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Abstract

Objectives

Gentiopicroside is an effective treatment for several types of cancer, inducing numerous

forms of programmed cancer cell death. However, there are few investigations into the role

of necroptosis. By utilizing molecular docking, and experimental validation, this study aims

to investigate whether gentiopicroside elicits necroptosis in gastric cancer.

Methods

Using software PyMOL and AutoDock, gentiopicroside was docked with RIPK1, RIPK3,

MLKL and HIF-1α proteins. And a cell study was performed based on SGC7901 cells. The

necroptosis-related proteins and HIF-1 signaling pathways were explored using western

blot (WB) analysis. Finally, an animal study was performed to test the inhibitory effect in

vivo.

Results

Docking studies indicated that the docking energies of gentiopicroside to necroptosis-

related proteins and necroptosis-characteristic proteins are all below -5 kcal/mol. Addition-

ally, gentiopicroside cells reduce gastric cancer viability and inhibit proliferation. Results

from the animal experiments indicated that gentiopicroside inhibits the growth of the gastric

cancer xenograft tumor. Western blot and immunohistochemistry (IHC) staining demon-

strated that gentiopicroside higher p-receptor-interacting protein kinase 3(p-RIPK3) levels in

vitro and in vivo.
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Conclusion

The findings of this study revealed that necroptosis is involved in the inhibitory effect of gen-

tiopicroside toward gastric cancer.

Introduction

Necroptosis is a novel form of programmed cell death (PCD) closely associated with several

types of tumors that destroys cellular structures and stimulates cell death. Necroptosis is

unique because there is no detectable caspase activity, which is typical of PCD apoptosis. Addi-

tionally, necroptosis is driven by a signaling cascade involving receptor-interacting protein

kinase 1 (RIPK1), receptor-interacting protein kinase 3 (RIPK3), and the pseudokinase mixed

lineage kinase domain-like protein (MLKL) [1]. These proteins are commonly recognized as

markers of necroptosis [2].

Growing evidence suggests that necroptosis-related genes play crucial roles in gastric cancer

cell function, including proliferation and migration in vitro [3]. The recently developed necropto-

sis-related gene prognostic index (NRGPI) is a proven prognostic biomarker that screens gastric

cancer patients with a cold tumor immune microenvironment [4]. The NRGPI effectively predicts

prognosis and immunotherapy efficiency in cases of gastric cancer by measuring AXL, RAI14,

and NOX4 levels [5]. Furthermore, a necroptosis risk model based on several genes (NPC1L1,

GAL, RNASE1, PCDH7, NOX4, GJA4, SLC39A4, BASP1, BLVRA, NCF1, PNOC, and CCR5)

was validated on patients with gastric cancer [6]. As a result, necroptosis is now widely employed

in gastric cancer management. Several new compounds and drugs inhibit gastric cancer growth

in vitro and in vivo through necroptosis. For instance, benzophenanthridine alkaloid chelerythr-

ine is a novel inhibitor that targets thioredoxin reductase and promotes gastric cancer cell necrop-

tosis [7]. Besides, gambogic acid also inhibits gastric cancer cell growth through necroptosis [8].

Consequently, necroptosis has emerged as a new PCD target of gastric cancer.

Gentiopicroside is one of the important iridoid components and the main active compo-

nent in Gentiaceae. Recent studies have confirmed that gentiopicroside has various pharmaco-

logical effects such as inhibiting inflammation [9], anti-apoptosis [10] and inhibiting tumor

cell proliferation [11]. It can be seen that gentiopicroside is an effective biomolecule with

many important biological activities and therapeutic significance. Studies have shown that

gentiopicroside has good application potential for gastric mucosal injury [12] and gastric can-

cer [13], while necrotic apoptosis can be activated in inflammatory diseases and cancer [14].

HIF-1 has been recognized as an important anticancer drug target [15]. Accumulating evi-

dence indicates that HIF-1α may be a potential driver of Hypoxia-induced HIF-1α/lncRNA-P-

MAN inhibits ferroptosis by promoting the cytoplasmic translocation of ELAVL1 in

peritoneal dissemination from gastric cancer in gastric cancer [16]. The activation of HIF-1α
can also promote necrotic apoptosis [17]. Therefore, we reasoned that gentiopicroside can

induce necrotic apoptosis of gastric cancer through HIF-1 signaling pathway. This study inves-

tigates the role of necroptosis in the treatment of gastric cancer with gentiopicroside via molec-

ular docking and experimental validations in vitro and in vivo.

