, and fluctuations in demand

[1,2]. These uncertainties can also pose economic risks to both producers and consumers

[3,4]. Therefore, long-term forecasting of crop prices is required not only to regulate supply

and demand through agricultural production planning and sales planning but also to increase

the stability of the agricultural economy and improve the efficiency of agricultural markets [5].

The Korea Rural Economic Institute uses the Korean Agriculture Simulation Model

(KASMO) to forecast the supply and demand of 45 agricultural products [6]. KASMO is a

regression-based model that considers various variables such as production area, production
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location, and compost use. However, models with multiple variables have limitations because

temporal information is not reflected in the model, and thus not applicable to daily prices.

Therefore, a time-series-based price prediction model using daily prices is required.

Crop price, which is time-series data, has three characteristics [7]. First, it contains time-

lagged information, implying the data are correlated. Therefore, recent prices contribute more

to future predictions than previous prices. Second, the time series displays a constant trend

and regular and irregular seasonality. Finally, the real-world time-series data are subject to

missing and extreme data. Consequently, various approaches utilize models that reflect these

characteristics of time-series data to perform forecasting.

The autoregressive integrated moving average (ARIMA) model, which uses previous prices,

is a statistical forecasting model commonly used in time-series analysis. It combines three

time-series models: the autoregressive (AR) model, which explains the current value of a vari-

able based on its past values; the moving average model, which explains the current value of a

variable based on past forecast errors; and the integrated model, which differentiates the time-

series data to remove non-stationarity. Most previous research forecasted prices using ARIMA

models [8–11].

Seasonal-trend decomposition using locally estimated scatterplot smoothing (LOESS),

namely STL, models data as a time function. STL is a robust non-parametric method for

decomposing time-series data into trend, seasonal, and residual components. In contrast to

traditional decomposition methods that rely on parametric assumptions, STL utilizes the flexi-

ble LOESS smoother to locally estimate the trend and seasonal components [12,13].

In the time-series forecasting process, AR models that use previous prices and STL models

that use time functions have advantages and disadvantages because they utilize different fea-

tures of the time-series data (Table 1). AR has the advantage of providing intuitive interpreta-

tion as it relates past prices to future prices, incorporates recent information, and can be

combined with various data. However, the appropriate sequence length for historical prices is

difficult to determine and is sensitive to extreme and missing values. The STL model has the

advantage of being able to make long-term forecasts because of its strong functional assump-

tions, ability to analyze the components of the time series, and robustness to extraneous and

missing values. However, long-term forecasting is trend-dependent, does not reflect recent

information, and has difficulty considering exogenous variables.

The recurrent neural network (RNN), temporal convolution network (TCN), and Trans-

former models are represented AR models that perform well in time forecasting. First, RNN

[14,15] processes sequential data using a hidden state to capture information from previous

inputs, and TCN [16] uses causal convolutions and dilation for parallel sequence processing.

Lastly, the Transformer uses a self-attention module for connecting between sequence posi-

tions and achieving good performance [17]. However, these models are AR-based models,

which have the limitation that RNNs have difficulty reflecting long sequences [18], and TCNs

Table 1. Advantages and disadvantages of conventional forecasting methods.

Method Advantages Disadvantages

AR 1) Intuitive interpretation is possible

2) Reasonable predictions based on recent information

3) Applicable to various data

1) Difficulty in determining the appropriate lag

2) Sensitive to missing values

3) Sensitive to extreme values

STL 1) Enable long-term forecasting

2) Decomposing the characteristics of time series data

3) Robustness to missing values

1) Dependence on trend predictions

2) Limiting the use of exogenous variables

3) Difficulty incorporating recent information

AR = autoregressive, STL = Seasonal and Trend decomposition using Loess.

https://doi.org/10.1371/journal.pone.0311199.t001
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may not reflect seasonality at different scales because of the need to determine the appropriate

kernel size [19,20]. In addition, Transformer requires high computational resources and has

the limitations of hyper-parameterization and complexity.

