PLOS ONE

Check for
updates

G OPEN ACCESS

Citation: Gong Q, Yin B (2024) Statistical inference
of entropy functions of generalized inverse
exponential model under progressive type-I|
censoring test. PLoS ONE 19(9): e0311129.
https://doi.org/10.1371/journal.pone.0311129

Editor: Pablo Martin Rodriguez, Federal University
of Pernambuco: Universidade Federal de
Pernambuco, BRAZIL

Received: March 21, 2024
Accepted: September 10, 2024
Published: September 30, 2024

Copyright: © 2024 Gong, Yin. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the original
author and source are credited.

Data Availability Statement: All relevant data are
within the manuscript and the references.

Funding: The author(s) received no specific
funding for this work.

Competing interests: The authors have declared
that no competing interests exist.

RESEARCH ARTICLE

Statistical inference of entropy functions of
generalized inverse exponential model under
progressive type-ll censoring test

Qin Gong', Bin Yin®?*

1 College of Science, Jiangxi University of Science and Technology, Ganzhou, China, 2 Teaching
Department of Basic Subjects, Jiangxi University of Science and Technology, Nanchang, China

* yinoobin123@163.com

Abstract

This article explores the estimation of Shannon entropy and Rényi entropy based on the
generalized inverse exponential distribution under the condition of stepwise Type Il trun-
cated samples. Firstly, we analyze the maximum likelihood estimation and interval estima-
tion of Shannon entropy and Rényi entropy for the generalized inverse exponential
distribution. In this process, we use the bootstrap method to construct confidence intervals
for Shannon entropy and Rényi entropy. Next, we select the gamma distribution as the prior
distribution and apply the Lindley approximation algorithm to calculate ‘estimates of Shan-
non entropy and Rényi entropy under different loss functions including Linex loss function,
entropy loss function, and DeGroot loss function respectively. Afterwards, simulation is
used to calculate estimates and corresponding mean square errors of Shannon entropy and
Rényi entropy in GIED model. The research results show that under DeGroot loss function,
estimation accuracy of Shannon entropy and Rényi entropy for generalized inverse expo-
nential distribution is relatively high, overall Bayesian estimation performs better than maxi-
mum likelihood estimation. Finally, we demonstrate effectiveness of our estimation method
in practical applications using a set of real data.

1. Introduction

With the continuous progress of technology, consumers have increasingly higher require-
ments for product quality. In order to meet market demand, we need to conduct reliability
and life tests to evaluate the performance and durability of the product. For instance, Zhang
etal. [1] conducted a reliability analysis on the copula-based partially accelerated competition
risk model. Alotaibi et al. [2] analyzed the constant stress accelerated life test of XLindley dis-
tribution. However, when conducting these experiments, we often face various limitations
such as time, cost, and experimental conditions. These limitations prevent us from fully
observing the complete lifespan of all products, and there may be some products that fail
before or during testing, making it impossible to continue with life testing. To more accurately
estimate the lifetime of products for reliability assessment, decision-making, or product
improvement purposes, censoring samples are used in lifetime testing. Considering factors
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such as long product lifetimes and high testing costs, it is necessary to adopt more efficient and
cost-effective testing methods. Therefore, the concept of progressive censoring sampling is
introduced to further improve the accuracy of reliability and lifetime distribution estimation
for products. Compared to traditional censoring methods, the progressive censoring method
demonstrates enhanced flexibility in product life testing because it gradually adjusts the cen-
sorship samples to better align with the distribution characteristics of product lifespan. This
approach improves both testing efficiency and accuracy by reducing data loss caused by pre-
mature sample removal and retaining a larger number of longer-lived samples, thus enhancing
data utilization and obtaining more precise lifetime estimates. Additionally, the progressive
censoring method allows for reduced testing time, smaller sample sizes, lower testing costs
while enabling more reliable risk assessment based on accurate lifespan estimation. As a result,
it provides a more scientific basis for product design and decision-making while comprehen-
sively evaluating long-term performance. In recent research, significant progress has been
made in the field of statistical analysis of progressive censoring experiments. For instance,
Chakraborty et al. [3] conducted a comprehensive analysis of the joint cumulative entropy
under progressive Type-II censoring (PC-II) samples. Alsadat et al. [4] investigated the param-
eter estimation problem for unit semi-logical geometric distribution under progressive Type-
II right censoring samples. Lone et al. [5] studied a stress strength reliability model based on a
balanced joint progressive censoring scheme and performed parameter estimation and reli-
ability analysis on Burr XII type distribution samples using classical and Bayesian methods,
confirming the effectiveness of the adopted approach. Additionally, Alsadat et al. [6] analyzed
the properties of Kumaraswamy’s modified inverse Weibull distribution in samples with pro-
gressive first failure censoring. Berred and Stepanov [7] examined the distribution characteris-
tics and asymptotic behavior of exponential intervals under PC-II samples. Moreover, Alotaibi
et al. [8] conducted research on Frechet distribution prediction based on review data in fields
such as medicine and technical sciences. These research findings demonstrate continuous
advancements and enhancements in statistical analysis methods for progressive censoring
experiments. Progressive censoring testing can be divided into progressive Type-I censoring
testing and PC-II testing, with a focus on PC-II testing in this paper. Based on the concept pro-
posed by Alotaibi [8], PC-II testing can be described as follows:

If there are n products undergoing lifetime testing, and the time of observing the first failed
product is recorded as Xj.,,,.,, R; products need to be excluded out of the remaining #n—1 prod-
ucts that have not failed. For the second failed product, the same procedure should be repli-
cated, observed as X,.,,,., by removing R, products from the remaining n—2—-R, non-failed
products, by extension, the time at which the occurrence of the m-th faulty product is observed
is recorded as X,,,. ... At this stage, the experiment concludes, and any remaining n—m
—R;—R,— - -—R,, products are automatically removed.

Abouammoh and Alshingiti [9] proposed the generalized inverse exponential distribution
(GIED), a novel distribution type, which combines the generalized exponential distribution
(GED) with the inverse exponential distribution (IED) and is an extended form of the IED.
This distribution is widely used in survival analysis, reliability engineering, and communica-
tion fields [10]. Compared with the exponential distribution and IED, GIED introduces addi-
tional parameters, making it more flexible and able to better adapt to various data situations
and perform fitting. Therefore, in recent years, the statistical properties of this distribution
have been extensively examined by numerous scholars. For example, Bakoban and Aldahlan
[11] studied Bayesian estimation of shape parameters for GIED under complete samples. Has-
san et al. [12] assumed that strength and stress follow GIED with different shape parameters as
random varijables under ranked set sampling (RSS) and simple random sampling (SRS), and
analyzed the reliability estimation of stress intensity. Liu and Xi [13] studied the Bayesian
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estimation of GIED parameters under timed censoring samples. Below we provide the defini-
tion of GIED:

Let X denote a stochastic variable which follows the GIED. The probability density function
(PDF) and cumulative distribution function (CDF) of this distribution are given by:

ﬂmkmzégﬁu—eﬂmix>mLﬁ>m (1)

Fx;,p)=1—(1—-e%' x>0,18>0. (2)

Here f is the shape parameter, and A is the scale parameter.

From Figs 1 and 2, it can be observed that when A is fixed, the PDF and CDF exhibit differ-
ent trends with varying . When = 1, the GIED is IED.

Although GIED, as an emerging distribution, has shown great potential in fields such as
survival analysis and reliability engineering and has attracted the attention of many scholars,
research on statistical inference of GIED in PC-II samples is still relatively scarce. In view of
this, this article aims to address the shortcomings in this area and promote the application of
GIED in censoring data scenarios. This article combines PC-II samples with the GIED model
to achieve accurate estimation of GIED parameters through parameter estimation and hypoth-
esis testing while verifying the applicability of the model. Entropy, an important concept in
information theory, also plays a significant role in practical applications. It can be used to eval-
uate the uncertainty and risk level of random variables, thereby assisting in risk assessment
and decision-making [14]. Additionally, entropy value can serve as a criterion for selecting
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Fig 1. PDF plots of GIED.

https://doi.org/10.1371/journal.pone.0311129.9001
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Fig 2. CDF plots of GIED.
https://doi.org/10.1371/journal.pone.0311129.g002

distribution models where higher entropy values indicate stronger uncertainty and random-
ness within data. Based on this understanding, appropriate adjustments are made to model
selection criteria. This article delves into estimating entropy within the GIED model while fur-
ther validating its applicability through parameter estimation and hypothesis testing.

