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Abstract

This article explores the estimation of Shannon entropy and Rényi entropy based on the

generalized inverse exponential distribution under the condition of stepwise Type II trun-

cated samples. Firstly, we analyze the maximum likelihood estimation and interval estima-

tion of Shannon entropy and Rényi entropy for the generalized inverse exponential

distribution. In this process, we use the bootstrap method to construct confidence intervals

for Shannon entropy and Rényi entropy. Next, we select the gamma distribution as the prior

distribution and apply the Lindley approximation algorithm to calculate ‘estimates of Shan-

non entropy and Rényi entropy under different loss functions including Linex loss function,

entropy loss function, and DeGroot loss function respectively. Afterwards, simulation is

used to calculate estimates and corresponding mean square errors of Shannon entropy and

Rényi entropy in GIED model. The research results show that under DeGroot loss function,

estimation accuracy of Shannon entropy and Rényi entropy for generalized inverse expo-

nential distribution is relatively high, overall Bayesian estimation performs better than maxi-

mum likelihood estimation. Finally, we demonstrate effectiveness of our estimation method

in practical applications using a set of real data.

1. Introduction

With the continuous progress of technology, consumers have increasingly higher require-

ments for product quality. In order to meet market demand, we need to conduct reliability

and life tests to evaluate the performance and durability of the product. For instance, Zhang

et al. [1] conducted a reliability analysis on the copula-based partially accelerated competition

risk model. Alotaibi et al. [2] analyzed the constant stress accelerated life test of XLindley dis-

tribution. However, when conducting these experiments, we often face various limitations

such as time, cost, and experimental conditions. These limitations prevent us from fully

observing the complete lifespan of all products, and there may be some products that fail

before or during testing, making it impossible to continue with life testing. To more accurately

estimate the lifetime of products for reliability assessment, decision-making, or product

improvement purposes, censoring samples are used in lifetime testing. Considering factors
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such as long product lifetimes and high testing costs, it is necessary to adopt more efficient and

cost-effective testing methods. Therefore, the concept of progressive censoring sampling is

introduced to further improve the accuracy of reliability and lifetime distribution estimation

for products. Compared to traditional censoring methods, the progressive censoring method

demonstrates enhanced flexibility in product life testing because it gradually adjusts the cen-

sorship samples to better align with the distribution characteristics of product lifespan. This

approach improves both testing efficiency and accuracy by reducing data loss caused by pre-

mature sample removal and retaining a larger number of longer-lived samples, thus enhancing

data utilization and obtaining more precise lifetime estimates. Additionally, the progressive

censoring method allows for reduced testing time, smaller sample sizes, lower testing costs

while enabling more reliable risk assessment based on accurate lifespan estimation. As a result,

it provides a more scientific basis for product design and decision-making while comprehen-

sively evaluating long-term performance. In recent research, significant progress has been

made in the field of statistical analysis of progressive censoring experiments. For instance,

Chakraborty et al. [3] conducted a comprehensive analysis of the joint cumulative entropy

under progressive Type-II censoring (PC-II) samples. Alsadat et al. [4] investigated the param-

eter estimation problem for unit semi-logical geometric distribution under progressive Type-

II right censoring samples. Lone et al. [5] studied a stress strength reliability model based on a

balanced joint progressive censoring scheme and performed parameter estimation and reli-

ability analysis on Burr XII type distribution samples using classical and Bayesian methods,

confirming the effectiveness of the adopted approach. Additionally, Alsadat et al. [6] analyzed

the properties of Kumaraswamy’s modified inverse Weibull distribution in samples with pro-

gressive first failure censoring. Berred and Stepanov [7] examined the distribution characteris-

tics and asymptotic behavior of exponential intervals under PC-II samples. Moreover, Alotaibi

et al. [8] conducted research on Frechet distribution prediction based on review data in fields

such as medicine and technical sciences. These research findings demonstrate continuous

advancements and enhancements in statistical analysis methods for progressive censoring

experiments. Progressive censoring testing can be divided into progressive Type-I censoring

testing and PC-II testing, with a focus on PC-II testing in this paper. Based on the concept pro-

posed by Alotaibi [8], PC-II testing can be described as follows:

If there are n products undergoing lifetime testing, and the time of observing the first failed

product is recorded as X1:m:n, R1 products need to be excluded out of the remaining n−1 prod-

ucts that have not failed. For the second failed product, the same procedure should be repli-

cated, observed as X2:m:n, by removing R2 products from the remaining n−2−R1 non-failed

products, by extension, the time at which the occurrence of the m-th faulty product is observed

is recorded as Xm:m:n. At this stage, the experiment concludes, and any remaining n−m
−R1−R2−� � �−Rm products are automatically removed.

Abouammoh and Alshingiti [9] proposed the generalized inverse exponential distribution

(GIED), a novel distribution type, which combines the generalized exponential distribution

(GED) with the inverse exponential distribution (IED) and is an extended form of the IED.

This distribution is widely used in survival analysis, reliability engineering, and communica-

tion fields [10]. Compared with the exponential distribution and IED, GIED introduces addi-

tional parameters, making it more flexible and able to better adapt to various data situations

and perform fitting. Therefore, in recent years, the statistical properties of this distribution

have been extensively examined by numerous scholars. For example, Bakoban and Aldahlan

[11] studied Bayesian estimation of shape parameters for GIED under complete samples. Has-

san et al. [12] assumed that strength and stress follow GIED with different shape parameters as

random variables under ranked set sampling (RSS) and simple random sampling (SRS), and

analyzed the reliability estimation of stress intensity. Liu and Xi [13] studied the Bayesian
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estimation of GIED parameters under timed censoring samples. Below we provide the defini-

tion of GIED:

Let X denote a stochastic variable which follows the GIED. The probability density function

(PDF) and cumulative distribution function (CDF) of this distribution are given by:

f ðx; l; bÞ ¼
lb

x2
e� lxð1 � e� lxÞb� 1

; x > 0; l;b > 0; ð1Þ

Fðx; l;bÞ ¼ 1 � ð1 � e� lxÞb; x > 0; l;b > 0: ð2Þ

Here β is the shape parameter, and λ is the scale parameter.

From Figs 1 and 2, it can be observed that when λ is fixed, the PDF and CDF exhibit differ-

ent trends with varying β. When β = 1, the GIED is IED.

Although GIED, as an emerging distribution, has shown great potential in fields such as

survival analysis and reliability engineering and has attracted the attention of many scholars,

research on statistical inference of GIED in PC-II samples is still relatively scarce. In view of

this, this article aims to address the shortcomings in this area and promote the application of

GIED in censoring data scenarios. This article combines PC-II samples with the GIED model

to achieve accurate estimation of GIED parameters through parameter estimation and hypoth-

esis testing while verifying the applicability of the model. Entropy, an important concept in

information theory, also plays a significant role in practical applications. It can be used to eval-

uate the uncertainty and risk level of random variables, thereby assisting in risk assessment

and decision-making [14]. Additionally, entropy value can serve as a criterion for selecting

Fig 1. PDF plots of GIED.

https://doi.org/10.1371/journal.pone.0311129.g001
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distribution models where higher entropy values indicate stronger uncertainty and random-

ness within data. Based on this understanding, appropriate adjustments are made to model

selection criteria. This article delves into estimating entropy within the GIED model while fur-

ther validating its applicability through parameter estimation and hypothesis testing.

This study is based on PC-II samples and primarily explores the estimation of entropy in

GIED. In Section 1, the basic concepts and properties of PC-II experiments and the GIED

model are introduced. In Section 2, the terms for Shannon entropy and Rényi entropy in

GIED are deduced and proved. In Section 3, we derived maximum likelihood (ML) estimates

for Shannon entropy and Rényi entropy, and confidence intervals (CIs) for Shannon entropy

and Rényi entropy are constructed using the bootstrap method. Section 4 uses a gamma distri-

bution as a prior, and Bayesian inference for the estimation of Shannon entropy and Rényi

entropy under the Linex loss function (LLF), entropy loss function (ELF), and DeGroot loss

function (DLF) is performed. The Lindley approximation algorithm is applied to compute the

Bayesian estimator (BE). In Section 5, numerical results are obtained through Monte Carlo

simulations to validate the effectiveness of the proposed estimation methods. In Section 6, the

constructed model is applied to real data, and the validity of the employed estimation

approaches is verified. Finally, in Section 7, a thorough discussion of the research results is

provided, and corresponding conclusions are drawn.

2. Entropy under GIED

Shannon entropy, introduced by Shannon [15], it is a fundamental concept in information

theory that serves to gauge the degree of uncertainty or stochasticity in information. The

Fig 2. CDF plots of GIED.

https://doi.org/10.1371/journal.pone.0311129.g002
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definition of Shannon entropy is given below:

HSðf Þ ¼ �
Z þ1

� 1

f ðxÞlnf ðxÞdx; ð3Þ

where f(x) represents the PDF of the stochastic variable X that is continuous. With the develop-

ment of information theory, the concept of Shannon entropy has been widely applied in vari-

ous fields such as communication, data mining and machine learning, and statistical physics.

Flores-Gallegos and Flores-Gómez [16] revealed the relationship between Shannon entropy

and chemical hardness and applied the derived equations to molecular ensembles. Joshi [17]

studied the variations in Shannon entropy under changes in constraint potential parameters

and Debye screening parameters. Flores-Gallegos [18] analyzed the trends in the first deriva-

tive of Shannon entropy with respect to electron number and spin density.

Rényi entropy is an extended form of information entropy proposed by Rényi in 1960 [19].

Unlike Shannon entropy, Rényi entropy introduces a parameter α, which can adjust the prop-

erties of entropy to some extent. The definition of Rényi entropy is given below:

HRðf Þ ¼
1

1 � a
ln
Z þ1

� 1

½f ðxÞ�adx; að6¼ 1Þ > 0; ð4Þ

where f(x) represents the PDF of the stochastic variable X that is continuous. Rényi entropy is

an extension of entropy in information theory and plays an important role in various fields

such as information theory, statistics, and complex networks. Significant progress has been

made in the study of Rényi entropy in existing literature. Chennaf and Ben Amor [20] analyze

the mathematical properties of Rényi entropy and partial Rényi entropy, applying them to

measure the uncertainty of uncertain random variables. They also apply partial Rényi entropy

to optimize the selection of uncertain random returns in finance. Tian and Xu [21] discussed

the problem of calculating Rényi entropy in AdS (3)/(B) CFT2. Kayid and Shrahili [22] used

the signature of the system to determine the Rényi entropy of the past longevity of a interre-

lated system, in order to evaluate its predictability.