Therefore, we propose a hybrid approach for forecasting crop prices using both AR and

STL modules (Fig 1). The proposed parametric seasonal-trend autoregressive neural network

(PaSTANet) model uses the AR method to incorporate the previous price and the time func-

tion of the STL method to predict the crop price. Subsequently, the distribution of the pre-

dicted price is estimated, and abnormal prices are detected by comparing the estimation with

the current price. The contributions of PaSTANet are as follows:

1. Hybrid deep learning models using both STL and AR outperform previous models.

2. The model outputs are the parameters of a Gaussian distribution, allowing point estimation

and measurement of uncertainty.

3. Appropriate thresholds are suggested for the crop price, allowing the development of an

appropriate response strategy.

2. Materials and methods

2.1 Data

Daily data on crop prices were obtained from the Garak market of the Seoul Korea Agriculture

Fisheries & Food Trade Corporation (aT) (Table 2). In this study, except for radish, data from

2010 to 2022 were used, with the 2023 data as the test dataset. There are two reasons for the dif-

ficulty in forecasting crop prices. The first is the requirement for using daily data. With weekly

or monthly data, the effect of extreme values is reduced because the period is averaged. How-

ever, in the case of daily data, extreme values are inevitable, increasing the sensitivity to human

Fig 1. The proposed abnormal price detection system estimates price distribution, considering both time and previous crop prices.

(A) Feature extraction from crop price using seasonality-trend by loess (STL). (B) Feature extraction from crop price using

autoregressive model. (C) Estimation of μ and σ2 for crop price distribution (f(t|μ, σ2)). (D) Abnormal price detection system (APDS)

using confidence interval.

https://doi.org/10.1371/journal.pone.0311199.g001

Table 2. Description of crop price (won/kg) in this study.

Crop Time lag Sample size Range Median mean±std

Onion [2010, 2023] 4,280 (300, 2833) 906 957±375

Green onion [2010, 2023] 4,586 (342, 5825) 1,507 1651±740

Chinese cabbage [2010, 2023] 3,961 (1536, 30337) 6,846 7462±4098.58

Radish [2012, 2023] 3,616 (3773, 38448) 11,271 12949±5553

https://doi.org/10.1371/journal.pone.0311199.t002
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error or specific transactions. Second, missing values do not exist at regular intervals. For

example, Saturdays and Sundays occur at regular intervals, so they occur in a five-day cycle.

However, excluding the weekends, there are irregular missing values corresponding to holi-

days with no transactions, and each crop is a seasonal vegetable grown in the open field. To

reduce the effects of missing values that cause poor data quality, imputation methods can be

used; however, they also have limitations because they are not real data [21,22]. The data can

be accessed from the following repository: https://doi.org/10.34740/KAGGLE/DS/5401197.

2.2 Model

Fig 2 illustrates the PaSTANet method proposed in this study. PaSTANet consists of a multi-

kernel residual convolution neural network (MRCNN) module, a Gaussian seasonality-trend

(GaST) module, and a parametric process. The MR-CNN module is a CNN-based AR model

that uses different kernels to reflect weekly and monthly effects. The GaST module consists of

a piecewise-based linear model for trend prediction and Fourier terms to reflect seasonality.

Finally, the parametric process estimates the parameters of the Gaussian distribution of the

individual models, with joint fusion applied to perform training.

2.2.1 Multi-kernel residual convolution neural network module. The MRCNN module

applies the AR method to historical price information. The crop price shows a certain volatility

depending on how they are consumed during the growing, harvesting, and storage seasons.

Therefore, we considered a multi-kernel CNN to reflect weekly and monthly effects [23,24]. A

Fig 2. Illustration of the proposed model.

https://doi.org/10.1371/journal.pone.0311199.g002
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multi-kernel system consists of a kernel to reflect the weekly effect of five days, excluding

weekends, and a kernel to reflect the monthly effect, concatenating the outputs.

The concatenated feature map combines features using three depth-wise CNNs

(DWCNNs). Unlike conventional CNNs, the DWCNN is a method of convolving channels by

groups and has shown good performance in previous studies [25,26]. The three DWCNNs are

stacked using residual connections. As a result, the output of MRCNN is a Gaussian distribu-

tion with mean m̂AR and standard deviation ^sAR
2 .