This study is based on PC-II samples and primarily explores the estimation of entropy in
GIED. In Section 1, the basic concepts and properties of PC-II experiments and the GIED
model are introduced. In Section 2, the terms for Shannon entropy and Rényi entropy in
GIED are deduced and proved. In Section 3, we derived maximum likelihood (ML) estimates
for Shannon entropy and Rényi entropy, and confidence intervals (CIs) for Shannon entropy
and Rényi entropy are constructed using the bootstrap method. Section 4 uses a gamma distri-
bution as a prior, and Bayesian inference for the estimation of Shannon entropy and Rényi
entropy under the Linex loss function (LLF), entropy loss function (ELF), and DeGroot loss
function (DLF) is performed. The Lindley approximation algorithm is applied to compute the
Bayesian estimator (BE). In Section 5, numerical results are obtained through Monte Carlo
simulations to validate the effectiveness of the proposed estimation methods. In Section 6, the
constructed model is applied to real data, and the validity of the employed estimation
approaches is verified. Finally, in Section 7, a thorough discussion of the research results is
provided, and corresponding conclusions are drawn.

2. Entropy under GIED

Shannon entropy, introduced by Shannon [15], it is a fundamental concept in information
theory that serves to gauge the degree of uncertainty or stochasticity in information. The
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definition of Shannon entropy is given below:
+0o0
H) =~ [ o () ®)

where f(x) represents the PDF of the stochastic variable X that is continuous. With the develop-
ment of information theory, the concept of Shannon entropy has been widely applied in vari-
ous fields such as communication, data mining and machine learning, and statistical physics.
Flores-Gallegos and Flores-Gomez [16] revealed the relationship between Shannon entropy
and chemical hardness and applied the derived equations to molecular ensembles. Joshi [17]
studied the variations in Shannon entropy under changes in constraint potential parameters
and Debye screening parameters. Flores-Gallegos [18] analyzed the trends in the first deriva-
tive of Shannon entropy with respect to electron number and spin density.

Rényi entropy is an extended form of information entropy proposed by Rényi in 1960 [19].
Unlike Shannon entropy, Rényi entropy introduces a parameter o, which can adjust the prop-
erties of entropy to some extent. The definition of Rényi entropy is given below:

1
11—«

HR(f) =

In / e a(£ 1) > 0, (4)

where f(x) represents the PDF of the stochastic variable X that is continuous. Rényi entropy is
an extension of entropy in information theory and plays an important role in various fields
such as information theory, statistics, and complex networks. Significant progress has been
made in the study of Rényi entropy in existing literature. Chennaf and Ben Amor [20] analyze
the mathematical properties of Rényi entropy and partial Rényi entropy, applying them to
measure the uncertainty of uncertain random variables. They also apply partial Rényi entropy
to optimize the selection of uncertain random returns in finance. Tian and Xu [21] discussed
the problem of calculating Rényi entropy in AdS (3)/(B) CFT2. Kayid and Shrahili [22] used
the signature of the system to determine the Rényi entropy of the past longevity of a interre-
lated system, in order to evaluate its predictability.

Theorem 1. Let X denote a stochastic variable which follows the GIED. The Shannon entropy
of GIED is given by:

Hs:_lnxﬂ+2ﬂi<ﬁ;1>(_1)ir(1)ln(11—:—i2—r’(1)+¢(ﬁ+l)_¢(1)+ﬂ_17(5)

where I'(.) denotes the gamma function, and y(.) denotes the digamma function.

Proof. See S1 Appendix.

Theorem 2. Let X denote a stochastic variable which follows the GIED. The Rényi entropy of
GIED is given by:

_ 1 —o+1 po - OC‘B_OC ,F(QOC—l)
Ha—mln[i ﬂ;( )(_1)ﬁ7 (6)

i (o0 + 1)

where I'(.) denotes the gamma function.
Proof. See S2 Appendix.

s3. ML estimation

Suppose X, Xomms =+ » Xommn F€Presents m PC-II samples observed out of n test samples in

total, following the GIED defined by Eq (1), according to Abo-Kasem [23], the likelihood

L:m:n?
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function (LF) is:
B A’| - éHf 1mn - 7m7l A‘ﬁ Hx e XY - )ﬂR‘+ﬁ_17 (7)

where. =n(n—R,—1)(n—R, —R,—2)---(n—R, —R,—---R, | — m+1), X,n.,, rep-

m

resents the observed values of the X;.,.., samples, X = (X, Xoens " s Xson)-
According to Eq (7), the logarithm of the LF is obtained as:

I(B, Al x) = InL(B, A| x) = Iné + mInd + mInf — 2ilnxi — Aixl + i(ﬁR,‘ +p—1ln(l — e’f).

Therefore, Eqgs (8) and (9) are obtained:

dl(p, 7) J
o ﬁ—i—;R—klln(l—er), (8)
R Sy ©)

i=1 Xi I(I—Q’Q)

By setting the right-hand side of Eqs (8) and (9) to zero and solving these two equations,
we obtain the roots, which are the ML estimates of § and A. Moreover, the solutions
obtained from Eqs (8) and (9) exist and are unique. However, proving directly that solutions
to the nonlinear Eqs (8) and (9) exist and are unique can prove challenging. Therefore, we
can provide evidence through visualizing the logarithm likelihood equation, as depicted in
the real data analysis presented in Section 6 of Fig 3. Since we cannot obtain an analytical
solution directly for Eqs (8) and (9), we can consider using numerical methods to obtain the
ML estimates of § and A. In the following, we will introduce the algorithm steps of the
dichotomy method.

Step 1: Given an error capacity €, determine the interval range [A;, Ay] such that f(A;)-f
(Av)<O.

Step 2: Find the point A, in the middle of the range [4;, Ay] and substitute it into f{4) to cal-
culate f{A,).

Step 3: If fiiyy) = 0, then )= Ay the algorithm ends; If {A;)-fid,) <0, then Ay = A5 If f
(Ay)- A <0, then Ap = Ay

Step 4: Repeat step 3 until |[A;-Ay| <&, and the algorithm ends.

Because of the invariance property of ML estimation, we substitute the parameter estimates

[3 and / obtained from the dichotomy method into Eqs (5) and (6), we get:

Hy = ~Inif + Q[Si(ﬁ - 1 )(=1) r(l)ln(lliiz —-T'(1)

a, :Tlam l2a+1[3“2<“ﬁi_“)(1)‘r(2“_ 1)1 (11)

(OC+ 1)21 1

+y(B+1)—y(1)+p 18, (10)

In statistics, CIs are used to describe the range of uncertainty in parameter estimation
results, representing the possible range of true values of parameters at a given confidence level.
There are various methods for constructing CIs, and choosing the appropriate method mainly
depends on the estimated parameter type and sample distribution. The bootstrap method is a
resampling technique in statistics used to estimate the sampling distribution of statistics,
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Fig 3. Experience distribution diagram of patient survival time and distribution function diagrams of various
models function plot of GIED.

https://doi.org/10.1371/journal.pone.0311129.g003

construct CIs, and perform hypothesis testing. It is generated by repeatedly sampling with
replacement from the original sample to simulate multiple virtual sample sets, thereby avoid-
ing assumptions about the population distribution. By conducting repeated sampling and
parameter estimation on a virtual sample set, the sampling distribution of parameter estima-
tion can be obtained, and then CIs can be constructed. Abundant research has been conducted
on the bootstrap method in the existing literature. Kanwal and Abbas [24] investigated param-
eter estimation of the Frechet distributed process capability index and established a corre-
sponding bootstrap CI. Li et al. [25] proposed a novel bootstrap method for small sample
hydrologic frequency analysis, demonstrating its superior accuracy compared to traditional
methods, particularly with limited sample sizes. Hwang et al. [26] effectively addressed uncer-
tainty in landslide probability analysis caused by insufficient data using the bootstrap method
and combined it with point estimation to propose a new approach. Su et al. [27] introduced an
improved bootstrap method for estimating fatigue properties of materials and components
under small sample sizes. Dudorova et al. [28] employed a bootstrap analysis method to study
preferences of Egyptian fruit bat pups, suggesting that these preferences be transcribed based
on behavioral test data presented therein. These studies provide valuable application cases and
theoretical foundations for diverse fields and applications of the bootstrap method. Maiti et al.
[29] estimated the Shannon entropy and Rényi entropy of GED using progressive censoring
data, and constructed CIs for entropy using bootstrap method.

In this section, we utilize the bootstrap-t (Boot-t) method to construct CIs for the GIED’s
Shannon entropy and Rényi entropy [30]. The specific algorithm is presented in Table 1.
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Table 1. Algorithm for constructing Boot-t Cls.

Algorithm: | Constructing Boot-t CIs.