Theorem 1. Let X denote a stochastic variable which follows the GIED. The Shannon entropy
of GIED is given by:

HS ¼ � lnlbþ 2b
X1

i¼0

b � 1

i

 !

ð� 1Þ
i Gð1Þlnð1þ iÞ � G0ð1Þ

1þ i
þ cðbþ 1Þ � cð1Þ þ

b � 1

b
; ð5Þ

where Γ(.) denotes the gamma function, and ψ(.) denotes the digamma function.

Proof. See S1 Appendix.

Theorem 2. Let X denote a stochastic variable which follows the GIED. The Rényi entropy of
GIED is given by:

HR ¼
1

1 � a
ln l

� aþ1
b
a
X1

i¼0

ab � a

i

 !

ð� 1Þ
i Gð2a � 1Þ

ðaþ iÞ2a� 1

" #

; ð6Þ

where Γ(.) denotes the gamma function.

Proof. See S2 Appendix.

s3. ML estimation

Suppose X1:m:n;X2:m:n; � � � ;Xm:m:n represents m PC-II samples observed out of n test samples in

total, following the GIED defined by Eq (1), according to Abo-Kasem [23], the likelihood
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function (LF) is:

Lðb; lj xÞ ¼ x
Ym

i¼1

f ðxi:m:nÞ½1 � Fðxi:m:nÞ�
Ri ¼ xðlbÞ

m
Ym

i¼1

x� 2

i e�
l
xið1 � e�

l
xiÞ

bRiþb� 1
; ð7Þ

where x ¼ nðn � R1 � 1Þðn � R1 � R2 � 2Þ � � � ðn � R1 � R2 � � � �Rm� 1 � mþ 1Þ, Xi:m:n rep-

resents the observed values of the Xi:m:n samples, x ¼ ðx1:m:n; x2:m:n; � � � ; xm:m:nÞ.

According to Eq (7), the logarithm of the LF is obtained as:

lðb; lj xÞ ¼ lnLðb; lj xÞ ¼ lnxþmlnlþmlnb � 2
Xm

i¼1

lnxi � l
Xm

i¼1

1

xi
þ
Xm

i¼1

ðbRi þ b � 1Þlnð1 � e�
l
xiÞ:

Therefore, Eqs (8) and (9) are obtained:

@lðb; lÞ
@b

¼
m
b
þ
Xm

i¼1

ðRi þ 1Þlnð1 � e�
l
xiÞ; ð8Þ

@lðb; lÞ
@l

¼
m
l
�
Xm

i¼1

1

xi
þ
Xm

i¼1

ðbRi þ b � 1Þ
e�

l
xi

xið1 � e�
l
xiÞ
: ð9Þ

By setting the right-hand side of Eqs (8) and (9) to zero and solving these two equations,

we obtain the roots, which are the ML estimates of β and λ. Moreover, the solutions

obtained from Eqs (8) and (9) exist and are unique. However, proving directly that solutions

to the nonlinear Eqs (8) and (9) exist and are unique can prove challenging. Therefore, we

can provide evidence through visualizing the logarithm likelihood equation, as depicted in

the real data analysis presented in Section 6 of Fig 3. Since we cannot obtain an analytical

solution directly for Eqs (8) and (9), we can consider using numerical methods to obtain the

ML estimates of β and λ. In the following, we will introduce the algorithm steps of the

dichotomy method.

Step 1: Given an error capacity ε, determine the interval range [λL, λU] such that f(λL)�f
(λU)<0.

Step 2: Find the point λM in the middle of the range [λL, λU] and substitute it into f(λ) to cal-

culate f(λM).

Step 3: If f(λM) = 0, then l̂ ¼ lM, the algorithm ends; If f(λL)�f(λM)<0, then λU = λM; If f
(λU)�f(λM)<0, then λL = λM.

Step 4: Repeat step 3 until |λL−λU|<ε, and the algorithm ends.

Because of the invariance property of ML estimation, we substitute the parameter estimates

b̂ and l̂ obtained from the dichotomy method into Eqs (5) and (6), we get:

ĤS ¼ � lnl̂b̂ þ 2b̂
X1

i¼0

ð
b̂ � 1

i
Þð� 1Þ

i Gð1Þlnð1þ iÞ � G0ð1Þ
1þ i

þ cðb̂ þ 1Þ � cð1Þ þ b̂ � 1b̂; ð10Þ

ĤR ¼
1

1 � a
ln l̂ � aþ1b̂a

X1

i¼0

ab̂ � a

i

 !

ð� 1Þ
i Gð2a � 1Þ

ðaþ iÞ2a� 1

" #

: ð11Þ

In statistics, CIs are used to describe the range of uncertainty in parameter estimation

results, representing the possible range of true values of parameters at a given confidence level.

There are various methods for constructing CIs, and choosing the appropriate method mainly

depends on the estimated parameter type and sample distribution. The bootstrap method is a

resampling technique in statistics used to estimate the sampling distribution of statistics,
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construct CIs, and perform hypothesis testing. It is generated by repeatedly sampling with

replacement from the original sample to simulate multiple virtual sample sets, thereby avoid-

ing assumptions about the population distribution. By conducting repeated sampling and

parameter estimation on a virtual sample set, the sampling distribution of parameter estima-

tion can be obtained, and then CIs can be constructed. Abundant research has been conducted

on the bootstrap method in the existing literature. Kanwal and Abbas [24] investigated param-

eter estimation of the Frechet distributed process capability index and established a corre-

sponding bootstrap CI. Li et al. [25] proposed a novel bootstrap method for small sample

hydrologic frequency analysis, demonstrating its superior accuracy compared to traditional

methods, particularly with limited sample sizes. Hwang et al. [26] effectively addressed uncer-

tainty in landslide probability analysis caused by insufficient data using the bootstrap method

and combined it with point estimation to propose a new approach. Su et al. [27] introduced an

improved bootstrap method for estimating fatigue properties of materials and components

under small sample sizes. Dudorova et al. [28] employed a bootstrap analysis method to study

preferences of Egyptian fruit bat pups, suggesting that these preferences be transcribed based

on behavioral test data presented therein. These studies provide valuable application cases and

theoretical foundations for diverse fields and applications of the bootstrap method. Maiti et al.

[29] estimated the Shannon entropy and Rényi entropy of GED using progressive censoring

data, and constructed CIs for entropy using bootstrap method.

In this section, we utilize the bootstrap-t (Boot-t) method to construct CIs for the GIED’s

Shannon entropy and Rényi entropy [30]. The specific algorithm is presented in Table 1.

Fig 3. Experience distribution diagram of patient survival time and distribution function diagrams of various

models function plot of GIED.

https://doi.org/10.1371/journal.pone.0311129.g003
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Provide the definition:

ĤBSðxÞ ¼ ĤS þ B� 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðĤSÞ

q

W � 1

S ðxÞ; ĤBRðxÞ ¼ ĤR þ B� 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðĤRÞ

q

W � 1

R ðxÞ:

Therefore, the 100(1−θ)% Boot-t CIs for Shannon entropy and Rényi entropy are

ðĤBSð
y

2
Þ; ĤBSð1 �

y

2
ÞÞ and ðĤBRð

y

2
Þ; ĤBRð1 �

y

2
ÞÞ, respectively. The variance of the entropy can be

obtained from the Fisher matrix. Next, we will calculate the variance of the entropy:

Construct the Fisher matrix:

Iðb̂; l̂Þ ¼
�
@2lðb; lÞ
@b

2
�
@2lðb; lÞ
@b@l

�
@2lðb; lÞ
@l@b

�
@2lðb; lÞ
@l

2

2

6
6
6
4

3

7
7
7
5

b¼b̂ ;l¼l̂

;

where:

@2lðb; lÞ
@b

2
¼ �

m
b

2
;
@2lðb; lÞ
@l

2
¼ �

m
l

2
�
Xm

i¼1

ðbRi þ b � 1Þ
e�

l
xi

x2
i ð1 � e�

l
xiÞ

2
;

@2lðb; lÞ
@b@l

¼
Xm

i¼1

ðRi þ 1Þ
e�

l
xi

xið1 � e�
l
xiÞ
¼
@2lðb; lÞ
@l@b

:

We can obtain the inverse matrix of the Fisher matrix, denoted as I� 1ðb̂; l̂Þ. Since taking

derivatives directly with respect to β and λ in Eqs (5) and (6) can be quite complicated, we

rewrite Eqs (5) and (6) as follows, it should be noted that, for the sake of simplicity, we make

uðl; xÞ ¼ 1 � e� l=x.

HSðf Þ ¼ � lnðlbÞ þ 2

Z 1

0

lb

x2
ð1 � uÞub� 1ln xdxþ cðbþ 1Þ � cð1Þ þ

b � 1

b
; ð12Þ

Table 1. Algorithm for constructing Boot-t CIs.

Algorithm: Constructing Boot-t CIs.

1 Setting the number of simulations B.

2 The estimates of β and λ, denoted as
^
b

^
and

^
l

^
, respectively, are obtained from the original PC-II data

x ¼ ðx1:m:n; x2:m:n; � � � ; xm:m:nÞ.

3 Keeping the censoring schemes unchanged, substituting
^
b

^
and

^
l

^
into the distribution function of the

GIED, we obtain the bootstrap samples x*. From x*, we derive the bootstrap ML estimates
^
b ∗̂ and

^
l ∗̂.

Substituting
^
b ∗̂ and

^
l ∗̂ into Eqs (10) and (11), we obtain Ĥ ∗̂

S and Ĥ ∗̂
R, along with their variances

VarðĤ ∗̂
SÞ and VarðĤ ∗̂

RÞ.

4
Calculate the corresponding statistics d ¼

ffiffiffi
B
p
ðĤ ∗̂

S � Ĥ^
SÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðĤ ∗̂
SÞ

q

and

s ¼
ffiffiffi
B
p
ðĤ ∗̂

R � Ĥ^
RÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðĤ ∗̂
RÞ

q

, as well as the CDFs Ws(x) = P(δ�x) and WR(x) = P(σ�x)

corresponding to the statistics, based on the obtained Ĥ ∗̂
S and Ĥ ∗̂

R.

5 Repeat steps 3 and 4 for a total of B times, resulting in a series of statistics (δ1,δ2,� � �,δm) and (σ1,σ2,� � �,

σm).