2.2.2 Gaussian seasonality-trend (GaST) module. The GaST module applies the STL

method to learn and combine the trend and seasonality models. It applies piecewise regression

and uses the Fourier series of the conventional prophet and neural prophet models [27]. Sea-

sonality considers three types of volatility: monthly, weekly, and daily, further adding a multi-

layer perceptron (MLP) for ^and st
2
. As a result, the output of GaST is a Gaussian distribution

with mean m̂t and standard deviation ŝt
2 .

2.2.3 Parametric process. Note that the outputs of MRCNN and GaST are Gaussian dis-

tribution parameters. The maximum likelihood estimation (MLE) method was used to learn

the respective distribution parameters. MLE is used to determine the parameter that provides

the largest likelihood for a sample, which is usually estimated using the log-likelihood. This

parametric process is applied to estimate μ and σ2 respectively.

The likelihood function (L(μ, σ2)) is used to estimate the parameters of a distribution. A

likelihood function measures the likelihood that a set of observed data can occur given a set of

parameters. The likelihood function was used to calculate the maximum likelihood estimates

of the parameters, which is the set of parameter values that maximize the likelihood of the

observed data. Because we considered the exponential family distribution, the log-likelihood

was more convenient. Therefore, we set the loss function (Loss) to minimize the negative log-

likelihood.

Lðm; s2Þ ¼
Yn

i¼1
f ðti; m;s

2Þ ð1Þ

logðLðm;s2ÞÞ ¼
Xn

i¼1
logðf ðti; m; s

2ÞÞ ð2Þ

Loss ¼ arg min
m;s2
� logðLðm; s2ÞÞ ð3Þ

The log likelihood (log(L(μ, σ2))) for a Gaussian distribution is calculated as follows:

Loss ¼
Xn

i¼1
� logðLðm; s2ÞÞ ¼

Xn

i¼1
� 0:5� logð2ps2Þ �

ðti � mÞ
2

2s2

� �

¼ � 0:5� n logð2ps2Þ �
Xn

i¼1

ðti � mÞ
2

2s2
ð4Þ

As the individual models with losses were considered independently, we adopted the joint

fusion method of multimodal fusion [28]. The resulting estimated Gaussian distributions were

combined to forecast crop price. The main difference between our method and existing meth-

ods is the assumption of a Gaussian distribution for the predicted value, which allows deriving

a confidence interval (CI). To apply the forecast results, three intervals were distinguished

according to the point estimation of the crop price and CI to help control the supply and

demand of the current price.
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2.3 Evaluation metrics

Four metrics were considered in comparing the performances of the models: mean absolute

error (MAE), mean absolute percentage error (MAPE), standard deviation error (SDE), and

median absolute error (MedAE). Because the root mean squared error, which is commonly

used for prediction error, uses the square root of the square of the error, it can be overesti-

mated for large units. Therefore, we adopted MAE, which uses absolute values for the base-

lines. A brief explanation of the four metrics is provided below.

1. MAE is the average of the absolute values of the errors without changing units.

2. MAPE is the mean of the error divided by the actual value and is expressed as a percentage.

3. SDE is related to the distribution of errors, allowing the stability of the predicted value to be

evaluated.

4. MedAE is the median of the errors and is characterized by robustness to outliers.

MAE ¼
1

n

Xn

i¼1
jyi � ŷij ð5Þ

MAPE ¼
1

n

Xn

i¼1
j
yi � ŷi
yi
j ð6Þ

SDE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1
ðjyi � ŷij �

1

n

Xn

i¼1
jyi � ŷijÞ

2

r

ð7Þ

MedAE ¼ Medianðjy1 � ŷ1j; jy2 � ŷ2j; . . . ; jyn � ŷnjÞ ð8Þ

Here, yi is ith ground truth value; ŷi is ith predicted value.