1 Setting the number of simulations B.

2 The estimates of # and A, denoted as [} and /:f, respectively, are obtained from the original PC-II data
X = (xl:m:n7x2:m:n7 e !Xm:m:n>'

3 Keeping the censoring schemes unchanged, substituting /} and / into the distribution function of the
GIED, we obtain the bootstrap samples x*. From x*, we derive the bootstrap ML estimates B and /.
Substituting * and /" into Eqs (10) and (11), we obtain Hj and H}, along with their variances
Var(H;) and Var(H}).

4 A -

Calculate the corresponding statistics 6 = B(H; — Hy)/1/ Var(H};) and
o= \/E(I:IR - I:IR)/ Var(I:f;), as well as the CDFs W(x) = P(6<x) and Wg(x) = P(0<x)
corresponding to the statistics, based on the obtained H sand H I

5 Repeat steps 3 and 4 for a total of B times, resulting in a series of statistics (61,02, - »0,,) and (01,02, - -
Op)-

6 The series of statistics obtained are sorted in ascending order to obtain (51),0(2)" - -»0(m)) and (o(1),
0(2)>" * ',U(m))-

https://doi.org/10.1371/journal.pone.0311129.t001

Provide the definition:

HBS(x) = Hs + Bi% Var(ﬁs)W;I(x), IjIBR(x) = HR + Bi% Var(IAJR)ng(x).

Therefore, the 100(1-60)% Boot-t CIs for Shannon entropy and Rényi entropy are
(Hps(2), Hyg(1 = 9)) and (H (), Hyp (1 — 9)), respectively. The variance of the entropy can be
obtained from the Fisher matrix. Next, we will calculate the variance of the entropy:

Construct the Fisher matrix:

CQUBA) PP

- PR Py
I(ﬁ7l) == 9 ﬁ o 9
_PUB,A) OB, A)
0A0p o’ B=p 7=
where:
UL m PR m & e

T, T/, T oy T g — T 5 R1+ _].7/7
op* prox VA (PR, + )x?(l —eh)’

PUBL) & et PUB,A)
opor ~ 2NV g T viop

We can obtain the inverse matrix of the Fisher matrix, denoted as I ([3 , 1). Since taking
derivatives directly with respect to fand A4 in Eqs (5) and (6) can be quite complicated, we
rewrite Eqs (5) and (6) as follows, it should be noted that, for the sake of simplicity, we make
u(d,x) =1— e~

H(f) = —In(4B) + 2/0001—6 (1 —w)u’" "Inxdx +y(B+1) — (1) + % (12)
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> —20 _ o a(f—1)
AAn(ip) ln/U x (1 —u)u dx
+
11—« 1—a

HR(f) =

; (13)

Therefore, from Eqs (12) and (13), we have:

O 1 [ e and
o8 ﬁ+2‘/0 x2(1 u)u lnx(l—l—ﬁlnu)dx—i—lﬁ(ﬁ—l—l)—i—ﬁz,
oL

oH, _ _1 + 2/ é(l — w)u?In x(xu + A — 2pu — 2)dx,
0

* —20 _ o oa(f-1)
oH, ” N cx/o (1 —u)u In udx
aﬁ ﬁ(l - OC) (1 _ O{)/ x—2a(1 . u)“uoc(ﬁfl)dx
0

o 0036’2“’11—14“14“(’HH u—p+1)dx
o, w A FT—ww ) |

(1-— oc)/ 21— u) " u P Vdx
0

Therefore
Var(HS) = TSI’l(ﬁ,/l)T;|ﬁ:/;>,.~:;v, Var(I:IR) = TRI’l(ﬁ,/l)TI’{|/,:/}J:;V,

where T; represents the transpose of Ts and T}, represents the transpose of Tk. Definition

Ts = (%7%)7 R — (%7%)‘

4. Bayesian estimation of entropy

Bayesian estimation is a parameter estimation method based on Bayes’ theorem in statistics
[31]. It utilizes prior information and sample data to obtain a posterior probability distribution
by updating the prior probability distribution, and infers parameter estimates and uncertain-
ties from it. Bayesian estimation, as a common statistical inference method, has the advantage
of flexibly combining prior knowledge and observation data to provide more accurate infer-
ence results. It is widely used in many fields to deal with uncertainty, model selection, and pre-
diction, such as statistics, machine learning, image and signal processing, financial risk
assessment, and other fields [32-34]. In this section, we propose a posterior density function
for GIED based on PC-II samples, and use Bayesian estimation to obtain the estimation results
of Shannon entropy and Rényi entropy under three loss functions: LLF, ELF, and DLF.

4.1. Conditional posterior distribution

Based on the principle of Bayesian estimation, selecting an appropriate prior distribution is the
core step of Bayesian estimation, which allows for the fusion of previous knowledge, experi-
ence, or data into parameter inference, thereby providing more accurate, reliable, and compre-
hensive parameter estimation results. In this section, we use information priors for inference.
The selection of information priors aims to utilize previous knowledge, experience, or data to
assist in parameter inference in the Bayesian estimation process. Compared to non-
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informative prior, informative prior has more guidance and accuracy, thereby improving the
reliability and accuracy of parameter es-timation results [35]. In this study, we adopt the
gamma distribution as the prior distribution due to its flexibility and conjugate nature, which
allows us to obtain a simplified posterior distribution when combined with the LF. This simpli-
fication greatly facilitates the process of Bayesian estimation. Assuming § and A are indepen-
dent random variables following I'(171,y;) and I'(1,,y,) distributions, respectively, the density
functions of fand A can be represented as follows:

n(Blny, ) = B ey > 0,7, > 0,

7,
(n,)

y n2 s Y
n()“lrlZ’VQ) = 1—*(211 )/le le 72 ; ’12 > 0;’))2 > 0
2

The joint prior on f and 4 is given by:

n(f,A) = FWMVQ"Z pr it o,

(1)1 ()
By applying Bayesian theorem, the joint posterior density of #and A can be determined as:
L(p, 4| x)n(, #)

(B, )dﬁdA

//ﬁ,

Bayesian estimation is a parameter estimation method based on Bayes’ theorem. In the
decision-making process, we often need to consider the risks and losses associated with differ-
ent decisions. Introducing a loss function can help quantify the risks associated with different

Where x_ = (xlzm:n7 x2:m:n’ X )

) Ymimin

decisions during the estimation process to find the optimal decision. In this section, we intro-
duce three loss functions: LLF, ELF, and DLF. LLF is an asymmetric loss function proposed,
which combines the characteristics of exponential loss and linear loss and allows balancing the
response to prediction errors based on parameter adjustments. ELF is a loss function used for
classification problems, based on the concept of information entropy, to measure the differ-
ence between model predictions and true values. DLF is a common asymmetric loss function
proposed by DeGroot [36], often used in Bayesian decision theory to compare different deci-
sion strategies. Compared to LLF and ELF, DLF computation is relatively simple and easier to
implement. Therefore, we choose three loss functions, LLF, ELF and DLF, to comprehensively
consider factors such as prediction error, information content and practicality, and hope to
find the most suitable loss function for GIED model entropy estimation through comparative
analysis. The BEs of these different loss functions is provided below [37-39] (See Table 2).

Here, H represents the entropy function, and H represents the estimates of H, ¢ represents
the hyperparameter of LLF.

Table 2. BEs with different loss functions.

Loss Function Expression BE
LLF ec[[{—H] _ C[PAI _ H] 1 — ];lnE[e’CH| x_]
ELF i In(i) - 1 [E[H | x ]
DLF (I:I _ HI:I)Z bp[g;‘\xxj

https://doi.org/10.1371/journal.pone.0311129.t002
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(1) Under the LLF, the BEs of Shannon entropy and Rényi entropy are as follows:

Hy = —%lnE[ 7CHS| = ——ln / / e (B ic)dﬁd},], (14)
. 1
iy = —Lnfe ) = ——ln / / & in(, 4] x)dpdi). (15)
(2) Under the ELF, the BEs of Shannon entropy and Rényi entropy are as follows:
Hy = [EIH; ) = (7 7 He m(, 2l x)dpd) (16)
Ay = [EH | = (7 Hy (B, 2| x)dpdz) ™ (17)

(3) Under the DLF, the BEs of Shannon entropy and Rényi entropy are as follows:

LA /OX/OXHsﬂ(ﬁ,Mx_)dﬁdz "
E[Hs|x,] / / Hsﬂi(ﬂ,ﬂx_)dﬁdl

) EH / / H2n(B, 4| x )dpds.

HRD
//Hknﬁ,d dﬁdi

Indeed, the aforementioned BEs are in the form of a ratio of double integrals, and they are
not in explicit form, making it difficult to compute the results directly. Therefore, we can
employ the Lindley approximation algorithm to compute the BEs of Shannon entropy and
Rényi entropy.