6 The series of statistics obtained are sorted in ascending order to obtain (δ(1),δ(2),� � �,δ(m)) and (σ(1),

σ(2),� � �,σ(m)).

https://doi.org/10.1371/journal.pone.0311129.t001
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HRðf Þ ¼
alnðlbÞ
1 � a

þ

ln
Z 1

0

x� 2að1 � uÞauaðb� 1Þdx

1 � a
; ð13Þ

Therefore, from Eqs (12) and (13), we have:

@HS

@b
¼ �

1

b
þ 2

Z 1

0

l

x2
ð1 � uÞub� 1ln xð1þ bln uÞdxþ c0ðbþ 1Þ þ

1

b
2
;

@HS

@l
¼ �

1

l
þ 2

Z 1

0

b

x3
ð1 � uÞub� 2ln xðxuþ lb � lbu � lÞdx;

@HR

@b
¼

a

bð1 � aÞ
þ

a

Z 1

0

x� 2að1 � uÞauaðb� 1Þln udx

ð1 � aÞ

Z 1

0

x� 2að1 � uÞauaðb� 1Þdx
;

@HR

@l
¼

a

lð1 � aÞ
�

a

Z 1

0

x� 2a� 1ð1 � uÞauaðb� 1Þ� 1ðbu � bþ 1Þdx

ð1 � aÞ

Z 1

0

x� 2að1 � uÞauaðb� 1Þdx
:

Therefore

VarðĤSÞ ¼ TSI
� 1ðb; lÞT 0Sjb¼b̂ ;l¼l̂ ; VarðĤRÞ ¼ TRI

� 1ðb; lÞT 0Rjb¼b̂ ;l¼l̂ ;

where T 0S represents the transpose of TS and T 0R represents the transpose of TR. Definition

TS ¼ ð
@HS
@b
;
@HS
@l
Þ;TR ¼ ð

@HR
@b
;
@HR
@l
Þ.

4. Bayesian estimation of entropy

Bayesian estimation is a parameter estimation method based on Bayes’ theorem in statistics

[31]. It utilizes prior information and sample data to obtain a posterior probability distribution

by updating the prior probability distribution, and infers parameter estimates and uncertain-

ties from it. Bayesian estimation, as a common statistical inference method, has the advantage

of flexibly combining prior knowledge and observation data to provide more accurate infer-

ence results. It is widely used in many fields to deal with uncertainty, model selection, and pre-

diction, such as statistics, machine learning, image and signal processing, financial risk

assessment, and other fields [32–34]. In this section, we propose a posterior density function

for GIED based on PC-II samples, and use Bayesian estimation to obtain the estimation results

of Shannon entropy and Rényi entropy under three loss functions: LLF, ELF, and DLF.

4.1. Conditional posterior distribution

Based on the principle of Bayesian estimation, selecting an appropriate prior distribution is the

core step of Bayesian estimation, which allows for the fusion of previous knowledge, experi-

ence, or data into parameter inference, thereby providing more accurate, reliable, and compre-

hensive parameter estimation results. In this section, we use information priors for inference.

The selection of information priors aims to utilize previous knowledge, experience, or data to

assist in parameter inference in the Bayesian estimation process. Compared to non-
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informative prior, informative prior has more guidance and accuracy, thereby improving the

reliability and accuracy of parameter es-timation results [35]. In this study, we adopt the

gamma distribution as the prior distribution due to its flexibility and conjugate nature, which

allows us to obtain a simplified posterior distribution when combined with the LF. This simpli-

fication greatly facilitates the process of Bayesian estimation. Assuming β and λ are indepen-

dent random variables following Γ(η1,γ1) and Γ(η2,γ2) distributions, respectively, the density

functions of β and λ can be represented as follows:

p bjZ1; g1ð Þ ¼
g1
Z1

GðZ1Þ
b
Z1 � 1e� g1b; Z1 > 0; g1 > 0;

p ljZ2; g2ð Þ ¼
g2
Z2

GðZ2Þ
l
Z2 � 1e� g2l; Z2 > 0; g2 > 0:

The joint prior on β and λ is given by:

pðb; lÞ ¼
g1
Z1g2

Z2

GðZ1ÞGðZ2Þ
b
Z1� 1

l
Z2 � 1e� g1b� g2l:

By applying Bayesian theorem, the joint posterior density of β and λ can be determined as:

pðb; lj xÞ ¼
Lðb; lj x Þpðb; lÞ

Z 1

0

Z 1

0

Lðb; lj xÞpðb; lÞdbdl
;

where x ¼ ðx1:m:n; x2:m:n; � � � ; xm:m:nÞ.

Bayesian estimation is a parameter estimation method based on Bayes’ theorem. In the

decision-making process, we often need to consider the risks and losses associated with differ-

ent decisions. Introducing a loss function can help quantify the risks associated with different

decisions during the estimation process to find the optimal decision. In this section, we intro-

duce three loss functions: LLF, ELF, and DLF. LLF is an asymmetric loss function proposed,

which combines the characteristics of exponential loss and linear loss and allows balancing the

response to prediction errors based on parameter adjustments. ELF is a loss function used for

classification problems, based on the concept of information entropy, to measure the differ-

ence between model predictions and true values. DLF is a common asymmetric loss function

proposed by DeGroot [36], often used in Bayesian decision theory to compare different deci-

sion strategies. Compared to LLF and ELF, DLF computation is relatively simple and easier to

implement. Therefore, we choose three loss functions, LLF, ELF and DLF, to comprehensively

consider factors such as prediction error, information content and practicality, and hope to

find the most suitable loss function for GIED model entropy estimation through comparative

analysis. The BEs of these different loss functions is provided below [37–39] (See Table 2).

Here, H represents the entropy function, and Ĥ represents the estimates of H, c represents

the hyperparameter of LLF.

Table 2. BEs with different loss functions.

Loss Function Expression BE

LLF ec½
^Ĥ � H� � c½Ĥ^ � H� � 1 � 1

c lnE½e
� cH j x �

ELF ^Ĥ
H � lnð

^Ĥ
HÞ � 1 ½E½H� 1j x ��� 1

DLF ðĤ^ � HĤ^Þ
2 E½H2 j x �

E½Hj x �

https://doi.org/10.1371/journal.pone.0311129.t002
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(1) Under the LLF, the BEs of Shannon entropy and Rényi entropy are as follows:

ĤSL ¼ �
1

c
lnE½e� cHS j x� ¼ �

1

c
ln½
Z 1

0

Z 1

0

e� cHSpðb; lj xÞdbdl�; ð14Þ

ĤRL ¼ �
1

c
lnE½e� cHR j x� ¼ �

1

c
ln½
Z 1

0

Z 1

0

e� cHRpðb; lj xÞdbdl�: ð15Þ

(2) Under the ELF, the BEs of Shannon entropy and Rényi entropy are as follows:

ĤSE ¼ ½E½H
� 1

S j x��
� 1
¼ ð
R1

0

R1
0

H� 1
S pðb; lj xÞdbdlÞ

� 1
; ð16Þ

ĤRE ¼ ½E½H
� 1

R j x��
� 1
¼ ð
R1

0

R1
0

H� 1
R pðb; lj xÞdbdlÞ

� 1
: ð17Þ

(3) Under the DLF, the BEs of Shannon entropy and Rényi entropy are as follows:

ĤSD ¼
E½H2

S j x �
E½HSj x �

¼

Z 1

0

Z 1

0

H2

Spðb; lj x Þdbdl
Z 1

0

Z 1

0

HSpðb; lj x Þdbdl
; ð18Þ

ĤRD ¼
E½H2

Rj x �
E½HRj x �

¼

Z 1

0

Z 1

0

H2

Rpðb; lj x Þdbdl
Z 1

0

Z 1

0

HRpðb; lj x Þdbdl
: ð19Þ

Indeed, the aforementioned BEs are in the form of a ratio of double integrals, and they are

not in explicit form, making it difficult to compute the results directly. Therefore, we can

employ the Lindley approximation algorithm to compute the BEs of Shannon entropy and

Rényi entropy.

4.2. Lindley approximation

The Lindley approximation algorithm is a Bayesian statistical inference approximation method

proposed by Lindley, used to calculate estimates of parameters. According to Abo-Kasem [23],

we provide the Lindley approximate equation:

IðxÞ ¼ φðb̂; l̂Þ þ
1

2
½ðφ̂bb þ 2φ̂br̂bÞŝbb þ ðφ̂lb þ 2φ̂lr̂bÞŝlb

þ ðφ̂bl þ 2φ̂br̂lÞŝbl þ ðφ̂ll þ 2φ̂lr̂lÞŝll�

þ
1

2
½ðφ̂bŝbb þ φ̂lŝblÞð̂lbbbŝbb þ l̂blbŝbl þ l̂lbbŝlb þ l̂llbŝllÞ

þ ðφ̂bŝlb þ φ̂lŝllÞð̂llbbŝbb þ l̂bllŝbl þ l̂lblŝlb þ l̂lllŝllÞ�;

ð20Þ

where φ(β,λ) is a function of β and λ. ρ(β,λ) is the logarithm of the joint prior distribution of β

and λ, that is rðb; lÞ ¼ lnpðb; lÞ. l(β,λ|x) is the logarithm of the LF. And b̂ and l̂ are the ML

estimates of β and λ, and the subscripts denote the partial derivatives of the variables, such as,

φβ is the first-order derivative of β in φ(β,λ). Similarly, the others are denoted as follows:

r̂b ¼
Z1 � 1

b̂
� g1; r̂l ¼

Z2 � 1

l̂
� g2;
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l̂bbb ¼
@3l
@b

3

�
�
�
�
b¼b̂

¼
2m
b

3
; l̂lbb ¼

@3l
@l@b

2

�
�
�
�
b¼b̂ ;l¼l̂

¼ 0 ¼ l̂blb;

l̂llb ¼
@3l

@l
2
@b

�
�
�
�
b¼b̂ ;l¼l̂

¼ �
Xm

i¼1

ðRi þ 1Þ
e�

l̂
xi

x2
i ð1 � e�

l̂
xiÞ

2
¼ l̂bll ¼ l̂lbl;

l̂lll ¼
@3l
@l

3

�
�
�
�
l¼l̂

¼
2m
l̂3
þ
Xm

i¼1

ðb̂Ri þ b̂ � 1Þ
e�

l̂
xið1þ e�

l̂
xiÞ

x3
i ð1 � e�

l̂
xiÞ

3
:

Based on the given equations, the following representation holds for Eqs (14)–(19):