2.4 Experimental setting

For the daily crop price from 2010 to 2023, the data from 2023 were used as the test set. The

data from 2010 to 2022 (in the case of radish, 2012 to 2022) were randomly split, with 80% as

the training set and 20% as the validation set. A batch size and learning rate of 64 and 5e-4

were used, respectively, to determine through experiments the number of change points and

Fourier series for the GaST module and the number of stacks of the residual block. The best

performance was achieved with five change points, four Fourier series on GaST, and two stacks

of residual blocks on MRCNN.

3. Results

This section shows the results of forecasting four crop prices. In particular, we show the overall

results for onions because it is the main seasoning vegetable consumed in Korea. The results of

the remaining crop prices show the prediction results of the model that performed well in fore-

casting onion prices.

3.1 Comparison of model performance

The performances of conventional and deep-learning-based models were compared. For the

conventional method, AR-based ARIMA [29] and STL-based Prophet [30] were compared.

The statistical models ARIMA and Prophet model need to determine the hyper-parameters

including the order of the model. For all crops, ARIMA used the "auto_arima" function of the

PLOS ONE Forecasting long-term crop price using deep-learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0311199 September 26, 2024 6 / 16

https://doi.org/10.1371/journal.pone.0311199


"pmdarima v2.0.3" package to determine the hyper-parameters, and for the Prophet model, we

let the model determine them automatically, using 25 changepoints, linear growth, additive

seasonality mode, 10 yearly Fourier orders, and 3 weekly Fourier orders for the initial values.

For all benchmark deep-learning models, we used “NeuralForecast” packages, which pro-

vide a diverse collection of neural network forecasting models focusing on performance,

usability, and robustness, and the “NerualProphet” package for the NeuralProphet model. The

input size was 2×365, and the output size was 365. The maximum number of steps for training

is set as 500. First, LSTM [31] and DilatedRNN [32], consisting of cell type as LSTM, set the

hidden size to 200 and the context size to 10. Second, NBEATS [33] set the number of har-

monic terms for the seasonality stack to 2, the polynomial degree for the trend stack to 2, and

the number of hidden layers to 3×(512,512) for each of the three blocks. Third, TCN set kernel

size to 2, hidden size to 200, context size to 10, and dilations, that control the time interval

between kernel points, to (1, 2, 4, 8, 16). Next, TFT [34] set the hidden size to 64 and the win-

dow batch size to 64. Last, PatchTST [35] set the patch length to 4, stride to 4, and window

batch size to 512. NeuralProphet [27], STL-based deep learning consisting of additive seasonal-

ity, a linear trend, and AR-net was considered. Finally, PaSTANet was separated into AR and

STL modules.

For all metrics, PaSTANet exhibited the best performance with 107, 8.63, 96.21, and 81 for

MAE, MAPE, SDE, and MedAE, respectively. The Prophet model performed second best with

12.05 and 104.61 for MAPE and SDE, respectively. In MAE, Prophet was the second-best with

152, and in MedAE, PatchTST was the second-best with 112. As a result, the performance eval-

uation showed that the proposed model has the best performance for all indices (Table 3).

Table 3. Comparison of the performances of the proposed and existing models in onion price. The best values are highlighted in bold, and the second-best values are

underlined.

Model MAE (#) MAPE (#) SDE (#) MedAE (#)

Category Model Name Method

Conventional method ARIMA

[29]

AR 239 18.59 127.74 233

Prophet

[30]

STL 152 12.05 104.61 131

RNN LSTM

[31]

TSF 307 24.71 152.86 338

DilatedRNN

[32]

TSF 268 21.78 148.09 295

FCN NBEATS

[33]

TSF 465 39.02 535.00 264

CNN TCN

[16]

TSF 290 24.34 181.62 330

Transformer TFT

[34]

TSF 392 31.49 220.51 370

PatchTST

[35]

TSF 195 17.48 195.42 112

MLP NeuralProphet

[27]

STL 311 24.26 170.36 359

Proposed MRCNN AR 323 26.37 193.71 307

GaST STL 278 21.48 150.62 284

PaSTANet AR+STL 107 8.53 96.21 81

MAE = mean absolute error, MAPE = mean absolute percentage error, SDE = standard deviation error, MedAE = median absolute error, AR = autoregressive,