Materials and methods

Reagents and chemicals

Standard gentiopicroside was purchased from Standard Corporation (Shanghai, China). Pri-

mary and secondary antibodies were procured from Abcam (MA, USA). The Cell Counting
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Kit-8 (CCK-8) and biochemical kits for oxidative stress levels and pro-cytokine levels were

provided by Beyotime (Nantong, Jiangsu, China). Dulbecco’s Modified Eagle Medium

(DMEM), fetal bovine serum (FBS), and Annexin V & Dead Cell Reagent Assay Kit were pur-

chased from Merck (MO, USA).

Molecular docking

The 3D-structure pdb format files of RIPK1 protein (PDB ID: 4ITH), RIPK3 protein (PDB ID:

7MON), MLKL protein (PDB ID: 4MWI) and HIF-1α protein (PDB ID: 2ILM) were down-

loaded from the Protein Data Bank (PDB) website [18]. Besides, the gentiopicroside structure

was obtained from PubChem. Next, ChemBio3D version 14.0 software was used to minimize

the binding energy and convert it into a 3D structure. The data were saved in mol2 format

files. RIPK1, RIPK3, MLKL and HIF-1α were set as receptors, while gentiopicroside was set as

a ligand. The AutoDockTools-1.5.6 with Autodock 4.1 program package was employed to gen-

erate the ligand and perform the hydrogenation of proteins. AutoDock Vina [19] was used for

calculating the binding energy of the molecular docking. The docking results were visualized

with PyMoL 2.4.1 [20].

Cell culture and group assignment

Gastric cancer SGC7901 cells were obtained from the cell bank of the Chinese Academy of Sci-

ences (Shanghai, China) and cultured in DMEM with 10% FBS. The culture method was car-

ried out according to American Type Culture Collection (ATCC) guidelines [21]. When the

gastric cancer SGC7901 cell density reached 80%, the cells were randomly divided into five

groups: (1) Control group (Control); (2) Gentiopicroside at 4 mg/mL group; (3) Gentiopicro-

side at 8 mg/mL group; (4) Gentiopicroside at 16 mg/mL group; (5) Gentiopicroside at 16 mg/

mL combined with Necrostatin-1(Nec-1) group (16 mg/mL+Nec-1). Nec-1 (10 μM), a necrop-

tosis inhibitor, was added 2 hours before the experiments were conducted [22].

Cell counting kit-8 assay

CCK-8 kits were used to determine cell viability [23]. Briefly, gastric cancer SGC7901 cells

were cultured in 96-well plates and treated with rising concentrations of gentiopicroside. The

CCK-8 solution was added 48 h later and absorbance at 450 nm was measured using a micro-

plate reader (PT-3502, Ponetov, Beijing, China).

Colony formation assay

Gastric cancer SGC7901 cells were seeded in 6-well plates, then cultured and treated with gen-

tiopicroside. Different doses of GDC-0326 were added following previously published meth-

ods [24,25]. When visible colonies formed, the colonies were washed, fixed, and stained with

0.05% crystal violet in 20% ethanol. The criterion was that more than 50 cells counted as a

valid colony, as per previous reports [24,25]. Cell proliferation was calculated as: clone forma-

tion rate (%) = [colonies counted / seeded cells] × 100% [24,25].

Flow cytometry assay

Gastric cancer SGC7901 cells were treated with gentiopicroside. After 48 h, the gastric cancer

SGC7901 cells were collected. A dye solution was added and the mixture was incubated in the

dark for 20 min according to manufacturer instructions. Finally, the fluorescence intensity of

the SGC7901 cells at 488/530 nm was analyzed using a flow cytometer (FACSCalibur) [26].

The necroptosis ratio was recognized in the Q2 zone, following existing literature [27].
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Western blot

The total protein content of cells was isolated and the concentrations were measured with a

bicinchoninic acid assay kit. Equal amounts of protein were separated onto gels and trans-

ferred to polyvinylidene difluoride (PVDF) membranes. Consequently, the PVDF membranes

were blocked using a blocking solution, then the membranes were incubated with diluted pri-

mary antibodies overnight. The following day, the PVDF membranes were incubated with sec-

ondary antibodies for 2 h. All proteins were visualized by enhanced chemiluminescence

reagent and the relative densities of the proteins were normalized to housekeeping proteins

using ImageJ software.