(1) Computing the BE of Shannon entropy under LLF:

In that case, we have φSðb; lÞ ¼ e� cHS , thus

φSb ¼ � c e
� cHS ½�

1

b
þ 2

Z 1

0

l

x2
ð1 � uÞub� 1ln xð1þ bln uÞdxþ c0ðbþ 1Þ þ

1

b
2
�;

φSbb ¼ c2 e� cHS ½�
1

b
þ 2

Z 1

0

l

x2
ð1 � uÞub� 1ln xð1þ bln uÞdxþ c0ðbþ 1Þ þ

1

b
2
�
2

� c e� cHS ½
1

b
2
þ 2

Z 1

0

l

x2
ð1 � uÞub� 1ln uln xð2þ bln uÞdxþ c@

ðbþ 1Þ �
2

b
3
�;

φSl ¼ � c e
� cHS ½�

1

l
þ 2

Z 1

0

b

x3
ð1 � uÞub� 2ln xðxuþ lb � lbu � lÞdx�;

φSll ¼ c2 e� cHS ½�
1

l
þ 2

Z 1

0

b

x3
ð1 � uÞub� 2ln xðxuþ lb � lbu � lÞdx�2

� c e� cHSf
1

l
2
� 2

Z 1

0

b

x4
ð1 � uÞub� 2ln xðxuþ lb � lbu � lÞ½1 � ðb � 2Þð1 � uÞu� 1�dx

þ 2

Z 1

0

b

x3
ð1 � uÞub� 2ln x½1 � uþ b � bu � lbð1 � uÞx� 1 � 1�dxg;

φSbl ¼ φSlb ¼ c2 e� cHS ½�
1

l
þ 2

Z 1

0

b

x3
ð1 � uÞub� 2ln xðxuþ lb � lbu � lÞdx�

� ½�
1

b
þ 2

Z 1

0

l

x2
ð1 � uÞub� 1ln xð1þ bln uÞdxþ c0ðbþ 1Þ þ

1

b
2
�

� c e� cHS ½2

Z 1

0

1

x2
ð1 � uÞub� 1ln xð1þ bln uÞð1 �

l

x
Þdx

þ 2

Z 1

0

l

x3
ð1 � uÞ2ub� 2ln xð2b þ b2ln u � bln u � 1Þdx�:

Substitute the above equations into Eq (20) to obtain E½e� cHS j x �, and then the BE of Shan-

non entropy under LLF can be obtained from Eq (14).

(2) Computing the BE of Rényi entropy under LLF:
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In that case, we have φRðb; lÞ ¼ e� cHR , thus

φRb ¼ � c e
� cHR ½

a

bð1 � aÞ
þ

a

Z 1

0

x� 2að1 � uÞauaðb� 1Þln udx

ð1 � aÞ

Z 1

0

x� 2að1 � uÞauaðb� 1Þdx
�;

φRbb ¼ c2 e� cHR ½
a

bð1 � aÞ
þ

a

Z 1

0

x� 2að1 � uÞauaðb� 1Þln udx

ð1 � aÞ

Z 1

0

x� 2að1 � uÞauaðb� 1Þdx
�
2

� c e� cHRf�
a

b
2
ð1 � aÞ

þ

a2

Z 1

0

x� 2að1 � uÞauaðb� 1Þðln uÞ2dx

ð1 � aÞ

Z 1

0

x� 2að1 � uÞauaðb� 1Þdx

�

a2½

Z 1

0

x� 2að1 � uÞauaðb� 1Þln udx�2

ð1 � aÞ½

Z 1

0

x� 2að1 � uÞauaðb� 1Þdx�2
g;

φRl ¼ � c e
� cHRðf Þ½

a

lð1 � aÞ
�

a

Z 1

0

x� 2a� 1ð1 � uÞauaðb� 1Þ� 1ðbu � bþ 1Þdx

ð1 � aÞ

Z 1

0

x� 2að1 � uÞauaðb� 1Þdx
�;

φRll ¼ c2 e� cHRðf Þ½
a

lð1 � aÞ
�

a

Z 1

0

x� 2a� 1ð1 � uÞauaðb� 1Þ� 1ðbu � bþ 1Þdx

ð1 � aÞ

Z 1

0

x� 2að1 � uÞauaðb� 1Þdx
�
2

� c e� cHRðf Þf�
a

l
2
ð1 � aÞ

þ

a

Z 1

0

x� 2a� 2ð1 � uÞauaðb� 1Þ� 2ðbu � bþ 1Þðabu � abþ a � uþ 1Þdx

ð1 � aÞ

Z 1

0

x� 2að1 � uÞauaðb� 1Þdx

�

ab

Z 1

0

x� 2a� 2ð1 � uÞaþ1uaðb� 1Þ� 1dx

ð1 � aÞ

Z 1

0

x� 2að1 � uÞauaðb� 1Þdx
�

a2½

Z 1

0

x� 2a� 1ð1 � uÞauaðb� 1Þ� 1ðbu � bþ 1Þdx�2

ð1 � aÞ½

Z 1

0

x� 2að1 � uÞauaðb� 1Þdx�2
g;

PLOS ONE Statistical inference of entropy functions of generalized inverse exponential model

PLOS ONE | https://doi.org/10.1371/journal.pone.0311129 September 30, 2024 13 / 29

https://doi.org/10.1371/journal.pone.0311129


φRbl ¼ φRlb ¼ c2 e� cHRðf Þ½
a

lð1 � aÞ
�

a

Z 1

0

x� 2a� 1ð1 � uÞauaðb� 1Þ� 1ðbu � bþ 1Þdx

ð1 � aÞ

Z 1

0

x� 2að1 � uÞauaðb� 1Þdx
�

� ½
a

bð1 � aÞ
þ

a

Z 1

0

x� 2að1 � uÞauaðb� 1Þln udx

ð1 � aÞ

Z 1

0

x� 2að1 � uÞauaðb� 1Þdx
�

� c e� cHRðf Þf�

a2

Z 1

0

x� 2a� 1ð1 � uÞauaðb� 1Þ� 1ln uðbu � bþ 1Þdx

ð1 � aÞ

Z 1

0

x� 2að1 � uÞauaðb� 1Þdx

þ

a

Z 1

0

x� 2a� 1ð1 � uÞaþ1uaðb� 1Þ� 1dx

ð1 � aÞ

Z 1

0

x� 2að1 � uÞauaðb� 1Þdx

þ

a2

Z 1

0

x� 2að1 � uÞauaðb� 1Þln udx
Z 1

0

x� 2a� 1ð1 � uÞauaðb� 1Þ� 1ðbu � bþ 1Þdx

ð1 � aÞ½

Z 1

0

x� 2að1 � uÞauaðb� 1Þdx�2
g:

Substitute the above equations into Eq (20) to obtain E½e� cHR j x �, and then the BE of Rényi

entropy under LLF can be obtained from Eq (15).

(3) Computing the BE of Shannon entropy under ELF:

In that case, we have φSðb; lÞ ¼ H� 1
S ,thus

φSb ¼ � HS
� 2½�

1

b
þ 2

Z 1

0

l

x2
ð1 � uÞub� 1ln xð1þ bln uÞdxþ c0ðbþ 1Þ þ

1

b
2
�;

φSbb ¼ 2HS
� 3½�

1

b
þ 2

Z 1

0

l

x2
ð1 � uÞub� 1ln xð1þ bln uÞdxþ c0ðbþ 1Þ þ

1

b
2
�
2

� HS
� 2½

1

b
2
þ 2

Z 1

0

l

x2
ð1 � uÞub� 1ln uln xð2þ bln uÞdxþ c@

ðbþ 1Þ �
2

b
3
�;

φSl ¼ � HS
� 2½�

1

l
þ 2

Z 1

0

b

x3
ð1 � uÞub� 2ln xðxuþ lb � lbu � lÞdx�;

φSll ¼ 2HS
� 3½�

1

l
þ 2

Z 1

0

b

x3
ð1 � uÞub� 2ln xðxuþ lb � lbu � lÞdx�2

� HS
� 2f

1

l
2
� 2

Z 1

0

b

x4
ð1 � uÞub� 2ln xðxuþ lb � lbu � lÞ½1 � ðb � 2Þð1 � uÞu� 1�dx

þ 2

Z 1

0

b

x3
ð1 � uÞub� 2ln x½1 � uþ b � bu � lbð1 � uÞx� 1 � 1�dxg;
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φSbl ¼ φSlb ¼ 2HS
� 3½�

1

l
þ 2

Z 1

0

b

x3
ð1 � uÞub� 2ln xðxuþ lb � lbu � lÞdx�

� ½�
1

b
þ 2

Z 1

0

l

x2
ð1 � uÞub� 1ln xð1þ bln uÞdxþ c0ðbþ 1Þ þ

1

b
2
�

� HS
� 2½2

Z 1

0

1

x2
ð1 � uÞub� 1ln xð1þ bln uÞð1 �

l

x
Þdx

þ 2

Z 1

0

l

x3
ð1 � uÞ2ub� 2ln xð2bþ b2ln u � bln u � 1Þdx�:

Substitute the above equations into Eq (20) to obtain E½H� 1
S j x �, and then the BE of Shan-

non entropy under ELF can be obtained from Eq (16).