STL = Seasonal and Trend decomposition using Loess, TSF = Time series forecasting, FC = fully connected network, MRCNN = multikernel residual convolution

neural network, GaST = Gaussian seasonality trend, PaSTANet = parametric seasonal trend autoregressive neural network.

https://doi.org/10.1371/journal.pone.0311199.t003
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The forecasting value and ground truth of the individual models in the test set are displayed

in Fig 3. The STL-based models, Prophet and NeuralProphet, provide good fits for the trend

and yearly seasonality in forecasting; however, they do not reflect daily volatility. On the other

hand, the transformer-based time series forecasting (TSF) models of PatchTST and MRCNN

do reflect volatility. Consequently, PaSTANet, which considers both AR and STL, reflects both

the trend and volatility in the test set well.

We compared the prediction performance of other crop prices with the proposed model

using the Prophet model and PatchTST model, which performed well in predicting onion

Fig 3. Comparison of model prediction for onion in the test set (2023). (A) The blue line is the actual onion price, and the yellow line

is the price predicted by the previous model. (B) The blue line is the actual onion price, and the yellow line is the price predicted by the

AR module, STL module, and Parametric Seasonal-Trend Autoregressive Neural network (PaSTANet), respectively. (C) Comparison

with actual onion price in the blue line, PaSTANet in the black line and Prophet in the yellow line, and the cumulative mean absolute

error (MAE) over time.

https://doi.org/10.1371/journal.pone.0311199.g003
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prices (Fig 4). The Prophet model outperformed the SDE for Chinese cabbage and radish and

the MedAE for green onion, but the proposed method outperformed all other metrics

(Table 4).

3.2 Abnormal price detection system

In the long-term forecast of onion prices, recent prices, trends, and seasonality were consid-

ered. To propose an appropriate basis for the future pricing of onion, the Gaussian distribution

used was divided into three sections according to the confidence interval: predictability, cau-

tion, and warning (Fig 5). The criteria that the abnormal price detection system (APDS) uses

for each are shown in Fig 5. APDS sets the bands based on the existing agricultural supply and

demand control manual, thereby modifying the appropriate bands based on the distribution

of forecast values [36]. In the end, we chose to split the bands at 0.5×σ2 and 1.0×σ2, as deemed

appropriate when comparing producers and consumers given the time of the year that onions

are grown.

Table 5 presents the results of applying APDS to the actual prices in the test set of 2023.

First, most onion prices are in the predictability zone; however, in January, March, April, and

May, the percentage of prices in the caution zone is higher than for other months. In March

Fig 4. Comparison of model prediction for other crops in the test set. Data from 2023 used for the test set were not used for training

and validation. The blue line is the actual price of crops; the orange line is the prediction of previous models; and the red line is the

proposed model’s prediction.

https://doi.org/10.1371/journal.pone.0311199.g004
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and May, prices fall into the warning zone. Ultimately, 91.5% of all prices in 2023 are catego-

rized as predictability prices, 8.2% as caution prices, and 0.3% as warning prices.

The APDS was applied to the predicted price, using the estimated variance and mean for bin-

ning, which was compared to Bollinger bands (Fig 6). In economy, the Bollinger band is used to

separate abnormal prices, using moving average and variance [37–39]. The length of the Bollin-

ger bands’ abnormal price intervals increases during periods of high volatility from March to

June and decreases from September onward as fluctuations decrease. APDS considers trends,

seasonality as well as recent prices; therefore, the length of the confidence interval is constant.

4. Discussion

This study differs from probabilistic sampling models, such as variation autoencoder, in that it

directly estimates the mean and variance derived from AR and STL models. This is related to

Table 4. Comparison of performance with existing models and proposed models for cabbage, radish, and green onion. The best values are highlighted in bold.