Animal model establishment and group assignment

Approval for the animal study was obtained from the Laboratory Animal Ethics Committee of

the Shanghai University of Traditional Chinese Medicine (PZSHUTCM2308260006). BALB/C

nude mice (all male with weights of 19–20 g) were provided by Shanghai Jie-si-jie Laboratory

Animal Co., Ltd. (Shanghai Lab Animal Grant Number: SCXK (H) 2023–0004). The mice

were at specific pathogen-free (SPF) grade and housed strictly following animal welfare guide-

lines. The temperature was 20–25˚C, the humidity was 40±5%, and a 12 h light/ dark cycle was

implemented. The mice were randomly assigned into five groups (n = 6): (A) Control group;

(B) 12 mg/kg group; (C) 24 mg/kg group; (D) 48 mg/kg group; (E) Cisplatin (DDP) group.

Gastric cancer SGC7901 cells were planted into the mice following established procedures.

The tumor sizes were recorded using the following formula: length × width 2/2 [28,29]. When

the tumor size reached 100 mm3, gentiopicroside was administered at 0.4 mL per day, in dif-

ferent gentiopicroside concentrations, according to the group. Positive group mice were given

DDP injections three times per week (Monday, Wednesday, and Friday) at 2 mg/kg [30]. In

the control group, 0.4 mL of PBS was administered orally once per day. The tumor sizes were

recorded every three days between tumor sizes of 100 mm3 to approximately 1000 mm3.

The standard for the humane endpoint is set to euthanize all mice in all groups when the

average volume of the tumor in the model group is greater than 1000 mm3. Mice died of cervi-

cal dislocation after anesthesia with pentobarbital sodium (40 mg/kg, i.p). The Animal Ethics

Committee reviewed and agreed on the setting of humane endpoints and the method of execu-

tion. Throughout the animal experiment, the Laboratory Animal Ethics Committee checked

the experimental process and ensured that the handling of experimental mice complied with

relevant welfare policies.

Immunohistochemistry assay

To observe the morphology and investigate related protein expression after gentiopicroside admin-

istration, the tumors were subjected to immunohistochemistry (IHC) analysis. The tumors were

carefully collected to avoid contamination from other tissue. The tumor samples were then cut,

blocked, and incubated with primary antibodies (1:150, ab179800, Abcam). The next day, tumor

slides were incubated with secondary antibodies (1:150, ab179800, Abcam). Images of the tumor

samples were then obtained with a microscope (MF31, Mshot, Guangzhou, China). Relative inten-

sity was calculated using integrated optical density (IOD) data and the area of immunostaining was

determined using NIH Image-Pro Plus 6.0 software (Media Cybernetics Co., MD, USA).

Statistical analysis

Results from the animal experiments were expressed as mean ± SD and presented by Graph-

Pad Prism version 9.5 (GraphPad Software Inc., San Diego, CA, USA). Statistical analysis was
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performed using a one-way ANOVA with SPSS statistical software version 27.0 (IBM, Chi-

cago, IL, US). P< 0.05 was considered statistically significant.

Results

Molecular docking study

The gentiopicroside was subjected to molecular docking to confirm their binding to RIPK1,

RIPK3, MLKL and HIF-1α proteins. The docking results are shown in Table 1, which indicates

that ligand gentiopicroside was closely linked to the RIPK1, RIPK3, MLKL and HIF-
1α proteins. All the docking energies were lower than -5 kcal/mol, which reflects the relative

stability among RIPK1, RIPK3, MLKL, HIF-1α proteins, and gentiopicroside, as per

existing criteria [31]. Fig 1 illustrates that gentiopicroside was bound to the active pocket sur-

face of RIPK1, RIPK3, MLKL, HIF-1α proteins. As shown in Fig 1A, the gentiopicro-

side-HIF-1α complex is principally stabilized by hydrogen bond with Leu248 and Thr288, the

pi-alkyl and pi-sigma interaction with Tyr276 amino acid residues. And the gentiopicroside-

RIPK1 conjugate was established by hydrogen bond with Thr110,Tyr255 and Leu104, the alkyl

interaction with Leu112 and Pro111 amino acid residues, while also interacting via carbon

hydrogen bonding with residues Ser109 and Glu254 (Fig 1B). Furthermore, gentiopicroside-

RIPK3 conjugate was established by hydrogen bond with residues Thr94, Met97, Asp160 and

Leu92, while also interacting via the alkyl with residues Val35, Ala48, Val27 and Leu149

(Fig 1C). Additionally, gentiopicroside-MLKL conjugate is principally stabilized by hydrogen

bond with Lys230, Lys331, Arg333 and Ser335, while also forming carbon hydrogen bond with

residue Asn336 (Fig 1D). In conclusion, the molecular docking results unveiled potential graft-

ing sites between gentiopicroside and RIPK1, RIPK3, MLKL and HIF-1α proteins.