(4) Computing the BE of Rényi entropy under ELF:

In that case, we have φRðb; lÞ ¼ H� 1
R , thus

φRb ¼ � HR
� 2½

a

bð1 � aÞ
þ

a

Z 1

0

x� 2að1 � uÞauaðb� 1Þln udx

ð1 � aÞ

Z 1

0

x� 2að1 � uÞauaðb� 1Þdx
�;

φRbb ¼ 2HR
� 3½

a

bð1 � aÞ
þ

a

Z 1

0

x� 2að1 � uÞauaðb� 1Þln udx

ð1 � aÞ

Z 1

0

x� 2að1 � uÞauaðb� 1Þdx
�
2

� HR
� 2f�

a

b
2
ð1 � aÞ

þ

a2

Z 1

0

x� 2að1 � uÞauaðb� 1Þðln uÞ2dx

ð1 � aÞ

Z 1

0

x� 2að1 � uÞauaðb� 1Þdx

�

a2½

Z 1

0

x� 2að1 � uÞauaðb� 1Þln udx�2

ð1 � aÞ½

Z 1

0

x� 2að1 � uÞauaðb� 1Þdx�2
g;

φRl ¼ � HR
� 2½

a

lð1 � aÞ
�

a

Z 1

0

x� 2a� 1ð1 � uÞauaðb� 1Þ� 1ðbu � bþ 1Þdx

ð1 � aÞ

Z 1

0

x� 2að1 � uÞauaðb� 1Þdx
�;

φRll ¼ 2HR
� 3½

a

lð1 � aÞ
�

a

Z 1

0

x� 2a� 1ð1 � uÞauaðb� 1Þ� 1ðbu � bþ 1Þdx

ð1 � aÞ

Z 1

0

x� 2að1 � uÞauaðb� 1Þdx
�
2

� HR
� 2½�

a

l
2
ð1 � aÞ

þ

a

Z 1

0

x� 2a� 2ð1 � uÞauaðb� 1Þ� 2ðbu � bþ 1Þðabu � abþ a � uþ 1Þdx

ð1 � aÞ

Z 1

0

x� 2að1 � uÞauaðb� 1Þdx

�

ab

Z 1

0

x� 2a� 2ð1 � uÞaþ1uaðb� 1Þ� 1dx

ð1 � aÞ

Z 1

0

x� 2að1 � uÞauaðb� 1Þdx
�

a2½

Z 1

0

x� 2a� 1ð1 � uÞauaðb� 1Þ� 1ðbu � bþ 1Þdx�2

ð1 � aÞ½

Z 1

0

x� 2að1 � uÞauaðb� 1Þdx�2
�;

PLOS ONE Statistical inference of entropy functions of generalized inverse exponential model

PLOS ONE | https://doi.org/10.1371/journal.pone.0311129 September 30, 2024 15 / 29

https://doi.org/10.1371/journal.pone.0311129


φRbl ¼ φRlb ¼ 2HR
� 3½

a

lð1 � aÞ
�

a

Z 1

0

x� 2a� 1ð1 � uÞauaðb� 1Þ� 1ðbu � bþ 1Þdx

ð1 � aÞ

Z 1

0

x� 2að1 � uÞauaðb� 1Þdx
�

� ½
a

bð1 � aÞ
þ

a

Z 1

0

x� 2að1 � uÞauaðb� 1Þln udx

ð1 � aÞ

Z 1

0

x� 2að1 � uÞauaðb� 1Þdx
�

� HR
� 2f�

a2

Z 1

0

x� 2a� 1ð1 � uÞauaðb� 1Þ� 1ln uðbu � bþ 1Þdx

ð1 � aÞ

Z 1

0

x� 2að1 � uÞauaðb� 1Þdx

þ

a

Z 1

0

x� 2a� 1ð1 � uÞaþ1uaðb� 1Þ� 1dx

ð1 � aÞ

Z 1

0

x� 2að1 � uÞauaðb� 1Þdx

þ

a2

Z 1

0

x� 2að1 � uÞauaðb� 1Þln udx
Z 1

0

x� 2a� 1ð1 � uÞauaðb� 1Þ� 1ðbu � bþ 1Þdx

ð1 � aÞ½

Z 1

0

x� 2að1 � uÞauaðb� 1Þdx�2
g:

Substitute the above equations into Eq (20) to obtain E½H� 1
R j x �, and then the BE of Rényi

entropy under ELF can be obtained from Eq (17).

(5) Computing the BE of Shannon entropy under DLF:

In that case, we have φSðb; lÞ ¼
H2

S
HS

, letting �1 ¼ H2
S , ϕ2 = HS, thus

�1b ¼ 2HS½�
1

b
þ 2

Z 1

0

l

x2
ð1 � uÞub� 1ln xð1þ bln uÞdxþ c0ðbþ 1Þ þ

1

b
2
�;

�1bb ¼ 2½�
1

b
þ 2

Z 1

0

l

x2
ð1 � uÞub� 1ln xð1þ bln uÞdxþ c0ðbþ 1Þ þ

1

b
2
�
2

þ 2HS½
1

b
2
þ 2

Z 1

0

l

x2
ð1 � uÞub� 1ln uln xð2þ bln uÞdxþ c@

ðbþ 1Þ �
2

b
3
�;

�1l ¼ 2HS½�
1

l
þ 2

Z 1

0

b

x3
ð1 � uÞub� 2ln xðxuþ lb � lbu � lÞdx�;

�1ll ¼ 2½�
1

l
þ 2

Z 1

0

b

x3
ð1 � uÞub� 2ln xðxuþ lb � lbu � lÞdx�2

þ 2HSf
1

l
2
� 2

Z 1

0

b

x4
ð1 � uÞub� 2ln xðxuþ lb � lbu � lÞ½1 � ðb � 2Þð1 � uÞu� 1�dx

þ 2

Z 1

0

b

x3
ð1 � uÞub� 2ln x½1 � uþ b � bu � lbð1 � uÞx� 1 � 1�dxg;
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�1bl ¼ �1lb ¼ 2½�
1

l
þ 2

Z 1

0

b

x3
ð1 � uÞub� 2ln xðxuþ lb � lbu � lÞdx�

� ½�
1

b
þ 2

Z 1

0

l

x2
ð1 � uÞub� 1ln xð1þ bln uÞdxþ c0ðbþ 1Þ þ

1

b
2
�

þHSf2

Z 1

0

1

x2
ð1 � uÞub� 1ln xð1þ bln uÞð1 �

l

x
Þdx

þ 2

Z 1

0

l

x3
ð1 � uÞ2ub� 2ln xð2bþ b2ln u � bln u � 1Þdxg:

Substitute the above equations into Eq (20) to obtain E½H2
S j x �. Next, we calculate ϕ2 = HS.

�2b ¼ �
1

b
þ 2

Z 1

0

l

x2
ð1 � uÞub� 1ln xð1þ bln uÞdxþ c0ðbþ 1Þ þ

1

b
2
;

�2bb ¼
1

b
2
þ 2

Z 1

0

l

x2
ð1 � uÞub� 1ln uln xð2þ bln uÞdxþ c@

ðbþ 1Þ �
2

b
3
;

�2l ¼ �
1

l
þ 2

Z 1

0

b

x3
ð1 � uÞub� 2ln xðxuþ lb � lbu � lÞdx;

�2ll ¼
1

l
2
� 2

Z 1

0

b

x4
ð1 � uÞub� 2ln xðxuþ lb � lbu � lÞ½1 � ðb � 2Þð1 � uÞu� 1�dx

þ 2

Z 1

0

b

x3
ð1 � uÞub� 2ln x½1 � uþ b � bu � lbð1 � uÞx� 1 � 1�dx;

�2bl ¼ �2lb ¼ 2

Z 1

0

1

x2
ð1 � uÞub� 1ln xð1þ bln uÞð1 �

l

x
Þdx

þ 2

Z 1

0

l

x3
ð1 � uÞ2ub� 2ln xð2b þ b2ln u � bln u � 1Þdx:

Substitute the above equations into Eq (20) to obtain E[HS|x], and then the BE of Shannon

entropy under DLF can be obtained from Eq (18).

(6) Computing the BE of Rényi entropy under DLF:

In that case, we have φRðb; lÞ ¼
H2

R
HR

, letting �3 ¼ H2
R, ϕ4 = HR, thus

�3b ¼ 2HR½
a

bð1 � aÞ
þ

a

Z 1

0

x� 2að1 � uÞauaðb� 1Þln udx

ð1 � aÞ

Z 1

0

x� 2að1 � uÞauaðb� 1Þdx
�;

�3bb ¼ 2½
a

bð1 � aÞ
þ

a

Z 1

0

x� 2að1 � uÞauaðb� 1Þln udx

ð1 � aÞ

Z 1

0

x� 2að1 � uÞauaðb� 1Þdx
�2

þ 2HRðf Þf�
a

b
2
ð1 � aÞ

þ

a2

Z 1

0

x� 2að1 � uÞauaðb� 1Þðln uÞ2dx

ð1 � aÞ

Z 1

0

x� 2að1 � uÞauaðb� 1Þdx

�

a2½

Z 1

0

x� 2að1 � uÞauaðb� 1Þln udx�2

ð1 � aÞ½

Z 1

0

x� 2að1 � uÞauaðb� 1Þdx�2
g;
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�3l ¼ 2HR½
a

lð1 � aÞ
�

a

Z 1

0

x� 2a� 1ð1 � uÞauaðb� 1Þ� 1ðbu � bþ 1Þdx

ð1 � aÞ

Z 1

0

x� 2að1 � uÞauaðb� 1Þdx
�;

�3ll ¼ 2½
a

lð1 � aÞ
�

a

Z 1

0

x� 2a� 1ð1 � uÞauaðb� 1Þ� 1ðbu � bþ 1Þdx

ð1 � aÞ

Z 1

0

x� 2að1 � uÞauaðb� 1Þdx
�
2

þ 2HRf�
a

l
2
ð1 � aÞ

þ

a

Z 1

0

x� 2a� 2ð1 � uÞauaðb� 1Þ� 2ðbu � bþ 1Þðabu � abþ a � uþ 1Þdx

ð1 � aÞ

Z 1

0

x� 2að1 � uÞauaðb� 1Þdx

�

ab

Z 1

0

x� 2a� 2ð1 � uÞaþ1uaðb� 1Þ� 1dx

ð1 � aÞ

Z 1

0

x� 2að1 � uÞauaðb� 1Þdx
�

a2½

Z 1

0

x� 2a� 1ð1 � uÞauaðb� 1Þ� 1ðbu � bþ 1Þdx�2

ð1 � aÞ½

Z 1

0

x� 2að1 � uÞauaðb� 1Þdx�2
g;

�3bl ¼ �3lb ¼ 2½
a

lð1 � aÞ
�

a

Z 1

0

x� 2a� 1ð1 � uÞauaðb� 1Þ� 1ðbu � bþ 1Þdx

ð1 � aÞ

Z 1

0

x� 2að1 � uÞauaðb� 1Þdx
�

� ½
a

bð1 � aÞ
þ

a

Z 1

0

x� 2að1 � uÞauaðb� 1Þln udx

ð1 � aÞ

Z 1

0

x� 2að1 � uÞauaðb� 1Þdx
�

þ 2HRðf Þf�
a2

Z 1

0

x� 2a� 1ð1 � uÞauaðb� 1Þ� 1ln uðbu � bþ 1Þdx

ð1 � aÞ

Z 1

0

x� 2að1 � uÞauaðb� 1Þdx

þ

a

Z 1

0

x� 2a� 1ð1 � uÞaþ1uaðb� 1Þ� 1dx

ð1 � aÞ

Z 1

0

x� 2að1 � uÞauaðb� 1Þdx

þ

a2

Z 1

0

x� 2að1 � uÞauaðb� 1Þln udx
Z 1

0

x� 2a� 1ð1 � uÞauaðb� 1Þ� 1ðbu � bþ 1Þdx

ð1 � aÞ½

Z 1

0

x� 2að1 � uÞauaðb� 1Þdx�2
g:

Substitute the above equations into Eq (20) to obtain E½H2
Rj x �. Next, we calculate ϕ4 = HR.