Crop Model name MAE (#) MAPE (#) SDE (#) MedAE (#)

Chinese cabbage Prophet 2,677 38.97 1462.10 2,767

PatchTST 2,938 40.97 1983.99 2,771

PaSTANET 2,008 22.82 1766.92 1,505

Radish Prophet 3,971 38.40 2863.55 3133

PatchTST 13,055 126.15 10625.59 10538

PaSTANET 3,703 26.14 3095.34 3018

Green onion Prophet 570 24.22 558.63 381

PatchTST 783 38.46 551.21 686

PaSTANet 557 24.19 548.56 382

MAE = mean absolute error, MAPE = mean absolute percentage error, SDE = standard deviation error, MedAE = median absolute error, PaSTANet = Parametric

Seasonal-Trend based Autoregressive model.

https://doi.org/10.1371/journal.pone.0311199.t004

Fig 5. Abnormal price detection system for onions and scenario-based response strategy.

https://doi.org/10.1371/journal.pone.0311199.g005
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studies that directly estimate the parameters of a distribution, such as regression, which is a

conventional model, or mixture density networks [40] using deep learning. While they are not

stochastically different from each other in terms of estimating the parameters of the distribu-

tion, they can contain uncertainty in that they estimate the variance, which proposed APDS

using CI. The study of estimating the parameters of such distributions has been considered in

various fields [41–43].

To respond to the impact of onion prices and agricultural crops on the national economy,

the price should be forecast daily. Existing studies find it difficult to respond to immediate

price volatility because they predict monthly [8,44]. Furthermore, the average price does not

Table 5. The proportion of monthly abnormal price detection for onions in the test set (2023).

Date PaSTANet

Range (min, max) Predictability (%) Caution (%) Warning (%)

Storge of 2022 Jan (1018, 1254) 69.6 30.4 0.0

Feb (1147, 1587) 95.8 4.2 0.0

Mar (1316, 1688) 88.9 11.1 0.0

Apr (914, 1519) 72.0 28.0 0.0

May (853, 1023) 74.1 22.2 3.7

Jun (919, 1125) 100.0 0.0 0.0

Jul (1054, 1203) 96.2 3.8 0.0

Production of 2023 Aug (1061, 1422) 100.0 0.0 0.0

Sep (1108, 1343) 100.0 0.0 0.0

Oct (1077, 1326) 100.0 0.0 0.0

Nov (1013, 1253) 100.0 0.0 0.0

Dec (1016, 1207) 100.0 0.0 0.0

Total (853, 1688) 91.5 8.2 0.3

PaSTANet = parametric seasonal-trend autoregressive neural network.

https://doi.org/10.1371/journal.pone.0311199.t005

Fig 6. Comparison between Bollinger band and abnormal price detection system.

https://doi.org/10.1371/journal.pone.0311199.g006
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fully reflect price volatility. In this study, a forecasting model is proposed using daily onion

prices to suggest response strategies.

The AR-based model, commonly used in TSF, has the advantage of being intuitively under-

standable because it uses recent price information to predict future prices; however, they are

sensitive to missing values and outliers, performing poorly in long-term predictions. The crop

price data, in particular, has gaps in data during holidays and when no transactions occur, and

outliers are inherent for a variety of reasons, including weather. Therefore, the statistical

model, the RNN-based and the Transformer-based models, which have shown good perfor-

mance among TSF models, may not be suitable for this data because the sequence information

may be applied irregularly. For example, the autoregressive integrated moving average
(ARIMA) model has been used for various time-series data; however, it exhibited poor model

performance in this study possibly because the lag of AR is difficult to determine because daily

data contain missing values due to holidays and absence of transactions, and the rolling fore-

casting method is used, degrading long-term forecasting performance. The MRCNN module

in PaSTANet uses different CNN kernel sizes for the lag to extract weekly and monthly fea-

tures, subsequently combining them. As a result, the performance was better than those of

existing AR models.

The STL models have the advantage of being able to make long-term predictions because

they utilize the target feature as a time variable in making predictions; they also have the

advantage of being able to bring individual interpretations because they combine trends and

seasonality in an additive method. There is a limitation in that long-term predictions are

highly affected by trends, making it difficult to reflect recent price information. In addition,

the STL model reflects the trend and seasonality of the test set with lower volatility. The GaST

module in PaSTANet was converted from a piecewise regression model to a deep-learning-

based model. This is an advantage of the deep learning model in that the modules can freely be

combined with other models and expanded. Finally, PaSTANet, combines the characteristics

of AR and STL, exhibiting superior performance compared to the other models.