4.2. Lindley approximation

The Lindley approximation algorithm is a Bayesian statistical inference approximation method
proposed by Lindley, used to calculate estimates of parameters. According to Abo-Kasem [23],
we provide the Lindley approximate equation:

~ 1 R A R A
I(x) = (B, 4) + 5 [(‘P{;ﬁ + 2(1’/;/)/;)‘7/3/; + (%/3 + 29"/19/;)0';/;

(‘7’/)’/: + 2%[31)&/»1 + (‘;’xz + Z‘Z’zﬁ;.)a'/:z]
(20)

where ¢(f,1) is a function of fand A. p(B,1) is the logarithm of the joint prior distribution of 8
and 4, that is p(f, 2) = Inmt(f, 1). I(B.A|x) is the logarithm of the LF. And f3 and / are the ML
estimates of fand A, and the subscripts denote the partial derivatives of the variables, such as,
¢p is the first-order derivative of 8 in ¢(8,4). Similarly, the others are denoted as follows:

n —1 N n,—1

_y7p/1: ~ — Yo,
ﬁ 1 7 2

Py =
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(A LN S B

BBB 8ﬁ3 i ﬁ3 » BB alaﬁQ pbii BB
5 0l 2 e . .
lu. ~ a12ap = - (Ri+1) ; :l//:l/m

' oxop p=p =1 Z:; x2(1 —e %) ! !
N 0%l 2Mm N s . e ;7(1 +e)
Wi = 73 == R+p—-1)———=.
= |, = TR e

Based on the given equations, the following representation holds for Eqs (14)-(19):
(1) Computing the BE of Shannon entropy under LLF:
In that case, we have ¢(f, 1) = e, thus

g = —ce (=542 [ 50— W 1+ fin s+ (4 1) +5)

1 00 1 , 1.
Pogp = € e’CHS[—E—i— 2/0 %(1 —w)u ' Inx(1 + Bln w)dx + /' (B + 1) + E]Z

—ce s [% + 2/00C é (1 — w)u'In uln x(2 + Pln u)dx +y (B + 1) — %],

9, = —¢ e’CHS[f%Jr 2/ ﬁs(l — w)uIn x(xu + AB — APu — A)dx],
0o X

Py, =C e’CHS[—%+ 2/()30 g(l — w)u’In x(xu + A — APu — 1)dx]’
—c e‘”HS{% - 2/0ac é(l — u)u?In x(xu + A — 2pu — 2)[1 — (B — 2)(1 — u)u ']dx

+ 2/00 %(1 — W Inx[l —u+p— Pu— (1 — u)x' — 1]dx},

1 o ¢]
Popy = Poyp = € € [ = it 2/0 é(l — w)u"?In x(xu + A — 2pu — 2)dx]

1 * - / 1
X [fﬁ+2/0 ;(1 —w)u" ' In x(1 + Bln u)dx +'(f + 1) +E]
—ceHs [2/()00%(1 —uw)unx(1 + Plnu)(1 — %)dx
N 2/°° xig(l — w2 Pl (26 + fln u — Blnu — 1)dx].

Substitute the above equations into Eq (20) to obtain E[e"| x ], and then the BE of Shan-
non entropy under LLF can be obtained from Eq (14).
(2) Computing the BE of Rényi entropy under LLF:
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In that case, we have ¢, (f, 1) = e ', thus

oz/ (1 — u)"w" V1n udx
—cH « 0
Prp = —ce + 1,

P —a) (1— oc)/DO x(1 — u)"uPVdx

a/ x (1 — u)*u* VIn udx
o 0

OC,[))/ o 2 )a+1ua(ﬁf1)71dx 0(2[/00 x—Qa—l(l _ u)y a(f—1)— (ﬁu _ ﬁ + l)dx]

(1— oc)/ 21— u)"uPVdx (1— oc)[/ x (1 — u) w PV dx]
0 0

}7

2
Prop = ¢ e i — + = ]
p—a) (1 foc)/ 21— u)"w P Vdx
0
., 0(2/‘ x 21 — u)w?PV(In u)’dx
c echR{_ - + 0 —
RS (1-— oc)/ x (1 — u)'u " Vdx
0
ocz[/ x (1 — u)u?V1n udx]’
_ (N 9},
(1- ac)[/ x (1 — u) uP D dx]*
0
af x2'1 - w) w1 Bu— B+ 1)dx
(P = —(C effHR(f)[ o _ 0 ]
R/ 0 9
A1 —0) (1- oc)/ 2721 — u)uPVdx
0
Y R (TR RRV:
2 e—cHR(f) [/1(1 — a) _ 0 — ]
(1-— oc)/ 21— u)"u P Vdx
0
” oc/ x 22 (1 —u)"w P2 (Bu— B+ 1) (afu — af + o — u+ 1)dx
—cHR(f) f __ + 0
°¢ t (1 —a) - % a(p-1)
I—a)] x*1—u)u dx
0
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OC/ x—20<—1(1 _ u)‘“u“([f—l)_l (ﬁu — ﬁ —|— l)dx
0

(1- oc)/ 21— u)"wPVdx
0

o
Prpi = Prip = ¢ e el [/1(1 )

]

oc/ x7(1 — u)" " VIn udx
0
(1-— oc)/ x (1 — u) uPVdx
0
ocQ/ 227N — w)" PV n u(Bu — B+ 1)dx
0

(1— oc)/ x (1 — u) u P Vdx

0

]

— ¢ e—Hr() { —

oc/OO PN — w) Y
0
(1- oc)/ 21— u)"wPVdx
0
oc2/ x7 (1 — u)"u**VIn udx/ X1 — w)w P (Bu — B+ 1)dx
0 0

(1- oc)[/oDo x (1 — u) WPV dx]?

+

.

+

Substitute the above equations into Eq (20) to obtain E[e"#| x ], and then the BE of Rényi

entropy under LLF can be obtained from Eq (15).
(3) Computing the BE of Shannon entropy under ELF:

In that case, we have ¢,(f, 1) = H;',thus

g = H 42 [ 50— 0 (L4 i g (84 1) +3h

g 1 < » / 1,
9"3/;/;:2Hs [_B+2/0 ;(1—1«1)14’j In x(1 + fln “)dx"Flﬁ(ﬁ-i-l)—l—E]
—H{? % + 2/000 ;(1 — w)u’ Inuln x(2 + Bln w)dx + (B+1) — %],

¢, = —Hg |- % + 2/ g(l — u)u’In x(xu + A — ABu — 2)dx],
0

1 0 ‘
Py = 2H; [~ 5 +2 / Bt~ in xou-+ 18— 1 — e’

x4

_ HS*Z{% — 2/0Dc ﬁ(l —u)u’In x(xu+ 2B — 2pu— 2)[1 — (B —2)(1 — u)u'dx

+ 2/oo g(l —wuPInx[1 —u+ f — fu— A1 — u)x~! — 1]dx},

14/29

PLOS ONE | https://doi.org/10.1371/journal.pone.0311129  September 30, 2024


https://doi.org/10.1371/journal.pone.0311129

Statistical inference of entropy functions of generalized inverse exponential model

PLOS ONE

Py = P = 2HS’3[—%+ 2/000%(1 — w)ufIn x(xu + AB — ABu — 2)dx]
x [—%—&— 2/000%(1 — W' Inx(1+ Blnw)dx + ' (B+1) + %}

- H"Q[Z/Ox %(1 — u)tIn x(1 + Bln u)(1 — %)dx

S
+ 2/ é(l — 1)’ u/?In x(2B + f’In u — fln u — 1)dx].
0

Substitute the above equations into Eq (20) to obtain E[H,'|x ], and then the BE of Shan-
non entropy under ELF can be obtained from Eq (16).
(4) Computing the BE of Rényi entropy under ELF:

In that case, we have ¢, (f, 1) = H', thus
O(/ 21 — u)*u*P V1n udx
@ 0
+ ],

Prp = —H % ES
o 8 lﬁ(l —a) (1— OC)/ x’h(l -~ u)ﬂua(/i—l)dx
0

oc/ x72(1 — u)*u*P V1n udx

; o ;
Prpp = 2HR73[ + . = }2
p = a) (1- a)/ 21— u) P Vdx
0
” ocz/ x (1 — ) w* ) (In u)’dx
_HR{){_ 2 + .