�4b ¼
a

bð1 � aÞ
þ

a

Z 1

0

x� 2að1 � uÞauaðb� 1Þln udx

ð1 � aÞ

Z 1

0

x� 2að1 � uÞauaðb� 1Þdx
;

PLOS ONE Statistical inference of entropy functions of generalized inverse exponential model

PLOS ONE | https://doi.org/10.1371/journal.pone.0311129 September 30, 2024 18 / 29

https://doi.org/10.1371/journal.pone.0311129


�4bb ¼ �
a

b
2
ð1 � aÞ

þ

a2

Z 1

0

x� 2að1 � uÞauaðb� 1Þðln uÞ2dx

ð1 � aÞ

Z 1

0

x� 2að1 � uÞauaðb� 1Þdx

�

a2½

Z 1

0

x� 2að1 � uÞauaðb� 1Þln udx�2

ð1 � aÞ½

Z 1

0

x� 2að1 � uÞauaðb� 1Þdx�2
;

�4l ¼
a

lð1 � aÞ
�

a

Z 1

0

x� 2a� 1ð1 � uÞauaðb� 1Þ� 1ðbu � bþ 1Þdx

ð1 � aÞ

Z 1

0

x� 2að1 � uÞauaðb� 1Þdx
;

�4ll ¼ �
a

l
2
ð1 � aÞ

þ

a

Z 1

0

x� 2a� 2ð1 � uÞauaðb� 1Þ� 2ðbu � bþ 1Þðabu � abþ a � uþ 1Þdx

ð1 � aÞ

Z 1

0

x� 2að1 � uÞauaðb� 1Þdx

�

ab

Z 1

0

x� 2a� 2ð1 � uÞaþ1uaðb� 1Þ� 1dx

ð1 � aÞ

Z 1

0

x� 2að1 � uÞauaðb� 1Þdx
�

a2½

Z 1

0

x� 2a� 1ð1 � uÞauaðb� 1Þ� 1ðbu � bþ 1Þdx�2

ð1 � aÞ½

Z 1

0

x� 2að1 � uÞauaðb� 1Þdx�2
;

�4bl ¼ �4lb ¼ �

a2

Z 1

0

x� 2a� 1ð1 � uÞauaðb� 1Þ� 1ln uðbu � bþ 1Þdx

ð1 � aÞ

Z 1

0

x� 2að1 � uÞauaðb� 1Þdx

þ

a

Z 1

0

x� 2a� 1ð1 � uÞaþ1uaðb� 1Þ� 1dx

ð1 � aÞ

Z 1

0

x� 2að1 � uÞauaðb� 1Þdx

þ

a2

Z 1

0

x� 2að1 � uÞauaðb� 1Þln udx
Z 1

0

x� 2a� 1ð1 � uÞauaðb� 1Þ� 1ðbu � bþ 1Þdx

ð1 � aÞ½

Z 1

0

x� 2að1 � uÞauaðb� 1Þdx�2
:

Substitute the above equations into Eq (20) to obtain E[HR|x], and then the BE of Rényi

entropy under DLF can be obtained from Eq (19).

5. Monte Carlo modeling

Monte Carlo simulation is a statistical simulation method based on random sampling, which

generates a large number of random samples and simulates and infers based on these samples

to obtain corresponding approximate results. In this section, we use the Monte Carlo method

combined with the estimation method used in this paper to calculate the average estimates

(AEs) and corresponding mean square errors (MSEs) of Shannon entropy and Rényi entropy.

For further analysis, we used the bootstrap method to obtain the average width (AW) and
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coverage probability (CP) of the entropy CI. Firstly, we set the true values of the parameters β
= 0.5, λ = 0.5, and the censoring schemes (see Table 3). Based on the given censoring schemes,

we generate PC-II data using an algorithm (see Wang and Gui [40]) to calculate the AEs and

MSEs of the GIED model parameters (see Tables 4 and 5). On this basis, we assume hyperpara-

meters a1 = b1 = a2 = b2 = 1, entropy parameters c = 2, and α = 1.5 and conduct 1000 repeated

experiments with different sample sizes to obtain ML estimates and Bayesian estimates of

Table 3. PC-II schemes.

Censoring Samples

Scheme a if m is odd: Ri ¼ 0;Rðmþ1Þ=2 ¼ n � mði 6¼ ðmþ 1Þ=2Þ

if m is even: Ri ¼ 0;Rm=2 ¼ n � mði 6¼ m=2Þ

Scheme b if n is odd and m is even, or if n is even and m is odd:

R1 ¼ ðn � m � 1Þ=2;R2 ¼ R3 ¼ � � � ¼ Rm� 1 ¼ 0;Rm ¼ ðn � m � 1Þ=2

if n and m are both odd (even):

R1 ¼ ðn � mÞ=2;R2 ¼ R3 ¼ � � � ¼ Rm� 1 ¼ 0;Rm ¼ ðn � mÞ=2

Scheme c R1 ¼ R2 ¼ � � � ¼ Rm ¼ 1

https://doi.org/10.1371/journal.pone.0311129.t003

Table 4. The AEs and corresponding MSEs of β in the GIED model under different censoring schemes.

n m CS MLE Lindley

LBe EBe DBe

AE MSE AE MSE AE MSE AE MSE

30 15 a 0.6209 0.0974 0.5858 0.0471 0.5657 0.0474 0.7073 0.1229

b 0.6110 0.0872 0.5849 0.0452 0.5648 0.0452 0.7038 0.1209

c 0.6031 0.0763 0.5757 0.0389 0.5549 0.0400 0.6985 0.1162

20 a 0.5637 0.0396 0.5511 0.0267 0.5352 0.0268 0.6243 0.0554

b 0.5811 0.0483 0.5677 0.0323 0.5471 0.0273 0.6370 0.0579

c 0.5735 0.0539 0.5598 0.0328 0.5423 0.0324 0.6429 0.0707

25 a 0.5475 0.0242 0.5411 0.0191 0.5282 0.0187 0.5932 0.0334

b 0.5476 0.0255 0.5414 0.0197 0.5289 0.0195 0.5923 0.0343

c 0.5616 0.0332 0.5545 0.0250 0.5399 0.0246 0.6192 0.0490

50 20 a 0.5916 0.0598 0.5720 0.0373 0.5556 0.0382 0.6618 0.0844

b 0.5762 0.0510 0.5665 0.0330 0.5487 0.0335 0.6567 0.0811

c 0.5791 0.0558 0.5640 0.0346 0.5471 0.0349 0.6502 0.0783

25 a 0.5603 0.0307 0.5521 0.0228 0.5376 0.0224 0.6145 0.0439

b 0.5536 0.0313 0.5490 0.0233 0.5399 0.0265 0.6127 0.0448

c 0.5605 0.0348 0.5530 0.0253 0.5384 0.0252 0.6174 0.0497

40 a 0.5337 0.0122 0.5316 0.0108 0.5229 0.0104 0.5627 0.0160

b 0.5247 0.0109 0.5236 0.0097 0.5150 0.0094 0.5533 0.0140

c 0.5398 0.0171 0.5383 0.0148 0.5283 0.0144 0.5754 0.0230

80 25 a 0.5631 0.0311 0.5539 0.0232 0.5381 0.0226 0.6232 0.0471

b 0.5672 0.0445 0.5630 0.0308 0.5466 0.0308 0.6398 0.0683

c 0.5659 0.0393 0.5575 0.0273 0.5430 0.0272 0.6231 0.0542

40 a 0.5306 0.0159 0.5284 0.0137 0.5187 0.0134 0.5636 0.0205

b 0.5357 0.0156 0.5358 0.0138 0.5261 0.0134 0.5712 0.0213

c 0.5262 0.0139 0.5256 0.0123 0.5156 0.0119 0.5610 0.0186

60 a 0.5177 0.0079 0.5172 0.0074 0.5111 0.0072 0.5373 0.0095

b 0.5195 0.0082 0.5193 0.0077 0.5134 0.0075 0.5391 0.0099

c 0.5231 0.0100 0.5231 0.0093 0.5162 0.0090 0.5464 0.0124

https://doi.org/10.1371/journal.pone.0311129.t004
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Shannon entropy and Rényi entropy, as well as corresponding MSEs (see Tables 6 and 7). For

simplicity, we denote the ML estimates as MLE, and the Bayesian estimates under the three

loss functions as LBe, EBe, and DBe. When constructing CIs using the bootstrap method, we

set confidence levels θ = 0.05,0.1, and sampled the original data with replacement. The number

of samples was set to m1 = 30,m2 = 50,m3 = 80, and the number of repeated samples was

B = 5000. Tables 8 and 9 represent the AW and CP of Shannon entropy and Rényi entropy at

100(1−θ)% CIs, respectively. Through these analyses, we can gain a deeper understanding of

the accuracy and reliability of entropy estimation.

Drawing upon the data presented in the aforementioned tables, the following research find-

ings can be deduced:

(1) In parameter estimation and entropy estimation, Bayesian estimation performs better

than ML estimation on the whole. Specifically, for parameter estimation, Bayesian estimation

under LLF has the best performance. For entropy estimation, the Bayesian estimation under

DLF has the best performance.

(2) When the total sample observations were fixed, the MSE of parameter estimation and

entropy estimation showed a downward trend with the increase of the observed sample size,

indicating that the accuracy of estimation increased with the increase of sample size.