The PaSTANet has two main contributions. The first contribution is superior forecasting

performance. We compared it to RNN, TCN, and Transformers, which have performed well

in various previous time series forecasting studies. However, RNN-based and Transformer

models have difficulty determining the baseline of sequence length for crop price data. TCN

also suffers from the need to determine the appropriate kernel size for seasonal crop prices.

Otherwise, MRCNN can compensate for these problems by enabling parallel sequence pro-

cessing with multiple kernel sizes that capture patterns at different temporal scales [45]. Fur-

thermore, STL complements this by effectively managing non-stationary data [30]. Therefore,

by integrating an MRCNN with STL, we can decompose a time series into its components and

leverage STL’s decomposition and CNN’s pattern recognition to efficiently capture complex

temporal patterns, model long-term dependencies, and adapt to different temporal scales.

The second contribution of PaSTANet is that it enables the classification of intervals by esti-

mating the Gaussian distribution. The classified predictability, caution, and warning intervals

are determined based on the length of the confidence interval, and the risk level is classified

based on the interval containing the actual price in the set interval. The price falls into the

predictability zone; however, for January, April, March, and May, it falls into the caution zone.

The climate of Korea makes January highly volatile because it is the time when onions are pro-

duced before they are consumed; March, April, and May are the main production periods for

onions. Therefore, the APDS of our model accurately reflects onion production and consump-

tion in Korea.

The PaSTANet output is a Gaussian distribution of prices predicted using recent prices,

trends, and seasonality. Therefore, if the actual price deviates from this distribution by a
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certain amount, it is considered an anomaly. APDS categorizes based on confidence intervals,

dividing CI into three stages, and proposing a response strategy for each stage. This means that

the existing agricultural supply and demand control manual [36] can overcome the limitation

of only reflecting recent prices as the use of daily prices enables detailed weekly, monthly, and

quarterly responses.

The ADPS was also compared to Bollinger bands, which have three disadvantages. First, in

Bollinger bands, the range of abnormal changes depends on the appropriate window size [46].

Second, the detection of abnormal price performance is degraded in windows that contain

high- and low-volatility bins. Finally, Bollinger bands can only be applied to observed values,

making it difficult to set long-term bands. In comparison, APDS has the advantage of being

able to set bands in advance with a long-term forecast of one year, not requiring a window and

considering in addition to recent prices, both trend and seasonality.

The study estimates the distribution of crop prices based on both time and previous prices,

to provide a one-year forecast. In future studies, to improve performance, we will consider

incorporating information on exogenous variables that can be identified in advance and crops

that are substitutes or complements. In addition, the proposed model should be extended to

crops.

5. Conclusion

Forecasting crop prices are difficult to predict due to the seasonal nature of crops grown in

open fields, and fluctuations in prices have a significant impact on the national economy. The

PaSTANet proposed in this study estimates the distribution of daily prices using a model that

combines MRCNN and GaST. In comparison with various conventional and deep-learning-

based models, PaSTANet showed the best performance. In more detail, PaSTANet improved

the performance of onion by 29.6%, Chinese cabbage by 25.0%, radishsms by 6.7%, and green

onion by 2.2% compared to the Prophet model, which was the second-best performer by

MAE. Moreover, we proposed APDS which utilizes a Gaussian distribution.

The proposed model is limited by its inability to incorporate exogenous variables. Because

crop prices are also affected by environmental variables and policies, further research on mod-

els that include exogenous variables is required. Furthermore, the predicted price is assumed

to be normally distributed, but there may be differences in the variance at a particular time,

therefore it should be needed to consider a generalized distribution. Finally, information on

other crops should be included in the model as there may be complementary or substitutive

relationships between crop prices. In future research, a multivariate model will be developed

to reflect the complex influences among crops, including also exogenous variables such as

weather.
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