F1 -2 (1-— c)c)/OC x72(1 — u)" P Vdx
aQ[/xx’”(l — u)" " Vln udx]’

- 0 3 ‘}7
(1- oc)[/ x (1 — u)wVdx]

o[ i
(1- oc)/OO 21— u)"wPVdx

) o
Pri = _HR [/{(1 — Oﬁ)

],

“/mx’z“u—u)“ D (B — B+ 1)dx

Pri = 2He )»( : %) - 0 }
(1— oc)/ x72(1 — u) P Vdx
0
” oc/ 221 — ) uw P2 (Bu— B+ 1) (afu —af + o — u+ 1)dx
HR72[7 2 + o0
21— a) (1- a)/ X (1 — u) PV dx
O(ﬁ/ ,2‘2 ﬁ»l 4[}1 ldx 1[/ —Zo(l x o(/il (ﬁu_ﬂ_‘_l)dx}
59 ]7
0w / - de (1—a)| / (1= a) ]
0 0
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o

[ g
Proc = Prap = 2HR?B[ﬁﬂ —a) U

— ]
]

(1- oc)/ x 21— u) ' u P Vdx
0

” oc/ x (1 — u)*u"Vln udx
x| +—= ]

P — o) (1- oc)/oox’Q“(l —u)"wFVdx

az/ 27271 — )" n u(Bu — B+ 1)dx
0

(1- O!)/ x (1 — u)"u P Vdx
0

_ HR_Q{—

oc/ x72a71(1 - u)at+luo<(/}—1)—1dx
0

=+ =
(1- ac)/ (1 — u) wPVdx
0

a2/ x (1 — u)*u*VIn udx/ x 1 — ) w P (Bu — B+ 1)dx
0 0

(1- cc)[/o (1 — u)aua(/ifl)dx]’_)

+

Substitute the above equations into Eq (20) to obtain E[H;'| x |, and then the BE of Rényi
entropy under ELF can be obtained from Eq (17).
(5) Computing the BE of Shannon entropy under DLF:

In that case, we have ¢,(f, 1) = Z—i, letting ¢, = H;, ¢, = Hy, thus

by = 2HS[—%+ Q/wé(l —w)u’In x(1 + Pln w)dx + '(B + 1) —4—%]7

o 2[_%4_ 2/000 %(1 —w)uIn x(1 + Bln w)dx + /' (B + 1) + %]2

4 QHS[% + 2/0Dc xi;(l — u)uﬁflln uln x(2 + fln u)dx + W(ﬁ + 1) - %]7

o, = 2Hs[f:)[ + 2/\ ﬁs(l — u)u’’In x(xu + AB — Apu — 2)dx],
. 0 X

b= 2[—%—&— ZAOO E(l — w)u’In x(xu + 1 — pu — 2)dx]’

x3

+ QHS{% - 2/OC é(l — u)u’In x(xu+ 2B — Au— 2)[1 — (B —2)(1 — u)u']dx

+ 2/0O g(l —w)unx[l —u+f — Pfu— AB(1 — u)x~' — 1]dx},

PLOS ONE | https://doi.org/10.1371/journal.pone.0311129  September 30, 2024 16/29


https://doi.org/10.1371/journal.pone.0311129

PLOS ONE

Statistical inference of entropy functions of generalized inverse exponential model

1 .
Oy = iy = 2[*; + 2/ g(l — w)u’?In x(xu + 2 — APu — 2)dx]
A 0

X [_ﬁ+2

+ Hs{2/ %(1 —w)u’'In x(1 + Bln u)(1 — %)dx
0

! /0%%(1 — )" In x(1 + Pln w)dx + /' (B + 1) +;]

+ 2/ i;(l — 1)’ ufIn x(2p + fIn u — Pln u — 1)dx}.
0o X

Substitute the above equations into Eq (20) to obtain E[H;| x ]. Next, we calculate ¢, = H.

Pop = — o 2/ ‘iZ(l — w)u’In x(1 + fln w)dx + /' (f +1) + %,
B o X B
Popp = %—l— 2/”Oo %(1 — )y n uln x(2 + Bln w)dx + 4 (f+1) — %,

0, = *1+ 2/ Eg(l — u)u’?In x(ocu + A — APu — A)dx,
o X

1 2/x %(1 — )il x4 A — u— A1 — (B—2)(1 — wyu)dx

+ 2/36 5(1 — WU Xl — et f— Pu— B — wyx! — 1)dx,

~ i P
Dopy = iy = 2/0 ;(1 —w)uIn x(1 + ln u)(1 — ;)dx

<A
+ 2/ ;(1 _ U)Qulfﬁln x(2p + Blnu— Plnu— 1)dx.
0

Substitute the above equations into Eq (20) to obtain E[Hg|x], and then the BE of Shannon

entropy under DLF can be obtained from Eq (18).
(6) Computing the BE of Rényi entropy under DLF:

In that case, we have ¢, (f, 1) = Z—i, letting ¢, = H;, ¢4 = Hp, thus

” oc/ 721 — u)"u*PVln udx
¢’3ﬂ = 2HR[ + . L

.[3(1 - O() (1 _ oC)/% x—zx(l _ u)lua(ﬂfl)dx

0

o

oc/ (1 — u)w* Vln udx

o 0 12
]

¢3/;/; = 2[ + e
p —a) (1- oc)/ x (1 — u)u P Vdx

0

” 12/ x2(1 — u)w "V (In u)’dx
0

P (1-a) / T -

Jo

12[/ x (1 — u)w* V1n udx]’

- H
(1- 0)[[ x (1 — u)wPVdx]
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oc/ x—?:x—](l _ u)“u“w*])’l(ﬁu — B+ 1)dx
¢y, = 2Hy[—— 0

= 2H,] _ _
(1= a) (1-— oc)/ (1 — u)"uPVdx
0

]

" “/mf“*(l—w““ Y(u— B+ 1)dx

A= ¥

Py = <
(1-— a)/ (1 — u)"uPVdx
0

oc/oo x 22 (1 —u) w2 (Bu— B+ 1) (afu — af + o — u+ 1)dx

(1-a) (1- oc)/ (1 — u) " u P Vdx
0

ocﬁ/ 2] ) P ocQ[/ x 21— w) w7 (Bu — B+ 1)dx])
__Jo
(1— oc)/ 221 — u)"u P Vdx (1— a)[/ x (1 — u)uPVdx]?
0 0

}’

” ac/ooc x N1 — w) w7 (Bu — B+ 1)dx
(/53/31 = (/531/3 = 2[/1 — N ES) ]
(1-a) (1- oc)/ x (1 — u) uPVdx

[ + = ]
lﬁ(l - O‘) (1 _ oc)/ x—Zu(l )a «B=1) gy
062/OC x 21— w)w P n w(fu — B+ 1)dx
+ 2H, (f){——

(1- oc)/ x (1 — u) P Vdx
0
OC/OC x,za—l(l _ u)1+1ua(/j,1),1dx
0

+ =
(1- oc)/ 21— u)"u P Vdx
0

oc2/ x (1 — u)"u?*VIn udx/ ‘x*Q‘H(l — w1 (Bu — B+ 1)dx
0 0
(1- oc)[/ x (1 — u) PV dx]?

0

+

.

Substitute the above equations into Eq (20) to obtain E[HZ| x ]. Next, we calculate ¢, = Hp.

oc/ (1 — u)"u*V1n udx
% 0
(15413 = +

P —a) (1-— oc)/OC x (1 — u)"u P Vdx

b
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” oc2/ x (1 — u)u? Y (In u)’dx
bup = — 7 +—=

F(1-2) (1- ac)/oo x (1 — u) " u P Vdx

ocQ[/ x (1 — u)*wPV1n udx]’
0

(1- oc)[/ooC x (1 — u) wP Vx|

)

” oc/ 2271 — )" PV (Bu — B+ 1)dx
TR : = ’
(1-— oc)/ 271 — u) " u P Vdx
0

” a/ 2221 — )" w2 (Bu — B+ 1) (afu — af + o — u+ 1)dx
Puyy = — 201 +— 0
F1-a) (1- oc)/ x 21— u)'u P Vdx
0

K / L e o[ ) (o 1)
_ 0
(1- ) / (1 — 1wy (1 o) / (1 — ) 0D ]’
0 0

ocz/ 727N — w)"w P n u(Bu — B+ 1)dx
0
(1- oc)/ x (1 — u) uPVdx
0
fx/Oo x 21— u)" Py
0

(1— oc)/ x (1 —u)wVdx
0

¢4p;. = ¢4m = -

+

/xQ/ x (1 — u)'u"Vln udx/ X1 = w)w P (Bu — B+ 1)dx
0 0

+ o0
(1- oc)[/ x (1 — u) PV dx]?

Substitute the above equations into Eq (20) to obtain E[Hg|x], and then the BE of Rényi
entropy under DLF can be obtained from Eq (19).