Table 5. The AEs and corresponding MSEs of λ in the GIED model under different censoring schemes.

n m CS MLE Lindley

LBe EBe DBe

AE MSE AE MSE AE MSE AE MSE

30 15 a 0.5892 0.0546 0.5612 0.0378 0.5382 0.0392 0.6917 0.1050

b 0.5823 0.0518 0.5561 0.0351 0.5307 0.0371 0.6796 0.1707

c 0.5805 0.0501 0.5531 0.0326 0.5278 0.0347 0.6929 0.1026

20 a 0.5743 0.0467 0.5617 0.0367 0.5440 0.0380 0.6383 0.0608

b 0.5810 0.0483 0.5619 0.0332 0.5433 0.0340 0.6403 0.0566

c 0.5646 0.0385 0.5508 0.0290 0.5310 0.0296 0.6360 0.0783

25 a 0.5646 0.0377 0.5582 0.0332 0.5439 0.0340 0.6121 0.0452

b 0.5651 0.0368 0.5589 0.0319 0.5453 0.0325 0.6113 0.0445

c 0.5452 0.0233 0.5380 0.0188 0.5205 0.0190 0.6069 0.0355

50 20 a 0.5605 0.0321 0.5409 0.0212 0.5202 0.0220 0.6393 0.0535

b 0.5593 0.0332 0.5496 0.0239 0.5276 0.0246 0.6469 0.0595

c 0.5601 0.0346 0.5450 0.0235 0.5244 0.0244 0.6385 0.0558

25 a 0.5496 0.0213 0.5414 0.0172 0.5247 0.0172 0.6072 0.0323

b 0.5565 0.0309 0.5414 0.0223 0.5245 0.0226 0.6074 0.0391

c 0.5510 0.0266 0.5435 0.0209 0.5265 0.0212 0.6114 0.0390

40 a 0.5428 0.0184 0.5408 0.0171 0.5316 0.0171 0.5724 0.0216

b 0.5370 0.0200 0.5359 0.0188 0.5269 0.0190 0.5660 0.0227

c 0.5250 0.0128 0.5234 0.0115 0.5121 0.0114 0.5622 0.0168

80 25 a 0.5344 0.0159 0.5252 0.0159 0.5058 0.0123 0.5994 0.0272

b 0.5457 0.0233 0.5415 0.0171 0.5212 0.0171 0.6245 0.0439

c 0.5527 0.0261 0.5443 0.0206 0.5273 0.0208 0.6149 0.0404

40 a 0.5268 0.0132 0.5246 0.0118 0.5141 0.0117 0.5607 0.0168

b 0.5331 0.0151 0.5331 0.0139 0.5225 0.0138 0.5696 0.0196

c 0.5229 0.0121 0.5223 0.0110 0.5113 0.0110 0.5587 0.0156

60 a 0.5260 0.0110 0.5255 0.0105 0.5193 0.0105 0.5458 0.0124

b 0.5254 0.0117 0.5253 0.0112 0.5191 0.0112 0.5453 0.0131

c 0.5188 0.0088 0.5188 0.0083 0.5115 0.0082 0.5426 0.0106

https://doi.org/10.1371/journal.pone.0311129.t005
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(3) Through the analysis of Tables 8 and 9, it can be observed that AW of the CI of Shannon

entropy and Rényi entropy gradually decreases with the increase of the observed sample size,

while AW increases correspondingly with the increase of the confidence level. At the same

time, CP of Shannon entropy and Rényi entropy increases with the increase of confidence

level, especially when θ = 0.1, CP reaches the highest value.

6. Analyzing the data

Here, the methods of estimation used with this paper are demonstrated using actual data. The

data set is as follows: 1.05, 2.92, 3.61, 4.20, 4.49, 6.72, 7.31, 9.08, 9.11, 14.49, 16.85, 18.82, 26.59,

30.26, 41.34. These data represent the survival time (in months) of Hodgkin’s disease patients

undergoing intensive treatment with nitrogen mustard. Please refer to Bakoban and Abubaker

[41] for more details. In order to assess the suitability of the GIED model for this dataset, we

computed the Kolmogorov-Smirnov (KS) statistic for GIED, inverse Weibull distribution

(IWD), exponential Weibull distribution (EWD), and Weibull distribution (WD) based on

this dataset. The P-value derived from the KS statistic was utilized as a criterion to determine

the optimal model selection. The specific values are presented in Table 10. Subsequently, Fig 3

Table 6. The AEs and corresponding MSEs of Shannon entropy under different censoring schemes.

n m CS MLE Lindley

LBe EBe DBe

AE MSE AE MSE AE MSE AE MSE

30 15 a 2.9283 0.6138 2.6109 0.6308 2.8305 0.5634 3.1959 0.5475

b 2.9442 0.6292 2.6219 0.6478 2.8363 0.5782 3.1940 0.5670

c 2.9043 0.5971 2.5832 0.6479 2.8017 0.5539 3.1697 0.5185

20 a 2.9691 0.4353 2.7140 0.4555 2.8962 0.4102 3.1586 0.4043

b 2.9947 0.4096 2.7323 0.4319 2.9145 0.3905 3.1779 0.3900

c 2.9683 0.4561 2.6915 0.4845 2.8822 0.4297 3.1688 0.4192

25 a 3.0144 0.3269 2.7966 0.3400 2.9529 0.3148 3.1607 0.3166

b 3.0026 0.3389 2.7876 0.3556 2.9419 0.3297 3.1474 0.3260

c 3.0004 0.3667 2.7605 0.3813 2.9283 0.3461 3.1616 0.3451

50 20 a 2.9552 0.5191 2.6752 0.5345 2.8719 0.4786 3.1700 0.4713

b 2.9973 0.4849 2.7023 0.5045 2.8936 0.4519 3.1908 0.4453

c 2.9688 0.4767 2.6921 0.4976 2.8821 0.4448 3.1681 0.4362

25 a 2.9876 0.3669 2.7516 0.3878 2.9197 0.3493 3.1525 0.3431

b 2.9852 0.3841 2.7535 0.4038 2.9142 0.3699 3.1373 0.3591

c 3.0122 0.3792 2.7693 0.3900 2.9378 0.3568 3.1724 0.3578

40 a 3.0351 0.1892 2.8818 0.1981 2.9946 0.1851 3.1291 0.1856

b 3.0330 0.2211 2.8802 0.2267 2.9917 0.2159 3.1249 0.2154

c 3.0127 0.2458 2.8453 0.2567 2.9661 0.2392 3.1152 0.2338

80 25 a 2.9827 0.4112 2.7225 0.4335 2.9056 0.3867 3.1698 0.3834

b 2.9799 0.3931 2.7052 0.4381 2.8792 0.3819 3.1439 0.3553

c 2.9777 0.3680 2.7398 0.3963 2.9060 0.3535 3.1394 0.3394

40 a 3.0138 0.2439 2.8481 0.2530 2.9696 0.2366 3.1187 0.2334

b 3.0233 0.2475 2.8568 0.2557 2.9741 0.2414 3.1187 0.2375

c 3.0268 0.2135 2.8566 0.2251 2.9789 0.2074 3.1295 0.2060

60 a 3.0531 0.1506 2.9423 0.1519 3.0248 0.1478 3.1169 0.1487

b 3.0535 0.1515 2.9441 0.1530 3.0252 0.1491 3.1156 0.1498

c 3.0159 0.1554 2.8966 0.1661 2.9843 0.1542 3.0852 0.1482

https://doi.org/10.1371/journal.pone.0311129.t006
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illustrates both the empirical distribution of the dataset and cumulative distribution functions

corresponding to each distribution model. It is evident from Table 10 and Fig 3 that the GIED

model provides a reasonable fit for this dataset.

To validate the performance of the proposed estimation method, and considering the valid-

ity of the data and the diversity of censoring schemes, we randomly selected m = 7 observa-

tions from the provided real dataset. The selection of m = 7 as the observation value is based

on the optimization consideration of model performance. Through simulation experiments,

we found that this value can maintain reasonable computational efficiency while ensuring pre-

diction accuracy, and can better adapt to the characteristics and requirements of our dataset.

Subsequently, according to the censoring schemes defined in Table 3, these observations were

subjected to corresponding censoring processing to generate a more stable sample dataset,

thereby providing a basis for subsequent statistical analysis, as detailed in Table 11. To demon-

strate the solution of the ML estimation exists and is unique, we chose censoring scheme II

and visualized the log-LF. Please refer to Fig 4 for details. Table 12 shows the ML estimates and

the Bayesian estimates of the entropies on the basis of the actual data, with hyperparameters

set as a1 = b1 = a2 = b2 = 1,c = 2, and α = 1.5. Table 13 presents the upper and lower bounds of

Table 7. The AEs and corresponding MSEs of Rényi entropy under different censoring schemes.

n m CS MLE Lindley

LBe EBe DBe

AE MSE AE MSE AE MSE AE MSE

30 15 a 1.8957 0.2241 1.7651 0.2261 1.8313 0.2251 2.0255 0.1884

b 1.9177 0.2122 1.7828 0.2156 1.8493 0.2167 2.0421 0.1852

c 1.8999 0.2217 1.7692 0.2241 1.8352 0.2230 2.0281 0.1868

20 a 1.9556 0.1667 1.8435 0.1669 1.8995 0.1686 2.0457 0.1550

b 1.9472 0.1578 1.8353 0.1619 1.8912 0.1622 2.0381 0.1465

c 1.9217 0.1539 1.8124 0.1610 1.8672 0.1580 2.0146 0.1351

25 a 1.9654 0.1292 1.8675 0.1314 1.9160 0.1317 2.0367 0.1232

b 1.9763 0.1294 1.8776 0.1301 1.9268 0.1310 2.0483 0.1245

c 1.9450 0.1230 1.8533 0.1270 1.9001 0.1253 2.0177 0.1125

50 20 a 1.9209 0.1612 1.8114 0.1659 1.8678 0.1634 2.0200 0.1402

b 1.9157 0.1640 1.8030 0.1742 1.8577 0.1707 2.0075 0.1439

c 1.9227 0.1651 1.8133 0.1709 1.8680 0.1690 2.0155 0.1460

25 a 1.9521 0.1123 1.8599 0.1167 1.9073 0.1148 2.0255 0.1037

b 1.9456 0.1244 1.8530 0.1296 1.8996 0.1282 2.0170 0.1153

c 1.9395 0.1182 1.8468 0.1243 1.8935 0.1216 2.0119 0.1075

40 a 1.9797 0.0780 1.9158 0.0786 1.9486 0.0788 2.0235 0.0759

b 1.9818 0.0859 1.9170 0.0863 1.9502 0.0869 2.0266 0.0838

c 1.9666 0.0771 1.9050 0.0786 1.9370 0.0780 2.0109 0.0734

80 25 a 1.9385 0.1347 1.8429 0.1365 1.8930 0.1346 2.0214 0.1196

b 1.9322 0.1378 1.8300 0.1456 1.8777 0.1428 2.0042 0.1221

c 1.9507 0.1258 1.8577 0.1297 1.9047 0.1286 2.0230 0.1162

40 a 1.9719 0.0716 1.9111 0.0728 1.9433 0.0722 2.0171 0.0684

b 1.9612 0.0783 1.8994 0.0808 1.9311 0.0800 2.0046 0.0745

c 1.9509 0.0836 1.8894 0.0868 1.9210 0.0855 1.9954 0.0782

60 a 1.9809 0.0482 1.9371 0.0492 1.9599 0.0489 2.0099 0.0472

b 1.9859 0.0500 1.9415 0.0505 1.9647 0.0505 2.0155 0.0493

c 1.9829 0.0493 1.9395 0.0498 1.9621 0.0497 2.0118 0.0482

https://doi.org/10.1371/journal.pone.0311129.t007
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the bootstrap CIs for entropy on the basis of the actual data at different confidence levels, with

the number of repeated samples set to 5000.