Effect of gentiopicroside on gastric cancer SGC7901 cell viability

As Fig 2A indicates, gentiopicroside administration reduced the cell viability of gastric cancer

SGC7901 cells in a dose-dependent manner. Furthermore, when the Z-VAD-FMK inhibitor

was added to the high-dose gentiopicroside group, the cell viability was significantly lower

than in the high-dose group, suggesting the existence of another type of cell death. When Nec-

1 was given to the high-dose gentiopicroside group, the cell viability was higher than in the

high-dose group, implying that the other type of cell death was necroptosis. The colony assay

exhibited a similar tendency, where gentiopicroside reduced the colony numbers, as Fig 2B

shows. However, a combination of Nec-1 and gentiopicroside promoted colony formation

more significantly than with gentiopicroside alone.

Effect of gentiopicroside on gastric cancer SGC7901 cell death

The flow cytometry results are displayed in Fig 2C, which reveals that the necroptosis cells in

the upper left quadrant were higher in gentiopicroside than in the control group. Experiments

showed that exposure to gentiopicroside serum led to a remarkable but dose-dependent

increase in the necroptosis cell ratio in gastric cancer SGC7901 cells compared with the control

group.

Table 1. Binding energies of compounds to proteins.

Compound energies (kcal/mol)

HIF-1α (4H6J) RIPK1(4ITH) RIPK3(7MON) MLKL(4MWI)

Gentiopicroside -5.7 -6.4 -7.3 -7.8

https://doi.org/10.1371/journal.pone.0311152.t001
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Fig 1. Two and three-dimensional images of compound Gentiopicroside docking with RIPK1, RIPK3, MLKL and HIF-1α protein: (A)

Gentiopicroside docking with HIF-1α; (B) Gentiopicroside docking with RIPK1; (C) Gentiopicroside docking with RIPK3; (D)

Gentiopicroside docking with MLKL.

https://doi.org/10.1371/journal.pone.0311152.g001
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Fig 2. Cell experiments. (A) Cell viability assay using CCK-8; (B) Colony assay and quantification; (C) Flow cytometry assay; (D) Western blot

experiments and quantification. Experiments were repeated three times. Statistical differences compared with the model group were considered

significant at * P< 0.05, ** P< 0.01, *** P< 0.001.

https://doi.org/10.1371/journal.pone.0311152.g002
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Effect of gentiopicroside on necroptosis-related proteins in vitro

Results of the western blot analysis in Fig 2D reveal that gentiopicroside firstly up-regulated

HIF-1α levels. Furthermore, the WB analysis shows an increase in p-RIPK1/RIPK1 protein

levels in the gentiopicroside group over the control group. Gentiopicroside enhanced p-

RIPK3/RIPK3 protein levels and p-MLKL/MLKL protein levels, suggesting the activation of

necroptosis in gastric cancer SGC7901 cells.

Effect of gentiopicroside on tumor size and weight in vivo

Fig 3A reveals that body weight was higher in the tumor model group but it decreased after

gentiopicroside administration. Fig 3B shows a similar trend regarding tumor size, especially

in the several observations made before euthanization. The tumors at the time of euthanization

are displayed in Fig 3C, which shows that the xenograft tumor weights were lower after gentio-

picroside administration than in the xenograft model group.

Effect of gentiopicroside on necroptosis and proliferation protein activity

in vivo

Results of the IHC assay, which are shown in Fig 3D, reveal that after gentiopicroside adminis-

tration, the HIF-1α levels were higher than in the xenograft model group. Moreover, as Fig 3D

indicates, the p-RIPK3 levels were higher in the three gentiopicroside groups than in the xeno-

graft model group.

Discussion

As a novel type of regulated cell death, necroptosis is being increasingly applied in cancer treat-

ment. This study investigates the regulating role of the bioactive compound gentiopicroside

during necroptosis in gastric cancer cases.

Necroptosis is widely recognized as a novel inflammation-induced PCD pathway when the

regular apoptotic pathway is inhibited. Therefore, necroptosis is classified as an alternative

apoptotic PCD. Necroptosis is initiated by activation of the serine/threonine RIPK1. Many

cytokines that the immune system of the human body encounters elicit the activation of

necroptosis, such as the tumor necrosis factor (TNF) family of death receptors, interferon

(IFN) receptors, and toll-like receptors (TLRs) [32]. In TNF-induced necroptosis, RIPK1 is

activated and additional reactive oxygen species (ROS) are produced in the mitochondria [33].