5. Monte Carlo modeling

Monte Carlo simulation is a statistical simulation method based on random sampling, which
generates a large number of random samples and simulates and infers based on these samples
to obtain corresponding approximate results. In this section, we use the Monte Carlo method
combined with the estimation method used in this paper to calculate the average estimates
(AEs) and corresponding mean square errors (MSEs) of Shannon entropy and Rényi entropy.
For further analysis, we used the bootstrap method to obtain the average width (AW) and
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Table 3. PC-II schemes.

Censoring Samples

Scheme a ifmisodd: R, = 0,R,,,,y,, =n—m(i # (m+1)/2)
if mis even: R, = O,R,,, = n — m(i # m/2)

Scheme b if n is odd and m is even, or if n is even and m is odd:
R=n—-m-1)/2,R,=R;=---=R,_, =0,R, =(n—m—1)/2
if n and m are both odd (even):

R =mn-m)/2,R,=R;=---=R, ,=0,R, =(n—m)/2

Scheme ¢ R =R,=---=R, =1

https://doi.org/10.1371/journal.pone.0311129.t003

coverage probability (CP) of the entropy CI. Firstly, we set the true values of the parameters 3
=0.5,4 = 0.5, and the censoring schemes (see Table 3). Based on the given censoring schemes,
we generate PC-II data using an algorithm (see Wang and Gui [40]) to calculate the AEs and
MSEs of the GIED model parameters (see Tables 4 and 5). On this basis, we assume hyperpara-
meters a; = by = a, = b, = 1, entropy parameters ¢ = 2, and a = 1.5 and conduct 1000 repeated
experiments with different sample sizes to obtain ML estimates and Bayesian estimates of

Table 4. The AEs and corresponding MSEs of § in the GIED model under different censoring schemes.

n m CS MLE Lindley
LBe EBe DBe
AE MSE AE MSE AE MSE AE MSE
30 15 a 0.6209 0.0974 0.5858 0.0471 0.5657 0.0474 0.7073 0.1229
0.6110 0.0872 0.5849 0.0452 0.5648 0.0452 0.7038 0.1209
c 0.6031 0.0763 0.5757 0.0389 0.5549 0.0400 0.6985 0.1162
20 a 0.5637 0.0396 0.5511 0.0267 0.5352 0.0268 0.6243 0.0554
b 0.5811 0.0483 0.5677 0.0323 0.5471 0.0273 0.6370 0.0579
C 0.5735 0.0539 0.5598 0.0328 0.5423 0.0324 0.6429 0.0707
25 a 0.5475 0.0242 0.5411 0.0191 0.5282 0.0187 0.5932 0.0334
b 0.5476 0.0255 0.5414 0.0197 0.5289 0.0195 0.5923 0.0343
c 0.5616 0.0332 0.5545 0.0250 0.5399 0.0246 0.6192 0.0490
50 20 a 0.5916 0.0598 0.5720 0.0373 0.5556 0.0382 0.6618 0.0844
b 0.5762 0.0510 0.5665 0.0330 0.5487 0.0335 0.6567 0.0811
c 0.5791 0.0558 0.5640 0.0346 0.5471 0.0349 0.6502 0.0783
25 a 0.5603 0.0307 0.5521 0.0228 0.5376 0.0224 0.6145 0.0439
b 0.5536 0.0313 0.5490 0.0233 0.5399 0.0265 0.6127 0.0448
c 0.5605 0.0348 0.5530 0.0253 0.5384 0.0252 0.6174 0.0497
40 a 0.5337 0.0122 0.5316 0.0108 0.5229 0.0104 0.5627 0.0160
b 0.5247 0.0109 0.5236 0.0097 0.5150 0.0094 0.5533 0.0140
[ 0.5398 0.0171 0.5383 0.0148 0.5283 0.0144 0.5754 0.0230
80 25 a 0.5631 0.0311 0.5539 0.0232 0.5381 0.0226 0.6232 0.0471
b 0.5672 0.0445 0.5630 0.0308 0.5466 0.0308 0.6398 0.0683
c 0.5659 0.0393 0.5575 0.0273 0.5430 0.0272 0.6231 0.0542
40 a 0.5306 0.0159 0.5284 0.0137 0.5187 0.0134 0.5636 0.0205
b 0.5357 0.0156 0.5358 0.0138 0.5261 0.0134 0.5712 0.0213
c 0.5262 0.0139 0.5256 0.0123 0.5156 0.0119 0.5610 0.0186
60 a 0.5177 0.0079 0.5172 0.0074 0.5111 0.0072 0.5373 0.0095
b 0.5195 0.0082 0.5193 0.0077 0.5134 0.0075 0.5391 0.0099
c 0.5231 0.0100 0.5231 0.0093 0.5162 0.0090 0.5464 0.0124

https://doi.org/10.1371/journal.pone.0311129.t004
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Table 5. The AEs and corresponding MSEs of 4 in the GIED model under different censoring schemes.

n m

30 15

20

25

50 20

25

40

80 25

40

60

CS

&6 (T a6 |Tis a6 T e

<

6 |Te a6 Ty a6 T 0

o

C

AE
0.5892
0.5823
0.5805
0.5743
0.5810
0.5646
0.5646
0.5651
0.5452
0.5605
0.5593
0.5601
0.5496
0.5565
0.5510
0.5428
0.5370
0.5250
0.5344
0.5457
0.5527
0.5268
0.5331
0.5229
0.5260
0.5254
0.5188
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MLE

MSE
0.0546
0.0518
0.0501
0.0467
0.0483
0.0385
0.0377
0.0368
0.0233
0.0321
0.0332
0.0346
0.0213
0.0309
0.0266
0.0184
0.0200
0.0128
0.0159
0.0233
0.0261
0.0132
0.0151
0.0121
0.0110
0.0117
0.0088

AE
0.5612
0.5561
0.5531
0.5617
0.5619
0.5508
0.5582
0.5589
0.5380
0.5409
0.5496
0.5450
0.5414
0.5414
0.5435
0.5408
0.5359
0.5234
0.5252
0.5415
0.5443
0.5246
0.5331
0.5223
0.5255
0.5253
0.5188

LBe

MSE
0.0378
0.0351
0.0326
0.0367
0.0332
0.0290
0.0332
0.0319
0.0188
0.0212
0.0239
0.0235
0.0172
0.0223
0.0209
0.0171
0.0188
0.0115
0.0159
0.0171
0.0206
0.0118
0.0139
0.0110
0.0105
0.0112
0.0083

AE
0.5382
0.5307
0.5278
0.5440
0.5433
0.5310
0.5439
0.5453
0.5205
0.5202
0.5276
0.5244
0.5247
0.5245
0.5265
0.5316
0.5269
0.5121
0.5058
0.5212
0.5273
0.5141
0.5225
0.5113
0.5193
0.5191
0.5115

Lindley
EBe

MSE
0.0392
0.0371
0.0347
0.0380
0.0340
0.0296
0.0340
0.0325
0.0190
0.0220
0.0246
0.0244
0.0172
0.0226
0.0212
0.0171
0.0190
0.0114
0.0123
0.0171
0.0208
0.0117
0.0138
0.0110
0.0105
0.0112
0.0082

AE
0.6917
0.6796
0.6929
0.6383
0.6403
0.6360
0.6121
0.6113
0.6069
0.6393
0.6469
0.6385
0.6072
0.6074
0.6114
0.5724
0.5660
0.5622
0.5994
0.6245
0.6149
0.5607
0.5696
0.5587
0.5458
0.5453
0.5426

DBe

MSE
0.1050
0.1707
0.1026
0.0608
0.0566
0.0783
0.0452
0.0445
0.0355
0.0535
0.0595
0.0558
0.0323
0.0391
0.0390
0.0216
0.0227
0.0168
0.0272
0.0439
0.0404
0.0168
0.0196
0.0156
0.0124
0.0131
0.0106

Shannon entropy and Rényi entropy, as well as corresponding MSEs (see Tables 6 and 7). For
simplicity, we denote the ML estimates as MLE, and the Bayesian estimates under the three
loss functions as LBe, EBe, and DBe. When constructing CIs using the bootstrap method, we
set confidence levels 0 = 0.05,0.1, and sampled the original data with replacement. The number
of samples was set to m; = 30,m, = 50,m3 = 80, and the number of repeated samples was

B =5000. Tables 8 and 9 represent the AW and CP of Shannon entropy and Rényi entropy at
100(1-8)% ClIs, respectively. Through these analyses, we can gain a deeper understanding of

the accuracy and reliability of entropy estimation.
Drawing upon the data presented in the aforementioned tables, the following research find-
ings can be deduced:
(1) In parameter estimation and entropy estimation, Bayesian estimation performs better
than ML estimation on the whole. Specifically, for parameter estimation, Bayesian estimation
under LLF has the best performance. For entropy estimation, the Bayesian estimation under

DLF has the best performance.