7. Conclusions

Within this paper, we discussed the estimation of entropy for the GIED’s Shannon entropy

and Rényi entropy based on PC-II samples. We first introduced the PC-II experiment and the

GIED model, and deduced the ML estimation expressions for entropy. Due to the invariance

property of ML estimation, we used a dichotomy method to obtain the ML estimates of the

parameters. Next, or the purpose of evaluating the accuracy and precision of the estimates of

Shannon entropy and Rényi entropy, we used the bootstrap method to obtain the CIs of Shan-

non entropy and Rényi entropy. In Bayesian estimation, we introduced three loss functions,

LLF, ELF, and DLF, to assess the disparities between the approximated values and actual val-

ues, helping us assess the performance of the model and make optimal choices. However, due

to the complexity of the Bayesian estimation forms for entropy under the loss functions, direct

computation was challenging. Therefore, we used the Lindley approximation algorithm to esti-

mate their Bayesian estimates. Finally, we conducted simulation experiments using the Monte

Carlo method to obtain the estimates and corresponding MSEs of Shannon entropy and Rényi

Table 8. AW and CP of the 100(1−θ)% CI for Shannon entropy.

n m CS θ = 0.05 θ = 0.1

AW CP AW CP

30 15 a 5.3239 0.9920 6.6893 1.0000

b 4.0999 0.8170 5.9816 0.9580

c 3.6197 0.9490 3.8822 0.9710

20 a 3.7924 0.9720 6.6814 1.0000

b 3.0828 0.7500 3.8277 0.9850

c 2.3251 0.8240 2.3413 0.9130

25 a 2.0543 0.9000 2.6363 0.9740

b 1.9814 0.8670 1.9961 0.8920

c 1.9010 0.8210 1.9616 0.8570

50 20 a 5.4345 0.9980 6.3533 1.0000

b 3.5983 0.9390 7.7951 0.9890

c 2.2638 0.8750 2.5799 0.9170

25 a 4.3206 0.9980 5.5457 1.0000

b 3.5080 0.8680 5.2608 1.0000

c 2.0171 0.7200 2.3511 0.8330

40 a 2.2185 0.8810 2.3712 0.9830

b 1.7983 0.9460 2.1869 0.9560

c 1.7255 0.8270 2.3354 0.9200

80 25 a 8.3366 1.0000 8.7971 1.0000

b 7.0129 0.9990 12.4071 1.0000

c 2.0614 0.8410 2.2768 0.8790

40 a 3.5499 1.0000 7.2944 1.0000

b 2.1869 0.9560 3.0937 0.9820

c 1.7966 0.8850 1.9492 0.9100

60 a 2.9989 0.9970 4.0421 1.0000

b 1.6839 0.9000 1.7348 0.9740

c 1.2961 0.7980 1.3215 0.8560

https://doi.org/10.1371/journal.pone.0311129.t008
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Table 9. AW and CP of the 100(1−θ)% CI for Rényi entropy.

n m CS θ = 0.05 θ = 0.1

AW CP AW CP

30 15 a 3.3166 0.7950 3.7192 0.9900

b 2.4433 0.8080 2.8280 0.9980

c 1.4330 0.8890 1.7525 0.9260

20 a 2.2759 0.9790 2.2837 0.9960

b 1.6112 0.9670 1.6928 0.9700

c 1.1083 0.7960 1.2660 0.8620

25 a 1.5252 0.8090 1.5432 0.9430

b 1.2712 0.8190 1.5312 0.9010

c 1.0760 0.8570 1.1813 0.9160

50 20 a 3.2180 0.9980 4.1871 1.0000

b 2.2686 0.8020 3.0443 0.9380

c 1.6407 0.8050 1.8054 0.9580

25 a 2.9590 0.9990 2.9933 0.9990

b 2.0828 0.9010 2.1256 0.9980

c 1.0752 0.8230 1.3139 0.9350

40 a 1.6615 0.9810 1.6950 0.9820

b 1.1528 0.9220 1.1572 0.9680

c 0.9687 0.8220 1.0331 0.9200

80 25 a 3.5634 1.0000 4.8036 1.0000

b 2.6304 0.9480 2.6695 0.9840

c 1.2011 0.8610 1.5777 0.8780

40 a 3.0343 1.0000 3.0852 1.0000

b 1.5593 0.8650 2.0543 0.9990

c 0.9525 0.8590 1.1215 0.9690

60 a 1.4652 0.9660 1.6882 0.9980

b 1.1043 0.9750 1.1169 0.9810

c 0.7368 0.8090 0.9283 0.8710

https://doi.org/10.1371/journal.pone.0311129.t009

Table 10. ML estimates and goodness of fit testing under real data.

Model β λ KS P

GIED 1.2225 6.0791 0.0878 0.7934

IWD 1.0070 5.3734 0.1190 0.6541

EWD 0.4413 9.0813 0.0888 0.7893

WD 0.4798 2.5122 0.5253 0.0003

https://doi.org/10.1371/journal.pone.0311129.t010

Table 11. PC-II samples obtained using m = 7 observations.

Censoring Schemes (R1,R2,R3,R4,R5,R6,R7) Censoring samples

I (0,0,0,8,0,0,0) 1.05,2.92,3.61,4.20,26.59,30.26,41.34

II (4,0,0,0,0,0,4) 4.49,6.72,7.31,9.08,9.11,14.49,16.85

III (1,1,1,1,1,1,1) 2.92,4.20,6.72,9.08,14.49,18.82,30.26

https://doi.org/10.1371/journal.pone.0311129.t011
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Fig 4. Partial derivatives of the log-LF.

https://doi.org/10.1371/journal.pone.0311129.g004

Table 12. ML estimates and Bayesian estimates of Shannon entropy and Rényi entropy.

Function CS MLE Lindley

LBe Ebe Dbe

Shannon I 4.5186 4.5166 5.4925 5.5425

II 3.7140 2.9786 16.8070 5.4097

III 4.4610 4.2071 7.5096 5.9143

Rényi I 3.7181 3.6707 3.9536 4.1057

II 3.4670 2.9455 8.5171 4.8137

III 3.9482 4.7925 4.9617 4.7266

https://doi.org/10.1371/journal.pone.0311129.t012

Table 13. Upper and lower bounds of bootstrap CIs for Shannon entropy and Rényi entropy at different confidence levels.

Function CS θ = 0.05 θ = 0.1

Lower Upper Lower Upper

Shannon I 1.2485 9.3561 1.8492 8.9169

II -3.4156 7.4638 0.2626 5.3264

III 2.8578 5.5116 3.1250 5.2558

Rényi I 2.4808 5.4712 2.7526 5.1910

II 0.6082 4.3989 1.7767 3.8861

III 2.8755 4.6825 3.1935 4.4192

https://doi.org/10.1371/journal.pone.0311129.t013
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entropy, and analyzed and compared the performance of different estimation methods used

under the censoring schemes.

The analysis of GIED entropy estimation in PC-II samples can help us gain a deeper under-

standing and describe the uncertainty and information requirements of GIED in such sample

scenarios. These measures provide an evaluation of the distribution characteristics, enabling a

more comprehensive understanding of the information content and statistical features of cen-

soring sample data in analysis and modeling. Furthermore, with the obtained entropy values,

we can better comprehend and analyze the data characteristics in PC-II samples and make

model selection, parameter estimation, and predictive analysis in relevant applications. This

enhances our overall understanding and interpretability of the data, improving our ability to

comprehend and interpret the data comprehensively. Furthermore, the estimation of entropy

in distribution models plays a crucial role in evaluating product reliability. A low entropy

value indicates a high level of stability in the product’s lifespan, thereby reflecting its superior

reliability. Conversely, a high entropy value suggests the need for optimization and improve-

ment of the product. Entropy is also applicable to assess the risk of product failure since higher

entropy signifies increased uncertainty regarding the product’s lifespan and consequently ele-

vates the risk of failure. Based on this understanding, targeted risk control strategies can be

developed to minimize potential risks.
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for the Fréchet distribution under progressive type II censoring. Aip Adv. 2024; 14: 015137. https://doi.

org/10.1063/5.0174390

9. Abouammoh AM, Alshingiti AM. Reliability estimation of generalized inverted exponential distribution. J

Stat Comput Sim. 2009; 79: 1301–1315. https://doi.org/10.1080/00949650802261095

10. Alqallaf FA, Kundu D. A bivariate inverse generalized exponential distribution and its applications in

dependent competing risks model. Commun Stat-Simul C. 2022; 51: 7019–7036. https://doi.org/10.

1080/03610918.2020.1821888

11. Bakoban RA, Aldahlan MA. Bayesian approximation techniques for the generalized inverted exponen-

tial distribution. Intell Autom Soft Co. 2022; 31: 129–142. https://doi.org/10.32604/iasc.2022.018041

12. Hassan AS, Alsadat N, Elgarhy M, Chesneau C, Nagy HF. Analysis of R = P[Y<X<Z] using ranked set

sampling for a generalized inverse exponential model. Axioms. 2023; 12: 302. https://doi.org/10.3390/

axioms12030302

13. Liu H, Xi CX. Bayesian estimation of parameters for the generalized inverse exponential distribution

under timed censoring samples. Stat Decis. 2023; 12: 302. https://doi.org/10.13546/j.cnki.tjyjc.2023.

15.007

14. Petropoulos C, Patra LK, Kumar S. Improved estimators of the entropy in scale mixture of exponential

distributions. Braz J Probab Stat. 2020; 34: 580–593. https://doi.org/10.1214/19-BJPS450

15. Shannon CE. A mathematical theory of communication. Bell Labs Tech J. 1948; 27: 379–423. https://

doi.org/10.1002/j.1538-7305.1948.tb01338.x
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