Subsequently, RIPK1 forms a protein complex (necrosome) with RIPK3 activation through its

RIP homologous interaction motif (RHIM) domains. In IFN-induced necroptosis, RIPK3 is

activated by the RHIM-containing protein ZBP1 but without the help of RIPK1. Consequently,

RIPK3 phosphorylates the substrate MLKL, elicits MLKL oligomerization, and translocates to

the plasma membrane.

Necroptosis can be induced by several signaling pathways, such as the HMGB1/TLR4 [34],

RIPK3-CaMKII-mPTP [35], AMPK [36], and JNK signaling pathways [37]. HIF-1α is an

important signaling pathway that responds to low oxygen in the human body and commonly

provokes necroptosis. HIF-1α modulates the tricarboxylic acid cycle and pentose phosphate

pathway, resulting in macrophage apoptosis, necroptosis, and a reduction in autophagy [38].

HIF-induced necroptosis plays an important role in colorectal cancer cells [39]. Besides, the

up-regulation of HIF-1α in macrophages induces necroptosis by mitochondrial dysfunction,

modulated by miR-210 and miR-383 [40]. HIF-1α also participates in necroptosis in ischemic

brain injuries [41].
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In recent years, scholars have discovered that many natural products and related agents

inhibit cancer cell proliferation by necroptosis. The multi-target molecular mechanism of the

marine compound brugine against breast cancer was predicted partly through necroptosis

[42]. Additionally, the benzophenanthridine alkaloid chelerythrine stimulates the necroptosis

of gastric cancer cells [7]. Gentiopicroside is a bio-active nature-derived compound from the

Fig 3. Animal experiments (# 6 in each group). (A) Tumor sizes; (B) Tumor weights; (C) Tumor properties at the time of euthanization;

(D) Representative HIF-1 IHC and quantification. Magnification = 200; Scale bar: 200μm. (E) Representative p-RIPK3 IHC and

quantification. Magnification = 200. Scale bar: 200μm. Statistical differences compared with the model group were considered significant at *
P< 0.05, ** P< 0.01, *** P< 0.001.

https://doi.org/10.1371/journal.pone.0311152.g003
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genus Gentiana of the family Gentianaceae. Gentiopicroside is found in Gentiana macrophylla
Pall [12], Gentiana straminea Maxim [43], Gentiana scabra Bunge [44], and Gentiana robusta
King ex Hook. f. [45]. In recent years, gentiopicroside has been recognized as an effective anti-

cancer agent that inhibits the proliferation of numerous types of cancer cells in vitro and in

vivo [46], including cervical cancer [47], gastric cancer [13], and ovarian cancer [11]. In gastric

cancer, gentiopicroside inhibits the proliferation of gastric cancer by regulating the EGFR/

PI3K/AKT signaling pathway [48]. In this study, gentiopicroside was found to induce necrop-

tosis-related protein expression in gastric cancer SGC7901 cells by modulating the HIF-1 sig-

naling pathway.

This study does have some limitations. This is a preliminary study on gentiopicroside par-

ticipates in the necroptosis of gastric cancer cells. In the present study, we have only studied

Fig 4. Workflow of Gentiopicroside-Induced necroptosis in gastric cancer via the HIF-1 pathway.

https://doi.org/10.1371/journal.pone.0311152.g004
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SGC-7901 cells. Some studies indicate that the level of HIF-1 protein in SGC-7901 cell line is

variable according to different hypoxia situation [49]. The hypoxia situation effect might com-

plicate tumor model result. Some gastric cancer cell line which is not sensitive to oxygen fluc-

tuation to investigate gentiopicroside effect on HIF-1 protein level and related molecular

mechanism have not been studied by us, but this does not hamper the value of our research.

We will focus on the above issues in the future.

Conclusion

Through molecular docking, and in vitro and in vivo experiments, this study demonstrated

that gentiopicroside participates in the necroptosis of gastric cancer cells. Gentiopicroside

inhibits gastric cancer proliferation by inducing necroptosis through the HIF-1 signaling

pathway.

The summary diagram illustrating the workflow involved in experimental study of Gentio-

picroside-Induced Necroptosis in Gastric Cancer via the HIF-1 Pathway (Fig 4).
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