(2) When the total sample observations were fixed, the MSE of parameter estimation and
entropy estimation showed a downward trend with the increase of the observed sample size,

indicating that the accuracy of estimation increased with the increase of sample size.
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Table 6. The AEs and corresponding MSEs of Shannon entropy under different censoring schemes.

n m

30 15

20

25

50 20

25

40

80 25

40

60

CS

&6 (T a6 |Tis a6 T e

<

6 |Te a6 Ty a6 T 0

o

C

AE
2.9283
2.9442
2.9043
2.9691
2.9947
2.9683
3.0144
3.0026
3.0004
2.9552
2.9973
2.9688
2.9876
2.9852
3.0122
3.0351
3.0330
3.0127
2.9827
2.9799
2.9777
3.0138
3.0233
3.0268
3.0531
3.0535
3.0159

https://doi.org/10.1371/journal.pone.0311129.t006

MLE

MSE
0.6138
0.6292
0.5971
0.4353
0.4096
0.4561
0.3269
0.3389
0.3667
0.5191
0.4849
0.4767
0.3669
0.3841
0.3792
0.1892
0.2211
0.2458
0.4112
0.3931
0.3680
0.2439
0.2475
0.2135
0.1506
0.1515
0.1554

AE
2.6109
2.6219
2.5832
2.7140
2.7323
2.6915
2.7966
2.7876
2.7605
2.6752
2.7023
2.6921
2.7516
2.7535
2.7693
2.8818
2.8802
2.8453
2.7225
2.7052
2.7398
2.8481
2.8568
2.8566
2.9423
2.9441
2.8966

LBe

MSE
0.6308
0.6478
0.6479
0.4555
0.4319
0.4845
0.3400
0.3556
0.3813
0.5345
0.5045
0.4976
0.3878
0.4038
0.3900
0.1981
0.2267
0.2567
0.4335
0.4381
0.3963
0.2530
0.2557
0.2251
0.1519
0.1530
0.1661

AE
2.8305
2.8363
2.8017
2.8962
2.9145
2.8822
2.9529
2.9419
2.9283
2.8719
2.8936
2.8821
2.9197
2.9142
2.9378
2.9946
2.9917
2.9661
2.9056
2.8792
2.9060
2.9696
2.9741
2.9789
3.0248
3.0252
2.9843

Lindley
EBe

MSE
0.5634
0.5782
0.5539
0.4102
0.3905
0.4297
0.3148
0.3297
0.3461
0.4786
0.4519
0.4448
0.3493
0.3699
0.3568
0.1851
0.2159
0.2392
0.3867
0.3819
0.3535
0.2366
0.2414
0.2074
0.1478
0.1491
0.1542

AE
3.1959
3.1940
3.1697
3.1586
3.1779
3.1688
3.1607
3.1474
3.1616
3.1700
3.1908
3.1681
3.1525
3.1373
3.1724
3.1291
3.1249
3.1152
3.1698
3.1439
3.1394
3.1187
3.1187
3.1295
3.1169
3.1156
3.0852

DBe

MSE
0.5475
0.5670
0.5185
0.4043
0.3900
0.4192
0.3166
0.3260
0.3451
0.4713
0.4453
0.4362
0.3431
0.3591
0.3578
0.1856
0.2154
0.2338
0.3834
0.3553
0.3394
0.2334
0.2375
0.2060
0.1487
0.1498
0.1482

(3) Through the analysis of Tables 8 and 9, it can be observed that AW of the CI of Shannon
entropy and Rényi entropy gradually decreases with the increase of the observed sample size,
while AW increases correspondingly with the increase of the confidence level. At the same
time, CP of Shannon entropy and Rényi entropy increases with the increase of confidence

level, especially when 6 = 0.1, CP reaches the highest value.

6. Analyzing the data

Here, the methods of estimation used with this paper are demonstrated using actual data. The
data set is as follows: 1.05, 2.92, 3.61, 4.20, 4.49, 6.72, 7.31, 9.08, 9.11, 14.49, 16.85, 18.82, 26.59,
30.26, 41.34. These data represent the survival time (in months) of Hodgkin’s disease patients
undergoing intensive treatment with nitrogen mustard. Please refer to Bakoban and Abubaker
[41] for more details. In order to assess the suitability of the GIED model for this dataset, we
computed the Kolmogorov-Smirnov (KS) statistic for GIED, inverse Weibull distribution
(IWD), exponential Weibull distribution (EWD), and Weibull distribution (WD) based on
this dataset. The P-value derived from the KS statistic was utilized as a criterion to determine
the optimal model selection. The specific values are presented in Table 10. Subsequently, Fig 3
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Table 7. The AEs and corresponding MSEs of Rényi entropy under different censoring schemes.

n m CS MLE Lindley
LBe EBe DBe
AE MSE AE MSE AE MSE AE MSE
30 15 a 1.8957 0.2241 1.7651 0.2261 1.8313 0.2251 2.0255 0.1884
b 1.9177 0.2122 1.7828 0.2156 1.8493 0.2167 2.0421 0.1852
[ 1.8999 0.2217 1.7692 0.2241 1.8352 0.2230 2.0281 0.1868
20 a 1.9556 0.1667 1.8435 0.1669 1.8995 0.1686 2.0457 0.1550
b 1.9472 0.1578 1.8353 0.1619 1.8912 0.1622 2.0381 0.1465
[ 1.9217 0.1539 1.8124 0.1610 1.8672 0.1580 2.0146 0.1351
25 a 1.9654 0.1292 1.8675 0.1314 1.9160 0.1317 2.0367 0.1232
b 1.9763 0.1294 1.8776 0.1301 1.9268 0.1310 2.0483 0.1245
C 1.9450 0.1230 1.8533 0.1270 1.9001 0.1253 2.0177 0.1125
50 20 a 1.9209 0.1612 1.8114 0.1659 1.8678 0.1634 2.0200 0.1402
1.9157 0.1640 1.8030 0.1742 1.8577 0.1707 2.0075 0.1439
C 1.9227 0.1651 1.8133 0.1709 1.8680 0.1690 2.0155 0.1460
25 a 1.9521 0.1123 1.8599 0.1167 1.9073 0.1148 2.0255 0.1037
b 1.9456 0.1244 1.8530 0.1296 1.8996 0.1282 2.0170 0.1153
[ 1.9395 0.1182 1.8468 0.1243 1.8935 0.1216 2.0119 0.1075
40 a 1.9797 0.0780 1.9158 0.0786 1.9486 0.0788 2.0235 0.0759
b 1.9818 0.0859 1.9170 0.0863 1.9502 0.0869 2.0266 0.0838
C 1.9666 0.0771 1.9050 0.0786 1.9370 0.0780 2.0109 0.0734
80 25 a 1.9385 0.1347 1.8429 0.1365 1.8930 0.1346 2.0214 0.1196
b 1.9322 0.1378 1.8300 0.1456 1.8777 0.1428 2.0042 0.1221
C 1.9507 0.1258 1.8577 0.1297 1.9047 0.1286 2.0230 0.1162
40 a 1.9719 0.0716 1.9111 0.0728 1.9433 0.0722 2.0171 0.0684
1.9612 0.0783 1.8994 0.0808 1.9311 0.0800 2.0046 0.0745
C 1.9509 0.0836 1.8894 0.0868 1.9210 0.0855 1.9954 0.0782
60 a 1.9809 0.0482 1.9371 0.0492 1.9599 0.0489 2.0099 0.0472
b 1.9859 0.0500 1.9415 0.0505 1.9647 0.0505 2.0155 0.0493
C 1.9829 0.0493 1.9395 0.0498 1.9621 0.0497 2.0118 0.0482

https://doi.org/10.1371/journal.pone.0311129.t007

illustrates both the empirical distribution of the dataset and cumulative distribution functions
corresponding to each distribution model. It is evident from Table 10 and Fig 3 that the GIED
model provides a reasonable fit for this dataset.

To validate the performance of the proposed estimation method, and considering the valid-
ity of the data and the diversity of censoring schemes, we randomly selected m = 7 observa-
tions from the provided real dataset. The selection of m = 7 as the observation value is based
on the optimization consideration of model performance. Through simulation experiments,
we found that this value can maintain reasonable computational efficiency while ensuring pre-
diction accuracy, and can better adapt to the characteristics and requirements of our dataset.
Subsequently, according to the censoring schemes defined in Table 3, these observations were
subjected to corresponding censoring processing to generate a more stable sample dataset,
thereby providing a basis for subsequent statistical analysis, as detailed in Table 11. To demon-
strate the solution of the ML estimation exists and is unique, we chose censoring scheme II
and visualized the log-LF. Please refer to Fig 4 for details. Table 12 shows the ML estimates and
the Bayesian estimates of the entropies on the basis of the actual data, with hyperparameters
setasa; = by =a, =b, =1,c=2,and a = 1.5. Table 13 presents the upper and lower bounds of
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Table 8. AW and CP of the 100(1-6)% CI for Shannon entropy.

n m CS 0=0.05 6=0.1
AW CP AW CP
30 15 a 5.3239 0.9920 6.6893 1.0000
b 4.0999 0.8170 5.9816 0.9580
c 3.6197 0.9490 3.8822 0.9710
20 a 3.7924 0.9720 6.6814 1.0000
b 3.0828 0.7500 3.8277 0.9850
c 2.3251 0.8240 2.3413 0.9130
25 a 2.0543 0.9000 2.6363 0.9740
b 1.9814 0.8670 1.9961 0.8920
c 1.9010 0.8210 1.9616 0.8570
50 20 a 5.4345 0.9980 6.3533 1.0000
b 3.5983 0.9390 7.7951 0.9890
C 2.2638 0.8750 2.5799 0.9170
25 a 4.3206 0.9980 5.5457 1.0000
b 3.5080 0.8680 5.2608 1.0000
C 2.0171 0.7200 2.3511 0.8330
40 a 2.2185 0.8810 2.3712 0.9830
b 1.7983 0.9460 2.1869 0.9560
c 1.7255 0.8270 2.3354 0.9200
80 25 a 8.3366 1.0000 8.7971 1.0000
b 7.0129 0.9990 12.4071 1.0000
c 2.0614 0.8410 2.2768 0.8790
40 a 3.5499 1.0000 7.2944 1.0000
b 2.1869 0.9560 3.0937 0.9820
c 1.7966 0.8850 1.9492 0.9100
60 a 2.9989 0.9970 4.0421 1.0000
b 1.6839 0.9000 1.7348 0.9740
c 1.2961 0.7980 1.3215 0.8560

https://doi.org/10.1371/journal.pone.0311129.t008

the bootstrap CIs for entropy on the basis of the actual data at different confidence levels, with
the number of repeated samples set to 5000.

7. Conclusions

Within this paper, we discussed the estimation of entropy for the GIED’s Shannon entropy
and Rényi entropy based on PC-II samples. We first introduced the PC-II experiment and the
GIED model, and deduced the ML estimation expressions for entropy. Due to the invariance
property of ML estimation, we used a dichotomy method to obtain the ML estimates of the
parameters. Next, or the purpose of evaluating the accuracy and precision of the estimates of
Shannon entropy and Rényi entropy, we used the bootstrap method to obtain the CIs of Shan-
non entropy and Rényi entropy. In Bayesian estimation, we introduced three loss functions,
LLF, ELF, and DLF, to assess the disparities between the approximated values and actual val-
ues, helping us assess the performance of the model and make optimal choices. However, due
to the complexity of the Bayesian estimation forms for entropy under the loss functions, direct
computation was challenging. Therefore, we used the Lindley approximation algorithm to esti-
mate their Bayesian estimates. Finally, we conducted simulation experiments using the Monte
Carlo method to obtain the estimates and corresponding MSEs of Shannon entropy and Rényi
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Table 9. AW and CP of the 100(1-6)% CI for Rényi entropy.

n m CS 0=0.05 6=0.1
AW CP AW CP
30 15 a 3.3166 0.7950 3.7192 0.9900
b 2.4433 0.8080 2.8280 0.9980
c 1.4330 0.8890 1.7525 0.9260
20 a 2.2759 0.9790 2.2837 0.9960
b 1.6112 0.9670 1.6928 0.9700
c 1.1083 0.7960 1.2660 0.8620
25 a 1.5252 0.8090 1.5432 0.9430
b 1.2712 0.8190 1.5312 0.9010
c 1.0760 0.8570 1.1813 0.9160
50 20 a 3.2180 0.9980 4.1871 1.0000
b 2.2686 0.8020 3.0443 0.9380
C 1.6407 0.8050 1.8054 0.9580
25 a 2.9590 0.9990 2.9933 0.9990
b 2.0828 0.9010 2.1256 0.9980
c 1.0752 0.8230 1.3139 0.9350
40 a 1.6615 0.9810 1.6950 0.9820
b 1.1528 0.9220 1.1572 0.9680
c 0.9687 0.8220 1.0331 0.9200
80 25 a 3.5634 1.0000 4.8036 1.0000
b 2.6304 0.9480 2.6695 0.9840
c 1.2011 0.8610 1.5777 0.8780
40 a 3.0343 1.0000 3.0852 1.0000
b 1.5593 0.8650 2.0543 0.9990
C 0.9525 0.8590 1.1215 0.9690
60 a 1.4652 0.9660 1.6882 0.9980
b 1.1043 0.9750 1.1169 0.9810
c 0.7368 0.8090 0.9283 0.8710
https://doi.org/10.1371/journal.pone.0311129.t009
Table 10. ML estimates and goodness of fit testing under real data.
Model B A KS P
GIED 1.2225 6.0791 0.0878 0.7934
IWD 1.0070 5.3734 0.1190 0.6541
EWD 0.4413 9.0813 0.0888 0.7893
WD 0.4798 2.5122 0.5253 0.0003
https://doi.org/10.1371/journal.pone.0311129.t010
Table 11. PC-II samples obtained using m = 7 observations.
Censoring Schemes (R,R»,R3,R4,R5,R6,R) Censoring samples
I (0,0,0,8,0,0,0) 1.05,2.92,3.61,4.20,26.59,30.26,41.34
I (4,0,0,0,0,0,4) 4.49,6.72,7.31,9.08,9.11,14.49,16.85
III (1,1,1,1,1,1,1) 2.92,4.20,6.72,9.08,14.49,18.82,30.26
https://doi.org/10.1371/journal.pone.0311129.t1011
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Table 12. ML estimates and Bayesian estimates of Shannon entropy and Rényi entropy.

30

Fig 4. Partial derivatives of the log-LF.

https://doi.org/10.1371/journal.pone.0311129.9004

Function CS MLE Lindley
LBe Ebe Dbe
Shannon 1 4.5186 4.5166 5.4925 5.5425
I 3.7140 2.9786 16.8070 5.4097
I 4.4610 4.2071 7.5096 5.9143
Rényi I 3.7181 3.6707 3.9536 4.1057
11 3.4670 2.9455 8.5171 4.8137
111 3.9482 4.7925 4.9617 4.7266
https://doi.org/10.1371/journal.pone.0311129.t012
Table 13. Upper and lower bounds of bootstrap CIs for Shannon entropy and Rényi entropy at different confidence levels.
Function CS 0=0.05 0.1
Lower Upper Lower Upper
Shannon 1 1.2485 9.3561 1.8492 8.9169
11 -3.4156 7.4638 0.2626 5.3264
111 2.8578 5.5116 3.1250 5.2558
Rényi 1 2.4808 5.4712 2.7526 5.1910
11 0.6082 4.3989 1.7767 3.8861
111 2.8755 4.6825 3.1935 4.4192

https:/doi.org/10.1371/journal.pone.0311129.t013
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entropy, and analyzed and compared the performance of different estimation methods used
under the censoring schemes.

The analysis of GIED entropy estimation in PC-II samples can help us gain a deeper under-
standing and describe the uncertainty and information requirements of GIED in such sample
scenarios. These measures provide an evaluation of the distribution characteristics, enabling a
more comprehensive understanding of the information content and statistical features of cen-
soring sample data in analysis and modeling. Furthermore, with the obtained entropy values,
we can better comprehend and analyze the data characteristics in PC-II samples and make
model selection, parameter estimation, and predictive analysis in relevant applications. This
enhances our overall understanding and interpretability of the data, improving our ability to
comprehend and interpret the data comprehensively. Furthermore, the estimation of entropy
in distribution models plays a crucial role in evaluating product reliability. A low entropy
value indicates a high level of stability in the product’s lifespan, thereby reflecting its superior
reliability. Conversely, a high entropy value suggests the need for optimization and improve-
ment of the product. Entropy is also applicable to assess the risk of product failure since higher
entropy signifies increased uncertainty regarding the product’s lifespan and consequently ele-
vates the risk of failure. Based on this understanding, targeted risk control strategies can be
developed to minimize potential risks.
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